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We recover here the formation of Andreev bound states in SNS junctions by modeling an NS
junction as a delta-function “Andreev” impurity, i.e., a localized potential which scatters an elec-
tron into a hole with opposite spin. We show using the scattering matrix formalism that, quite
surprisingly, an “Andreev” impurity is equivalent to an NS junction characterized by both Andreev
reflection and a finite amount of normal scattering. Our formalism cannot capture ideal NS junc-
tions, but only imperfect ones, however, we show that this is enough to capture the generic features
of Andreev bound states. Thus, we provide a new analytical tool to describe the formation of ABS
using the T -matrix formalism, valid for imperfect junctions which can in general be described only
by numerical tools.

I. INTRODUCTION

The complete analytical description of the forma-
tion of Andreev bound states (ABS)1–5 in long SNS
junctions6–9 usually raises many technical challenges if
one is interested in more than the simplest approxima-
tions. The most basic solution is using numerical tight-
binding models, but if one is interested in analytical fea-
tures, in general one needs to resort to many approxima-
tions and assumptions such as the Bogoliubov–de Gennes
equations,10–12 the Andreev approximation,13 as well as
other approaches.14–21 Indeed, such limits capture well
the most basic features of the ABS but remain far from
describing the full behavior of these states as captured
by the numerical tools (see, e.g., Ref. [22]), for instance,
their bell-shaped dependence on gate-voltage.22–24 More-
over, no analytical tool can capture well imperfect bound-
aries between the normal and the superconductor (SC),
e.g., a finite amount of normal scattering at the leads,
which is expected to inevitably arise in typical experi-
mental setups.

Here we show that we can model an NS junction
by considering an “Andreev” type impurity: a delta-
function localized potential that scatters an electron into
a hole with opposite spin. This equivalence is demon-
strated using the scattering formalism: we find that there
are regimes of parameters in which the values of the
reflection and Andreev reflection coefficients in the NS
junction can be the same as those generated by an “An-
dreev” impurity. In this regime an “Andreev” impurity
can thus be a good model for an NS junction character-
ized by both Andreev reflection and a finite amount of
normal scattering.

We subsequently model an SNS junction by two “An-
dreev” impurities situated at a given distance, as illus-
trated in Fig. 1. We use the T -matrix formalism which
provides an exact solution for the two-impurity problem.
The resulting Green’s function in the region between the
two impurities corresponds to that of a normal region in

Figure 1. Schematics of the equivalence between ‘Andreev’
impurities and NS junctions.

an SNS junction, and thus it allows to describe the for-
mation of ABS. We calculate the resulting dependence of
the ABS energies on various parameters such as the gate
voltage and the phase difference between the two SCs
and we show that it is consistent with previous findings
(see, for instance, the results obtained by exact diagonal-
ization in Ref. [22]).

In Sec. II we provide the equivalence conditions be-
tween the NS junction and the “Andreev” impurity. In
Sec. III we give the T -matrix formalism necessary to com-
pute the Green’s function and subsequently the local den-
sity of states (LDOS) in the presence of two impurities.
We present our results in Sec. IV, leaving the conclusions
to Sec. V.

II. SCATTERING FORMALISM AND
CONDITIONS OF EQUIVALENCE BETWEEN
THE NS JUNCTION AND THE “ANDREEV”

IMPURITY

For an NS junction the BTK theory8 indicates that the
reflection and Andreev reflection coefficients, resulting
from injecting an electron from the normal side of the
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junction (see Fig. 2 for the schematics of the junction),
are given by

Figure 2. Schematics of an NS junction where we consider E
to be inferior to the SC gap, i.e., the transmission coefficients
t, tA = 0.

|rA|2 =
∆2

E2 + (∆2 − E2)(1 + 2Z2)2
, (1)

|r|2 = 1− |rA|2, (2)

where ∆ is the SC gap, Z is the dimensionless barrier
strength introducing a finite amount of normal reflection
at the interface. We will focus only on energies much
smaller than the gap, thus we have

|rA|2 =
1

(1 + 2Z2)2
, (3)

|r|2 = 1− |rA|2. (4)

For Z = 0 we have a perfect Andreev junction, i.e., rA =
1, while for Z � 1 we have a bad junction with a lot of
normal reflection.

Figure 3. Schematics of an “Andreev” impurity with the in-
coming, reflected and transmitted plane waves.

In order to verify the equivalence between an “An-
dreev” impurity and an NS junction we will calculate
the reflection and transmission coefficients, as well as the
Andreev reflection and transmission for the “Andreev”
impurity, and check in which regime they correspond to

the traditional BTK values mentioned above. Thus, for
a delta-function Andreev impurity (see Fig. 3) we write
down the Schrödinger equation

− ~2

2m

d2ψ

dx2
(x) + Vimp(x)ψ(x) = Eψ(x), (5)

where ψ(x) = (ψe(x), ψh(x))
T

is a two-component wave
function with the upper and lower components standing
for the electron and hole wave functions, respectively.
We assume a quadratic dispersion with m denoting the
quasiparticle mass. Hence, the impurity potential is a
2×2 matrix in the electron-hole space, and can be written
as

Vimp(x) =

(
VN VA
V ∗A −VN

)
δ(x). (6)

In the most general case a normal reflection component
VN 6= 0 should be present, however, we have shown that
it hinders the equivalence, and therefore, hereinafter we
will set VN = 0.

For x 6= 0 the solution of Eq. (5) is just a linear com-
bination of two-component vectors multiplied by right-
moving and left-moving plane waves, eikx and e−ikx, cor-
respondingly, where the wavevector k ≡

√
2mE/~. The

most general solution in the presence of the impurity is

ψL(x) = Are
ikx +Ale

−ikx, x < 0, (7)

ψR(x) = Bre
ikx +Ble

−ikx, x > 0. (8)

We focus on the simple case of an injected electron incom-
ing on the barrier from the left, thus Ar = (1, 0)T, and no
injected electron or hole from the right, i.e., Bl = (0, 0)T.
Hence Al = (r, rA)T, where r is the regular reflection
coefficient, and rA is the Andreev reflection coefficient.
Moreover, Br = (t, tA)T with t being regular transmis-
sion and tA Andreev transmission.

By assuming that the wave function ψ(x) =
ψL(x)Θ(−x) + ψR(x)Θ(x) is continuous at x = 0, we
obtain 1 + r = t, rA = tA. We then write down the con-
tinuity equation for the derivative of the wave function.
The delta-function potential gives rise to a discontinuity
at the origin, proportional to the value of the impurity
potential, in occurence here:

− ~2

2m
[ψ′R(0)− ψ′L(0)] + Vimpψ(0) = 0, (9)

which yields

− ~2

2m
ik(−Ar +Al +Br −Bl) + V (Ar +Al) = 0. (10)

We note that the solution to this problem is energy-
dependent, but since we are interested in energies very
close to the Fermi level, we can take k to be constant

k = kF , and we denote α ≡ ~2

m kF . The above equations
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yield

r = − |VA|2

α2 + |VA|2
, (11)

rA = −i αV ∗A
α2 + |VA|2

. (12)

In Fig. 4 we plot |r|2 + |rA|2 and |rA|/|r| as a function
of VA, while setting α = 1. This shows that for large
enough Andreev potentials the impurity models the NS
junction asymptotically well, i.e., |r|2+|rA|2 ≈ 1. On the
other hand, we see that with increasing VA the ratio be-
tween the Andreev and the regular reflection is decreas-
ing, e.g., for VA = 3.5 for which |r|2 + |rA|2 ≈ 0.92, we
barely have |rA|/|r| ≈ 0.3. This corresponds to a value of
Z ≈ 1 for the NS junction (see Eq. (3)). While the corre-
sponding junction is definitely far from perfect Andreev
reflection it can still support Andreev bound states, and
we describe their behavior in Sec. IV. This situation de-
scribes probably quite accurately the realistic parameters
for many experimental NS interfaces.
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Figure 4. In dotted red the ratio |rA|/|r| and in blue |r|2 +
|rA|2 as a function of VA (in units of α).

III. T -MATRIX FORMALISM

In order to take into account the cumulated effect of
all-order impurity scattering processes, we employ the T -
matrix formalism. We start with the case of a single im-
purity. Denoting the momentum-space Hamiltonian of a
given system Hk, we define the unperturbed Matsubara
Green’s function (GF) as: G0 (k, iωn) = [iωn −Hk]

−1
,

where ωn denote the Matsubara frequencies. In the pres-
ence of an impurity, the Green’s function is modified to:

G (k1, k2, iωn) = G0 (k1, iωn) δ (k1 − k2) (13)

+G0 (k1, iωn)T (k1, k2, iωn)G0 (k2, iωn) ,

where the T -matrix T (k1, k2, iωn) embodies impurity
scattering processes.25,26 For a delta-function impurity
Vimp (x) = V δ (x), the form of the T -matrix in 1D is
momentum independent and is given by:25,27–29

T (iωn) =

[
I− V ·

∫
dk

2π
G0 (k, iωn)

]−1
· V. (14)

To compute physical quantities such as, e.g., the local
density of states, in what follows we use the retarded GF
G(k1, k2, E) obtained by the analytical continuation of
the Matsubara GF G(k1, k2, iωn) (i.e., by setting iωn →
E + iδ, with δ → 0+). The real space equivalents of
Eqs. (13) and (14) can be written as

G(x, x′, E) = G0(x− x′, E) + G0(x,E)T (E)G0(−x′, E)

and

T (E) = [I− V · G0(0, E)]
−1 · V,

respectively.
In the presence of two delta-function impurities with

amplitudes Vi, localized at x = Xi, i ∈ {1, 2}, i.e.,

Vimp (x) = V1δ (x−X1) + V2δ (x−X2) , (15)

the full T -matrix can be found from the following equa-
tion using the unperturbed retarded Green’s function
real-space form:30,31

Tij = Viδij+ViG0(Xi−X1)T1j+ViG0(Xi−X2)T2j , (16)

where i, j ∈ {1, 2}. For brevity we omit energy-
dependence in all functions. Solving the system of four
equations in Eq. (16), we get:

T11 =
[
I−V1G0(0)−V1G0(X1 −X2)T

(0)
2 G0(X2 −X1)

]−1
V1,

T12 = T
(0)
1 G0(X1 −X2)T22,

T21 = T
(0)
2 G0(X2 −X1)T11,

T22 =
[
I−V2G0(0)−V2G0(X2 −X1)T

(0)
1 G0(X1 −X2)

]−1
V2,

where we defined T
(0)
i ≡ [I− ViG0(0)]

−1
Vi. The poles

of the T -matrix ||Tij || yield the energies of the bound
states in the system. Furthermore, we can also express
the full perturbed Green’s function in terms of the T -
matrix elements:

G(x, x′) = G0(x−x′)+
∑
ij

G0(x−Xi)TijG0(Xj−x′). (17)

The correction to the local density of states due to the
impurities can be expressed as

∆ρ(x) = − 1

π
Im tr

∑
ij

G0(x−Xi)TijG0(Xj−x)

 . (18)
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IV. RESULTS

The normal part of the junction is described using a
simple lattice Hamiltonian Hk = ξkτz, where τz is the
Pauli matrix acting in the particle-hole subspace, ξk ≡
µ−2t cos ka, where a is the lattice constant, t denotes the
hopping parameter and µ is the chemical potential. The
retarded Green’s function in real space is computed as the
Fourier transform of its momentum-space representation,
and is given by

G0(E, x) =

(
G11(E, x) 0

0 G22(E, x)

)
, (19)

where

G11(E, x) = (20)

−

[
(Et − µt + iδ)− sgn(Et − µt)

√
(Et − µt + iδ)

2−4

] |x|
a

at · sgn(Et − µt) · 2
|x|
a ·
√

(Et − µt + iδ)
2 − 4

G22(E, x) = (21)

+

[
(Et + µt + iδ)− sgn(Et + µt)

√
(Et + µt + iδ)

2 − 4

] |x|
a

at · sgn(Et + µt) · 2
|x|
a ·
√

(Et + µt + iδ)
2 − 4

if E2 + µ2 6= 0, and

G11(E, x) = − i

2at
e+i

π|x|
2a , (22)

G22(E, x) = − i

2at
e−i

π|x|
2a , (23)

for E2
t +µ2

t = 0. We expressed the energy and the chem-
ical potential in terms of the hopping amplitude, i.e.,
Et ≡ E/t and µt = µ/t. The positive infinitesimal shift
of energy, +iδ, δ → +0, corresponds to an inverse quasi-
particle lifetime and is generally related to the width of
the energy levels. Note that since the expressions above
are obtained within the lattice model, the results are valid
only for x = na, where n ∈ Z.

The results that we will present in this section are
evaluated using this full tight-binding model. However,
in order to test the validity of our approximations, we
establish also a correspondence between the continuum
model (used in Sec. II to make the connection between an
NS junction and an “Andreev impurity”) and the lattice
model. We thus expand ξk in a quadratic form:

ξk = µ− 2t cos ka ≈ ta2k2 + µ− 2t =
~2k2

2m
− ~2k2F

2m
.

This allows us to extract:

t =
~2

2ma2
, α ≡ ~2k2F

m
= 2(2t− µ).

In what follows we use values of the chemical potential
around µ = 1.5 so that α ≈ 1. We also set by default

Figure 5. The LDOS of an SNS junction as a function of the
coordinate x and the energy E on the horizontal and vertical
axes, respectively. Two Andreev impurities are localized at
x = 0 and x = 200. ABS form in the normal region. The
length of the normal region is L = 200, the chemical potential
is taken to be µ = 1.5, and the phase difference ϕ = 0.

the hopping parameter t = 1, therefore, making µt and
Et equivalent to µ and E, respectively. The broadening
is hereinafter set to δ = 0.001.

To model the SNS junction we introduce two Andreev
impurities, as in Eq. (6). In order to take into account
the phase difference between the superconductors we re-
place VA → VAe

±iϕ for one of the impurities, choosing
the signs differently for the 12 and 21 components, to pre-
serve the Hermitian character of the Hamiltonian. Using
the notations from Eq. (15), we can thus write:

V1 =

(
0 VA
VA 0

)
and V2 =

(
0 VAe

−iϕ

VAe
+iϕ 0

)
. (24)

As mentioned in Sec. II we focus on some intermediate
value of VA ≈ 3.5 corresponding to a ratio of Andreev
and regular reflection of 0.3, and we study the formation
of Andreev bound states using the formalism described in
Sec. III, the T -matrix for two delta-function impurities.
This yields an exact formula for the perturbed Green’s
function of the system (see Eq. (17)), which allows to
extract the local density of states (see Eq. (18))32. We
first plot the latter in Fig. (5) as a function of energy and
position, for a fixed value of the chemical potential. Note
the formation of bound states in the region between the
two impurities, i.e., for x ∈ [0, 200].

In order to compare the behavior of these bound states
with that of previously studied ABS,22–24 we focus on a
given position and we plot in Fig. (6) the dependence
of the LDOS as of function of energy and chemical po-
tential. Indeed, we recover the oscillatory bell-shaped
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dependence of the ABS energy on the chemical potential
(see, e.g., Figs. 4a and 4d in Ref. [22]).

Figure 6. LDOS averaged over 6 sites x ∈ [90, 95], plotted
as a function of the chemical potential on the horizontal axis
and energy on the vertical axis. We set L = 200, and µ varies
between 1.46 and 1.54, so that α ≈ 1 does not vary with µ.
The phase difference is set to ϕ = 0.

Furthermore, in Fig. 7 we plot the dependence of the
LDOS as a function of energy and the phase difference
between the two SCs, for a fixed chemical potential. We
note that the amplitude of the phase oscillations, while
not very large, is still significant, marking the presence
of nonzero Andreev reflection and of the corresponding
phase coherence.

Above we have reproduced the results for good SNS
junctions, in what follows we consider decreasing |rA|/|r|
(for example, take VA = 10) such that we recover a non-
Andreev junction (see Fig. 8). Note that in this limit the
Andreev reflection goes to zero and the bell-shaped os-
cillations transform into fully-linear crossings (reflecting
a typical linear energy dependence of the bound states
in a quantum dot on gate voltage). Moreover, the de-
pendence of the ABS energy on the SC phase difference
becomes almost insignificant, as expected.

On the other hand we could try to focus on smaller
VA values (for instance, VA = 1), artificially increasing
|rA|/|r|, however the results we obtain are no longer phys-
ical and consistent with the NS junction since |rA|2 +
|r|2 � 1 (see Fig. 9). Nevertheless, the main features of
the ABS are generally preserved.

Note that the broadening of the energy levels is
governed by two parameters, δ and VA. The former
enters as an artificial energy broadening in Eqs. (20-21),
originating from the definition of the retarded Green’s
function (the source of this term is usually a finite
quasiparticle lifetime, etc.). However, in our calculation
this value is very small (δ = 0.001) and cannot explain

Figure 7. LDOS averaged over 6 sites x ∈ [90, 95], plotted
as a function of the phase difference ϕ on the horizontal axis
and energy on the vertical axis. We set L = 200, and µ = 1.5.

Figure 8. LDOS averaged over 6 sites x ∈ [90, 95], plotted as
a function of energy (vertical axis) and on the horizontal axis
the chemical potential (left panel) and the SC phase difference
(right panel). Here we set L = 200, VA = 10. In the left panel
we fix ϕ = 0, whereas in the right panel µ = 1.5.

the observed width of the ABS levels. We rather find
that the ABS energy broadening increases when the
value of the Andreev impurity VA is reduced. This
is qualitatively similar to what happens for an SNS
junction, i.e., the larger the value of the SC gap and
of the normal-SC coupling, the broader the ABS levels
(see, e.g., Figs. 4a and 4d in Ref. [22]). The resemblance
between our results and Ref. [22] is not accidental
since the impurity potential amplitude VA controls the
amplitude of the Andreev reflection; we thus expect that
when VA is smaller the Andreev reflection increased
and correspondingly the ABS levels widen. In the
extreme limit in which the Andreev reflection goes to
zero (VA → ∞) the width of the bound state levels is
governed solely by δ.
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Figure 9. LDOS averaged over 6 sites x ∈ [90, 95], plotted as
a function of energy (vertical axis) and on the horizontal axis
the chemical potential (left panel) and the SC phase difference
(right panel). Here we set VA = 1. The other parameters are
the same as in Fig. 8.

In order to obtain more insight into the behavior of
the ABS energy levels, we employ the continuum model
introduced in Sec. II, namely we consider a system with
quadratic dispersion (see the Appendix). Since the An-
dreev impurity potentials required to satisfy the equiv-
alence to a SN junction are quite large, we start with
a zeroth order approximation corresponding to infinitely
strong Andreev impurities. As expected, in this limit
we recover the particle-in-a-box solutions for the bound-
state energies, i.e.,

E±0
EF

= ±
[
π2n2

p2FL
2
− 1

]
, n ∈ N, (25)

where we have denoted pF ≡ ~kF .
Subsequently we calculate the first-order correction to

this solution in terms of the small dimensionless param-
eter (pF /mVA)2:

δE±

EF
= ∓2π2n2

ip3FL
3

(
pF
mVA

)2
√

2− π2n2

p2FL
2

(26)

×
1 + (−1)n cosϕ exp

(
ipFL

√
2− π2n2

p2FL
2

)
1− exp

(
2ipFL

√
2− π2n2

p2FL
2

) .

We are leaving the technical details, as well as the form of
the next higher order correction to the Appendix. This
correction to the particle-in-a-box energies has both real
and imaginary parts. The real part is responsible for the
energy shifts, whereas the imaginary part embodies the
energy level broadening.

To make the correspondence with the lattice-model re-
sults we choose m = 0.5, and we express pF in terms of
the chemical potential µ, using the previously introduced
definition of α ≡ p2F /m = 2(2t−µ). Since we have taken
t = 1 we need to set pF =

√
2− µ. This allows us to

plot the energies E±0 + δE± as a function of the chemical

potential µ (see Fig. 10). There is a very good agree-
ment between these closed-form analytical results for the
continuum model and those presented in Fig. 6 corre-
sponding to a direct evaluation of the T-matrix and the
corresponding LDOS for a full tight-binding model. Note
that our approximation does not work for values of the
chemical potential close to the singularities in Eq. (26).

1.46 1.48 1.50 1.52 1.54

-0.04

-0.02

0.00

0.02

0.04

μ
E

Figure 10. Energies of the ABS within the continuum model
plotted as a function of the chemical potential. The red
dashed lines mark the values of the chemical potential at
which the analytical perturbative approach becomes invalid
due to singularities in Eq. (26). Here, exactly as in Fig. 6, we
have set VA = 3.5, φ = 0 and L = 200. Additionally, we have
fixed m = 0.5.

A subsequent simplification of Eq. (26) allows us to ex-
tract some other important information about the ABS
level behavior. First, we recall that our approach is valid

at small energies,
E±0
EF
� 1. Hence we can take π2n2

p2FL
2 ≈ 1,

and
√

2− π2n2

p2FL
2 ≈ 1 in Eq. (26). Thus, we can extract the

periodicity of the Andreev levels to be δpF · L ≈ 2π and
consequently |δµ| = 4π

L

√
2− µ. For the values considered

here (L = 200, µ ≈ 1.5) we see that this corresponds
to δµ = 0.045, which is observed in both Fig. 10 and
Fig. 6. On the other hand, the singularities in Eq. (26)
are governed by 2δpFL ≈ 2π, yielding |δµ| = 0.022 cor-
responding to the spacing between the red dashed lines
in Fig. 10.

Moreover, Eq. (26) allows us to see that the amplitude
of the phase oscillations, i.e., the coefficient of the cos(ϕ)
term, is proportional to (pF /mVA)2. Indeed, this goes to
zero when there is no Andreev reflection VA → ∞, and
increases with reducing VA. Eqs. (3) and (12) allow to
make a direct correspondence between the amplitude of
these oscillations and the dimensionless barrier strength
Z, namely, it is decreasing roughly as 1/Z4.

Furthermore, the width of the ABS levels can also be
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extracted from the imaginary part of Eq. (26), and is thus

equal to 1
pFL

(
pF
mVA

)2
≈ 0.001, consistent with Figs. 6

and 7. Note that with decreasing VA these estimates
become inaccurate and the higher order terms become
important (see Appendix A), for example, for VA = 3.5
the next order correction which we neglect here is of the
order of ≈ 16%.

We should note that no alternative simple expression
for our Eq. (26) providing a closed form for the energies
of the ABS levels as a function of phase difference and
chemical potential, has ever been derived for long SNS
junctions with imperfect contacts. This demonstrates the
strength of our approach to obtain analytical insight into
problems for which there is no other analytical alterna-
tive.

V. CONCLUSIONS

We have shown that, by introducing two “Andreev”
impurities into a normal metal, and by employing the T -
matrix formalism, we can model an SNS junction and the
formation of Andreev bound states. Most importantly,
we have obtained analytical expressions allowing to study
the LDOS, as well as the dependence of the energies of
the ABS on different parameters of the system, including
the chemical potential and the phase difference between

the SCs. We have found that our approach recovers the
same properties of ABS as previously calculated by nu-
merical methods. Moreover it provides the advantage of
being able to model imperfect junctions whose Andreev
to normal scattering ratio can be controlled by varying
the Andreev impurity potential amplitude. The most
spectacular result recovered by this technique is a closed-
form expression of the dependence of the energies of the
ABS levels, as well as of their widths, on the chemical po-
tential, the SC phase difference, and the interface barrier
strength.

We thus conclude that our technique allows to get a
unique analytical insight into the physics of SNS junc-
tions and Andreev bound states, and it is a versatile tool
that can be also generalized to other setups in order to
obtain exact expressions for complex situations that can-
not be explored alternatively except by numerical meth-
ods. Our approach should thus provide an easily accessi-
ble non-numerical tool useful to describe ongoing experi-
ments which often involve complex setups and imperfect
junctions.
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result in the limit of the continuum model is provided in the Appendix.

Appendix A: Andreev bound states in the continuum model

We consider a 1D spinless normal metal with two Andreev impurities localised at x = 0 and x = L. We can write
down a simple model in the basis of electrons and holes as follows:

H = Hmet + Vimp(x) ≡ ξpτz + V1δ(x) + V2δ(x− L), where ξp ≡
p2

2m
− p2F

2m
. (A1)

Above pF denotes the Fermi momentum, m is the effective mass of electrons, V1,2 are the amplitudes of the impurity
potentials. The Andreev impurities in this model can be written as

V1 =

(
0 VA
VA 0

)
and V2 =

(
0 VAe

−iϕ

VAe
+iϕ 0

)
, (A2)

where ϕ corresponds to the phase difference between the SCs. Such impurity potentials reflect electrons into holes,
and vice versa. In what follows we study the resulting impurity-induced bound states. We start by computing the
unperturbed retarded Green’s function of the superconductor. In momentum space it is given by:

G0(E, p) ≡ [E −H0(p)]
−1

=
1

E2 − ξ2p

(
E + ξp 0

0 E + ξp

)
(A3)

To solve the problem we need to Fourier-transform the Green’s function to real space as follows

G0(E, x) =

∫
dp

2π
G0(E, p)eipx

Two integrals are sufficient to define the real-space form of the Green’s function:

X±(x) ≡
∫

dp

2π

eipx

E ± ξp + i0
= ±imei

√
p2F∓2mE |x|√
p2F ∓ 2mE

(A4)

The infinitesimal shift in the denominator originates from the definition of the retarded Green’s function. In terms of
the functions defined above the Green’s function in coordinate space becomes

G0(E, x) =

−im
e
i
√
p2
F

+2mE |x|
√
p2F+2mE

0

0 +im e
i
√
p2
F
−2mE |x|

√
p2F−2mE

 (A5)

Now we can proceed to solving the Schrödinger equation for the Hamiltonian in Eq. (A1):

[Hmet + V1δ(x) + V2δ(x− L)] Ψ(x) = EΨ(x) (A6)

In the Fourier space we get:

Ψ(p) = G0(E, p) · V1 ·Ψ(x = 0) + G0(E, p)e−ipL · V2 ·Ψ(x = L) (A7)

Going back to the real space we have:

Ψ(x) = G0(E, x) · V1 ·Ψ(x = 0) + G0(E, x− L) · V2 ·Ψ(x = L) (A8)

First, we need to find the wave function values at x = 0 and x = L, and then define the full coordinate dependence
using those. Thus, we have a system of equations to solve (in what follows we omit x = 0, L in the argument of the
wave function and just write 0, L):

Ψ(0) = G0(E, 0) · V1 ·Ψ(0) + G0(E,−L) · V2 ·Ψ(L) (A9)

Ψ(L) = G0(E,L) · V1 ·Ψ(0) + G0(E, 0) · V2 ·Ψ(L) (A10)
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Or rewritten in a block-matrix form:(
I− G0(E, 0) · V1 −G0(E,−L) · V2
−G0(E,L) · V1 I− G0(E, 0) · V2

)(
Ψ(0)
Ψ(L)

)
= 0 (A11)

In order to ensure that this equation has non-trivial solutions we set the determinant of the block matrix to zero,
which in turn yields the equation for the energies of bound states:

det

(
I− G0(E, 0) · V1 −G0(E,−L) · V2
−G0(E,L) · V1 I− G0(E, 0) · V2

)
=

= 1− 2
m2V 2

A

p2F

1 + cosϕ · eipFL(
√
1−γ+

√
1+γ)√

1− γ2
+
m4V 4

A

p4F

(
1− e2ipFL

√
1−γ
)(

1− e2ipFL
√
1+γ
)

1− γ2
= 0, (A12)

where we have introduced a dimensionless parameter γ = 2mE/p2F ≡ E/EF . The equation above is transcendental,
and in the most general case does not have an analytical solution.

First, we turn to the limit of VA →∞, in which Eq. (A12) is easily solvable:(
1− e2ipFL

√
1±γ±0

)
= 0 ⇒ pFL

√
1± γ±0 = πn ⇒ E±0 = ±

[
π2n2

2mL2
− EF

]
, where n ∈ N. (A13)

There is nothing surprising about this result: we have just obtained the energy levels of a particle in a box (since the
limit of infinite potential corresponds to that). What is left is to find the wave functions at x = 0 and x = L in order
to obtain the final expression for the wave function in the limit of VA →∞. This can be done straightforwardly using
Eqs. (A8) while plugging in the energies obtained in Eq. (A13): For electrons we have:

E+
0 = +

[
π2n2

2mL2
− EF

]
, Ψ(0) =

(
0
1

)
, Ψ(L) =

(
0

(−1)n+1

)
, Ψ(x) =

(
imL
πn

[
e
iπn|x|
L + (−1)n+1e

iπn|x−L|
L

]
0

)
,

(A14)

whereas for holes we obtain:

E−0 = −
[
π2n2

2mL2
− EF

]
, Ψ(0) =

(
1
0

)
, Ψ(L) =

(
(−1)n+1

0

)
, Ψ(x) =

(
0

imL
πn

[
e
iπn|x|
L + (−1)n+1e

iπn|x−L|
L

])
.

(A15)

It is easy to verify that these wave functions correspond to those of a particle in a box.

In order to extract the Fermi energy dependence of Andreev bound state energies, we need to find the first-order
correction to the particle-in-a-box solutions in Eq. (A13). Hence, we rewrite Eq. (A12) in the following form:

(
1− e2ipFL

√
1−γ
)(

1− e2ipFL
√
1+γ
)

=
1− γ2

(mVA/pF )
2

[
2

1 + cosϕeipFL(
√
1−γ+

√
1+γ)√

1− γ2
− 1

(mVA/pF )
2

]
. (A16)

For the parameter range we are interested in this equation can be considered perturbatively with pF /mVA being the
small parameter. In the 0-th approximation we have the same solutions as those for a particle in a box (see Eq. (A13)):

γ±0 = ±
[
π2n2

p2FL
2
− 1

]
, n ∈ N (A17)

In what follows we find the first correction to these two series of solutions. We demonstrate it using γ = γ+0 . First,

we divide Eq. (A16) by
(

1− e2ipFL
√
1−γ
)

, since by our choice of root this factor is never equal to zero:

1− e2ipFL
√
1+γ =

1− γ2

(mVA/pF )
2

1

1− e2ipFL
√
1−γ

[
2

1 + cosϕeipFL(
√
1−γ+

√
1+γ)√

1− γ2
− 1

(mVA/pF )
2

]
(A18)
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We substitute the 0-th approximation solution into the right-hand side of the Eq. (A18). The left-hand side we
represent as Taylor series around the point γ = γ+0 up to the first-order correction, i.e.,

1− e2ipFL
√
1+γ ≈ 1− e2ipFL

√
1+γ+

0 +
d(1− e2ipFL

√
1+γ)

dγ

∣∣∣
γ=γ+

0

δγ+ = − ip
2
FL

2

πn
δγ+, (A19)

where δγ+ is the sought-for correction to γ+0 . Computing the derivative and using Eq. (A18) we get:

δγ+ = − πn

ip2FL
2

π2n2

p2FL
2

(
2− π2n2

p2FL
2

)
(mVA/pF )

2

1

1− exp
(

2ipFL
√

2− π2n2

p2FL
2

)
2

1 + (−1)n cosϕ exp
(
ipFL

√
2− π2n2

p2FL
2

)
πn
pFL

√
2− π2n2

p2FL
2

− 1

(mVA/pF )
2


(A20)

Similarly we have:

δγ− = +
πn

ip2FL
2

π2n2

p2FL
2

(
2− π2n2

p2FL
2

)
(mVA/pF )

2

1

1− exp
(

2ipFL
√

2− π2n2

p2FL
2

)
2

1 + (−1)n cosϕ exp
(
ipFL

√
2− π2n2

p2FL
2

)
πn
pFL

√
2− π2n2

p2FL
2

− 1

(mVA/pF )
2


(A21)

Finally, the full solution can be written as

γ± = γ±0 + δγ± (A22)

Note, that γ± are complex, and in order to obtain the energies of the bound states we need to take the real parts
of those expressions, whereas the imaginary parts yield the broadening. It is also worth mentioning that we are
interested in bound states forming close to zero energy, in other words, we consider values of n ∈ N such that

π2n2

p2FL
2
∼ 1.

Applying this condition to the corrections obtained above, we get:

δγ± ∼ ∓ 1

ipFL

1

(mVA/pF )
2

1

1− e2ipFL

{
2
[
1 + (−1)n cosϕeipFL

]
− 1

(mVA/pF )
2

}
(A23)

Note that at values pFL = πq, with q ∈ Z this correction diverges, setting the limits of validity of this perturbative
approach.
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