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FROM TOPOLOGICAL RECURSION TO WAVE FUNCTIONS AND PDES

QUANTIZING HYPERELLIPTIC CURVES

BERTRAND EYNARD AND ELBA GARCIA-FAILDE

Abstract. Starting from loop equations, we prove that the wave functions constructed from topo-
logical recursion on families of spectral curves with a global involution satisfy a system of partial
differential equations, whose equations can be seen as quantizations of the original spectral curves.
The families of spectral curves can be parametrized with the so-called times, defined as periods
on second type cycles. These equations can be used to prove that the WKB solution of many
isomonodromic systems coincides with the topological recursion wave function, and thus show that
the topological recursion wave function is annihilated by a quantum curve. This recovers many
known quantum curves for genus zero spectral curves and generalizes to hyperelliptic curves. In the
particular case of a degenerate elliptic curve, apart from giving the quantum curve, we prove that
the wave function satisfies the first Painlevé isomonodromic system and equation just from loop
equations, making use of our system of PDEs. In general, we are able to recover the Gelfand–Dikii
isomonodromic systems just from topological recursion.
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1. Introduction

Topological recursion is a powerful tool, which was first discovered in the context of large size
asymptotic expansions in random matrix theory [10, 7, 5, 6] and established as an independent
universal theory around 2007 [15]. Its most important role was to unveil a common structure in
many different topics in mathematics and physics, which helped building bridges among them and
gaining general context. For instance, it has been related to fundamental structures in enumera-
tive geometry and integrable systems, such as intersection theory on moduli spaces of curves and
cohomological field theories.

A quantum curve is a Schrödinger operator-like non-commutative analogue of a plane curve that
annihilates the so-called wave function, which can be seen as a WKB asymptotic solution of the
corresponding differential equation. Inspired by the intuition coming from matrix models, it has
been conjectured that there exists such a quantum curve associated to a spectral curve, which is
the input of the topological recursion, and whose WKB asymptotic solution is reconstructed by the
topological recursion output.

This claim was verified in [22] for a class of spectral curves called admissible, which are basically
spectral curves whose Newton polygons have no interior point. Admissible spectral curves include
a very large number of spectral curves of genus 0. Therefore they recover many cases previously
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studied in the literature in various algebro-geometric contexts. In the present work, we go beyond
admissible spectral curves and study the quantum curve problem for spectral curves with a global
involution, given by algebraic curves whose defining polynomials are of the form y2 “ Rpxq, with R
a rational function on x. This setting includes the genus 0 spectral curves with a global involution
y ÞÑ ´y, such as the well-known Airy curve, which are many less that the set of admissible curves,
but it also includes all genus 1 spectral curves, i.e. all elliptic curves, and all hyperelliptic curves,
which are curves of genus g ą 1 where R is a polynomial in x.

Quantum curves encode enumerative invariants in an interesting way, and help building the bridge
between the geometry of integrable systems and topological recursion. One of the most celebrated
applications of quantum curves is in the context of knot theory, where the quantum curve of the
A-polynomial of a knot provides a conjectural constructive generalization of the volume conjecture
[8, 9, 4].

1.1. Quantum curves and topological recursion. We start by presenting the idea of quantum
curves and their relation to topological recursion. Consider P P Crx, ys and let

C “ tpx, yq P C2 | P px, yq “ 0u
be a plane curve.

Consider ~ ą 0 a formal parameter. A quantization of the plane curve C, is a differential operator
pP of the form

pP ppx, py; ~q “ P0ppx, pyq `Op~q
where px “ x¨ , py “ ~ d

dx
. In fact, P̂ is a formal series (or transseries) normal–ordered operator valued

polynomial (all the py in a monomial are placed to the right of all the px) whose leading order term
P0ppx, pyq recovers the polynomial equation of the original spectral curve (normal ordered). Actually,
in general P0px, yq can be a reducible polynomial with P px, yq one of its factors. The operators px
and py satisfy the following commutation relation which justifies the name ‘quantization”:

rpy, pxs “ ~.

One can consider a Schrödinger-type differential equation

(1) pP ppx, pyqψpz, ~q “ 0, with z P C,

whose solution can be calculated via the WKB method, that is we require ψ to have a formal series
(resp. transseries) ~ expansion of the form

ψpz, ~q “ exp

˜
ÿ

mě0

~m´1Smpzq
¸

(resp. of the form of a formal series in powers of exponentials of inverse powers of ~ whose coefficients
are formal power series of ~). The coefficients Skpzq are determined recursively via (1). One
fundamental question is if the formal solution ψ can be computed directly from the original plane
curve C. The conjectural answer is provided by the topological recursion and is already established
in many cases.

The input data of the topological recursion is called spectral curve. For the purpose of this paper,
a spectral curve will be given as in [12], i.e. by the data pΣ, x, y, ω0,1, ω0,2q, where Σ is a compact
Riemann surface, and x and y are meromorphic functions on Σ such that the zeroes of dx do not
coincide with the zeroes of dy. Then x and y must be algebraically dependent, i.e. P px, yq “ 0 with
P P Crx, ys. We consider ω0,1 :“ ydx and ω0,2 a symmetric bi-differential B on Σ2 with double poles
along the diagonal and vanishing residues. The output of the topological recursion are symmetric
meromorphic multi-differentials ωg,npz1, . . . , znq on Σn.
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The perturbative wave function ψpzq constructed from topological recursion is defined (see [15])
as

1

xpzq ´ xpoq exp
˜

ÿ

gě0,ně1

~2g´2`n

n!

ż z

o

¨ ¨ ¨
ż z

o

ˆ
ωg,npz1, . . . , znq ´ δg,0δn,2

dxpz1qdxpz2q
pxpz1q ´ xpz2qq2

˙¸
,

where o P Σ is a chosen base-point for integration. In general the quantum curve is obtained by
choosing o “ ζ such that xpζq “ 8, and one may need to regularize the pg, nq “ p0, 1q term in
the limit o Ñ ζ. We choose a regularization for pg, nq “ p0, 2q which slightly differs from some
part of the literature and produces the first factor of the expression. We emphasize that our
definition transforms as a spinor 1

2
-form under change of coordinates. Actually, we will generalize

the definition of the wave-function by allowing integration over any divisor as in [12].

A further question is if the differential operator pP can be directly constructed from the topological
recursion. This has also been answered affirmatively in many cases. In this article, we actually
construct an operator that we believe is a more fundamental object, which appears more naturally
for curves of genus g ą 0, and provides a PDE which also allows to reconstruct the wave function
ψ. Our system of PDEs will also imply a quantum curve in the more classical sense considered in
this section.

1.2. Generalized cycles. Let us now recall the concept of generalized cycles on a Riemann surface
as in [12], which will help us introduce suitable local coordinates in the space of spectral curves.
These local coordinates can be seen as deformation parameters giving rise to families of spectral
curves and will play a key role when producing our system of PDEs for a large class of spectral
curves.

The so-called times ti, introduced in [12], can be viewed as local coordinates in the space of
spectral curves. Time deformations Bti belong to the tangent space, which is isomorphic to the
space of meromorphic differential forms on the spectral curve, and via form-cycle duality it can
be identified with the space of generalized cycles on the spectral curve. In [12], generalized cycles
are defined as elements of the dual of the space of meromorphic forms on Σ such that integrating
ω0,2 “ B on them gives meromorphic 1-forms.

In practice a generating family is given by 3 kinds of cycles, dual to 3 kinds of forms:

‚ 1st kind cycles: This type of cycles are usual non-contractible cycles, i.e. elements rγs P
H1pΣ,Cq. If Σ is compact of genus g, then dimH1pΣ,Cq “ 2g.

‚ 2nd kind cycles: A cycle of second type γ “ γp.f consists of a small circle γp around a
point p P Σ (small in the sense of projective limit) weighted by a function f holomorphic
in a neighborhood of γp and meromorphic in a neighborhood of p, with a possible pole at
p (of any degree), i.e. by definition

ş
γ
ω – 2πiResp fω.

‚ 3rd kind cycles: They are open chains γ “ γqÑp (paths up to homotopic deformation
with fixed endpoints), whose boundaries Bγ “ rps ´ rqs are degree zero divisors.

Let x : Σ Ñ C be the meromorphic function that makes the spectral curve a branched cover of
the Riemann sphere. A basis of functions which are meromorphic in a neighborhood of p P Σ is
given by

tξkpukPZ, with ξp “ px´ xppqq1{ordppxq.

If xppq “ 8 we set ξp “ x1{ordppxq, with ordppxq ă 0. The following set of cycles generates an
integer lattice in the space of second kind cycles:

Ap,k “ γp.ξ
k
p , p P Σ, k ě 0,(2)

Bp,k “ 1

2πi
γp.

ξ´k
p

k
, p P Σ, k ě 1.(3)
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Given a meromorphic 1-form ω on Σ, for every pole p of ω, we define for every j ě 0 the KP

times:

(4) tp,j “ Res
p

pξpqjω “ 1

2πi

ż

Ap,j

ω :“ 1

2πi

ż

γp

ξjp ω,

so that

(5) ω „
degppωqÿ

j“0

tp,jξ
´j´1
p dξp ` analytic at p.

Since we assumed Σ to be compact, the number of poles is finite. Moreover, all the times with
j ě degpω are vanishing. Therefore, only a finite number of times are non-zero.

1.3. Context and outline. One of our motivations to study the problem of quantum curves for
any spectral curve with a global involution was two be able to recover the whole isomonodromic
system associated to Painlevé I just from loop equations. We also aimed to give the first quantum
curves for spectral curves of genus g ą 1 and we were especially interested to see how introducing
deformations with respect to the times could give rise to systems of PDEs that we consider more
natural in general.

1.3.1. Comparison to the literature. In [23], they generalize the techniques employed in [22] to find
the quantum curves for admissible curves to apply them to the family of genus one spectral curves
given by the Weierstrass equation. They find an order two differential operator that annihilates
the perturbative wave-function ψ. However, it is not a quantum curve, since it contains infinitely
many ~ corrections which are not meromorphic functions of x. They also check the first orders of
the conjectural quantum curve [11, 14, 3] for the non-perturbative wave-function.

In [19], they focus on the Painlevé I spectral curve, which is a degenerate torus, and they get
from topological recursion a PDE that annihilates the wave function, which is compatible with
the isomonodromic system and, together with another identity coming from integrable systems,
provides a quantum curve that annihilates the wave function. In [17], the first author slightly
generalizes the same results to the case of any elliptic curve, that is he considers not only the
degenerate case of Painlevé I, but tori where none of the two cycles are pinched. In both papers,
they show that the ~ corrections from [23] can be controlled by a derivative with respect to a
deformation parameter. The quantum curves still contain inifinitely many ~-correction terms, but
in this case, these corrections are given by the asymptotic expansion of the solution of Painlevé I
around ~ Ñ 0 [16].

In [18], the approach is reversed: they prove that Lax pairs associated with ~-dependent Painlevé
equations satisfy the topological type property of [1], which implies that one can reconstruct the
~-expansion of the isomonodromic τ -function from to topological recursion. Finally, in [21], they
generalize this result showing that it is always possible to deform a differential equation BxΨpxq “
LpxqΨpxq, with Lpxq P sl2pCq by introducing a formal parameter ~ in such a way that it satisfies
the topological type property.

In the present work, we recover the PDE from [19, 17] from loop equations (which are necessary
for topological recursion, but not sufficient) and as part of a system that we obtain because we
consider a wave-function where the integrals are over any divisor of degree zero. With our system,
we are able to recover the whole isomonodromic system associated to Painlevé I just from loop
equations. We also give an additional meaning to the deformation parameter that appears naturally
in [19, 17] for the case of elliptic curves, making use of the powerful idea of deforming with respect to
the generalized cycles introduced in the previous section. The elliptic curve case is a very concrete
case in which there is only one such deformation parameter, but we see that we need to consider
several in the higher genus cases.
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1.3.2. Outline. In Section 2 we introduce the type of curves we consider in this work and relate
them to the concept of spectral curves as input of the topological recursion. We also give the link
to the spectral curves in the setting of isomonodromy systems, which serves as a motivation to us.
Moreover, we compute the deformation parameters of the family of elliptic curves, which recovers
the Painlevé isomonodromy system setting in the degenerate case; in particular, the so-called KP
times.

In Section 3 we recall the loop equations for our specific setting and deduce some interesting
consequences relating them to time deformations, which appear when considering spectral curves
of genus g ą 0.

In Section 4 we prove our main result. We obtain from the loop equations a system of partial dif-
ferential equations that annihilates our wave-function defined from topological recursion integrating
over a general divisor. We also give the shape of this system in the particular cases of genus zero
and elliptic curves. Finally, we consider our system for the particular case of a two-point divisor,
which then consists of only two PDEs, with derivations with respect to two spectral variables and
the deformation parameters, called times. We are able to combine the two PDEs in such a way
that we eliminate one of the spectral variables.

In Section 5, we argue that if the spectral curve comes from an isomonodromic system, then
the topological recursion non-perturbative wave function has to coincide with the solution of the
isomonodromic system, which implies an ODE, which is the quantum curve we were looking for. As
particular interesting cases, we recover the Painlevé system and equation, and its higher analogues
defined in terms of Gelfand-Dikii polynomials.

Acknowledgements. B.E.’s work is supported by the ERC Synergie Grant ERC-2018-SyG 810573
”ReNewQuantum”. It is also partly supported by the ANR grant Quantact : ANR-16-CE40-0017.
E.G.-F. was supported by the public grant “Jacques Hadamard” as part of the Investissement
d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH.

While we were finishing this manuscript, we learnt that Orantin and Marchal were working on
exactly the same topic, and we are grateful to them to have informed us, and for valuable discussions
about this. We plan to work together on the upcoming generalization to plane curves of arbitrary
degrees.

We would also like to thank R. Belliard, M. Bergère, G. Borot, V. Bouchard, J. Zinn-Justin and
A. Voros for valuable discussions on the subject.

2. Spectral curves with a global involution

In this article we focus on algebraic plane curves of the form

(6) y2 “ P pxq,
with P pxq P Crxs an arbitrary polynomial of x, and we will generalize to y2 “ Rpxq with Rpxq P Cpxq
an arbitrary rational function of x.

The degree of the polynomial y2 ´ Rpxq is related to the genus of the curve. For example, in
the case in which R is a polynomial of degree 2m ` 1 or 2m ` 2 the curve has genus ĝ ď m, with
equality if the plane curve is smooth. If the degree is odd, the curve has one point at infinity and
if the degree is even, the curve has two points at infinity. If ĝ ą 1, the curve is called hyperelliptic;
if ĝ “ 1 (with a distinguished point), it is called elliptic, and if ĝ “ 0, it is called rational.

2.1. Spectral curves as input of the topological recursion. The method of topological re-
cursion associates to a spectral curve S a doubly indexed family of meromorphic multi-differentials
ωg,n on Σn:

TR: Spectral curve S “ pΣ, x, ydx,Bq  Invariants ωg,n (Fg “ ωg,0).
5



A spectral curve is the data of Σ a Riemann surface, x : Σ Ñ CP1 a holomorphic projection to the
base CP1, making Σ a ramified cover of the sphere, ydx a meromorphic 1-form on Σ, and B a 2nd
kind fundamental differential, i.e. a symmetric 1 b 1 form on Σ ˆ Σ with normalized double pole
on the diagonal and no other pole, behaving near the diagonal as:

Bpz1, z2q “ dz1dz2
pz1 ´ z2q2 ` holomorphic at z1 “ z2.

In case the spectral curve is of genus 0, i.e. Σ “ CP1, it is known that such a B is unique and is
worth

Bpz1, z2q “ dz1dz2
pz1 ´ z2q2 .

If the genus ĝ of Σ is ě 1, B is not unique since one can add any symmetric bilinear tensor product
of holomorphic 1-forms. A way to find a unique one is to choose a Torelli marking, which is a

choice of a symplectic basis ttAiuĝi“1, tBiuĝi“1u of H1pΣ,Zq. There exists a unique B normalized on
the A-cycles of H1pΣ,Zq ¿

Ai

Bpz1, ¨q “ 0

Such a bi-differential has a natural construction in algebraic geometry and is called the normalized
fundamental differential of the second kind on Σ. See [13] for constructing B for general algebraic
plane curves.

Remark 2.1. The coordinate x : Σ Ñ CP1 in the definition of spectral curve can be thought as a
ramified covering of the sphere. We call degree of the spectral curve the number of sheets of the
covering, i.e. the number of preimages of a generic point. In this article, we focus on spectral curves
of degree 2 with a global involution px, yq ÞÑ px,´yq.
2.2. Spectral curves from isomonodromic systems. Painlevé transcendents have their origin
in the study of special functions and of isomonodromic deformations of linear differential equations.
They are solutions to certain nonlinear second-order ordinary differential equations in the complex
plane with the Painlevé property, i.e. the only movable singularities are poles.

An ~-dependent Lax pair is a pair pLpx, t; ~q,Rpx, t; ~qq of 2 ˆ 2 matrices, whose entries are
rational functions of x and holomorphic in t such that the system of partial differential equations

$
’&
’%

~
B

BxΨpx, tq “ Lpx, t; ~qΨpx, tq,

~
B
BtΨpx, tq “ Rpx, t; ~qΨpx, tq

is compatible. We call such a system an isomonodromy system.
The compatibility condition, i.e. B

BtBxΨ “ B
BxBtΨ, is equivalent to the so-called zero-curvature

equation:

~
BL
Bt ´ ~

BR
Bx ` rL,Rs “ 0.

In [20], Jimbo and Miwa gave a list of the Lax pairs whose compatibility conditions are equivalent
to the six Painlevé equations.

Let us consider the expansion around ~ “ 0 of the first equation of the system: Lpx, t; ~q “ř
kě0 ~

kLkpx, tq. The associated spectral curve is given by

(7) detpy Id ´ L0px, tqq “ 0,

which is actually a family of algebraic curves parametrized by t.
6



2.2.1. Motivational example: The first Painlevé equation. Let us consider the first Painlevé equa-
tion with a formal small parameter ~:

PI :
~2

2

B2
Bt2U ´ 3U2 “ t.

The leading term u “ uptq of a formal power series solution Upt, ~q “ uptq ` ř
kě1 ~

2kukptq satisfies

t “ ´3u2 and determines the subleading terms recursively:

uk “ cku
1´5k, ck P Q

by the recursion

c0 “ 1 , 2ck`1 “ 25k2 ´ 1

63
ck ´

kÿ

j“1

cjck`1´j.

The coefficient ukptq has a singularity at u “ 0, i.e. t “ 0. This special point is called a turning

point of PI . We shall assume that t ‰ 0. We denote by 9U the derivative with respect to t of Upt, ~q.
The Tau-function T ptq is defined in such a way that

Uptq “ ´~2
B2
Bt2 log T .

The Painlevé equation ensures that T is an entire function with simple zeros at the movable poles
of U .

The Lax pair associated to the first Painlevé equation is given by

(8) Lpx, t; ~q :“
˜

~
2

9U x´ U

px´ Uqpx ` 2Uq ` ~2

2
:U ´~

2
9U

¸
and Rpx, t; ~q :“

ˆ
0 1

x` 2U 0

˙
.

The leading term of L in its expansion around ~ “ 0 is given by

L0px, tq “
ˆ

0 x´ u

x2 ` ux´ 2u2 0

˙
.

The spectral curve reads

(9) detpy Id ´ L0px, tqq “ y2 ´ px ´ uq2px` 2uq “ 0,

which is actually a family of algebraic curves parametrized by t. Since we have assumed t ‰ 0, the
two roots of Rpxq “ px ´ uq2px ` 2uq x “ u and x “ ´2u are distinct, but the root x “ u has
multiplicity 2. These curves have genus 0 or, more precisely, constitute a family of tori with one of
the cycles pinched.

In general, we want to study the family of tori given by

(10) y2 “ x3 ` tx` V,

where Rpxq “ x3 ` tx ` V has three different roots. The case t “ ´3u2, V “ 2u3 recovers the
particular degenerate case (9).

2.3. Parametrizations and deformation parameters of the elliptic case. In the elliptic
case, we give the parametrizations and compute the coordinates because it has more structure than
the genus 0 case, since we need to introduce one deformation parameter, and it also illustrates how
the general case works. The degenerate case corresponds to Painlevé I, which is our prototypical
example, when making the connection to isomonodromy systems.
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2.3.1. Degenerate case. When V “ 2u3, consider the parametrization of the spectral curve given
by

#
xpzq “ z2 ´ 2u,

ypzq “ z3 ´ 3uz,

with z P Σ “ CP1 and the fundamental form of the second kind on Σ:

Bpz1, z2q “ dz1dz2
pz1 ´ z2q2 .

It satisfies

y2 “ x3 ` tx` V,

with t “ ´3u2, V “ 2u3.
This curve has one ramification point at z “ 0 and one pole at z “ 8.
Near z “ 8, we have

y „ x
3

2 ` t

2x
1

2

` V

2x
3

2

´ t2

8x
5

2

´ tV

4x
7

2

`Opx´ 9

2 q.

This implies that

t8,1 “ 1

2πi

ż

A8,1

ydx “ Res
zÑ8

x´ 1

2 ydx “ ´t,

ż

B8,1

ydx “ Res
zÑ8

x
1

2 ydx “ ´V,

t8,5 “ 1

2πi

ż

A8,5

ydx “ Res
zÑ8

x´ 5

2 ydx “ ´2,

ż

B8,5

ydx “ 1

5
Res
zÑ8

x
5

2 ydx “ tV

10
,

where we use the generalized cycles Ap,k and Bp,k defined in (2) and we have considered only the
values k “ 1, 5 for which t8,k ‰ 0.

The degenerate cycle A corresponds to a small simple closed curve encircling z0 “
?
3u and the

cycle B corresponds to the chain p´
?
3u Ñ

?
3uq. Therefore, we have

ǫ “ 1

2πi

¿

A

ydx “ 0 , I “
¿

B

ydx “ ´8

15
p3uq 5

2 .

The prepotential F0 [12, 15] is worth

F0 “ 1

2

˜
ǫI `

ÿ

k

t8,k

ż

B8,k

ydx

¸
“ 1

2

ˆ
tV ´ 2

tV

10

˙
“ 2

5
tV “ ´12

5
u5

and satisfies

BF0

Bt “ 2u3 “ V ,
B2F0

Bt2 “ BV
Bt “ ´u.

8



2.3.2. Non-degenerate case: elliptic curves. When V ‰ 2u3, we shall consider the Weierstrass
parametrization of the torus of modulus τ , and with a scaling ν:#

xpzq “ ν2℘pzq,
ypzq “ ν3

2
℘1pzq,

with z P Σ “ C{Z ` τZ the torus of modulus τ . The fundamental form of the second kind on Σ,
normalized on the A cycle is:

Bpz1, z2q “ p℘pz1 ´ z2q `G2pτqqdz1dz2.
with Gkpτq the kth Eisenstein series. It satisfies

y2 “ x3 ` tx` V,

with
t “ ´15ν4G4pτq, , V “ ´35ν6G6pτq.

Instead of parametrizing the spectral curve with t and V , we shall parametrize it with t and ǫ where

ǫ “ 1

2πi

¿

A

ydx “ 3ν5G1
4pτq.

We shall now write
V “ V pt, ǫq.

We have:
dV “ 2πiνdǫ´ ν2G2pτqdt.

This curve has 3 ramification points at z “ 1
2
, τ
2
, 1`τ

2
, and one pole at z “ 0.

Near z “ 0, we have

y „ x
3

2 ` t

2x
1

2

` V

2x
3

2

´ t2

8x
5

2

´ tV

4x
7

2

`Opx´ 9

2 q.

This implies that

t8,1 “ 1

2πi

ż

A8,1

ydx “ Res
zÑ0

x´ 1

2 ydx “ ´t,
ż

B8,1

ydx “ Res
zÑ0

x
1

2 ydx “ ´V.

t8,5 “ 1

2πi

ż

A8,5

ydx “ Res
zÑ8

x´ 5

2 ydx “ ´2,

ż

B8,5

ydx “ 1

5
Res
zÑ8

x
5

2 ydx “ tV

10
.

We also define

ǫ “ 1

2πi

¿

A

ydx,

I “
¿

B

ydx.

The prepotential F0 “ ω0,0 is worth

F0 “ 1

2

ˆ
tV ´ 2

tV

10
` Iǫ

˙
“ 2

5
tV ` 1

2
Iǫ,

and satisfies
dF0 “ V dt` Idǫ.

9



In terms of the torus modulus τ and scaling ν, we have

t “ ´15ν4G4pτq, V “ ´35ν6G6pτq, ǫ “ 3ν5G1
4pτq, I “ 2πiτǫ ` 4

5
νt.

We also have

F1 “ 1

48
log p4t3 ` 27V 2q ` 1

4
log

2

ν
.

3. Loop equations and deformation parameters

We start by recalling the loop equations for the topological recursion applied to any spectral
curve of degree 2 with a global involution. Let y2 “ Rpxq, with R P Cpxq. The family of curves
that we consider has the global involution z ÞÑ ´z, i.e. xpzq “ xp´zq.

Let ω0,1pzq :“ ypzqdxpzq, ω0,2pz1, z2q :“ Bpz1, z2q and ωg,n for 2g ´ 2 ` n ą 0 be defined as the
topological recursion amplitudes for this initial data [15].

The loop equations for this particular case read:

Theorem 3.1. [15] The linear loop equations read:

(11) ωg,n`1pz, z1, . . . , znq ` ωg,n`1p´z, z1, . . . , znq “ δg,0δn,1
dxpzqdxpz1q

pxpzq ´ xpz1qq2 .

The quadratic loop equations claim that the following expression

(12)
1

dxpzq2

¨
˚̊
˝ωg´1,n`2pz,´z, z1, . . . , znq `

ÿ

g1`g2“g,
I1\I2“tz1,...,znu

ωg1,1`|I1|pz, I1qωg2,1`|I2|p´z, I2q

˛
‹‹‚

is a rational function of xpzq with no poles at the branch-points.

We will make use of an immediate consequence of the loop equations:

Corollary 3.2. For all g, n ě 0,

Pg,npxpzq; z1, . . . , znq :“ ´1

dxpzq2

˜
ωg´1,n`2pz,´z, z1, . . . , znq(13)

`
ÿ

g1`g2“g,
I1\I2“tz1,...,znu

ωg1,1`|I1|pz, I1qωg2,1`|I2|p´z, I2q
¸

`
nÿ

i“1

di

ˆ
1

xpzq ´ xpziq
ωg,npz1, . . . ,´zi, . . . , znq

dxpziq

˙

is a rational function of xpzq that has no poles at the branch-points and no poles when xpzq “ xpziq.
Proof. First, the expression (13) is even under z Ñ ´z and meromorphic on Σ, hence a meromorphic
function of xpzq P CP1, i.e. a rational function of xpzq. From the loop equations, it has no pole at
branchpoints. Let us study the behavior at z “ zi. The only term in (12) that contains a pole at
z “ zi is

1

dxpzq2Bpz, ziqωg,np´z, z1, . . . , ẑi, . . . , znq.

Remark that Bp´z, ziq has no pole at z “ zi and

Bpz, ziq `Bp´z, ziq “ dxpzqdxpziq
pxpzq ´ xpziqq2 “ di

ˆ
dxpzq

xpzq ´ xpziq

˙
.
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Therefore we add a term without any poles to the previous one and consider the term with a pole
at z “ zi to be

1

dxpzq2
dxpzqdxpziq

pxpzq ´ xpziqq2 ωg,np´z, z1, . . . , ẑi, . . . , znq.

We can write it as

(14) di

ˆ ˆ
1

xpzq ´ xpziq

˙ ˆ
ωg,np´z, z1, . . . , ẑi, . . . , znq

dxpzq

´ ωg,np´zi, z1, . . . , ẑi, . . . , znq
dxpziq

` ωg,np´zi, z1, . . . , ẑi, . . . , znq
dxpziq

˙˙
.

The sum of the first two terms does not have a pole at z “ zi. Therefore subtracting the last term
for all i “ 1, . . . , n, we obtain an expression with no poles at z “ zi. Since this expression is an
even function of z, there is no pole at z “ ´zi either. �

Recall that in general ω0,2 “ B can have poles only at coinciding points and the ωg,n’s with
2g´2`n ą 0 can have poles only at ramification points. Therefore, from the corollary we see that
Pg,npxpzq, z1, . . . , znq as a function of z can only have poles at the poles of ω0,1 “ ydx.

3.1. Relation to time deformation for Painlevé I. Now we restrict ourselves to curves de-
scribed by polynomials of the form

y2 “ x3 ` tx` V,

with t “ ´3u2 and V “ 2u3. In this case, ω0,1 “ ydx can only have poles at xpzq “ 8.
The topological recursion amplitudes for 2g ´ 2`n ě 0 are analytic away from branchpoints; in

particular they are analytic at 8, with the following behavior near z “ 8:

ωg,npz, z1, . . . , znq “ Opz´2q.
In our case, this implies the following behavior at xpzq “ 8:

(15)
ωg,n`1pz, z1, . . . , znq

dxpzq “ Opxpzq ´3

2 q, for 2g ´ 2 ` n ě 0.

Since the only pole can come from terms that contain ω0,1 “ ydx, Pg,n has the following behavior
at xpzq Ñ 8:

Pg,npxpzq, z1, . . . , znq “ 2
ypzqdxpzqωg,n`1pz, z1, . . . , znq

dxpzq2 `Opxpzq´3q,

i.e.

(16) Pg,npxpzq, z1, . . . , znq “ 2ypzqOpxpzq ´3

2 q `Opxpzq´3q “ Op1q, for 2g ´ 2 ` n ě 0,

where the last behavior comes from the fact that in the elliptic curve case, we have y „ x
3

2 .
We have seen that Pg,n is a polynomial of degree 0, that is independent of z, and can be written:

Pg,npxpzq, z1, . . . , znq “ 2 lim
zÑ8

xpzq 3

2

ωg,n`1pz, z1, . . . , znq
dxpzq .

Corollary 3.3. For pg, nq ‰ p0, 0q, p0, 1q:

(17) Pg,npxpzq, z1, . . . , znq “ ´
¿

B8,1

ωg,n`1pz, z1, . . . , znq “ B
Btωg,npz1, . . . , znq,

with B8,1 the second kind cycle given by 1
2πi

C8

a
xpzq, where C8 denotes a small contour around

8.
11



Moreover

(18) P0,0pxpzqq “ ypzq2 “ x3 ` tx` V “ x3 ` tx` B
Btω0,0,

(19) P0,1pxpzq, z1q “ 2
ypzq
dxpzqBpz, z1q ´ d1

ˆ
ypzq ` ypz1q
xpzq ´ xpz1q

˙
“ B

Btω0,1pz1q.

Proof. The expressions for pg, nq “ p0, 0q, p0, 1q are direct computations using (13).

P0,1pxpzq, z1q “ ypzq
dxpzqpBpz, z1q ´Bp´z, z1qq ´ d1

ˆ
ypz1q

xpzq ´ xpz1q

˙
.

In order to get the second equality in (19), observe from the first equality that also P0,1 has the
following behavior at xpzq Ñ 8:

P0,1pxpzq, z1q “ 2
ypzqBpz, z1q

dxpzq `Opxpzq´1q “ 2ypzqOpxpzq ´3

2 q `Opxpzq´1q “ Op1q.

For pg, nq ‰ p0, 0q, since Pg,n is constant with respect to z, we can write

Pg,n “ 2 lim
xpzqÑ8

xpzq 3

2

ωg,n`1pz, z1, . . . , znq
dxpzq

“ ´Res
zÑ8

a
xpzq ωg,n`1pz, z1, . . . , znq “

“ ´
¿

B8,1

ωg,n`1pz, z1, . . . , znq.(20)

Moreover, since t “ ´t8,1, we have B
Btω0,1 “ ´ B

Bt81

ω0,1 “ ´
ş
B8,1

ω0,2, and since B is the Bergman

kernel normalized on the A-cycles, we also have B
Bt8,1

ω0,2 “
ş
B8,1

ω0,3. Knowing that, it is proved

in [15, 12] that
¿

B8,1

ωg,n`1pz, z1, . . . , znq “ B
Bt8,1

ωg,npz1, . . . , znq “ ´ B
Btωg,npz1, . . . , znq.

�

3.2. Generalization to any plane curve with a global involution. Our goal is to find the
relation between Pg,n from loop equations and an operator depending on time deformations acting
on the topological recursion amplitudes. In this section, we generalize the relation that we have
just found in the Painlevé I case to all plane curves with a global involution.

Consider algebraic curves of the form

(21) y2 “ Rpxq,
with Rpxq P Cpxq an arbitrary rational function.

This is parametrized by a pair of meromorphic functions x, y on a Riemann surface Σ. The
ramified covering given by x : Σ Ñ CP1 is a double cover. Depending on the parity of the behavior
of y at x Ñ 8, x has either one double pole (order d “ ´2) or 2 simple poles (order d “ ´1). Let
us denote σ the global involution which sends px, yq ÞÑ px,´yq.

The 1-form ω0,1 “ ydx can have a pole over x “ 8 and poles over the zeros of the denominator
of Rpxq. We call ζi the poles of ω0,1 of respective degrees given by mi ` 1.

Let us define di :“ ordζipxq. If ζi is not a pole of x, we assume that it is not a ramification point,
hence di “ 1. If ζi is a pole of x, then di can be either ´2 or ´1 as we commented, depending on
ζi being a ramification point or not. Notice that if ζi is a pole, so is σpζiq, and thus poles come in

12



pairs. Moreover, we can only have σpζiq “ ζi, if ζi is a double pole of x, which corresponds to the
case di “ ´2. Near ζi we use the local variable

(22) ξi “ px´ xpζiqq
1

di ,

where we define xpζiq “ 0, if ζi is a pole of x.
We write the Laurent expansion:

(23) ydx „
miÿ

j“0

tζi,j ξ
´1´j
i dξi ` analytic at ζi.

This defines the local KP times [12]

(24) tζi,j “ Res
ζi
ξ
j
i ydx “ 1

2πi

¿

Aζi,j

ydx.

Notice that for poles for which σpζiq ‰ ζi, we have

(25) tσpζiq,j “ ´tζi,j.
Again, loop equations imply that the Pg,n defined in (13)

(26) Pg,npx; z1, . . . , znq
has no pole at coinciding points or at branchpoints. It must be a rational function of x, whose
poles can be only at the poles of ydx, i.e. at the poles of Rpxq and possibly at x “ 8.

Proposition 3.4. Defining the operator

Lpxq :“
ÿ

i,xpζiq“8

miÿ

j“1´2di

tζi,j
ÿ

0ďkď 1´j

di
´2

xkp´ j

di
´ k ´ 2q B

Btζi,j`dipk`2q

`
ÿ

i,xpζiq‰8

miÿ

j“0

tζi,j

jÿ

k“0

px ´ xpζiqq´pk`1qpj ` 1 ´ kq B
Btζi,j`1´k

,

(27)
then,

(28) Pg,npx; z1, . . . , znq “ Lpxq.ωg,npz1, . . . , znq.

Proof. Let us write the Cauchy formula for x “ xpzq

Pg,npx; z1, . . . , znq “ Res
x1Ñx

dx1

x1 ´ x
Pg,npx1; z1, . . . , znq

“ 1

2
Res
z1Ñz

dxpz1q
xpz1q ´ xpzq Pg,npxpz1q; z1, . . . , znq

`1

2
Res

z1Ñσpzq

dxpz1q
xpz1q ´ xpzq Pg,npxpz1q; z1, . . . , znq

“ 1

2

ÿ

i

Res
z1Ñζi

dxpz1q
xpzq ´ xpz1q Pg,npxpz1q; z1, . . . , znq

“ ´1

2

ÿ

i,xpζiq“8

ÿ

kě0

xpzqk Res
z1Ñζi

xpz1q´pk`1qdxpz1q Pg,npx1; z1, . . . , znq

`1

2

ÿ

i,xpζiq‰8

ÿ

kě0

ξipzq´pk`1q Res
z1Ñζi

ξipz1qkdxpz1q Pg,npx1; z1, . . . , znq.(29)

13



Since the behavior at the poles is given by the terms containing ω0,1 “ ydx in (13), near any of the
poles ζi we have

(30) Pg,npxpzq; z1, . . . , znq „ 2ypzq
dxpzqωg,n`1pz, z1, . . . , znq `Opξ´2pdi´1q

i q.

First consider the poles over x “ 8, with di “ ´1 or di “ ´2, which contribute to Pg,n as

´
ÿ

i,xpζiq“8

ÿ

kě0

xpzqk Res
z1Ñζi

xpz1q´pk`1qypz1qωg,n`1pz1, z1, . . . , znq

“ ´
ÿ

i,xpζiq“8

miÿ

j“0

tζi,j
ÿ

kě0

xpzqk Res
z1Ñζi

ξipz1q´dipk`1qξipz1q´j´1 1

di ξipz1qdi´1
ωg,n`1pz1, z1, . . . , znq

“ ´
ÿ

i,xpζiq“8

1

di

miÿ

j“0

tζi,j
ÿ

kě0

xpzqk Res
z1Ñζi

ξipz1q´dipk`2q´jωg,n`1pz1, z1, . . . , znq

“ ´
ÿ

i,xpζiq“8

miÿ

j“0

tζi,j
ÿ

kě0

xpzqk
´
k ` 2 ` j

di

¯ ż

Bζi,j`dipk`2q

ωg,n`1pz1, z1, . . . , znq

“ ´
ÿ

i,xpζiq“8

miÿ

j“1´2di

tζi,j
ÿ

0ďkď 1´j

di
´2

xpzqk
´
k ` 2 ` j

di

¯ B
Btζi,j`dipk`2q

ωg,npz1, . . . , znq.

(31)

The finite poles contribute as

1

2

ÿ

i,xpζiq‰8

ÿ

kě0

ξipzq´pk`1q Res
z1Ñζi

ξipz1qkdxpz1q Pg,npx1; z1, . . . , znq

“
ÿ

i,xpζiq‰8

ÿ

kě0

ξipzq´pk`1q Res
z1Ñζi

ξipz1qkypz1qωg,n`1pz1, z1, . . . , znq

“
ÿ

i,xpζiq‰8

miÿ

j“0

tζi,j
ÿ

kě0

ξipzq´pk`1q Res
z1Ñζi

ξipz1qk´j´1ωg,n`1pz1, z1, . . . , znq

“
ÿ

i,xpζiq‰8

miÿ

j“0

tζi,j

jÿ

k“0

ξipzq´pk`1qpj ` 1 ´ kq
ż

Bζi,j`1´k

ωg,n`1pz1, z1, . . . , znq

“
ÿ

i,xpζiq‰8

miÿ

j“0

tζi,j

jÿ

k“0

ξipzq´pk`1qpj ` 1 ´ kq B
Btζi,j`1´k

ωg,npz1, . . . , znq.

(32)

�

We have just found a differential operator Lpxq in the times, whose coefficients are rational
functions of x, with poles at x “ 8 or x “ xpζiq, i.e. the same poles as Rpxq, with at most the
same degrees.

Example 3.1. In the elliptic case of curves of the form y2 “ x3 ` tx ` V we have only one pole,
at ζi “ 8, of degree mi “ 5, with di “ ´2. The only non-vanishing times are t8,5 “ ´2 and
t8,1 “ ´t, and thus only the terms with j “ 5 and k “ 0 contribute:

Lpxq “
ÿ

j“1,5

t8,j

ÿ

0ďkď´2`pj´1q{2

xkpj{2 ´ k ´ 2q B
Bt8,j´2pk`2q
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“
ÿ

j“5

ÿ

k“0

t8,5pj{2 ´ k ´ 2q B
Bt8,j´4

“ ´2 p5
2

´ 2q B
Bt8,1

“ ´ B
Bt8,1

“ B
Bt .

(33)

Example 3.2. In the Airy case, y2 “ x, we have only one pole, at ζi “ 8, of degree mi “ 3, with
di “ ´2. The sum is empty and

Lpxq “ 0.

Remark 3.3. More generally, the admissible curves considered in [22], are those for which

Lpxq “ 0.

4. PDE for any degree 2 curve

For r ě 1, let D “ řr
i“1 αirpis be a divisor on Σ, with pi P Σ. We call

ř
i αi the degree of

the divisor and denote Div0pΣq the set of divisors of degree 0. For D P Div0pΣq, we define the
integration of a 1-form ρpzq on Σ as

(34)

ż

D

ρpzq :“
ÿ

i

αi

ż pi

o

ρpzq,

where o P Σ is an arbitrary base point. This integral is well defined locally, meaning that it is
independent of the base point o because the degree of the divisor is zero, however it depends on a
choice of homotopy class from o to pi.

For pg, nq ‰ p0, 2q consider the functions of D, defined locally:

Fg,0pDq :“ Fg,(35)

Fg,npDq :“

nhkkkkikkkkjż

D

¨ ¨ ¨
ż

D

ωg,npz1, . . . , znq,(36)

F 1
g,npz,Dq :“ 1

dxpzq

n´1hkkkkikkkkjż

D

¨ ¨ ¨
ż

D

ωg,npz, z2 . . . , znq,(37)

F 2
g,npz, z̃,Dq :“ 1

dxpzqdxpz̃q

n´2hkkkkikkkkjż

D

¨ ¨ ¨
ż

D

ωg,npz, z̃, z3, . . . , znq.(38)

Recall that

Bpz1, z2q :“ d1d2 log
´
Epz1, z2q

a
dxpz1qdxpz2q

¯
,

with Epz1, z2q being the prime form, which is defined in [15], and satisfies that it vanishes only if
z1 “ z2 with a simple zero and has no pole.
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For pg, nq “ p0, 2q define:

F0,2pDq :“ 2
ÿ

iăj

αiαj log
´
Eppi, pjq

b
dxppiqdxppjq

¯
,(39)

F 1
0,2pz,Dq :“ 1

dxpzqdz
˜

rÿ

i“1

αi log
´
Epz, piq

a
dxpzqdxppiq

¯¸
,(40)

F 2
0,2pz, z̃,Dq :“ Bpz, z̃q

dxpzqdxpz̃q .(41)

Since the ωg,n are symmetric, we have the following relations for pg, nq ‰ p0, 2q:
d

dxi
Fg,npDq “ nαiF

1
g,nppi,Dq,(42)

ˆ
d

dxi

˙2

Fg,npDq “ npn´ 1qα2
iF

2
g,nppi, pi,Dq ` nαi

ˆ
d

dx̃
F 1
g,npp̃,Dq

˙

p̃“pi

,(43)

where xi :“ xppiq, x̃ :“ xpp̃q, and d
dx

acts on meromorphic functions by taking exterior derivative
and dividing by dx, which amounts to derivate an analytic expansion of the meromorphic function
with respect to a local variable x.

For pg, nq “ p0, 2q we have

d

dxi
F0,2pDq “ 2αi lim

zÑpi

ˆ
F 1
0,2pz,Dq ´ αi

d

dxpzq log
´
Epz, piq

a
dxpzqdxppiq

¯˙
(44)

“ 2αi

ÿ

j‰i

αj
d

dxppiq
log

´
Eppi, pjq

b
dxppiqdxppjq

¯
.(45)

Integrating the first part of Theorem 3.1 over a divisor D of degree 0, we obtain:

Lemma 4.1.

(46) F 1
0,2pz,Dq ` F 1

0,2p´z,Dq “
rÿ

i“1

αi

xpzq ´ xppiq
.

Lemma 4.2. For t any KP time, we obtain

(47)

ż

D

ż

D

ż

B8,1

ω0,3pz, z1, z2q “
ż

D

ż

D

B
Btω0,2pz1, z2q “ B

BtF0,2pDq.

Proof.

(48)

ż

D

ż

D

ˆ
Bpz1, z2q ´ dxpz1qdxpz2q

pxpz1q ´ xpz2qq2
˙

` 2
ÿ

iăj

αiαj logpxi ´ xjq “

2
ÿ

iăj

αiαj log

˜
Eppi, pjq

a
dxidxj

xi ´ xj

¸
` 2

ÿ

iăj

αiαj logpxi ´ xjq `
ÿ

i

α2
i log

dxi
dxi

“ F0,2pDq.

Taking the derivative with respect to t of the first line gives the left hand side of (47) because we
are taking this derivative at fixed x. �

Consider dEpz, p1q :“ dz log
´
Epz, p1q

a
dxpzqdxpp1q

¯
and observe that

(49) lim
zÑp1

dEpz, p1q
dxpzq ´ 1

xpzq ´ xpp1q “ 0.
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With this notation one can rewrite (45) as:

F 1
0,2pz,Dq “

rÿ

i“1

αi
dEpz, piq
dxpzq

and d
dxi
F0,2pDq “ 2αi

ř
j‰i αj

dEppi,pjq
dxppiq

.

We define

S0pD, tq :“
ż

D

ydx “ F0,1pDq, S1pD, tq :“ log
ź

iăj

´
Eppi, pjq

b
dxppiqdxppjq

¯αiαj

“ F0,2pDq
2

,

SmpD, tq :“
ÿ

2g´2`n“m´1
gě0,ně1

Fg,npDq
n!

,

and

(50) ψpD, t, ~q :“ exppSpD, t, ~qq, with SpD, t, ~q :“
8ÿ

m“0

~m´1SmpD, tq.

Theorem 4.3. Let F :“ ř
gą0 ~

2gFg. For every k “ 1, . . . , r, we obtain

(51) ~2

¨
˚̊
˝

d2

dx2k
´

ÿ

i‰k

d
dxi

` αi

αk

d
dxk

xk ´ xi
´ Lpxkq `

ÿ

i‰j
i‰k,j‰k

αiαj

pxk ´ xiqpxi ´ xjq

˛
‹‹‚ψ “ pRpxkq ` Lpxkq.F qψ.

Proof. We will give the proof of the claim for the case k “ 1, but it works exactly the same for
every k.

Let us first consider the generic situation with pg, nq ‰ p0, 0q, p0, 1q, p0, 2q, p1, 0q. For n “ 0, we
can write Pg,0pxpzqq as

(52) F 2
g´1,2pz, z,Dq `

ÿ

g1`g2“g

F 1
g1,1

pz,DqF 1
g2,1

pz,Dq “ Lpxq.Fg,0pDq “ Lpxq.FgpDq.

Setting z “ p1, x1 “ xpp1q and using (42) and (43), we obtain

1

2α2
1

ˆ
d

dx1

˙2

Fg´1,2pDq ´ 1

α1

ˆ
d

dxpp̃qF
1
g´1,2pp̃,Dq

˙

p̃“p1

`
ÿ

g1`g2“g

1

α2
1

dFg1,1pDq
dx1

dFg2,1pDq
dx1

.

Making use of (42) again, we get

(53) Pg,0pxpzqq “
ÿ

g1`g2“g

1

α2
1

dFg1,1pDq
dx1

dFg2,1pDq
dx1

“ Lpx1q.FgpDq.

For n ą 0, we integrate (13) n times over D and use (17) to get

F 2
g´1,n`2pz, z,Dq `

no p0,2qÿ

g1`g2“g
n1`n2“n

ˆ
n

n1

˙
F 1
g1,n1`1pz,DqF 1

g2,n2`1pz,Dq`

´ 2nF 1
0,2p´z,DqF 1

g,npz,Dq ´ n

rÿ

i“1

αi

F 1
g,nppi,Dq ´ F 1

g,npz,Dq
xpzq ´ xppiq

“ Lpxq.Fg,npDq,
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where the sum of the second term is taken over gi, ni ě 0 and “no p0, 2q” means we exclude the
case pgi, niq “ p0, 1q for i “ 1, 2, and we have used that

pF 1
0,2pz,Dq ´ F 1

0,2p´z,DqqF 1
g,npz,Dq “ ´2F 1

0,2p´z,DqF 1
g,npz,Dq `

rÿ

i“1

αi

F 1
g,npz,Dq

xpzq ´ xppiq
,

which follows from (46).
Letting z “ p1, xi “ xppiq, dividing by n! and using (42) and (43), we obtain

1

pn` 2q!α2
1

ˆ
d

dx1

˙2

Fg´1,n`2pDq ´ 1

pn` 1q!α1

ˆ
d

dxpp̃qF
1
g´1,n`2pp̃,Dq

˙

p̃“p1

`

no p0,2qÿ

g1`g2“g
n1`n2“n

1

pn1 ` 1q!pn2 ` 1q!α2
1

dFg1,n1`1pDq
dx1

dFg2,n2`1pDq
dx1

´ 1

n!

rÿ

i“2

1

xpp1q ´ xppiq

ˆ
dFg,npDq

dxi
´ αi

α1

dFg,npDq
dx1

˙
` α1

pn´ 1q!

ˆ
dF 1

g,npp̃,Dq
dxpp̃q

˙

p̃“p1

´ 2

n!α1

dFg,npDq
dx1

F 1
0,2p´p1,Dq “ Lpx1q.Fg,npDq

n!
.

Using (42) again, we obtain the following expression for the left hand side:

1

pn` 2q!α2
1

ˆ
d

dx1

˙2

Fg´1,n`2pDq ´ 1

pn` 2q!α2
1

ˆ
d

dx1

˙2

Fg´1,n`2pDq

` 1

n!

ˆ
d

dx1

˙2

Fg,npDq `
no p0,2qÿ

g1`g2“g
n1`n2“n

1

pn1 ` 1q!pn2 ` 1q!α2
1

dFg1,n1`1pDq
dx1

dFg2,n2`1pDq
dx1

´ 1

n!

rÿ

i“2

1

xpp1q ´ xppiq

ˆ
dFg,npDq

dxi
` αi

α1

dFg,npDq
dx1

˙

` 2

n!α1

dFg,npDq
dx1

˜
rÿ

i“2

αi

xpp1q ´ xppiq
´ F 1

0,2p´p1,Dq
¸

“

1

n!

ˆ
d

dx1

˙2

Fg,npDq `
no p0,2qÿ

g1`g2“g
n1`n2“n

1

pn1 ` 1q!pn2 ` 1q!α2
1

dFg1,n1`1pDq
dx1

dFg2,n2`1pDq
dx1

´ 1

n!

rÿ

i“2

1

xpp1q ´ xppiq

ˆ
dFg,npDq

dxi
` αi

α1

dFg,npDq
dx1

˙

` 2

n!α1

dFg,npDq
dx1

ˆ
F 1
0,2pp̃,Dq ´ α1

xpp̃q ´ xpp1q

˙

p̃“p1

.
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For all ℓ ě 3, we sum this expression for all g ě 0, n ě 1 such that 2g´2`n “ ℓ´2 and Pg,0pxpz1qq
from (53) for all g ě 0 such that 2g ´ 2 “ ℓ´ 2, and we use (44) to obtain:

ÿ

2g`n“ℓ
gě0,ně1

˜
1

n!

ˆ
d

dx1

˙2

Fg,npDq ´ 1

n!

rÿ

i“2

1

xpp1q ´ xppiq

ˆ
dFg,npDq

dxi
` αi

α1

dFg,npDq
dx1

˙ ¸

` 1

α2
1

ÿ

ℓ1`ℓ2“ℓ

˜
ÿ

2g1´2`n1“ℓ1´1
g1ě0,n1ě1

1

n1!

dFg1,n1
pDq

dx1

ÿ

2g2´2`n2“ℓ1´1
g1ě0,n2ě1

1

n2!

dFg2,n2
pDq

dx1

¸
“

ÿ

2g`n“ℓ
gě0,ně0

Lpx1q.Fg,n.

Therefore, for ℓ ě 3, we have proved

ˆ
d

dx1

˙2

Sℓ´1 ` 1

α2
1

ÿ

ℓ1`ℓ2“ℓ

d

dx1
Sℓ1

d

dx1
Sℓ2 ´

rÿ

i“2

dSℓ´1

dxi
` αi

α1

dSℓ´1

dx1

xpp1q ´ xppiq

“ Lpx1q.Sℓ´1 `
#
Lpx1q.Fℓ{2, ℓ even,

0, odd,

that is

(54) r~ℓs
«
~2

˜ˆ
d

dx1

˙2

S ` 1

α2
1

d

dx1
S

d

dx1
S ´

rÿ

i“2

dS
dxi

` αi

α1

dS
dx1

xpp1q ´ xppiq

¸ff
“

r~ℓs
“
~2Lpx1q.S ` pRpx1q ` Lpx1q.F q

‰
.

Let us finally consider the special cases:
‚ For pg, nq “ p0, 0q we get

(55)
1

α2
1

ˆ
dF0,1pDq

dx1

˙2

“ Rpx1q.

1

α2
1

ˆ
d

dx1
S0

˙2

“ Rpx1q.

r~0s
˜
~2

˜ˆ
d

dx1

˙2

S ` 1

α2
1

d

dx1
S

d

dx1
S ´

rÿ

i“2

dS
dxi

` αi

α1

dS
dx1

xpp1q ´ xppiq
´ Lpx1q.S

¸
´ pRpx1q ` Lpx1q.F q

¸
“ 0.

‚ For pg, nq “ p0, 1q we get

2F 1
0,1pz,DqF 1

0,2pz,Dq ´
rÿ

i“1

αi

F 1
0,1ppi,Dq ` F 1

0,1pz,Dq
xpzq ´ xppiq

“ Lpxq.F0,1pDq.

thus

2F 1
0,1pz,DqF 1

0,2pz,Dq ´ 2α1

F 1
0,1pz,Dq

xpzq ´ xpp1q ´ α1

F 1
0,1pp1,Dq ´ F 1

0,1pz,Dq
xpzq ´ xpp1q

´
rÿ

i“2

αi

F 1
0,1ppi,Dq ` F 1

0,1pz,Dq
xpzq ´ xppiq

“ Lpxq.F0,1pDq.
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At z “ p1 this gives

2F 1
0,1pp1,Dq

ˆ
F 1
0,2pz,Dq ´ α1

1

xpzq ´ xpp1q

˙

z“p1

` α1

ˆ
dF 1

0,1pz,Dq
dx

˙

z“p1

´
rÿ

i“2

1

xpp1q ´ xppiq

ˆ
dF0,1pDq

dxi
` αi

α1

dF0,1pDq
dx1

˙
“ Lpx1q.F0,1pDq.

ˆ
d

dx1

˙2

F0,1pDq ` 1

α2
1

d

dx1
F0,1pDq d

dx1
F0,2pDq ´

rÿ

i“2

dF0,1pDq
dxi

` αi

α1

dF0,1pDq
dx1

xpp1q ´ xppiq
“ Lpx1q.F0,1pDq.

ˆ
d

dx1

˙2

S0 ` 2

α2
1

d

dx1
S0

d

dx1
S1 ´

rÿ

i“2

dS0

dxi
` αi

α1

dS0

dx1

xpp1q ´ xppiq
“ Lpx1q.S0.

r~s
˜
~2

˜ˆ
d

dx1

˙2

S ` 1

α2
1

d

dx1
S

d

dx1
S ´

rÿ

i“2

dS
dxi

` αi

α1

dS
dx1

xpp1q ´ xppiq
´ Lpx1q.S

¸
´ pRpx1q ` Lpx1q.F q

¸
“ 0.

‚ For pg, nq “ p0, 2q we first rewrite (13):

(56) P0,2pxpzq, z1, z2q ´ 2ypzqω0,3pz, z1, z2q
dx

“

´ Bpz, z1qBp´z, z2q
pdxq2 ´ Bp´z, z1qBpz, z2q

pdxq2 ` d1
Bpz2,´z1q

px´ x1qdx1
` d2

Bpz1,´z2q
px´ x2qdx2

“

2
Bpz, z1qBpz, z2q

pdxq2 ` d1
1

x´ x1

ˆ
Bpz2,´z1q

dx1
´ Bpz, z2q

dx

˙
` d2

1

x´ x2

ˆ
Bpz1,´z2q

dx2
´ Bpz, z1q

dx

˙
“

2
Bpz, z1qBpz, z2q

pdxq2 ´ d1
1

x ´ x1

ˆ
Bpz2, z1q

dx1
` Bpz, z2q

dx

˙
´ d2

1

x´ x2

ˆ
Bpz1, z2q

dx2
` Bpz, z1q

dx

˙

` d1d2
1

x´ x1

1

x´ x2
.

Now we integrate twice over D:

(57)

ż

D

ż

D

P0,2pxpzq, z1, z2q ´ 2F 1
0,1pz,DqF 1

0,3pz,Dq “

2pF 1
0,2pz,Dqq2 ´ 2

rÿ

i“1

αi
1

x´ xi
F 1
0,2pz,Dq ´

rÿ

i“1

2αi

x ´ xi

ÿ

j‰i

αj

ˆ
dEppi, pjq

dxi
´ 1

xi ´ xj

˙
.

We introduce F̂ 1
0,2pz,Dq “ F 1

0,2pz,Dq ´ α1
dEpz,p1q

dx
and obtain:

(58) 2pF̂ 1
0,2pz,Dqq2 ` 4α1F̂

1
0,2pz,DqdEpz, p1q

dx
` 2α2

1

pdEpz, p1qq2
pdxq2 ´ 2α1

x´ x1
F̂ 1
0,2pz,Dq´

2α2
1

x´ x1

dEpz, p1q
dx

´ 2
ÿ

i‰1

αi

x´ xi
F̂ 1
0,2pz,Dq ´ 2

ÿ

i‰1

α1αi

x´ xi

dEpz, p1q
dx

´

1

x´ x1

d

dx1
F0,2pDq ´

ÿ

i‰1

1

x ´ xi

d

dxi
F0,2pDq ` 2

ÿ

i‰j
i‰1

αiαj

px ´ xiqpxi ´ xjq
` 2

ÿ

j‰1

α1αj

px´ x1qpx1 ´ xjq
.
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Observe that

(59) lim
zÑp1

˜
´

ÿ

i‰1

α1αi

x´ xi

dEpz, p1q
dx

`
ÿ

j‰1

α1αj

px´ x1qpx1 ´ xjq

¸
“

ÿ

i‰1

α1αi

px1 ´ xiq2
.

Using this, at z “ p1 we obtain

(60)
1

2α2
1

ˆ
dF0,2pDq

dx1

˙2

`
ˆ

d

dx1

˙2

F0,2pDq ´
ÿ

i‰1

1

x1 ´ xi

ˆ
dF0,2pDq

dxi
` αi

α1

dF0,2pDq
dx1

˙
`

2α2
1Spp1q ` 2

ÿ

i‰j
i‰1,j‰1

αiαj

px1 ´ xiqpxi ´ xjq
,

where we have called Spp1q the limit

lim
zÑp1

dEpz, p1q
dxpzq

ˆ
dEpz, p1q
dxpzq ´ 1

xpzq ´ xpp1q

˙
.

Now observe that, using the Lemma 4.2, we obtain

Lpxpzqq.ω0,2pz1,2 q “ Lpxpzqq.
ˆ
ω0,2pz1,2 q ´ dxpz1qdxpz2q

pxpz1q ´ xpz2qq2
˙

“ ´
ÿ

i,xpζiq“8

miÿ

j“0

tζi,j
ÿ

0ďkď´2´j{di

xpzqkpk ` 2 ` j

di
q

ż

Bζi,j`dipk`2q

ω0,3pz1, z1, z2q

`
ÿ

i,xpζiq‰8

miÿ

j“0

tζi,j

jÿ

k“0

ξipzq´pk`1qpk ´ j ´ 1q
ż

Bζi,j`1´k

ω0,3pz1, z1, z2q,

(61)

which implies that

(62) Lpxq.F0,2pDq “
ż

D

ż

D

P0,2px; z1, z2q.

For the first term of (57), we thus obtain:

(63) Lpx1q.F0,2pDq
2

“ 1

3α2
1

d

dx1
F0,1pDq d

dx1
F0,3pDq ` 1

4α2
1

ˆ
dF0,2pDq

dx1

˙2

` 1

2

ˆ
d

dx1

˙2

F0,2pDq`

α2
1Spp1q ´ 1

2

ÿ

i‰1

1

x1 ´ xi

ˆ
dF0,2pDq

dxi
` αi

α1

dF0,2pDq
dx1

˙
`

ÿ

i‰j
i‰1,j‰1

αiαj

px1 ´ xiqpxi ´ xjq
.

‚ For pg, nq “ p1, 0q we get

´Bpz,´zq
dxpzq2 ` 2F 1

0,1pz,DqF 1
1,1pz,Dq “ Lpx1q.F1,0pDq.

At z “ p1 this gives

´Bpp1,´p1q
dx21

` 2
1

α2
1

dF0,1pDq
dx1

dF1,1pDq
dx1

“ Lpx1q.F1,0pDq.
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Using that Bpp1,´p1q
dx2

1

“ Spp1q and summing the expressions for p0, 2q and p1, 0q, we obtain:

(64)

ˆ
d

dx1

˙2

S1 ` 1

α2
1

ˆ
d

dx1
S1

˙2

` 2

α2
1

d

dx1
S0

d

dx1
S2 ´

rÿ

i“2

dS1

dxi
` αi

α1

dS1

dx1

xpp1q ´ xppiq

` pα2
1 ´ 1qSpp1q `

ÿ

iăj
i‰1

αiαj

px1 ´ xiqpx1 ´ xjq “ Lpx1q.S1 ` Lpx1q.F1.

that is

(65) r~2s
«
~2

˜ˆ
d

dx1

˙2

S ` 1

α2
1

d

dx1
S

d

dx1
S ´

rÿ

i“2

dS
dxi

` αi

α1

dS
dx1

xpp1q ´ xppiq
` pα2

1 ´ 1qSpp1q ` p‹q
¸ff

“

r~2s
“
~2Lpx1q.S ` pRpx1q ` Lpx1q.F q

‰
,

with

(66) p‹q “
ÿ

i‰j
i‰1,j‰1

αiαj

px1 ´ xiqpxi ´ xjq
.

Assuming α1 “ 1
α1
, and summing over all topologies, we get the claim. �

Remark 4.1. Very often in the literature a different convention is used to regularize the p0, 2q term
of the wave function:

ψ̃pD, t, ~q :“ exp

˜
S̃1pD, tq `

ÿ

mě0,m‰1

~m´1SmpD, tq
¸
,

where S̃1pD, tq –
1
2

ş
D

ş
D

´
Bpz1, z2q ´ dxpz1qdxpz2q

pxpz1q´xpz2qq2

¯
. Using (48), we obtain that the relation to

our wave function is the following

ψpD, t, ~q “ ψ̃pD, t, ~q ¨
ź

iăj

pxi ´ xjqαiαj .

4.1. PDE for Airy curve. In this particular case, we had Pg,n “ 0.
Therefore, in this case we obtain the following system of PDEs:

(67) ~2

¨
˚̊
˝

d2

dx2k
´

ÿ

i‰k

d
dxi

` αi

αk

d
dxk

xk ´ xi
`

ÿ

i‰j
i‰k,j‰k

αiαj

pxk ´ xiqpxi ´ xjq

˛
‹‹‚ψ “ xψ,

for every k “ 1, . . . , r.

Example 4.2. Considering the divisor D “ rz1s ´ rz2s, sending z2 Ñ 8 and regularizing the p0, 1q
factor of the wave function, we recover the Airy quantum curve from our PDE for k “ 1, with
x “ x1: ˆ

~2
d2

dx2
´ x

˙
ψ “ 0.

4.2. PDE for Painlevé case. In this case we have Pg,n “ B
Btωg,npz1, . . . , znq.

Therefore, we obtain the following PDE:

(68)

˜
~2

d2

dx2k
´ ~2

ÿ

i‰k

d
dxi

` αi

αk

d
dxk

xk ´ xi
´ B

Bt ` p‹q
¸
ψpDq “ pP pxq ` B

BtF qψ,

for every k “ 1, . . . , r, where p‹q is given by (66).
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4.3. Reduced equation. Consider a divisor D “ rzs ´ rz1s with 2 points, and call x “ xpzq, x1 “
xpz1q. The equation we have obtained is a PDE: it involves both d{dx and d{dx1, as well as partial
derivatives with respect to times when Lpxq ‰ 0. Let us show here that it is possible to eliminate
d{dx1 and arrive to an equation involving only d{dx, as well as possibly times derivatives.

Define

(69) ψ̃pz, z1q :“ px ´ x1qψprzs ´ rz1s, t, ~qeF .
Define the differential operators

D :“ ~2
d2

dx2
´ Lpxq ´Rpxq,(70)

D
1 :“ ~2

d2

dx12
´ Lpx1q ´Rpx1q.(71)

Equation (51) is equivalent to

(72) Dψ̃ “ ~2

x´ x1

ˆ
d

dx
` d

dx1

˙
ψ̃ “ ´D

1ψ̃.

In particular this implies

(73) ~2
d

dx1
ψ̃ “ ´~2

d

dx
ψ̃ ` px´ x1qDψ̃,

and applying d{dx1 again we find

~2
d2

dx12
ψ̃ “ ´Dψ̃ ´ ~2

d

dx

d

dx1
ψ̃ ` px´ x1qD d

dx1
ψ̃

“ ~2
d2

dx2
ψ̃ ´ 2Dψ̃ ´ px ´ x1q

ˆ
d

dx
Dψ̃ ` D

d

dx
ψ̃ ´ ~´2

Dpx´ x1qD
˙
ψ̃.

(74)

Therefore

0 “ pD ` D
1qψ̃

“ Dψ̃ ` p~2 d2

dx12
´Rpx1q ´ Lpx1qqψ̃

“
ˆ
~2

d2

dx2
´ D ´Rpx1q ´ Lpx1q ´ px ´ x1q

ˆ
d

dx
Dψ̃ ` D

d

dx
ψ̃ ´ ~´2

Dpx´ x1qD
˙˙

ψ̃

“
ˆ
Rpxq ´Rpx1q ` pLpxq ´ Lpx1qq ´ px´ x1q

ˆ
d

dx
Dψ̃ ` D

d

dx
ψ̃ ´ ~´2

Dpx ´ x1qD
˙˙

ψ̃

“
ˆ
Rpxq ´Rpx1q ` Lpxq ´ Lpx1q ´ px´ x1q

ˆ
´ d

dx
Dψ̃ ` D

d

dx
ψ̃ ´ ~´2px ´ x1qD2

˙˙
ψ̃

“
ˆ
Rpxq ´Rpx1q ` Lpxq ´ Lpx1q ´ px´ x1q

ˆ
dRpxq
dx

` ~
dLpxq
dx

´ ~´2px ´ x1qD2

˙˙
ψ̃

(75)

and thus

(76)
Rpxq ´Rpx1q

x´ x1
ψ̃ ` Lpxq ´ Lpx1q

x´ x1
ψ̃ “

ˆ
dRpxq
dx

` dLpxq
dx

´ ~´2px´ x1qD2

˙
ψ̃.

Finally,

(77) D
2ψ̃ “ ~2

x´ x1

ˆ
Rpxq ´Rpx1q

x´ x1
` Lpxq ´ Lpx1q

x´ x1
´ dRpxq

dx
´ dLpxq

dx

˙
ψ̃.
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This equation is a PDE, with rational coefficients P Cpxq, involving d{dx and B{Btks but no d{dx1

anymore.
Notice that the right hand side is of order Op~2q in the limit ~ Ñ 0, and D Ñ ŷ2 ´Rpxq, where

ŷ “ ~d{dx.

5. Quantum curves

The goal now is to prove that ψpDq obeys an isomonodromic system type of equation, and in

particular this implies the existence of a quantum curve P̂ px, ŷ, ~q that annihilates ψ. To this
purpose, we first prove that ψprzs ´ rz1sq coincides with the integrable kernel of an isomonodromic
system. The way to prove it generalizes the method of [2], i.e. first proving that the ratio of ψ and
the integrable kernel has to be a formal series of the form 1 ` Opz1´1q and then showing that the
only solution of equations (51) which has that behavior implies that the ratio must be 1.

5.1. Painlevé I (genus 0 case). We shall prove that ψprzs ´ rz1sq coincides with the integrable
kernel associated to the Painlevé I kernel.

Consider a solution of the Painlevé system (8), written as

(78) Ψpxq “
ˆ
Apxq Bpxq
Ãpxq B̃pxq

˙
, detΨpxq “ 1,

i.e. Ψpxq satisfying (8):
ˆ
~

B
Bx ´ Lpx, t; ~q

˙
Ψ “ 0 ,

ˆ
~

B
Bt ´ Rpx, t; ~q

˙
Ψ “ 0.

Define Apxq, Ãpxq, Bpxq, B̃pxq as WKB ~-formal series solutions, with leading orders

Apxq „ i

2
?
z
e~

´1
şx
0
ydxp1 `Op~qq,

Bpxq „ i

2
?
z
e´~´1

şx
0
ydxp1 `Op~qq,

Ãpxq „ i
?
z e~

´1
şx
0
ydxp1 `Op~qq,

B̃pxq „ ´i
?
z e´~´1

şx
0
ydxp1 `Op~qq,

(79)

and with each coefficient of higher powers of ~ in p1 `Op~qq being a polynomial of 1{z that tends
to 0 as z Ñ 8. The integrable kernel is defined as (a WKB formal series of ~):

(80) Kpx, x1q :“ ApxqB̃px1q ´ ÃpxqBpx1q
x ´ x1

.

From the isomonodromic system (8), one can verify that this kernel obeys the same equation (51)
as ψprzs ´ rz1sq. In fact, they are equal:

Theorem 5.1. We have, as formal WKB power series of ~

(81) ψprzs ´ rz1s, t, ~q “ ApxqB̃px1q ´ ÃpxqBpx1q
x´ x1

,

where x “ xpzq and x1 “ xpz1q.
Proof. Define the ratio

(82) Hpz, z1q –
px´ x1qψprzs ´ rz1s, t, ~q
ApxqB̃px1q ´ ÃpxqBpx1q

.
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It is a formal series of ~ whose coefficients are rational functions of z and z1. The leading orders
show that

(83) Hpz, z1q “ 1 `Op~q.
Moreover, at each order of ~, the coefficient is a polynomial of 1{z, 1{z1, which tends to 0 at
z, z1 Ñ 8:

(84) Hpz, z1q ´ 1 P 1

zz1
Crz´1, z1´1srr~ss.

We shall prove that H “ 1 by following the method of [2]. Let us assume that H ‰ 1, and write

(85) Hpz, z1q “ 1 `HM pzqz1´M `Opz1´M´1q,
where M ě 1 is the smallest possible power of z1 whose coefficient HM would be ‰ 0 as a formal
series of ~. Equation (72) implies

(86)
d2H

dx12
` 2

d lnBpx1q
dx1

dH

dx1
` 2

d lnpÃpxq{Apxq ´ B̃px1q{Bpx1qq
dx1

dH

dx1
“ 1

x1 ´ x

ˆ
d

dx
` d

dx1

˙
H,

whose leading power of z1 comes only from the second term and is

(87) 2ypz1qHM pzqz1´M `Opz1´M´1q “ 0,

implying that HM “ 0, and thus contradicting the hypothesis that H ‰ 1. This proves the
theorem. �

As a corollary this implies that

(88) lim
z1Ñ8

pxpzq ´ xpz1qqψprzs ´ rz1s, t, ~q
B̃pxpz1qq

“ Apxpzqq.

In other words

(89)
i

2
?
z
e~

´1
şz
0
ω0,1 e

ř
pg,nq‰p0,1q,p0,2q

~
2g´2`n

n!

şz
8...

şz
8 ωg,n “ Apxpzqq.

In the Painlevé system, the function Apxq is annihilated by the quantum curve

(90) ŷ2 ´
ˆ

px ´ Uq2px ` 2Uq ` ~2

2
:Upx ´ Uq ` ~2

4
9U2

˙
´ ~2

2px ´ Uq
9U ´ ~

x´ U
ŷ.

5.2. General genus 0 case. The same argument applies to any isomonodromic system. Assume
that we have a Lax pair of type (8), whose spectral curve in the limit ~ Ñ 0 is a genus zero curve
of the form detpy´L0pxqq “ y2 ´Rpxq “ 0, and which has a WKB formal power series solution in
the form

Apxq „ ia
2dx{dz

e~
´1

şx
0
ydxp1 `Op~qq,

Bpxq „ ia
2dx{dz

e´~´1
şx
0
ydxp1 `Op~qq,

Ãpxq „ i

c
1

2
dx{dz e~´1

şx
0
ydxp1 `Op~qq,

B̃pxq „ ´i
c

1

2
dx{dz e´~´1

şx
0
ydxp1 `Op~qq,

(91)

where each coefficient of higher powers of ~ in p1 ` Op~qq is a rational function of z that tends to
0 at poles z Ñ ζ, where we have chosen a pole xpζq “ 8. This pole has degree ´d “ 1 or ´d “ 2,

and ξ “ x1{d is a local coordinate near the pole. We emphasize that for all genus 0 spectral curves
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where y2 “ Poddpxq with Poddpxq an odd polynomial of x, such systems are explicitely known as
Gelfand-Dikii systems [16] described in section 5.4 below, and for more general spectral curves, it
was proved in [21] that a 2ˆ 2 autonomous system L0 always admits an ~-deformation L with this
property.

We define the following formal series of ~:

(92) Hpz, z1q –
pxpzq ´ xpz1qqψprzs ´ rz1sq
ApxqB̃px1q ´ ÃpxqBpx1q

“ 1 `Op~q.

It is easy to see that the integrable kernel satisfies equation (72), and thus H satisfies the PDE
(86).

Moreover the coefficients of H are analytic functions of z1, which tend to 0 at z1 Ñ ζ. Let us
write Hpz, z1q “ 1 `Opx11{dq. The leading order H “ 1 `HM pzqx1M{d `Opx1pM`1q{dq must satisfy

ypz1qHM pzqx1M{d “ Opx1pM`1q{dq, and therefore H “ 1.
This implies that ψprzs ´ rz1sq coincides with the integrable kernel

(93) ψprzs ´ rz1sq “ ApxpzqqB̃pxpz1qq ´ ÃpxpzqqBpxpz1qq
xpzq ´ xpz1q .

Then taking the limit z1 Ñ ζ this implies that

(94) lim
z1Ñζ

pxpzq ´ xpz1qqψprzs ´ rz1sq
B̃pxpz1qq

“ Apxpzqq.

Knowing that Apxq, Ãpxq satisfy an isomonodromic system with first equation

(95) ~
B

Bdx

ˆ
Apxq
Ãpxq

˙
“ Lpx, t, ~q

ˆ
Apxq
Ãpxq

˙
,

with

(96) Lpx, t, ~q “
ˆ
αpx, t, ~q βpx, t, ~q
γpx, t, ~q δpx, t, ~q

˙
,

where α, β, γ, δ rational functions of x, with coefficients being formal power series of ~, we get the
quantum curve annihiliating Apxq:

(97) ŷ2 ´ pα ` δqŷ ` pαδ ´ βγq ` ~

ˆ
dα{dx´ α

dβ{dx
β

´ dβ{dx
β

ŷ

˙
.

Its classical part ~ Ñ 0 is indeed the spectral curve

(98) y2 ´ pαpx, t, 0q ` δpx, t, 0qqypαpx, t, 0qδpx, t, 0q ´ βpx, t, 0qγpx, t, 0qq “ detpy ´ L0pxqq.
5.3. Higher genus case. If the curve y2 “ Rpxq has genus ĝ ą 0, it was verified in [23] (for ĝ “ 1),
and argued in [3], that the perturbative wave function cannot satisfy the quantum curve, and in
fact just because it is not a function (order by order in ~) on the spectral curve. Indeed, multiple
integrals of type

şz
o
. . .

şz
o
ωg,n are not invariant after z goes around a cycle, and don’t transform as

Abelian differentials. It was argued in [15, 3, 12] that only the non-perturbative wave function of
[11, 14] can be a wave function and can obey a quantum curve, and this was proved up to the 3rd
non trivial powers of ~ for arbitrary curves in [3], and verified to many orders for elliptic curves in
[23].

Consider a curve y2 “ Rpxq with genus ĝ ą 0, let Ai X Bj “ δi,j be a symplectic basis of cycles
of H1pΣ,Zq (i.e. integer cycles). We choose the Bergman kernel normalized on A-cycles.

Define the 1st kind times

(99) ǫi “ 1

2iπ

¿

Ai

ydx.
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Since (51) is a linear PDE, any linear combination of solutions is solution. Moreover, since the
coefficients of the PDE do not involve the times ǫi, we remark that shifting ǫi Ñ ǫi ` ni is another
solution, which we denote as follows

(100) ψptǫi Ñ ǫi ` niu; rzs ´ rz1sq.
The transseries linear combination introduced in [11, 14, 3, 12]

(101) ψ̂przs ´ rz1sq “ 1

T̂

ÿ

n1,...,nĝPZĝ

ψptǫi Ñ ǫi ` niu; rzs ´ rz1sqZptǫi Ñ ǫi ` niuq,

where

(102) T̂ “
ÿ

n1,...,nĝPZĝ

Zptǫi Ñ ǫi ` niuq

is thus also a solution of the same PDE. Moreover, this combination is obviously independent [12]
of the integration homotopy class from z1 to z, and it is, order by order as a transseries of ~ a
function of z and z1 on the spectral curve.

From there, the same argument as the genus zero case applies. Assume that there is an isomon-
odromic system pL,Rq whose associated spectral curve is our spectral curve, with

(103) Ψpxq “
ˆ
Apxq Bpxq
Ãpxq B̃pxq

˙
,

a formal transseries solution. Then the formal transseries

(104) Hpz, z1q “ pxpzq ´ xpz1qqψprzs ´ rz1sq
ApxqB̃px1q ´ ÃpxqBpx1q

“ 1 `Op~q

satisfies the PDE (86), and is such that Hpz, z1q “ 1 ` Opx11{dq. The leading order H “ 1 `
HM pzqx1M{d ` Opx1pM`1q{dq must satisfy ypz1qHM pzqx1M{d “ Opx1pM`1q{dq, and therefore H “ 1.
This implies that

(105) ψprzs ´ rz1sq “ ApxpzqqB̃pxpz1qq ´ ÃpxpzqqBpxpz1qq
xpzq ´ xpz1q .

This also implies that

(106) lim
z1Ñζ

pxpzq ´ xpz1qqψprzs ´ rz1sq
B̃pxpz1qq

“ Apxpzqq.

Since Apxq, Ãpxq satisfy the isomonodromic system

(107) ~
B

Bx

ˆ
Apxq
Ãpxq

˙
“ Lpxq

ˆ
Apxq
Ãpxq

˙
,

where

Lpx, t, ~q “
ˆ
αpx, t, ~q βpx, t, ~q
γpx, t, ~q δpx, t, ~q

˙

we find the quantum curve annihiliating Apxq:

(108) ŷ2 ´ pαpxq ` δpxqqŷ ` pαpxqδpxq ´ βpxqγpxqq ` ~

ˆ
α1pxq ´ αpxqβ

1pxq
βpxq ´ β1pxq

βpxq ŷ
˙
.

Its classical part ~ Ñ 0 is indeed the equation

(109) detpy ´ Lpx, t, 0qq “ 0.
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5.4. Examples: Gelfand-Dikii systems. These systems generalize the Painlevé I equation; they
appear in the enumeration of maps in the large size limit [16]. For these Gelfand-Dikii systems,
the proof that ψprzs ´ rz1sq coincides with the integrable kernel (which then implies the quantum
curve) can be found in [16] chapter 5, by another method. Here let us provide another proof with
our current method.

The Gelfand-Dikii polynomials are defined as differential polynomials of a function Uptq, by the
recursion

(110) R0pUq “ 2 ,
B
BtRk`1pUq “ ´2U

BRkpUq
Bt ´RkpUqBU

Bt ` ~2

4

B2RkpUq
Bt2 .

At each step the integration constant is chosen so that RkpUq is homogeneous in powers of U and
B2{Bt2. The first fews are given by

R0 “ 2,
R1 “ ´2U,

R2 “ 3U2 ´ ~2

2
:U,

R3 “ ´5U3 ` 5~2

2
U :U ` 5~2

4
9U2 ´ ~4

8

B4U
Bt4

. . .(111)

Let an integer m ě 1, and let t̃0, t̃1, t̃2, . . . , t̃m be a set of “times”. Let Upt; t̃0, t̃1, t̃2, . . . , t̃mq be a
solution of the following non-linear ODE:

(112)
mÿ

j“0

t̃jRj`1pUq “ t.

Notice that, formally, t “ ´2t̃´1. The case m “ 1, R2pUq “ t is the Painlevé I equation. The case
m “ 2, R3pUq “ t is called the Lee-Yang equation. The case m “ 0 is simply Uptq “ ´ t

2t̃0
.

Consider the Lax pair (adopting the normalizations of [16]) given by

(113) Rpx, t, ~q “
ˆ

0 1
x` 2Uptq 0

˙

and

(114) Lpx, t, ~q “
mÿ

j“0

t̃jLjpx, t, ~q,

where

(115) Ljpx, t, ~q “
ˆ
αjpx, tq βjpx, tq
γjpx, tq ´αjpx, tq

˙
with,

(116)

βjpx, tq “ 1

2

jÿ

k“0

xj´kRkpUq, αjpx, tq “ ´~

2

B
Btβjpx, tq, γjpx, tq “ px` 2Uqβjpx, tq ` ~

B
Btαjpx, tq.

One can easily verify that the Gelfand-Dikii polynomials are such that the zero curvature equation
is satisfied

(117) ~
B
BtLpx, t, ~q ` ~

B
BxRpx, t, ~q “ rRpx, t, ~q,Lpx, t, ~qs.
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The differential equation (112) admits a formal power series solution Upt, ~q with only even
powers of ~:

(118) Upt, ~q “
ÿ

k

~2kukptq,

whose first term uptq “ u0ptq satisfies an algebraic equation

(119)
mÿ

j“0

p2j ` 1q!
j!pj ` 1q! t̃jp´u{2qj`1 “ ´1

4
t.

In the Painlevé I case, m “ 1, t̃k “ δk,1, we recover t “ ´3u2.
The spectral curve, in the limit ~ Ñ 0:

(120) detpy ´ Lpx, t, 0qq “ 0

is always a genus 0 curve. It admits the rational parametrization

(121)

#
xpzq “ z2 ´ 2uptq
ypzq “ řm

j“0 t̃j

´
z2j`1p1 ´ 2uptq{z2qj` 1

2

¯
`

,

where pq` means the positive part in the Laurent series expansion near z “ 8, i.e.

ypzq “
mÿ

j“0

t̃j

jÿ

k“0

p´uqk p2j ` 1q!!
p2j ´ 2k ` 1q!! z

2j´2k`1.

In the Painlevé I case, t̃j “ δj,1, we recover ypzq “ z3 ´ 3uz.
In the case m “ 0, with t̃0 “ 1, we recover the Airy system

(122) Lpx, t, ~q “
ˆ

0 1
x ´ t 0

˙

with spectral curve y2 “ x´ t.
Let Ψpx, t, ~q as follows

(123) Ψpx, t, ~q “
ˆ
Apxq Bpxq
Ãpxq B̃pxq

˙

be a WKB ~ formal series solution of

(124) ~
B

BxΨpx, t, ~q “ ´Lpx, t, ~qΨpx, t, ~q , ~
B
BtΨpx, t, ~q “ Rpx, t, ~qΨpx, t, ~q.

Our previous results show that the formal series ψprzs ´ r8s, t̃, ~q coincide with

(125) Apx, t, ~q “ 1?
2z
e~

´1
şz
0
ydxe

ř
pg,nq‰p0,1q,p0,2q

~
2g´2`n

n!

şz
8...

şz
8 ωg,n ,

and is annihiliated by the quantum curve

(126) ŷ2 ´ pαpxq ` δpxqqŷ ` pαpxqδpxq ´ βpxqγpxqq ` ~

ˆ
α1pxq ´ αpxqβ

1pxq
βpxq ´ β1pxq

βpxq ŷ
˙
.
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