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Measuring the speed of sound of the quark-gluon plasma in ultracentral
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We show that, within the hydrodynamic framework of heavy-ion collisions, the mean transverse
momentum of charged hadrons ({p;)) rises as a function of the multiplicity in ultra-central nucleus-
nucleus collisions. The relative increase is proportional to the speed of sound squared (c?) of the
quark-gluon plasma, that is therefore accessible experimentally using ultra-central data. Based on
the value of ¢? calculated in lattice QCD, we predict that (p;) increases by ~ 18 MeV between 1%
and 0.001% centrality in Pb+Pb collisions at /syn = 5.02 TeV.

Introduction. We propose a method to determine
experimentally the speed of sound of the quark-gluon
plasma produced in ultrarelativistic heavy-ion collisions.
The speed of sound, cs, is the velocity at which a com-
pression wave travels in a fluid. Its magnitude is de-
termined by the change in pressure as one increases the
density. In a relativistic fluid, it is given by [I]
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where P, ¢, T, s denote the pressure, energy density,
temperature, and entropy density.

The idea is that ultra-central collisions (defined for
instance as the 0.1% most central collisions) produce a
quark-gluon plasma which always has the same volume,
while the particle multiplicity N, can vary by a few per-
cent (typically 5% to 10%, depending on the experiment).
The entropy is proportional to the multiplicity, and the
volume is constant, therefore, the entropy density s is it-
self proportional to the multiplicity, and also varies by a
few percent. As a consequence, the temperature increases
as a function of the multiplicity, and this implies a rise of
the mean transverse momentum of charged hadrons [2],
which can be measured.

Recent analyses [3] seem to contradict this prediction:
(p¢) varies by less than 0.2% in the 0-20% centrality range
in Pb+PDb collisions at /snn = 5.02 TeV. However, these
analyses use wide centrality bins, while the rise is only
expected in ultra-central collisions. The observed flatness
of (pr) implies that even a modest rise in the ultra-central
range [4H6] will be easy to identify. This rise allows to
determine the speed of sound directly as a function of
experimental quantities using
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This analysis requires to bin events in N, or, equiva-
lently, to determine the centrality using Ngy, [6]. We use
N, as a measure of the entropy and (p;) as a measure
of the temperature. Consistency then requires that both
should be measured in the same rapidity window, at vari-
ance with current analyses where centrality is typically
determined in a separate rapidity window [7].

We now carry out a quantitative analysis using an ef-
fective hydrodynamic description [2] and a realistic model
of initial conditions [§]. We then propose a refinement
of Eq. that allows to determine the speed of sound
experimentally using information inferred from the dis-
tribution of Ng,.

Effective hydrodynamic description. The speed of
sound of the quark-gluon plasma is not a constant, it de-
pends on its temperature. Now, the quark-gluon plasma
produced in a heavy-ion collision is inhomogeneous, and
cools rapidly by expanding into the vacuum, so that its
temperature depends on space-time coordinates. In or-
der to average out this dependence, we define an effec-
tive temperature Tog and an effective volume Vg, which
are those of a uniform fluid at rest which would have the
same energy, F/, and entropy, S, as the fluid at the end of
the hydrodynamic evolution (freeze-out). Detailed ideal
hydrodynamic calculations [2] show that:

1
Teg = ﬁ(pﬁ
Vg = 1.20R3, (3)

where R is the transverse radius of the system at the
beginning of the hydrodynamic evolution. This radius is
defined by

R>=2 (<r2> - (r)g) , (4)
where r = (z, y) is the transverse coordinate, and angular
brackets denote an average value taken with the initial
entropy density as a WeightE Inclusion of shear and bulk
viscosity changes slightly the proportionality coefficient

between Veg and R3, not between (p;) and Tug.
Equations imply that:

e The mean transverse momentum of charged
hadrons is directly proportional to Tig. Therefore,
the value of ¢, inferred from the variation of (p;)
as a function of the multiplicity is equal to the
speed of sound evaluated at T.g, whose value is
Tog = 222 +£9 MeV in central Pb+Pb collisions at

\/SNN — 5.02 TeV [2]

1 The factor 2 ensures that the right-hand side is equal to R? if
the entropy density is uniform in a circle of radius R.
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FIG. 1. Results from the TRENTo model of initial condi-
tions [§], with p = 0 and k& = 2.0. 20 million Pb+Pb collisions
at /SNy = 5.02 TeV were generated. Only 10% of these
events, corresponding to the largest values of the total en-
tropy per unit rapidity S (0-10% centrality), are used. (a)
Full line: Probability distribution of S in the TRENTOo cal-
culation. Open symbols: Probability distribution of the VO
amplitude, used by ALICE to determine the centrality [9],
rescaled by a factor 0.51. (b) Initial radius R (Eq. (). (c)
Effective entropy density s (Eq. ) Symbols in panels (b)
and (c) are results from the TRENTo simulation, averaged
over events. Dot-dashed lines in panels (a), (b) and (c) are

one parameter fits using Egs. @D, and . Vertical
lines spot specific values of the centrality percentile, and the

position of the knee.

e The entropy density at Tog is given by

S S

s(Te )=@=W7 (5)

which is simply denoted by s below. It can be de-
termined from the initial conditions of the hydrody-
namic calculation, since hydrodynamics conserves
entropy to a good approximation.

Quantitative analysis. We now show explicitly, using a
realistic model of initial conditions, that the effective en-
tropy density is proportional to the multiplicity in ultra-
central collisions. We use the TRENTo Monte Carlo gen-
erator of initial conditions [§] with the p = 0 prescrip-
tion (corresponding to an entropy density proportional

to /T'4Tg, where T4 and Ty are the thickness func-
tions of incoming nuclei [I0]), which gives good agree-
ment with data [II]. We tune the fluctuation parameter
of TRENTOo, k, in such a way that the distribution of
entropy (we denote by S the total entropy per unit ra-
pidity) coincides, up to a global multiplicative constant,
with the distribution of the multiplicity (VO amplitude)
used by ALICE to define the centrality of Pb+Pb col-
lisions at /sxy = 5.02 TeV [9]. The same choice of
parameters also reproduces the distribution of N, mea-
sured by ATLAS [6]. In addition, we have multiplied the
entropy given by the TRENTo model by a constant co-
efficient so that the entropy density in central collisions
matches the value s ~ 20 fm~3 extracted from a recent
analysis of Pb+Pb data [2].

The distribution of S is displayed in Fig. [1| (a). Two
different regimes can be observed left and right of the
knee, to be defined below (Eq. (7). Left of the knee, the
distribution decreases slowly. The variation of S in this
region is driven by the variation of impact parameter.
Right of the knee, the distribution decreases steeply. In
this region, the variation of S is driven by initial-state
fluctuations.

Figure [1| (b) displays the value of the initial radius
R (Eq. ), averaged over events, as a function of S.
It increases and then saturates around the value of the
knee, confirming the intuitive idea that events beyond
the knee share the same geometry.

Figure [1] (¢) displays the effective entropy density s,
defined by Eq. , averaged over events. Left of the
knee, this effective density is essentially constant, which
in turn implies that the effective temperature T,g and
the mean transverse momentum (pt> are also constant,
in agreement with experimental data (see below Fig. [2)).
The essential point of this paper is that right of the knee,
the entropy density starts rising because the volume be-
comes constant, so that s is proportional to S.

Analytic model. We now derive a simple parametriza-
tion which captures the trends observed in Fig. We
first assume that the probability distribution of S at a
fixed impact parameter b is a Gaussian [13]:

exp (_<5—5(b)>2> )

P(S|b) =
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where S(b) is the mean value, which decreases with in-
creasing b, and o is the width, whose dependence on b is
neglected. The knee is defined as the mean value of S at
b=0:

Sinee = S(0). (7)

We first derive the distribution of S by integrating over
impact parameter. We change variables b — S(b), so

that Eq. @ becomes
_q\2
L op (JSS)) , (8)




We then integrate over S:

P(S) = /O P (S15)P(5)dS
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where we have assumed for simplicity that the proba-
bility distribution of S, P(S), is constant.This model is
displayed as a dashed line in Fig. [1] (a). The parame-
ters Sknee and o have been obtained within the TRENTo
model by computing the mean and standard deviation
of the distribution of S at b = 0. The proportionality
constant is adjusted by hand. This simple model cap-
tures the trends observed in the TRENTo simulation up
to 10% centrality.

Next, we assume that the initial radius R only depends
on impact parameter, or equivalently, on S. In order to
determine R for fixed S, we first determine the distribu-

tion of S for fixed S using Bayes’ theorem:
aqy _ PSIS)P(S)
P(S|S) = PS) (10)

The average value of S for fixed S is obtained by inserting
Eq. into Eq. and integrating over S. Assuming
again that P(S) is approximately constant, we obtain:

(S—Sknee)®
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For S < Sinee, the second term in the right-hand side is
negligible and (S]S) ~ S, i.e., fluctuations are averaged
out [14]. Right of the knee, S saturates to its maximum
value: (S|S) =~ Sknee-

The observation that the entropy density is constant
left of the knee in the TRENTO calculation suggests that
the volume is proportional to S. Under this assumption,
the radius R is given by

R=R, <<S|S>>1/3 (12)

Sknee

while the entropy density is given by

S
$=S80"=—=- 13
"TSI) 1
In these equations, Ry and sg are fit parameters which
correspond to the value of R right of the knee, and the
value of s left of the knee, respectively. Panels (b) and
(c) of Fig. [I] show that Egs. and give good fits
of the full TRENTo simulation.

Quantitative predictions for Pb+Pb collisions at
VsNN = 5.02 TeV. We now make quantitative predic-
tions using this simple parametrization, which we con-
sider to be more general than the particular model of ini-
tial conditions for which we have tested it. The interest is
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FIG. 2. Line: our prediction for the variation of (p;) with
the VO amplitude in Pb+Pb collisions at /sxn = 5.02 TeV.
Symbols are data from the ALICE collaboration [3].

that the parameters can be determined from data. More
specifically, one replaces S with the charged-particle mul-
tiplicity Ncn. The quantities Sinee and o can then be de-
termined from the distribution of N,. This can be done
either using the simple Bayesian procedure of Ref. [13], or
by fitting a model (such as the Glauber model) to the ex-
perimental histogram and computing Sknee and o in the
model. We apply the procedure of Ref. [13] to ALICE
data, using the VO amplitude as a proxy for the charged
multiplicity [7] and using the data shown in Fig. [1] (a).
We next assume that the mean transverse momentum is
proportional to the temperature, which is itself propor-
tional to s if one neglects the variation of ¢2 in Eq. 1)
Using Eq. , we obtain the prediction:

(pt) = pto <<S|SS>)CZ : (14)

where pyg is the value of (p;) left of the knee, and (S|S)
is given by Eq. . We use the value p;g = 682 MeV
measured by ALICE in the 0-5% centrality range [3]. As
anticipated, this value corresponds to an effective tem-
perature Teg = 222 MeV according to Eq. , at which
lattice QCD predicts ¢ = 0.252 [I5]. This yields the
prediction displayed in Fig. [2 We predict that (p;) in-
creases by 8.4 MeV between 1% and 0.1% centrality, by
5.6 MeV between 0.1% and 0.01%, and by 4.1 MeV be-
tween 0.01% and 0.001%. These predictions are however
approximate for two reasons. First, we are using the mul-
tiplicity inferred from the VO amplitude, which is mea-
sured in a different rapidity window than (p;). Second,
the observed multiplicity fluctuation gets a small con-
tribution from trivial statistical (Poisson) fluctuations,
which do not contribute to the rise of (p;). In the case
of ATLAS data [0] on the distribution of Ny, the width
of Poisson fluctuations is smaller by a factor 2.5 than
the total width. Assuming that statistical and dynami-
cal fluctuations add up in quadrature, this implies that
the width of dynamical fluctuations is 90% of the total



width. Thus one expects a 10% reduction of the rise of
(pt) due to trivial statistical fluctuations.

Equation coincides with Eq. for the most cen-
tral events, where (S|S) saturates. Its advantage over
Eq. is that it can be used all the way up to 10%
centrality. Experimentally, ¢; can be measured by fit-
ting Eq. to data, using p;g and ¢, as fit parameters.
Such an analysis would complement the extraction of ¢
from the variation of (p;) with /sy~ [2]. More impor-
tantly, the predicted rise of (p;) in ultra-central collisions
is a non-trivial test of hydrodynamic behavior which does

not involve anisotropic flow [16].
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