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Abstract:

For a given polynomial V (x) ∈ C[x], a random matrix eigenvalues measure is a

measure
∏

1≤i<j≤N(xi − xj)2
∏N

i=1 e
−V (xi)dxi on γN . Hermitian matrices have real

eigenvalues γ = R, which generalize to γ a complex Jordan arc, or actually a linear

combination of homotopy classes of Jordan arcs, chosen such that integrals are

absolutely convergent. Polynomial moments of such measure satisfy a set of linear

equations called ”loop equations”. We prove that every solution of loop equations are

necessarily polynomial moments of some random matrix measure for some choice of

arcs. There is an isomorphism between the homology space of integrable arcs and the

set of solutions of loop equations. We also generalize this to a 2-matrix model and to

the chain of matrices, and to cases where V is not a polynomial but V ′(x) ∈ C(x).

1 Introduction

Let us recall a few basic facts, from Mehta’s book [9] for instance.

1.1 Hermitian random matrices

Let V ∈ R[x] a real polynomial bounded from below on R (i.e. of even degree with

positive leading coefficient). Let HN the set of N ×N Hermitian matrices, and recall

that every Hermitian matrix M ∈ HN can be diagonalized by a unitary conjugation

M = UXU † (1-1)

where U ∈ U(N) and

X = diag(x1, . . . , xN) (1-2)

is the set of its eigenvalues. To make the decomposition unique, notice that U can be

right multiplied by any diagonal unitary matrix, and thus we shall consider U in the

ar
X

iv
:1

90
9.

09
37

2v
1 

 [
m

at
h-

ph
] 

 2
0 

Se
p 

20
19



quotient group U(N)/U(1)N , and eigenvalues can be permuted by multiplying U with

a permutation matrix, eventually we roughly have

HN ∼ (U(N)/U(1)N × RN)/SN . (1-3)

(remark: we abusively oversimplified the discussion, in fact when some eigenvalues

are not distinct, the non-uniqueness group = the stabilizer is larger, and we should

quotient U(N) by the stabilizer of X rather than U(1)N ×SN . This can be written as

an orbifold, however, degenerate spectra will be of measure 0 in what follows and can

be ignored).

It is well known [9] that the Lebesgue measure DM on HN can be rewritten as a

measure on U(N)/U(1)N × RN as

DM =
∏
i,j

dMi,j = ∆(X)2 DU DX (1-4)

where DX =
∏N

i=1 dXi is the Lebesgue measure on RN and DU is the Haar measure

on the Lie group U(N)/U(1)N , and

∆(X) =
∏
i<j

(xi − xj) (1-5)

is called the Vandermonde determinant.

A Boltzmann weight probability measure on HN of the form

1

Ẑ
e−TrV (M)DM (1-6)

yields a marginal probability measure for eigenvalues

1

Z
∆(X)2e−TrV (X)DX (1-7)

where Z and Ẑ are normalization factors, however, we shall from now on not normalize

the measures.

Loop equations are a set of relationships (proved by integration by parts) among

expectation values of symmetric polynomials of the eigenvalues, for example:

E(TrV ′(X)) = 0

∀ k ≥ 1 E(TrXkV ′(X)) =
k−1∑
j=0

E(TrXj TrXk−j−1), (1-8)

and many other such relations between expectation values of product of traces of

powers, that we shall detail further below.



1.2 Generalization to normal matrices

Let γ : R → C a piecewise C1 Jordan arc in the complex plane. We generalize

Hermitian matrices to normal matrices (= diagonalizable by a unitary conjugation)

with eigenvalues on γ:

HN(γ) = {M = UXU † | U ∈ U(N), X = diag(x1, . . . , xN), xi ∈ γ}. (1-9)

We equip it with measure:

DM = ∆(X)2DUDX (1-10)

where DU is the Haar measure on U(N)/U(1)N and DX =
∏N

i=1 dxi where dxi is the

curvilinear measure on γ defined as

xi = γ(si) → dxi = γ′(si)dsi , si ∈ R (1-11)

which is in fact independent of the chosen parametrization of the Jordan arc.

For examples:

• γ = R gives HN(R) = HN and DM is the usual Lebesgue measure on HN .

• γ = S1 the unit circle, gives HN(S1) = U(N) and DM is related to the Haar

measure on U(N) as

DM = iN
2

detMN DHaar(U(N))M. (1-12)

(indeed i −N
2DM detM−N is a real measure, right invariant). This formalism of

normal matrices unifies Hermitian ensembles with circular ensembles (as well as

many others). See [7] for examples and applications.

A Boltzmann weight measure (possibly complex) e−TrV (M)DM on HN(γ) yields a

marginal measure for the eigenvalues on γN :

∆(X)2e−TrV (X)DX. (1-13)

Integrals of symmetric polynomials of the eigenvalues will satisfy the same loop equa-

tions (1-8) as in the Hermitian case.

Notice that the measure (1-13) can be integrated on γN only for some choices of γ,

namely we need the integral be absolutely convergent and thus if γ goes to ∞, then

|e−V (x)| must tend to zero. In order to define integrals of all symmetric polynomials of

eigenvalues we shall require that |xke−V (x)| → 0 at ∞ on γ, for all k ∈ Z+.

In order to have the same loop equations as for the Hermitian case, we need to do

integration by parts, and we need that there is no boundary term, therefore we shall



require that γ has no boundary except at ∞ (the case where γ has finite boundaries

at which e−V (x) 6= 0 is called ”hard edges”, loop equations for hard edges can be found

in [5]).

Let us now study the set of acceptable Jordan arcs for a given polynomial potential

V (x). We shall study in section 5 the generalization to V ′(x) ∈ C(x), i.e. rational case.

2 Loop equations and measures

2.1 Arcs and homology

Let V ∈ C[x] a polynomial of degree ≥ 2 written

V (x) =
d+1∑
k=1

tk
k
xk , td+1 6= 0. (2-1)

Consider the set of Jordan arcs γ : R→ C, piecewise C1, such that

γ(−∞) =∞
γ(+∞) =∞

∀k ∈ Z+, |xke−V (x)| bounded on γ

(2-2)

Consider the group of homotopy classes of those Jordan arcs, with addition by con-

catenation, and the homology space of K-linear combinations with K a ring or field,

typically K = Z, Q, R or C.

We define

Definition 2.1 the homology space of admissible integration classes for the measure

H1(e−V (x)dx,K) =
{
K − linear combinations of Jordan arcs γ,

going from ∞ to ∞,
and ∀ k ≥ 0, |xke−V (x)| bounded on γ

}
. (2-3)

It is a vector space if K is a field (or a module if K is a ring, let us focus on fields

from now on).

The notion of integral of a holomorphic 1-form ω is well defined on a homology class

γ ∈ H1(e−V (x)dx,K). Indeed since the form is holomorphic, the integral is invariant

under homotopic deformations, and for a linear combination of homotopy classes γ =∑
i ciγi, we define by linearity ∫

γ

ω
def
=
∑
i

ci

∫
γi

ω. (2-4)
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Figure 1: Example with deg V = 4. There are 4 sectors <V > 0 and 4 sectors <V < 0
near ∞ (shaded). Paths in H1 can go from positive sector to positive sector, they
must not go to ∞ in shaded sectors. 3 consecutive make a basis of H1. For example
R = γ1 + γ2 and iR = γ1 − γ3 are both in H1.

It is clear that if γ ∈ H1(e−V (x)dx,K), the integral∫
γ

e−V (x)dx (2-5)

is absolutely convergent.

Proposition 2.1 If deg V = d+ 1 ≥ 2, H1(e−V (x)dx,K) has dimension

dimH1(e−V (x)dx,K) = d. (2-6)

proof: See [2, 4]. Any Jordan arc going from∞ to∞ such that |xke−V (x)| is bounded

must start and end in sectors near∞, in which <V (x)→ +∞. There are d+1 angular

sectors near ∞ in which <V (x) > 0 separated by d + 1 sectors where =V (x) < 0. A

generating family of arcs is constructed by arcs going from a sector to the next, there

are d+ 1 such, and only d are independent. This is illustrated on fig.1. �

2.2 Eigenvalues measure

We now consider the N dimensional generalization, the homology space of admissible N

dimensional integration domains ⊂ CN , on which an N–dimensional spectral–matrix–

model–measure is absolutely integrable, it is the symmetric N tensor product:

HN

(
∆(X)2

N∏
i=1

e−V (xi)dxi, K

)
= Sym

(
H1

(
e−V (x)dx,K

)⊗N)
. (2-7)



Let γ1, . . . , γd an arbitrary basis of H1(e−V (x)dx,K). For every d-uple n =

(n1, n2, . . . , nd) of non-negative integers ni ∈ Z+ such that
∑d

i=1 ni = N , we define

γn = sym(γn1
1 × γn2

2 × · · · × γ
nd
d ) =

1

n!

∑
σ∈SN

σ∗γ
n1
1 × γn2

2 × · · · × γ
nd
d (2-8)

We may thus write

HN

(
∆(X)2

N∏
i=1

e−V (xi)dxi, K

)
= {

∑
n1+···+nd=N

cn1,...,nd
sym(γn1

1 ×γn2
2 ×· · ·×γ

nd
d )} (2-9)

For short we shall call it HN .

It is clear that if Γ ∈ HN , the following integral

Z(Γ) =

∫
Γ

∆(X)2

N∏
i=1

e−V (xi)dxi (2-10)

is absolutely convergent, as well as all its polynomial moments.

Proposition 2.2

dimHN =

(
N + d− 1

N

)
=

(N + d− 1)!

N !(d− 1)!
. (2-11)

proof: This dimension is the number of d-uples n = (n1, . . . , nd) such that ni ≥ 0

and
∑d

i=1 ni = N . �

2.3 Polynomial moments

The integral Z(Γ) is called a matrix integral, it is in fact the integral of the marginal

eigenvalue distribution induced by the measure e−TrV (M)DM on HN(Γ).

Let PN = C[x1, . . . , xN ]Sym the vector space of all symmetric polynomials of N

variables.

Definition 2.2 For Γ ∈ HN , the measure ∆(X)2
∏

i e
−V (xi)dxi defines the following

map:

EΓ : PN → C

p 7→
∫

Γ

p(x1, . . . , xN) ∆(X)2

N∏
i=1

e−V (xi)dxi (2-12)

which is a linear form on PN :

EΓ ∈ P∗N . (2-13)



Since HN is a vector space, and the map E : Γ 7→ EΓ is clearly linear, we have a

homeomorphism of vector spaces. A key result is that this homeomorphism is injective:

Theorem 2.1 (Injectivity) E is an injective homeomorphism of vector spaces

E : HN → P∗N
Γ 7→ EΓ (2-14)

proof: We sketch the proof here, the full proof is detailed in appendix B. We need

to prove that KerE = 0. Let us assume that 0 6= Γ ∈ KerE. Writing

Γ =
∑

n=(n1,...,nd), n1+···+nd=N

cnγ
n, (2-15)

if Γ 6= 0, there must exist some n such that cn 6= 0. The idea is to construct a family of

symmetric polynomials pr,m ∈ PN for any d-uple m = (m1, . . . ,md) with
∑d

i=1mi = N ,

such that we have

lim
r→∞

∫
γn
pr,m(x1, . . . , xN) ∆(X)2

N∏
i=1

e−V (xi)dxi = δn,m. (2-16)

This will imply that

lim
r→∞

EΓ(pr,n) = cn 6= 0, (2-17)

which is a contradiction since we assumed that Γ ∈ KerE. The construction of pr,m is

done in appendix B. See also exercise in [7]. �

Symmetric polynomials

Let the power sums be defined as the following symmetric polynomials:

pk(x1, . . . , xN) =
N∑
i=1

xki = TrXk. (2-18)

For µ = (µ1 ≥ µ2 ≥ µ3 ≥ · · · ≥ µ`) a partition, we denote

pµ(x1, . . . , xN) =
∏̀
j=1

pµj(x1, . . . , xN). (2-19)

We shall also use the same notation when µ = (µ1, . . . , µ`) is a `–uple (no ordering

assumed). We recall the notations:

• weight of a partition (resp. a upple)

|µ| =
∑
i

µi, (2-20)



• length of a partition (resp. a upple)

`(µ) = #{i | µi 6= 0}. (2-21)

We recall the classical lemma:

Lemma 2.1 (Basis of PN) A basis of PN is given by

{pµ | `(µ) ≤ N}. (2-22)

proof: Easy by recursion on N . See appendix A.

2.4 Loop equations

Define

Definition 2.3 For a n-uple µ = (µ1, . . . , µn) (not necessarily ordered), let the follow-

ing symmetric polynomial

Qµ =
d∑
j=0

tj+1pµ1+jpµ2 . . . pµn

−
µ1−1∑
j=0

pjpµ1−1−jpµ2 . . . pµn

−
n∑
i=2

µi pµ1+µi−1

∏
k 6=j

pµk (2-23)

They generate

L = Span 〈Qµ〉n, µ=(µ1,...,µn) ⊂ PN . (2-24)

Definition 2.4 (Loop equations) A linear form E ∈ P∗N is called a solution of loop

equations iff

E(L) = 0. (2-25)

The set of solutions of loop equations is denoted

L⊥ = {E ∈ P∗N | ∀p ∈ L, E(p) = 0}. (2-26)

Theorem 2.2 (Matrix integrals satisfy loop equations)

∀Γ ∈ HN , EΓ ∈ L⊥. (2-27)

The map E : HN → L⊥ is an injective homeomorphism, and

dimL⊥ ≥ (N + d− 1)!

N !(d− 1)!
. (2-28)



proof: This is a well known theorem in random matrix theory, it is a special case of

Schwinger-Dyson equations (Schwinger-Dyson equations are more generally defined for

quantum field theories (QFT)). When the QFT is a matrix integral, these were called

”loop equations” by Migdal [10]. Schwinger-Dyson equations merely reflect the fact

that an integral is invariant under change of variable. They can also be rewritten as

just integration by parts [3, 7]. Indeed notice that

Qµ(X)∆(X)2e−N TrV (X) =
N∑
i=1

∂

∂xi

(
xµ1i pµ2(X) . . . pµn(X)∆(X)2e−N TrV (X)

)
, (2-29)

immediatly implying that

EΓ(Qµ) = 0. (2-30)

This relies on the fact that the integrand vanishes at the boundaries of Γ, i.e. at ∞.

See [5] in case there would be boundary terms. �

2.5 Every solution of loop equations is a matrix integral

The morphism E is in fact an isomorphism. This means that to every solution E of

loop equations corresponds a Γ ∈ HN such that E = EΓ. The following is the main

theorem of this article

Theorem 2.3 (Solutions of loop equations = matrix eigenvalues integrals)

The map E : HN → L⊥ is an isomorphism:

dimL⊥ = dimHN =
(N + d− 1)!

N !(d− 1)!
. (2-31)

proof: We need to prove surjectivity. Let E ∈ L⊥.

Let

AN,d = {µ = partitions , `(µ) ≤ N and ∀i, µi ≤ d− 1}. (2-32)

We have (see fig.2)

#AN,d =
(N + d− 1)!

N !(d− 1)!
. (2-33)

We shall first prove the following lemma:

Lemma 2.2 There exist some coefficients cµ,ν such that for every partition µ

E(pµ) =
∑

ν∈AN,d

cµ,νE(pν). (2-34)



Figure 2: An element of AN,d can be seen as a Ferrer diagram that can fit in a box
(d − 1) × N . It is thus a line of length N + d − 1 with N vertical steps and d − 1
horizontal steps. The number of such lines is the number of ways to choose N vertical
steps among N + d− 1.

Proof of the lemma: We prove it by recursion on k = |µ|. It clearly holds for k = 0

since the empty partition is already in AN,d. Assume that it holds up to k − 1. Let µ

a partition of weight |µ| = k and length `(µ) ≤ N . If all µi ≤ d− 1 then µ ∈ AN,d so

the lemma holds. If there exists µi ≥ d, up to relabeling assume that it is µ1 ≥ d. The

loop equation E(Qµ1−d,µ2,...µn) = 0 implies

td+1E(pµ) = −
d−1∑
j=0

tj+1E(pµ1−d+jpµ2 . . . pµn)

−
µ1−1∑
j=0

E(pjpµ1−d−1−jpµ2 . . . pµn)

−
n∑
i=2

µi E(pµ1−d+µi−1

∏
k 6=j

pµk). (2-35)

We recall that td+1 6= 0 and we notice that all polynomials in the right hand side have

weights < k. By the recursion hypothesis, this implies that all terms in the right hand

side are linear combinations of E(pν) with ν ∈ AN,d. If µ is such that `(µ) > N ,

according to lemma 2.1, we can rewrite pµ as a linear combination of pνs of the same

weight |ν| = |µ| with `(ν) ≤ N . This ends the proof of the lemma. �

This implies that the map E : PN → C is entirely determined by its value on the

subspace

span 〈pµ〉µ∈AN,d
(2-36)

and therefore

dimL⊥ ≤ #AN,d =
(N + d− 1)!

N !(d− 1)!
. (2-37)

Since we already knew the opposite inequality this implies equality:

dimL⊥ =
(N + d− 1)!

N !(d− 1)!
, (2-38)

which thus implies that E is an ismorphism. �



3 2-Matrix model

3.1 Setting, arcs and homology

Consider 2 random normal matrices M, M̃ of size N × N , with eigenvalues on some

arcs γ and γ̃, i.e. in HN(γ)×HN(γ̃), with a measure

e−Tr(V (M)+Ṽ (M̃)−MM̃)DM DM̃, (3-1)

where V and Ṽ are polynomials of respective degrees d+ 1 and d̃+ 1, written

V (x) =
d+1∑
k=1

tk
k
xk , Ṽ (y) =

d̃+1∑
k=1

t̃k
k
yk. (3-2)

Diagonalizing M = UXU † and M̃ = ŨY Ũ † we get (we used Harish-Chandra Itzykson-

Zuber integral over the group U(N), see [9, 7]) the marginal law of eigenvalues

∆(X)∆(Y ) det(exiyj)
N∏
i=1

e−V (xi)dxi

N∏
i=1

e−Ṽ (yi)dyi. (3-3)

The integration domains for xi (resp. yi) must be such that integrals of polynomial

moments are absolutely convergent, which leads us to the space of admissible homology

classes. The following lemma is obvious:

Lemma 3.1 If dd̃ > 1, we have

H1(exy−V (x)−Ṽ (y)dxdy) = H1(e−V (x)dx)⊗H1(e−Ṽ (y)dy) (3-4)

thus

dimH1 = dd̃, (3-5)

and a basis of H1 is made of products γi,j := γi × γ̃j.

HN(∆(X)∆(Y ) det(exiyj)
N∏
i=1

e−V (xi)dxi

N∏
i=1

e−Ṽ (yi)dyi) (3-6)

is of dimension

dimHN =
(N + dd̃− 1)!

N !(dd̃− 1)!
(3-7)

A basis is given by

{
∏
i,j

γ
ni,j

i,j |
∑
i,j

ni,j = N}. (3-8)



Let Γ ∈ HN , we define the linear map

EΓ : PN → C

p 7→
∫

Γ

p(X)∆(X)∆(Y ) det(exiyj)
N∏
i=1

e−V (xi)dxi

N∏
i=1

e−Ṽ (yi)dyi (3-9)

The integration defines a morphism

E : HN → P∗N
Γ 7→ EΓ (3-10)

Theorem 3.1 (Injectivity) The morphism E : HN → P∗N is injective.

proof: Similar to the 1-matrix case. �

3.2 Loop equations

The loop equations of the 2-matrix model are slightly more subtle.

Let us define the N ×N matrix U(X, Y ) by

U(X, Y )i,j = exiyj (3-11)

then define

Ri,j(X, Y ) = exiyj(U(X, Y )−1)j,i , R
(l)
i (X, Y ) =

∑
j

Ri,j(X, Y )ylj. (3-12)

Notice that∑
i

Ri,j(X, Y ) = 1 ,
∑
j

Ri,j(X, Y ) = 1 , R
(0)
i (X, Y ) = 1. (3-13)

Let us define

p
(l)
k (X, Y ) =

∑
i

xki R
(l)
i (X, Y ). (3-14)

Theorem 3.2 (Loop equations) For each n–uple (µ1, µ2, . . . , µn), there is a sym-

metric polynomial Qµ1,µ2,...,µn(X) ∈ PN , of highest weight term

Qµ1,µ2,...,µn(X) = t̃d̃+1(td+1)d̃pµ1+dd̃,µ2,...,µn
(X) +

∑
ν, |ν|<|µ|+dd̃

cµ,νpν(X), (3-15)

such that

EΓ(Qµ1,µ2,...,µn(X)) = 0, (3-16)



proof: See for instance a proof in [4]. Let us recall it here. For each k, l, µ2, . . . , µn,

we have∑
i

∂

∂xi

(
xkiR

(l)
i (X, Y )pµ2(X) . . . pµn(X)∆(X)∆(Y ) det exayb

∏
a

e−V (xa)
∏
b

e−Ṽ (yb)
)

=
(
p

(l+1)
k (X, Y )pµ2(X) . . . pµn(X)

−
∑
j

tj+1p
(l)
k+j(X, Y )pµ2(X) . . . pµn(X)

+
k−1∑
j=0

p
(l)
j (X, Y )pk−1−j(X)pµ2(X) . . . pµn(X)

+
n∑
i=2

µip
(l)
k+µi−1(X, Y ) . . . p̂µi(X) . . . pµn(X)

)
∆(X)∆(Y ) det exayb

∏
a

e−V (xa)
∏
b

e−Ṽ (yb). (3-17)

∑
i,j

∂

∂yj

(
xki pµ2(X) . . . pµn(X)∆(X)∆(Y ) det exayb

∏
a

e−V (xa)
∏
b

e−Ṽ (yb)
)

=
(
pk+1(X)pµ2(X) . . . pµn(X)−

∑
l

t̃l+1p
(l)
k (X, Y )pµ2(X) . . . pµn(X)

)
∆(X)∆(Y ) det exayb

∏
a

e−V (xa)
∏
b

e−Ṽ (yb). (3-18)

Integration by parts thus implies

EΓ(p
(l+1)
k (X, Y )pµ2(X) . . . pµn(X)) =

∑
j

tj+1EΓ(p
(l)
k+j(X, Y )pµ2(X) . . . pµn(X))

−
k−1∑
j=0

EΓ(p
(l)
j (X, Y )pk−1−j(X)pµ2(X) . . . pµn(X))

−
n∑
i=2

µiEΓ(p
(l)
k+µi−1(X, Y ) . . . p̂µi(X) . . . pµn(X))

EΓ(pk+1(X)pµ2(X) . . . pµn(X)) =
∑
l

t̃l+1EΓ(p
(l)
k (X, Y )pµ2(X) . . . pµn(X))

(3-19)

The first equation is a recursion on l, with initial condition

EΓ(p
(0)
k (X, Y )pµ2(X) . . . pµn(X)) = EΓ(pk(X)pµ2(X) . . . pµn(X)), (3-20)

which allows to express for every l, EΓ(p
(l)
k (X, Y )pµ2(X) . . . pµn(X)) as a linear combi-

nation of EΓ of some symmetric polynomials of x only. The last equation can then be

written as an equation relating the EΓ of some symmetric polynomials of x only, let us

write it:

EΓ(Qk,µ2,...,µn(X)) = 0, (3-21)



where Qk,µ2,...,µn(X) is a symmetric polynomial of x, thus a linear combination of power

sums symmetric polynomials. Its highest weigth term is

Qk,µ2,...,µn(X) = t̃d̃+1(td+1)d̃pk+dd̃,µ2,...,µn
(X) +

∑
ν, |ν|<|k+dd̃+µ2+···+µn

c(k,µ2,...,µn),νpν(X).

(3-22)

�

Definition 3.1 (Loop equations) We define the loop equations sub-space

L = Span 〈Qµ1,µ2,...,µn(X)〉 ⊂ PN , (3-23)

and the set of solutions of loop equations

L⊥ = {E ∈ P∗N | E(L) = 0} ⊂ P∗N . (3-24)

We have proved that

Proposition 3.1 The map E : HN → L⊥, Γ 7→ EΓ, is an injective homeomorphism.

We thus have

dimL⊥ ≥ (N + dd̃− 1)!

N !(dd̃− 1)!
. (3-25)

3.3 Solutions of loop equations are matrix integrals

In fact the map is an isomoprhism

Theorem 3.3 (Solutions of loop equations = matrix integrals) The map E :

HN → L⊥, Γ 7→ EΓ, is an isomorphism.

dimL⊥ =
(N + dd̃− 1)!

N !(dd̃− 1)!
. (3-26)

proof: The proof is very similar to the one matrix model. We prove that E ∈ L⊥ is

determined by its value on the subspace

Span 〈pµ〉µ∈AN,dd̃
. (3-27)

In other words we show that for any partition µ:

E(pµ) =
∑

ν∈AN,dd̃

cµ,νE(pν). (3-28)

This is proved by recursion on |µ|. This is obviously true when |µ| = 0, assume it is

true up to |µ| − 1. If µ /∈ AN,dd̃, this means that one row, let us say µ1 ≥ dd̃, the loop

equation

E(Qµ1−dd̃,µ2,...,µn) = 0 (3-29)



implies (3-28).

This implies that

dimL⊥ ≤ #AN,dd̃ =
(N + dd̃− 1)!

N !(dd̃− 1)!
, (3-30)

and since we already have the opposite inequality from injectivity, we conclude that

there is equality and EΓ is an isomorphism. �

4 Chain of normal matrices

The chain of matrices is for example defined in [9, 6, 4].

Consider some complex polynomials V1, V2, . . . , VL, of respective degrees

deg V ′i = di. (4-1)

Consider the measure

DP (X1, . . . , XL) = ∆(X1)∆(XL)
L−1∏
l=1

det
a,b

(e(Xl)a(Xl+1)b)
L∏
l=1

e−TrVl(Xl)DXl (4-2)

that we shall put on Γ ∈ HN : Let

HN = ⊗Ll=1HN(∆(Xl)
2e−TrV (Xl)DXl). (4-3)

We have

dimHN = D =
L∏
l=1

dl. (4-4)

For Γ ∈ HN we define

EΓ : PN → C
p 7→

∫
Γ

p(X1)DP (X1, . . . , XL). (4-5)

and the map

E : HN → P∗N
Γ 7→ EΓ. (4-6)

This map is injective, the proof is more or less the same as the 1 matrix model.



Loop equations

Define

p
(l2,...,lL)
k (X1, X2, . . . , XL) =

∑
i1,...,iL

((X1)i1)
kR(X1, X2)i1,i2((X2)i2)

l2

R(X2, X3)i2,i3 . . . R(XL−1, XL)iL−1,iL((XL)iL)lL .(4-7)

Theorem 4.1 (Loop equations) For each n–uple (µ1, µ2, . . . , µn), there is a sym-

metric polynomial Qµ1,µ2,...,µn(X) ∈ PN , of highest weight term

Qµ1,µ2,...,µn(X) = C pµ1+D,µ2,...,µn(X) +
∑

ν, |ν|<|µ|+D

cµ,νpν(X), (4-8)

with C 6= 0, such that

EΓ(Qµ1,µ2,...,µn(X)) = 0, (4-9)

We denote L = Span < Qµ >, and L⊥ = {E ∈ P∗N | E(L) = 0}.

This theorem was proved in [4]. The coefficient C is the leading doefficient of

V ′L ◦ V ′L−1 ◦ · · · ◦ V ′1 .

The rest is the same as for 1 and 2 matrix models:

Theorem 4.2 E is an isomorphism

E : HN → L⊥

Γ 7→ EΓ (4-10)

is an isomorphism

dimL⊥ = dimHN =
(N +D − 1)!

N !(D − 1)!
(4-11)

where D =
∏L

l=1 deg V ′l .

The proof is exactly the same as 1 and 2 matrix models.

5 Rational potentials

Now we will consider

V ′(x) ∈ C(x) (5-1)

which means that V (x) can also have logarithms. The degree of V ′(x) is defined to be

the sum of degrees of all poles, including the pole at ∞.

deg V ′ =
∑

p=poles

degp V
′. (5-2)

Notice that e−V (x) has essential singularities at pole of V ′(x), and if V ′ has a simple

pole p with a non-vanishing residue r = Res p V
′, 3 situations can occur:



• r ∈ Z−: then e−V (x) has a zero at p.

• r ∈ Z+: then e−V (x) has a pole at p.

• r /∈ Z: then e−V (x) is not analytic at p, we need to introduce a cut ending at p.

Let us consider the complex plane from which we remove all poles, and possibly cuts

ending at poles, so that e−V is analytic in the considered domain.

The admissible Jordan arcs, are now arcs going from a pole to another (or the same

pole), and not crossing cuts. Arcs can arrive at a pole only in a direction in which

<V (x)→ +∞.

• If e−V (x) has a zero, an arc can end on it from any direction.

• If e−V (x) has a pole, no arc can end on it, but can go around it, for instance a

small closed circle around a pole is an admissible arc.

• If e−V (x) has a cut, arcs must go around the cut without crossing it.

These arcs are described in [2, 4], where it is shown thatthe total number of homo-

logically independent arcs is deg V ′:

Proposition 5.1 (Homology space [2]) The dimension of the homology space

dimH1(e−V (x)dx,K) = deg V ′ =
∑

p=poles

degp V
′. (5-3)

5.1 One matrix

Again consider

HN = Sym
(
H⊗N1

)
, (5-4)

its dimension is

dimHN =
(N + d− 1)!

N !(d− 1)!
, d = deg V ′. (5-5)

For any Γ ∈ HN , for any symmetric polynomial p ∈ PN , the following integral is

absolutely convergent

EΓ(p) =

∫
Γ

p(X) ∆(X)2

N∏
i=1

e−V (xi)dxi. (5-6)

The map EΓ : PN → C is a linear form on PN :

EΓ ∈ P∗N , (5-7)

and the map E : HN → P∗N is a homeomorphism.

Theorem 5.1 the map E : HN → P∗N is an injective homeomorphism.

proof: The proof is the same as the polynomial case, and is done in appendix B. �



Loop equations

Let us write V ′(x) as an irreducible rational fraction of 2 polynomials

V ′(x) =
R(x)

D(x)
(5-8)

where D(x) is a monic polynomial. Let us assume that degR > degD, and we have

degR = d = deg V ′. (5-9)

Write

D(x) =

degD∑
k=0

Dkx
k. (5-10)

Define the symmetric polynomials

p
(D)
k (x1, . . . , xN) =

N∑
i=1

D(xi)x
k
i (5-11)

and for a n–uple µ1, . . . , µn, define

p(D)
µ (x1, . . . , xN) = p(D)

µ1
(x1, . . . , xN)pµ2(x1, . . . , xN) . . . pµn(x1, . . . , xN). (5-12)

Then define

Qµ = p(R)
µ − p(D′)

µ −
degD∑
k=0

Dk

k+µ1−1∑
j=0

pj,k+µ1−1,µ2,...,µn −
n∑
i=2

µip
(D)
µ1+µi−1,µ2,...,µ̂i...µn

. (5-13)

Let

L = Span 〈Qµ〉µ . (5-14)

Theorem 5.2 (Loop equations) For any Γ ∈ HN we have

EΓ(L) = 0. (5-15)

The map E : HN → L⊥ is an injective homeomorphism,

dimL⊥ ≥ (N + d− 1)!

N !(d− 1)!
. (5-16)

proof:

Qµ(X)∆(X)2 e−N TrV (X) =
∑
i

∂

∂xi

(
D(xi)x

µ1
i pµ2(X) . . . pµn(X) ∆(X)2 e−TrV (X)

)
(5-17)

and by integration by parts EΓ(Qµ) = 0. �



Theorem 5.3 The map E : HN → L⊥ is an isomorphism,

dimL⊥ =
(N + d− 1)!

N !(d− 1)!
. (5-18)

proof: same as for polynomial potentials. We just need to notice that

Qµ = Cpµ1+d,µ2,...µn +
∑

ν, |ν|<d+|µ|

cµ,νpν , (5-19)

so that if a partition has a row µi ≤ d we can shorten it by using Qµi−d,µ2,...,µ̂i,...,µn , so

eventually E ∈ L⊥ is entirely determined by its restriction to

Span 〈pµ〉µ∈AN,d
(5-20)

and thus

dimL⊥ ≤ #AN,d =
(N + d− 1)!

N !(d− 1)!
. (5-21)

�

5.2 Chain of matrices

The same proof generalizes immediately to chain of matrices with rational V ′l ∈ C(xl),

we get that

dimL⊥ =
(N +D − 1)!

N !(D − 1)!
(5-22)

where D =
∏L

j=1 deg V ′j where deg V ′j is the sum of degrees of all the poles of V ′j .

6 Examples of applications

6.1 Application: Haar measure on U(N)

We already mentioned that if γ = S1 the unit circle, we have

HN(S1) = U(N) (6-1)

and the measure DM is closely related to the Haar measure (see [7], it is easy to see

that i −N
2

detM−NDM is a real positive measure and is invariant under right or left

multiplication by an element of U(N) so is the Haar measure)

iN
2 DHaarM =

1

(detM)N
DM = e−N Tr logM DM, (6-2)

so that the eigenvalues statistics of a random unitary matrix with Haar measure on

U(N), can be rewritten as a normal matrix whose potential is

V (x) = N log(x) (6-3)



i.e. V ′ a rational fraction

V ′(x) =
N

x
, d = deg V ′ = 1. (6-4)

There is thus a unique homology class in HN which has dimension

dimHN =
(N + d− 1)!

N !(d− 1)!
= 1. (6-5)

This unique homology class is (S1)N , i.e. all eigenvalues are on the circle.

We could also consider a Haar measure with polynomial potential of some degree

k + 1, typically ∣∣e−TrV (M)
∣∣DHaarM = e−Tr( 1

2
V (M)+ 1

2
V (M−1)+N logM) DM (6-6)

which is a normal matrix model with rational

1

2
V ′(x)− 1

2x2
V ′(1/x) +

N

x
(6-7)

of total degree

d = 2k + 2. (6-8)

6.2 Application: normal matrices in the complex plane

It is well known that one random complex matrix M ∈ MN(C), is closely related to

one random normal complex matrix M ∈ HN(C) and equivalent to a 2-matrix model.

Let us recall how.

Consider a normal random matrix M in HN(C), with a measure

e−TrMM†e−TrV (M)+Ṽ (M†)DMDM † (6-9)

where DMDM † denotes the measure on HN(C) defined below. To define it, notice

that both M and M † are normal matrices and can be diagonalized by the same unitary

conjugation:

M = UXU † , M † = UY U † , Y = X̄ (6-10)

where U ∈ U(N)/U(1)N , and X is a diagonal complex matrix.

The measure on HN(C) is defined as

DMDM † = |∆(X)|2DUDXDX̄, (6-11)

where DU is as usual the Haar measure on U(N)/U(1)N and DXDX̄ =
∏N

i=1 dxidx̄i

and each dxidx̄i is the Lebesgue measure of xi ∈ C ∼ R2.



The induced marginal measure for eigenvalues is

|∆(X)|2
∣∣det

(
e−xax̄b

)∣∣ N∏
i=1

e−(V (xi)+Ṽ (x̄i))dxidx̄i. (6-12)

It is a real measure when Ṽ is the complex conjugate of V .

Considering X and Y = X̄ as independent variables we see that it is a 2-

matrix model. More precisely, it is a 2-matrix model where X, Y are integrated

on a N -dimensional submanifold of C2N satisfying Y = X̄. If the integral is

convergent, this manifold must be in HN . In other words, the normal com-

plex matrix model, is identical to a 2-matrix model on a homology class Γ ∈
HN(∆(X)∆(Y ) det (e−xayb)

∏N
i=1 e

−(V (xi)+Ṽ (yi))dxidyi), such that Γ̄ = σ∗Γ with σ the

involution (X, Y ) 7→ (Y,X). If γi (resp. γ̃i) form a basis of H1(e−V (x)dx) (resp.

H1(e−Ṽ (y)dy)), then there must exist some bilinear combination

Γ =

deg V ′∑
i=1

deg Ṽ ′∑
j=1

ci,jγi × γ̃j. (6-13)

If Ṽ = V̄ , we may choose γ̃i = γ̄i, and the condition Γ̄ = σ∗Γ implies that the matrix

ci,j must be Hermitian, and we can choose a basis in which it is diagonal and real, i.e.

we can choose

Γ =

deg V ′∑
i=1

ciγi × γ̄i , ci ∈ R. (6-14)

Let us choose

γi = ζiR+ − ζi−1R+ (6-15)

where ζj = t
1

d+1

d+1 e
2πi j

d+1 are roots of td+1 the leading coefficient of V ′. γ1, . . . , γd form a

basis of H1 and we have

γd+1 = −
d∑
i=1

γi. (6-16)

The following class

Γ =
d+1∑
i=1

γi × γ̄i (6-17)

is (up to a real proportionality constant) a homology class invariant under complex

conjugation and under rotations by angles 2π/(d + 1). It is the natural candidate to

replace C.



6.3 Application: Combinatorics of maps

See [1, 8, 7] for an introduction to maps and random matrices (Readers not familiar

with combinatorics of maps may skip this part.)

Let t3, t4, . . . td+1 be complex numbers with td+1 6= 0, and N ∈ Z+. Let us denote

the formal series T̂k1,...,kn ∈ Q[t3, . . . , td+1, N,N
−1][[t]]

T̂k1,...,kn = tNδn,1 +
∞∑
e=2

te
∑

m∈M(e,k1,...,kn)

Nχ(m)−n

#Aut(m)
t
n3(m)
3 t

n4(m)
4 . . . t

nd+1(m)
d+1 (6-18)

where M(e, k1, . . . , kn) is the (finite) set of connected orientable maps with e edges,

and made of n3 triangles, n4 quadrangles, . . . , nd+1 (d + 1)–angles, and with also

n marked labeled faces (a marked face is a face with a marked oriented edge on its

boundary, so that the marked face is on the right of the marked edge) of respective

size k1, k2, . . . , kn. We require ki ≥ 1, whereas unmarked faces have at least size 3

(triangles up to (d + 1)–angles). #Aut(m) is the automorphism factor of the map,

#Aut(m) = 1 for maps with marked faces, and can be ≥ 1 for n = 0 (no marked

faces). χ(m) = #faces(m) −#edges(m) + #vertices(m) is the Euler characteristic of

the map. Let us define (again as formal power series of t)

T∅ = eT̂∅ (6-19)

and for n ≥ 1

Tk1,...,kn = eT̂∅
∑

µ=partitions of{k1,...,kn}

∏
K=parts of µ

T̂K . (6-20)

For example:

Tk1 = T∅T̂k1 , Tk1,k2 = T∅(T̂k1,k2 + T̂k1T̂k2), . . . (6-21)

It is well known that Tk1,...,kn are generating functions for counting non–connected

maps.

In the 1960’s, W. Tutte [11, 12] found some equations relating these generating

functions, by recursion on the number of edges. Tutte’s equations can be rewritten as

loop equations, let us explain how.

Let

V (x) = N

(
1

2t
x2 −

d+1∑
k=3

tk
k
xk

)
. (6-22)

Let E ∈ P∗N defined on the basis of power sum polynomials as

E(pµ) = Tµ1,...,µ` . (6-23)

Tutte’s equations are then exactly the loop equations [8, 7]:

∀ µ , E(Qµ) = 0. (6-24)



Theorem 2.3 impies that ∃ Γ ∈ HN(∆(X)2e−TrV (X)Dx,Q), such that

Tk1,...,kn =

∫
Γ

Tr xk1 . . .Tr xkn ∆(X)2e−TrV (X)

N∏
i=1

dxi. (6-25)

7 Conclusion

The theorems presented here are some ”representation theorems”, saying that linear

forms on the space of symmetric polynomials, satisfying loop equations can always be

represented as matrix-model-like measures (Vandermonde–square times exponential for

the case of 1-matrix). It also shows how normal matrices can be extremely useful. We

expect to prove similar theorems for the matrix model with external fields, or matrix

models with hard edges.

Also we may guess some applications to free probabilities, to be explored further.
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Appendices

A Lemma 2.1

Lemma 2.1: A basis of PN is given by

{pµ | `(µ) ≤ N}. (1-1)

Extension: A basis of {p ∈ PN | p homogeneous of degree d} is given by

{pµ | `(µ) ≤ N and |µ| = d}. (1-2)

proof: By recursion on N . It is clearly true for N = 1.

Assume it holds for N − 1, let P ∈ PN a symmetric polynomial of N variables.

P (x1, x2, . . . , xN) can be expanded in powers of x1

P (x1, x2, . . . , xN) =
∑
k

xk1Qk(x1, . . . , xN) (1-3)



where each Qk ∈ PN−1. By recursion hypothesis there exists somecoeffisients Qk,ν

P (x1, x2, . . . , xN) =
∑
k

xk1
∑

ν, `(ν)≤N−1

Qk,νpν1(x2, . . . , xN) . . . pνN (x2, . . . , xN) (1-4)

Observe that

pνi(x2, . . . , xN) = pνi(x1, x2, . . . , xN)− xνi1 , (1-5)

therefore we can reexpand in powers of x1

P (x1, x2, . . . , xN) =
∑
k

xk1
∑

ν, `(ν)≤N−1

Q̃k,νpν1(x1, . . . , xN) . . . pνN (x1, . . . , xN) (1-6)

By symmetry we also have ∀ i = 1, . . . , N

P (x1, x2, . . . , xN) =
∑
k

xki
∑

ν, `(ν)≤N−1

Q̃k,νpν1(x1, . . . , xN) . . . pνN (x1, . . . , xN) (1-7)

and by summing over i

P (x1, x2, . . . , xN) =
1

N

N∑
i=1

∑
k

xki
∑

ν, `(ν)≤N−1

Q̃k,νpν1(x1, . . . , xN) . . . pνN (x1, . . . , xN)

=
1

N

∑
k

pk(x1, . . . , xN)
∑

ν, `(ν)≤N−1

Q̃k,νpν1(x1, . . . , xN) . . . pνN (x1, . . . , xN)(1-8)

which is clearly a linear combination of pν′ where ν ′ = ν + (k) is a partition obtained

by adding one part of length k to ν, and it has thus at most N parts. This concludes

the proof.

Notice that if P is homogeneous of some degree d, all steps we have followed conserve

the homogeneity and its degree, so the extension also holds. �

B Proof of injectivity theorem 2.1

Theorem 2.1 E is an injective homeomorphism of vector spaces

E : HN → P∗N
Γ 7→ EΓ (2-1)

proof: We need to prove that KerE = 0.

The proof is the same for polynomial V (x) ∈ C[x] or rational potentials V ′(x) ∈
C(x). Without loss of generality. we shall assume that in the rational case V ′ has no

pole at x = 0 (otherwise we should replace log x in what follows by log(x − x0) with

x0 a point which is not a pole of V ′. Choosing x0 = 0 makes the proof easier to read.)

Let d = deg V ′ (= sum of degrees of all poles in the rational case).

We shall proceed in several steps.



• For r a positive integer, we define

Vr(x) = V (x)− r log x =⇒ e−Vr(x) = xre−V (x). (2-2)

• The Homology space of admissible arcs for Vr

Ĥ
(r)
N = HN

(
∆(X)2

N∏
i=1

e−Vr(xi)dxi

)
(2-3)

has dimension

dim Ĥ
(r)
N =

(N + d)!

N !d!
. (2-4)

We have

HN ⊂ Ĥ
(r)
N , (2-5)

and we recover HN as a subset of Ĥ
(r)
N by restricting to homology classes of arcs

that have vanishing boundary at x = 0.

• Consider the critical points ξ1, . . . , ξd+1 of Vr, i.e. the solutions of V ′r (x) = 0, i.e.

the solutions of xV ′(x) = r. For r large enough they are all distinct. Asymptot-

ically at large r, they approach the poles of V ′.

∗ If V is a polynomial, or V behaves as V (x) ∼ t∞
xd∞+1

d+1
+ t̃∞

xd∞

d
at large x, we

have d∞ + 1 critical points that are large

ξ∞,k ∼ ζkd∞+1 (r/t∞)
1

d∞+1

1−
t̃∞t

− d∞
d∞+1
∞ ζ−kd∞+1

d∞ + 1
r
−1
d+1 +O(r

−2
d∞+1 )

 (2-6)

where we denote roots of unity as

ζd = e2πi 1
d . (2-7)

We also have

Vr(ξ∞,k) ∼
r

d∞ + 1
(1− log r + log t∞) +O(r1− 1

d∞+1 ). (2-8)

∗ At a finite pole p (recall we assumed p 6= 0), if V ′ behaves as V ′(x) ∼ tp(x −
p)−dp , we have dp critical points that are close to p:

ξp,k ∼ p+ ζkdp (r/ptp)
−1
dp (1 +O(r

−1
dp )). (2-9)

We also have, if dp > 1

V (ξp,k) ∼ −
r

(dp − 1)p
ζkdp (r/ptp)

−1
dp (1 +O(r

−1
dp )). (2-10)



and if dp = 1

V (ξp,k) ∼ −tp log r +O(1). (2-11)

Define

Q(x) =
∏
j

(x− ξj) = t−1
∞ V ′r (x)

∏
p

(x− p)dp . (2-12)

• For each j = 1, . . . , d, define

γj ⊂ {x ∈ C∗ | Vr(x)− Vr(ξj) ∈ R+} (2-13)

a piecewise connected C1 Jordan arc from pole to pole, going through ξj, on

which Vr(x)− Vr(ξj) ∈ R+ such that <Vr(x) increases monotonically when going

away from ξj in both direction.

The paths γj are called steepest-descent contours. It is clear that asymptotically

for r large enough they follow rays emanating from the poles and are linearly

independent in Ĥ
(r)
1 , they form a basis of Ĥ

(r)
1 (in fact this is true also for r not

large, but we don’t need it).

• Let n = (n1, . . . , nd+1) such that
∑

i ni = N . Let Sn the set of maps

Sn = {s : [1, . . . , N ]→ [1, . . . , d+ 1] | ∀ j = 1, . . . , d+ 1, #{i | s(i) = j} = nj}.
(2-14)

Notice that s ∈ Sn =⇒ s ◦ σ ∈ Sn.

• Define the polynomials of one variable

fj(x) =
∏
j′ 6=j

x− ξj′
ξj − ξj′

. (2-15)

From these polynomials, let us build symmetric polynomials of N variables pr,m,

for any (d+ 1)-uple m = (m1, . . . ,md+1) with
∑

imi = N :

pr,m(x1, . . . , xN) =

∏N
i=1 x

r
i

#Sm

∑
s∈Sm

N∏
i=1

fs(i)(xi) , (2-16)

Notice that s ∈ Sm =⇒ s ◦ σ ∈ Sm for all permutation σ ∈ SN and pr,m is a

symmetric polynomial.

• Let γn = Sym(γn1
1 × . . . γ

nd+1

d+1 ) ∈ Ĥ(r)
N , and s̃ ∈ Sn.

For large r, rewrite

- if ξs̃(i) is close to a finite pole p:

xi − p = (ξs̃(i) − p)(1 + r−
1
2ui). (2-17)



- or if ξs̃(i) is large ∼ O(r−
1

d+1 ), use the same writing with p = 0:

xi = ξs̃(i)(1 + r−
1
2ui). (2-18)

In all cases we have

e−Vr(xi) ∼ e−Vr(ξs̃(i))e−
1
2r
V ′′r (ξs̃(i))(ξs̃(i)−p)2u2i (1 +O(r−1/2)) (2-19)

and

fs(i)(xi) ∼
∏
j 6=s(i)

(
ξs̃(i) − ξj
ξs(i) − ξj

+ r−1/2ui
ξs̃(i) − p
ξs(i) − ξj

)
(2-20)

If s(i) = s̃(i) we have

fs(i)(xi) ∼ 1 +O(r−1/2), (2-21)

and if s(i) 6= s̃(i) we have

fs(i)(xi) ∼ r−1/2ui
ξs̃(i) − p
ξs̃(i) − ξsi

Q′(ξs̃(i))

Q′(ξs(i))
(1 +O(r−1/2)), (2-22)

Remark that in all cases
ξs̃(i) − p
ξs̃(i) − ξsi

= O(1). (2-23)

This implies that

N∏
i=1

fs(i)(xi) ∼
∏
i

(
δs(i),s̃(i) +O(r−1/2)

) ∏
i

Q′(ξs̃(i))

Q′(ξs(i))

∼
∏
i

(
δs(i),s̃(i) +O(r−1/2)

) ∏
a

Q′(ξa)
na−ma

(2-24)

• Asymptotic of the Vandermonde

∆(X)2 ∼
∏
a<b

(ξa − ξb)2nanb

d+1∏
a=1

r−
1
2
na(na−1)(ξa − pa)na(na−1)

d+1∏
a=1

∏
i<j, s̃(i)=s̃(j)=a

(ui − uj)2. (2-25)

• For large r, and γn = Sym(γn1
1 ×. . . γ

nd+1

d+1 ) ∈ Ĥ(r)
N , by the Laplace steepest descent

method we have

Eγn(pr,m) ∼
r→∞

∏
1≤i<j≤d+1

(ξi − ξj)2ninj

d+1∏
i=1

r−
1
2
ni(ni−1)(ξi − pi)ni(ni−1)



d+1∏
j=1

e−njVr(ξj)(V ′′r (ξj))
− 1

2
n2
jCnj

Q′(ξj)
nj−mj

(
δn,m +O(r−1/2)

)
. (2-26)

where

Cn =

∫
Rn

∏
i<j

(xi − xj)2

n∏
i=1

e−
1
2
x2i dxi. (2-27)

For us, what matters is that Cn 6= 0 and is independent of r. The exact value of

Cn is known and worth

Cn = (2π)n/2
n−1∏
k=0

k!. (2-28)

• Let Γ =
∑

n cnγ
n be a nonzero element of Ĥ

(r)
N .

Let J be the set of (d+ 1)-uples n such that cn 6= 0.

The idea will be to choose nmax ∈ J that maximizes the asymptotic behavior.

Generically, nmax is a unique maximum, and we conclude that

EΓ(pr,nmax) 6= 0 (2-29)

which implies KerE = 0.

To be more precise, let us define an order relation in J :

n ≤ ñ iff as r → +∞
A(n)

A(ñ)
= O(1) (2-30)

where

A(n) =
∏

1≤i<j≤d+1

(ξi − ξj)2ninj

d+1∏
i=1

r−
1
2
ni(ni−1)(ξi − pi)ni(ni−1)

d+1∏
j=1

e−njVr(ξj)(V ′′r (ξj))
− 1

2
n2
jCnj

Q′(ξj)
nj

(2-31)

Let Jmax ⊂ J the set of maximal elements. Let m ∈ Jmax. We then have

lim
r→∞

EΓ(pr,m)
∏

j Q
′(ξj)

mj

A(m)
= cm 6= 0. (2-32)

Indeed all n’s that belong to J \Jmax get damped because they are not maximal,

and all n ∈ Jmax get a factor (δn,m + O(r−1/2)), so that only cm remains in the

limit.

This shows that Γ 6= 0 =⇒ EΓ 6= 0, in other words E is injective.

�
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