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We show that, within the hydrodynamic framework of heavy-ion collisions, the mean transverse
momentum of charged hadrons (〈pt〉) rises as a function of the multiplicity in ultra-central nucleus-
nucleus collisions. The relative increase is proportional to the speed of sound squared (c2s) of the
quark-gluon plasma, that is therefore accessible experimentally using ultra-central data. Based on
the value of c2s calculated in lattice QCD, we predict that 〈pt〉 increases by ∼ 18 MeV between 1%
and 0.001% centrality in Pb+Pb collisions at

√
sNN = 5.02 TeV.

Introduction. We propose a method to determine
experimentally the speed of sound of the quark-gluon
plasma produced in ultrarelativistic heavy-ion collisions.
The speed of sound, cs, is the velocity at which a com-
pression wave travels in a fluid. Its magnitude is de-
termined by the change in pressure as one increases the
density. In a relativistic fluid, it is given by [1]

c2s =
dP

dε
=
d lnT

d ln s
, (1)

where P , ε, T , s denote the pressure, energy density,
temperature, and entropy density.

The idea is that ultra-central collisions (defined for
instance as the 0.1% most central collisions) produce a
quark-gluon plasma which always has the same volume,
while the particle multiplicity Nch can vary by a few per-
cent (typically 5% to 10%, depending on the experiment).
The entropy is proportional to the multiplicity, and the
volume is constant, therefore, the entropy density s is it-
self proportional to the multiplicity, and also varies by a
few percent. As a consequence, the temperature increases
as a function of the multiplicity, and this implies a rise of
the mean transverse momentum of charged hadrons [2],
which can be measured.

Recent analyses [3] seem to contradict this prediction:
〈pt〉 varies by less than 0.2% in the 0-20% centrality range
in Pb+Pb collisions at

√
sNN = 5.02 TeV. However, these

analyses use wide centrality bins, while the rise is only
expected in ultra-central collisions. The observed flatness
of 〈pT 〉 implies that even a modest rise in the ultra-central
range [4–6] will be easy to identify. This rise allows to
determine the speed of sound directly as a function of
experimental quantities using

c2s =
d ln〈pt〉
d lnNch

. (2)

This analysis requires to bin events in Nch or, equiva-
lently, to determine the centrality using Nch [6]. We use
Nch as a measure of the entropy and 〈pt〉 as a measure
of the temperature. Consistency then requires that both
should be measured in the same rapidity window, at vari-
ance with current analyses where centrality is typically
determined in a separate rapidity window [7].

We now carry out a quantitative analysis using an ef-
fective hydrodynamic description [2] and a realistic model
of initial conditions [8]. We then propose a refinement
of Eq. (2) that allows to determine the speed of sound
experimentally using information inferred from the dis-
tribution of Nch.

Effective hydrodynamic description. The speed of
sound of the quark-gluon plasma is not a constant, it de-
pends on its temperature. Now, the quark-gluon plasma
produced in a heavy-ion collision is inhomogeneous, and
cools rapidly by expanding into the vacuum, so that its
temperature depends on space-time coordinates. In or-
der to average out this dependence, we define an effec-
tive temperature Teff and an effective volume Veff , which
are those of a uniform fluid at rest which would have the
same energy, E, and entropy, S, as the fluid at the end of
the hydrodynamic evolution (freeze-out). Detailed ideal
hydrodynamic calculations [2] show that:

Teff =
1

3.07
〈pt〉

Veff = 1.2πR3, (3)

where R is the transverse radius of the system at the
beginning of the hydrodynamic evolution. This radius is
defined by

R2 ≡ 2
(
〈r2〉 − 〈r〉2

)
, (4)

where r = (x, y) is the transverse coordinate, and angular
brackets denote an average value taken with the initial
entropy density as a weight.1 Inclusion of shear and bulk
viscosity changes slightly the proportionality coefficient
between Veff and R3, not between 〈pt〉 and Teff .

Equations (3) imply that:

• The mean transverse momentum of charged
hadrons is directly proportional to Teff . Therefore,
the value of cs inferred from the variation of 〈pt〉
as a function of the multiplicity is equal to the
speed of sound evaluated at Teff , whose value is
Teff = 222± 9 MeV in central Pb+Pb collisions at√
sNN = 5.02 TeV [2].

1 The factor 2 ensures that the right-hand side is equal to R2 if
the entropy density is uniform in a circle of radius R.
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FIG. 1. Results from the TRENTo model of initial condi-
tions [8], with p = 0 and k = 2.0. 20 million Pb+Pb collisions
at
√
sNN = 5.02 TeV were generated. Only 10% of these

events, corresponding to the largest values of the total en-
tropy per unit rapidity S (0-10% centrality), are used. (a)
Full line: Probability distribution of S in the TRENTo cal-
culation. Open symbols: Probability distribution of the V0
amplitude, used by ALICE to determine the centrality [9],
rescaled by a factor 0.51. (b) Initial radius R (Eq. (4)). (c)
Effective entropy density s (Eq. (5)). Symbols in panels (b)
and (c) are results from the TRENTo simulation, averaged
over events. Dot-dashed lines in panels (a), (b) and (c) are
one parameter fits using Eqs. (9), (12) and (13). Vertical
lines spot specific values of the centrality percentile, and the
position of the knee.

• The entropy density at Teff is given by

s(Teff) =
S

Veff
=

S

1.2πR3
, (5)

which is simply denoted by s below. It can be de-
termined from the initial conditions of the hydrody-
namic calculation, since hydrodynamics conserves
entropy to a good approximation.

Quantitative analysis. We now show explicitly, using a
realistic model of initial conditions, that the effective en-
tropy density is proportional to the multiplicity in ultra-
central collisions. We use the TRENTo Monte Carlo gen-
erator of initial conditions [8] with the p = 0 prescrip-
tion (corresponding to an entropy density proportional

to
√
TATB , where TA and TB are the thickness func-

tions of incoming nuclei [10]), which gives good agree-
ment with data [11]. We tune the fluctuation parameter
of TRENTo, k, in such a way that the distribution of
entropy (we denote by S the total entropy per unit ra-
pidity) coincides, up to a global multiplicative constant,
with the distribution of the multiplicity (V0 amplitude)
used by ALICE to define the centrality of Pb+Pb col-
lisions at

√
sNN = 5.02 TeV [9]. The same choice of

parameters also reproduces the distribution of Nch mea-
sured by ATLAS [6]. In addition, we have multiplied the
entropy given by the TRENTo model by a constant co-
efficient so that the entropy density in central collisions
matches the value s ∼ 20 fm−3 extracted from a recent
analysis of Pb+Pb data [2].

The distribution of S is displayed in Fig. 1 (a). Two
different regimes can be observed left and right of the
knee, to be defined below (Eq. (7)). Left of the knee, the
distribution decreases slowly. The variation of S in this
region is driven by the variation of impact parameter.
Right of the knee, the distribution decreases steeply. In
this region, the variation of S is driven by initial-state
fluctuations.

Figure 1 (b) displays the value of the initial radius
R (Eq. (4)), averaged over events, as a function of S.
It increases and then saturates around the value of the
knee, confirming the intuitive idea that events beyond
the knee share the same geometry.

Figure 1 (c) displays the effective entropy density s,
defined by Eq. (5), averaged over events. Left of the
knee, this effective density is essentially constant, which
in turn implies that the effective temperature Teff and
the mean transverse momentum 〈pt〉 are also constant,
in agreement with experimental data (see below Fig. 2).
The essential point of this paper is that right of the knee,
the entropy density starts rising because the volume be-
comes constant, so that s is proportional to S.

Analytic model. We now derive a simple parametriza-
tion which captures the trends observed in Fig. 1. We
first assume that the probability distribution of S at a
fixed impact parameter b is a Gaussian [13]:

P (S|b) =
1

σ
√

2π
exp

(
− (S − S̄(b))2

2σ2

)
, (6)

where S̄(b) is the mean value, which decreases with in-
creasing b, and σ is the width, whose dependence on b is
neglected. The knee is defined as the mean value of S at
b = 0:

Sknee ≡ S̄(0). (7)

We first derive the distribution of S by integrating over
impact parameter. We change variables b → S̄(b), so
that Eq. (6) becomes

P (S|S̄) =
1

σ
√

2π
exp

(
− (S − S̄)2

2σ2

)
. (8)
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We then integrate over S̄:

P (S) =

∫ Sknee

0

P (S|S̄)P (S̄)dS̄

∝
∫ Sknee

0

P (S|S̄)dS̄

∝ erfc

(
S − Sknee

σ
√

2

)
, (9)

where we have assumed for simplicity that the proba-
bility distribution of S̄, P (S̄), is constant.This model is
displayed as a dashed line in Fig. 1 (a). The parame-
ters Sknee and σ have been obtained within the TRENTo
model by computing the mean and standard deviation
of the distribution of S at b = 0. The proportionality
constant is adjusted by hand. This simple model cap-
tures the trends observed in the TRENTo simulation up
to 10% centrality.

Next, we assume that the initial radius R only depends
on impact parameter, or equivalently, on S̄. In order to
determine R for fixed S, we first determine the distribu-
tion of S̄ for fixed S using Bayes’ theorem:

P (S̄|S) =
P (S|S̄)P (S̄)

P (S)
. (10)

The average value of S̄ for fixed S is obtained by inserting
Eq. (8) into Eq. (10) and integrating over S̄. Assuming
again that P (S̄) is approximately constant, we obtain:

〈S̄|S〉 = S − σ
√

2

π

exp
(
− (S−Sknee)2

2σ2

)
erfc

(
S−Sknee√

2σ

) . (11)

For S < Sknee, the second term in the right-hand side is
negligible and 〈S̄|S〉 ' S, i.e., fluctuations are averaged
out [14]. Right of the knee, S̄ saturates to its maximum
value: 〈S̄|S〉 ' Sknee.

The observation that the entropy density is constant
left of the knee in the TRENTo calculation suggests that
the volume is proportional to S̄. Under this assumption,
the radius R is given by

R = R0

( 〈S̄|S〉
Sknee

)1/3

(12)

while the entropy density is given by

s = s0
S

〈S̄|S〉 . (13)

In these equations, R0 and s0 are fit parameters which
correspond to the value of R right of the knee, and the
value of s left of the knee, respectively. Panels (b) and
(c) of Fig. 1 show that Eqs. (12) and (13) give good fits
of the full TRENTo simulation.

Quantitative predictions for Pb+Pb collisions at√
sNN = 5.02 TeV. We now make quantitative predic-

tions using this simple parametrization, which we con-
sider to be more general than the particular model of ini-
tial conditions for which we have tested it. The interest is
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FIG. 2. Line: our prediction for the variation of 〈pt〉 with
the V0 amplitude in Pb+Pb collisions at

√
sNN = 5.02 TeV.

Symbols are data from the ALICE collaboration [3].

that the parameters can be determined from data. More
specifically, one replaces S with the charged-particle mul-
tiplicity Nch. The quantities Sknee and σ can then be de-
termined from the distribution of Nch. This can be done
either using the simple Bayesian procedure of Ref. [13], or
by fitting a model (such as the Glauber model) to the ex-
perimental histogram and computing Sknee and σ in the
model. We apply the procedure of Ref. [13] to ALICE
data, using the V0 amplitude as a proxy for the charged
multiplicity [7] and using the data shown in Fig. 1 (a).
We next assume that the mean transverse momentum is
proportional to the temperature, which is itself propor-

tional to sc
2
s if one neglects the variation of c2s in Eq. (1).

Using Eq. (13), we obtain the prediction:

〈pt〉 = pt0

(
S

〈S̄|S〉

)c2s
, (14)

where pt0 is the value of 〈pt〉 left of the knee, and 〈S̄|S〉
is given by Eq. (11). We use the value pt0 = 682 MeV
measured by ALICE in the 0-5% centrality range [3]. As
anticipated, this value corresponds to an effective tem-
perature Teff = 222 MeV according to Eq. (3), at which
lattice QCD predicts c2s = 0.252 [15]. This yields the
prediction displayed in Fig. 2. We predict that 〈pt〉 in-
creases by 8.4 MeV between 1% and 0.1% centrality, by
5.6 MeV between 0.1% and 0.01%, and by 4.1 MeV be-
tween 0.01% and 0.001%. These predictions are however
approximate for two reasons. First, we are using the mul-
tiplicity inferred from the V0 amplitude, which is mea-
sured in a different rapidity window than 〈pt〉. Second,
the observed multiplicity fluctuation gets a small con-
tribution from trivial statistical (Poisson) fluctuations,
which do not contribute to the rise of 〈pt〉. In the case
of ATLAS data [6] on the distribution of Nch, the width
of Poisson fluctuations is smaller by a factor 2.5 than
the total width. Assuming that statistical and dynami-
cal fluctuations add up in quadrature, this implies that
the width of dynamical fluctuations is 90% of the total
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width. Thus one expects a 10% reduction of the rise of
〈pt〉 due to trivial statistical fluctuations.

Equation (14) coincides with Eq. (2) for the most cen-
tral events, where 〈S̄|S〉 saturates. Its advantage over
Eq. (2) is that it can be used all the way up to 10%
centrality. Experimentally, cs can be measured by fit-
ting Eq. (14) to data, using pt0 and cs as fit parameters.
Such an analysis would complement the extraction of cs
from the variation of 〈pt〉 with

√
sNN [2]. More impor-

tantly, the predicted rise of 〈pt〉 in ultra-central collisions
is a non-trivial test of hydrodynamic behavior which does

not involve anisotropic flow [16].
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