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We investigate a model for a Mott insulator in presence of a time-periodic modulated interaction
and a coupling to a thermal reservoir. The combination of drive and dissipation leads to non-
equilibrium steady states with a large number of doublon excitations, well above the maximum
thermal-equilibrium value. We interpret this effect as an enhancement of local pairing correlations,
providing analytical arguments based on an effective Floquet Hamiltonian. Strikingly, this effective
Hamiltonian shows a tendency to develop long-range staggered superconducting correlations. This
suggests the intriguing possibility of realizing the elusive eta-pairing phase of the repulsive Hubbard
model in driven-dissipative Mott Insulators.

The Floquet engineering of complex quantum systems
is a very active line of research in today’s condensed mat-
ter physics [1]. It consists in the design of periodic pertur-
bations to achieve non-equilibrium driven states remark-
ably different from their undriven counterparts. Exam-
ples are the dynamical control of band topology [2, 3] and
of magnetic interactions [4] in ultracold atoms in optical
lattices, and of effective Hamiltonian parameters in solids
under intense laser-pulse excitation [5, 6].

A useful description of a periodically driven quantum
system is in terms of effective static Hamiltonians derived
by means of large-frequency expansions [7, 8]. In general,
however, the drive affects also the distribution function
of the system, eventually leading to thermalization to a
trivial infinite-temperature state [9, 10]. Nevertheless,
when heating can be avoided for finite but long times,
interesting prethermal Floquet states can be observed.
This is the case, for example, for very large drive fre-
quency [11–13] or systems close to integrability [14–19].
In particular, Ref. [20] showed that strong electronic cor-
relations lead to finite-frequency prethermal states with
remarkable properties as a function of drive frequency.

A natural question concerning the Floquet prether-
mal state is whether the coupling to external reservoirs
would cancel out its interesting features, or rather pre-
serve them and possibly make them more accessible. Par-
ticularly interesting is the possibility to control the distri-
bution function of the system by means of a dissipation
mechanism of the energy injected by the drive [21–25].

To investigate this point, in this Letter we consider
the Fermi-Hubbard model with a periodically driven in-
teraction and coupled to a thermal reservoir. Starting
from the large-interaction Mott-insulating phase, our nu-
merical calculations show that the combination of drive
and dissipation stabilizes the Floquet prethermal states,
leading to steady states that are not accessible in the
corresponding isolated model. In particular, we reveal a
regime with a remarkably large number of high-energy
doublon excitations, well above the maximum equilib-

rium value for the half-filled repulsive Hubbard model.
Crucial to the stability of this regime is that the dissipa-
tive bath does not open new channels for doublon decay.

We interpret the steady-state large double occupancy
as an enhancement of local pairing correlations, and we
describe this effect as a thermalization to a lowest-order
Floquet Hamiltonian. Remarkably, we find that higher-
order terms can stabilize finite-momentum doublon su-
perfluidity, namely staggered long-range pairing corre-
lations among fermions, which spontaneously break the
hidden SUC(2) charge symmetry of the half-filled Hub-
bard model [26–28]. This suggests a nonequilibrium
protocol for Floquet engineering exotic superconducting
states in driven-dissipative Mott insulators.

These results are relevant for current experiments on
laser-pumped organic Mott insulators [6] and on ultra-
cold Fermi gases in driven optical lattices [29, 30]. We
discuss the latter in particular, suggesting to explore a
possibly overlooked regime in future experiments.

Model – The Hamiltonian of the driven-dissipative
Fermi-Hubbard model reads H = HHub +Hdiss, where:

HHub =
∑
ij,σ

Vijc
†
iσcjσ + U(t)

∑
i

(ni↑ − 1
2 )(ni↓ − 1

2 ), (1)

Hdiss =
∑
iα

ωαb
†
iαbiα + λ

∑
iα

gα(ni − 1)(biα + b†iα). (2)

Here the c’s operators describe fermions hopping with
amplitude Vij and subject to a driven local interaction
U(t ≥ 0) = U0 + δU sin Ωt. The bare density of states is
semicircular with bandwidth 4V and we measure energy,
frequency and inverse of time (~ = 1) in units of V .
The thermal bath is implemented by independent sets of
bosonic modes b’s which couple to density at each lattice
site, with spectral function J(ω) =

∑
α g

2
αδ(ω − ωα) =

ω2e−
ω
ωc (ωc = 1) and coupling λ. Importantly, the bath

allows energy dissipation but commutes with the density
ni = ni↑+ni↓ and preserves particle-hole symmetry. The
system remains half filled at all times (〈niσ〉 = 0.5).
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FIG. 1. Panels (a-b): Time evolution of double occupancy and kinetic energy for drive frequency Ω = 9 > Ω∗: fast oscillations
(shaded area) and their average (symbols). Legend in (a) is common to (a-b-c-d). Panels (c-d): Long-time average of double
occupancy and kinetic energy as a function of drive frequency. Panels (e-f): Long-time average of double occupancy as a
function of bath coupling and of bath temperature for λ = 0.2 and drive frequencies Ω = 7 < Ω∗ and Ω = 9 > Ω∗.

Starting from a thermal state at temperature T , we
calculate the time evolution within nonequilibrium dy-
namical mean-field theory [31, 32] with the non-crossing-
approximation impurity solver [33, 34]. This is appro-
priately modified [35] to include the effect of dissipation
at order O(λ2) (see Supplemental Material [36] Sec. I for
implementation details, and Sec. II for benchmarks with
the one-crossing-approximation). We calculate the dou-
ble occupancy D(t) = 〈ni↑(t)ni↓(t)〉, the kinetic energy

K(t) =
∑
Vij 〈c†iσ(t)cjσ(t)〉, and the local Green’s func-

tion Gσ(t, t′) = −i 〈Tciσ(t)c†iσ(t′)〉. For definiteness, we
choose U0 = 8 and T = 1 for the initial Mott-insulating
state, δU = 2 for the drive amplitude. The bath temper-
ature is Tbath = 1 unless specified differently. In absence
of dissipation, Floquet prethermalization is observed at
all frequencies except the resonance Ω∗ = 8.12 ' U0 [20].

Time evolution – In the driven-dissipative model, as
well as in the isolated case, double occupancy and ki-
netic energy display a separation of time scales between
fast oscillations synchronized with the drive and a slowly
varying average value. However, after a common tran-
sient, the thermal reservoir starts to be effective and has
dramatic effects on both observables.

For weak bath coupling and drive above resonance, the
double occupancy grows substantially larger than in the
isolated model, going to a stationary average above 0.25
(Fig. 1a; λ = 0.2). Such a large value would be possi-
ble, at equilibrium, only if the interaction were attractive.
This striking effect highlights the peculiarity of this non-
equilibrium steady state, as we discuss thoroughly below.

Upon increasing the bath coupling (Fig. 1a; λ = 1.0),
the double occupancy decreases and eventually remains
below the limit of 0.25 at all times. Moreover, we notice
that the bath is effective only after a transient time ∼
1/λ2, which makes the regime of very weak coupling not
accessible by the numerical simulation (see also Ref. [37]).

At the same time, the kinetic energy is also largely af-
fected by dissipation (Fig. 1b). Here the effect is more in-
tuitive: in the isolated model the drive leads to a prether-
mal state with positive kinetic energy, indicative of a pop-
ulation inversion [18, 20]. On the other hand, the ther-
mal reservoir dissipates the excess kinetic energy, which
remains negative as at equilibrium, and inhibits the pop-
ulation inversion, as we also explicitly show below.

Long-time average – To study the role of drive fre-
quency and bath coupling in a more systematic way, we
consider the long-time average of double occupancy and
kinetic energy. For weak bath coupling, the dissipative
model has double occupancy larger than the isolated one
at all frequencies (Fig. 1c; λ = 0.2). However, a remark-
able change happens crossing the resonance Ω∗ ' U0.
Below resonance, the dissipation has only a quantitative,
rather weak effect. In contrast, above resonance, we sys-
tematically observe a large increase of double occupancy
across the limit of 0.25, as discussed previously for a se-
lected frequency. Lower values are then recovered upon
increasing the frequency further, as the system eventually
becomes transparent to the drive.

Independent of the bath coupling, the kinetic energy
of the dissipative model is rather featureless and negative
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FIG. 2. Panels (a-b): Long-time average spectral function
Ā(ω) (solid line) and occupation function N̄(ω) (filled area) of
the isolated model (λ = 0) and the dissipative model (λ = 0.2)
for drive frequency Ω = 9 > Ω∗. The isolated model (a) has
population inversion, signaled by the blueshift of N̄(ω) with
respect to Ā(ω) (arrows). In the dissipative model (b), the
thermal reservoir cancels the population inversion (horizontal
arrows) and unveils a non-thermal state with large double oc-
cupancy, signaled by the increase of N̄(ω) in the high-energy
band (vertical arrows). Panels (c-d): Long-time average dis-
tribution function F̄ (ω) for the same parameters of (a-b) with
Fermi-function fit around the Hubbard-band center. The ex-
tracted effective temperature is Teff = −1.6 for the isolated
model (c) and Teff = 1.1 ' Tbath for the dissipative one (d).
See Supplemental Material [36] Fig. S3 for a plot of Teff(Ω).

for all frequencies (Fig. 1d; λ = 0.2, 1.0). Thus, the ther-
mal reservoir cancels the region of positive kinetic energy
characteristic of the isolated case (Fig. 1d; λ = 0.0).

The difference between below and above resonance ap-
pears also in the dependence on bath coupling (Fig. 1e)
and on bath temperature (Fig. 1f). Below resonance
(Ω = 7) there is almost no dependence on bath coupling
and double occupancy decreases upon lowering the bath
temperature. Quite differently, above resonance (Ω = 9)
the double occupancy increases for weak bath coupling,
and upon decreasing the bath temperature.

We notice that the observed behavior depends strongly
on the bosonic nature of the dissipative bath. Indeed a
fermionic reservoir would not lead to the same anomalous
increase in steady-state double occupancy, as we show in
Sec. III of Supplemental Material [36].

Spectral function – To gain insight into the nature of
the steady state, we calculate the spectral function Ā(ω)
and occupation function N̄(ω) as the average Wigner
transforms of the retarded and lesser components of the
local Green’s function [20]. While the spectral function
is the same in the isolated and dissipative models, the
occupation function, and thus the distribution function
F̄ (ω) = N̄(ω)/Ā(ω), changes drastically for drive fre-
quency above resonance and weak bath coupling.

In the isolated model, N̄(ω) is shifted towards high en-

ergy with respect to Ā(ω) (Fig. 2a). There is therefore a
population inversion within the Hubbard bands. Indeed,
the local behavior of F̄ (ω) for ω ' ±U0/2 has the shape
of a Fermi function with negative temperature (Fig. 2c).

The thermal reservoir completely changes the situa-
tion. First, as the dissipation enhances the energy re-
distribution within the Hubbard bands, N̄(ω) is pushed
back to lower energy (Fig. 2b), cancelling the population
inversion. As a consequence, F̄ (ω) assumes the shape of a
Fermi function with positive temperature for ω ' ±U0/2
(Fig. 2d). Then, the overall weight of N̄(ω) in the upper
band grows and becomes even larger than in the lower
band, meaning the creation of a large number of high-
energy doublon excitations. These two effects are qual-
itatively related to the ones discussed above: change of
sign of kinetic energy and growth of double occupancy.
Discussion – The above numerical results demonstrate

that, in the strongly repulsive Fermi-Hubbard model, the
combination of a time-periodic interaction and a dissipa-
tive bath leads to steady states with a remarkably large
number of doublon excitations. Interestingly, this large
double occupancy immediately translates into enhanced
local pairing correlations D = 〈c†i↑c

†
i↓cj↓cj↑〉 |i=j .

In order to unveil the origin of this effect, we consider
a frequency close to resonance Ω ' Ω∗ ' U0 and perform
a rotating-frame transformation on the Hamiltonian (1)
followed by a high-frequency expansion [38] (see Supple-
mental Material [36] Sec. V). At lowest order, we find a
correlated hopping term and a frequency-dependent local
interaction:

H̄
eff(0)
Hub = V K0 + (U0 − Ω)

∑
i
(ni↑ − 1

2 )(ni↓ − 1
2 ). (3)

Here K0 =
∑

(Vij/V )c†iσcjσ(niσ̄njσ̄ + n̄iσ̄n̄jσ̄) are those
hopping terms in Eq. (1) that do not alter the number
of doubly occupied sites (n̄iσ = 1− niσ, ↑̄ =↓ and ↓̄ =↑).
The effective Hamiltonian (3) conserves the total dou-
ble occupancy, and controls its long-time value in both
the isolated and the dissipative model. To see this, we
extract the effective temperature from the numerical re-
sults, obtaining Teff(Ω) ∝ (U0 − Ω)−1 for the isolated
model and Teff ' Tbath for the dissipative one (see Sup-
plemental Material [36] Fig. S3). Then, since |Teff | & V ,
we can disregard the kinetic term in Eq. (3) and esti-
mate D = 0.5[1+exp(0.5(U0−Ω)/Teff)]−1. For frequency
close to resonance Ω ' U0, this gives quadratic behavior
D− 0.25 ∝ −(Ω−U0)2 in the isolated model, and linear
dependence D−0.25 ∝ (Ω−U0) in the dissipative model,
qualitatively reproducing the results in Fig. 1c.

In other words, we interpret the long-time value of dou-
ble occupancy as the thermal value of the Floquet Hamil-
tonian (3), where the second term promotes large double
occupancy for Ω > U0. In the isolated model, this effect
is counterbalanced by the concomitant population inver-
sion (see also Ref. [18]), whereas in the dissipative model
the thermal reservoir inhibits the population inversion,
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allows the increase of double occupancy and, crucially,
turns the Floquet prethermal state in a true steady state.

Incidentally, we notice that strong correlations persist
even for Ω ' U0, as shown by the large Mott gap. This
fundamentally differs from the case of dynamical band
flipping [39] where, moreover, the large double occupancy
is transient and triggered by population inversion and,
thus, it is completely different from what discussed here.

A natural question, at this point, is whether the en-
hanced local pairing correlations can propagate through
the lattice, giving rise to a superfluid state of doublons.
To answer this, we consider the next-order terms in the
Floquet Hamiltonian [36]:

H̄
eff(1)
Hub = (−iJ1( δUΩ )V K++H.c.)+V 2

Ω (J0( δUΩ ))2[K+,K−].
(4)

Here Jn(x) is the n-th order Bessel function of the first

kind, K+ =
∑

(Vij/V )c†iσcjσniσ̄n̄jσ̄ = (K−)† and one has
to note that, in the case of weak drive amplitude consid-
ered here, Jn(δU/Ω) ∼ (δU/Ω)n and therefore all terms
in Eq. (4) indeed vanish as the inverse drive frequency.

The first two terms in Eq. (4) create or annihilate
doublon excitations, controlling the transient from the
initial state to the steady state with large double occu-
pancy. However, these processes are largely inhibited in
the steady state. Indeed, only these terms are sensitive to
δU and numerical calculations [20] shows how the drive
amplitude controls the transient time-scale, but does not
influence the long-time steady-state values.

Finally, the last term in Eq. (4) is similar to the
Schrieffer-Wolff result [40] and at equilibrium (δU = 0)
this gives the usual anti-ferromagnetic Heisenberg model.
Out of equilibrium, as pointed out in Ref. [41], states with
large double occupancy become relevant, and the same
term leads to completely different physics. This is pre-
cisely our case, where a large non-equilibrium doublon
population is stabilized by drive and dissipation.

Indeed, in the limit of double occupancy so large that
singly occupied sites can be neglected, we can rewrite the
Floquet Hamiltonian in terms of the doublons only [36]:

H̄eff
Hub = Jeff

∑
〈ij〉

(c†i↑c
†
i↓cj↓cj↑ + ni↑ni↓n̄j↑n̄j↓). (5)

Here Jeff = 2V 2/Ω(J0(δU/Ω))2, the first term is a dou-
blon hopping, and the second term is a first-neighbor
doublon interaction. The physics encoded in the Hamil-
tonian (5) is best discussed by means of a transformation

on the spin down only ci↓ → c̃i↓ = (−1)ic†i↓ which recast
Eq. (5) in the form of an isotropic ferromagnetic Heisen-
berg model H̄eff

Hub = −Jeff

∑
ηi · ηj for the so-called η-

spins: ηi = 1
2

∑
αβ c̃

†
iασαβ c̃iβ [36]. The invariance under

η-spin rotation is then associated to the charge-SUC(2)
invariance of the Hamiltonian (1) under rotation of the
doublon-holon doublet {|0〉 , |↑↓〉} [41]. Remarkably, this
can be used to build eigenstates with staggered long-
range superconducting correlations (η-pairing) [26, 27].

These are precisely the pairing correlations encoded in
the Hamiltonian (5). Indeed, the η-spin Heisenberg fer-
romagnetic model has a magnetization 〈ηz〉 = D − 0.5
fixed by the double occupancy and, below a critical tem-
perature Tc ∼ Jeff, develops a finite order parameter
in the xy plane which corresponds to staggered long-
range pairing correlations 〈c†i↑c

†
i↓ + H.c.〉 = (−1)i 〈2ηxi 〉 =

(−1)i
√

4D(1−D). We notice, however, that the SUC(2)
symmetry implies a degeneracy between the xy-plane and
the z-axis of the η-spin, which translates into a com-
petition between superfluidity and charge-density wave
in Eq. (5). The investigation of such broken-symmetry
phases is beyond the scope of this Letter and is left for
future work.

The model system investigated here can be realized in
current experimental platforms. Particularly promising
are Mott-insulating organic molecular crystals, where it
was shown that intense laser excitations can effectively
act as a time-periodic modulation of the interaction [6].
A more direct control is achieved with ultracold atoms in
optical lattices. Recent experiments [29, 30] have stud-
ied the Floquet prethermal time scales and, remarkably,
have found large double occupancy for drive above res-
onance. Here we suggest that, also in this case, a key
role is played by dissipation, which is unavoidable even
in cold atoms. Finally, we notice that these experiments
have focused on the regime where the correlated kinetic
term simplifies to give a renormalized Hubbard model.
In contrast, here we have studied the case of a Floquet
Hamiltonian for the doublon excitations only. Therefore,
we suggest future experiments to explore this regime to
investigate the presence of staggered pairing correlations,
which can be easily detected on these platforms.

Conclusions – In this Letter, we have studied the com-
bined effect of a periodically driven interaction and a
dissipative bath in the strongly repulsive Fermi-Hubbard
model. Our numerical calculations show that the Floquet
prethermal states of the isolated model become steady
states of the dissipative model. For weak bath cou-
pling and drive above resonance, these have a stable and
very large population of high-energy doublon excitations,
which we interpret as enhanced local pairing correlations.

We rationalize this effect as a thermalization of dou-
ble occupancy to a lowest-order Floquet Hamiltonian.
Remarkably, including also higher-order terms, we can
write the Hamiltonian which governs the steady state in
terms of the doublons only. Here, we find terms which
spread the pairing correlations in staggered configura-
tion (η-pairing). Below a frequency-dependent critical
temperature, these would induce off-diagonal long-range
order, hence a superfluid phase of doublon excitations.
Thus, our results suggest a path to Floquet engineering
stable exotic superconducting states in driven-dissipative
Mott insulators.

Note added – Recently, exact numerical results on
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finite-size systems have also found evidence of η-pairing
in a photo-excited one-dimensional Mott insulator [42].
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Supplemental Material

I. NCA WITH BOSONIC BATH

Here we describe our implementation of a bosonic
bath in the non-crossing-approximation (NCA) impurity
solver for non-equilibrium dynamical mean-field theory
(DMFT). Starting from Hamiltonians (1) and (2) in main
text, we integrate out the bosons and obtain the action:

Slatt =

∫
dt

∑
ij,σ

Vijc
†
iσ(t)cjσ(t)

+

∫
dt U(t)

∑
i

(ni↑(t)− 1
2
)(ni↓(t)− 1

2
)

+ λ2

∫ ∫
dt dt′∆b(t, t

′)
∑
i

(ni(t)− 1)(ni(t
′)− 1).

(S1)

Here the integrals are along the three-branch Keldysh
contour and the bath enters via the hybridization
∆b(t, t

′) = −i
∫

dω J(ω)(θ(t, t′) + nB(ω/Tbath))e−iω(t−t′)

where θ(t, t′) is the Heaviside theta function on contour
and nb(ω) is the Bose distribution.

In DMFT the lattice action (S1) is mapped onto the
action of a quantum impurity coupled to a self-consistent
fermionic bath:

Simp =

∫
dt U(t)(n↑(t)− 1

2
)(n↓(t)− 1

2
)

+ V 2

∫ ∫
dt dt′G(t, t′)

∑
σ

c†σ(t)cσ(t′)

+ λ2

∫ ∫
dtdt′∆b(t, t

′)(n(t)− 1)(n(t′)− 1).

(S2)

Here we have used the relation ∆(t, t′) = V 2G(t, t′) for
the hybridization ∆(t, t′) of the self-consistent fermionic
bath, which is valid on Bethe lattice.

To derive the NCA equations, we expand the partition
function Tr(exp[−iSimp]) into a power series in V and
λ and truncate the expansion at the first self-consistent
order [33–35]. This series is expressed in terms of the
propagator of the states of the impurity R, and of its
self-energy S, which satisfy an integro-differential equa-
tion similar to the usual Dyson equation (see Ref. [20] for
our implementation). Then, in the present case a conve-
nient basis choice is {|0〉 , |↑〉 , |↓〉 , |↑↓〉} which makes the
propagator R and the self-energy S diagonal. Finally, we
exploit the spin SU(2) symmetry and the particle-hole
SUC(2) symmetry of Eq. (S2) which further reduce the
number of propagators to two: one for the empty state
|0〉 and one for the singly-occupied state |↑〉, with the
following self-energies:

S|0〉(t, t
′) =− 2iR|↑〉(t, t

′)∆(t′, t) (S3)

+ iλ2R|0〉(t, t
′)(∆b(t, t

′) + ∆b(t
′, t)),

S|↑〉(t, t
′) = + 2iR|0〉(t, t

′)∆(t, t′). (S4)
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FIG. S1. Time evolution of double occupancy and kinetic
energy using the OCA impurity solver for DMFT: Isolated
model (λ = 0) and dissipative model (λ = 0.2) for drive
frequency below resonance Ω = 7 (a-b) and above resonance
Ω = 9 (c-d). Legend in (a) is common to (a-b-c-d). Light grey
curves are the corresponding NCA results, for comparison.

II. OCA BENCHMARK

In this work we investigate the Mott-insulating phase
of the Fermi-Hubbard model with average interaction pa-
rameter U0 = 8V much larger than the bare band-width
W = 4V . Moreover, we consider initial thermal density
matrix at a rather high temperature T = 1. In these con-
ditions, the NCA approximation is expected to perform
well both at equilibrium and out of equilibrium [33].

To confirm this, we have performed some calculations
using the next-order one-crossing approximation (OCA).
This takes into consideration terms of order O(V 4) in
the hybridization expansion [33, 34] (see Ref. [20] for our
implementation). As expected, the time evolution of dou-
ble occupancy and kinetic energy (Fig. S1) is essentially
identical to the one shown in the main text (Fig. 1a-b).

III. FERMIONIC BATH

It is interesting to consider an external reservoir of
fermionic modes, instead of the bosonic bath considered
in the main text. To do so, we substitute Eq. (2) of the
main text with the following coupling to a fermionic bath:

Hdiss =
∑
iα

ωαf
†
iαfiα + λ

∑
iσα

(gαc
†
iσfiα + g∗αf

†
iαciσ). (S5)

Here the operators f ’s represent sets of independent
fermionic harmonic oscillators. In this case, the system
can dissipate both energy and particles. Moreover, this
type of coupling can be treated exactly: integrating out
the fermionic bath, we introduce an additional hybridiza-
tion ∆f (t, t′) which can simply be added to the DMFT
self-consistent hybridization ∆(t, t′).
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FIG. S2. Panels (a-b-c): Time evolution of double occupancy
for the isolated model (λ = 0.0) and the dissipative one with
fermionic bath (λ = 0.2, 1.0) for various drive frequencies.
Legend in (a) is common to (a-b-c-d). Panel (d): Long-time
average of double occupancy as a function of drive frequency.

As shown in Fig. S2, the coupling with a fermionic bath
does not lead to the same interesting features discussed
in the main text for the bosonic bath (cf. Fig. 1a-c). This
is due to the fact that the bosonic bath, as opposed to
the fermionic bath, commutes with the local density and
conserves double occupancy, and therefore it preserves
the mechanism for Floquet prethermalization.

IV. EFFECTIVE TEMPERATURE

In Fig. 2 of main text we show the steady-state average
distribution function F̄ (ω) for Ω = 9 > Ω∗, along with a
Fermi-function fit [1+exp(ω/Teff)]−1 around the center of
the upper Hubbard band ω ' U0/2. From this fit we can
extract the effective temperature Teff. Here, in Fig. S2
we plot this effective temperature for the isolated and the
dissipative models, as a function of the drive frequency.

V. ROTATING-FRAME TRANSFORMATION
AND HIGH-FREQUENCY EXPANSION

To carry out the large-frequency expansion [8, 38], we
first need to transform Hamiltonian (1) of main text to
a rotating frame with respect to the interaction:

HHub(t) =
∑

Vijc
†
iσcjσ + U(t)

∑
i
(ni↑ − 1

2
)(ni↓ − 1

2
), (S6)

H̄Hub(t) = eS(t)(HHub(t)− i∂t)e−S(t), (S7)

S(t) = iF (t)
∑

i
(ni↑ − 1

2
)(ni↓ − 1

2
), (S8)

F (t) = Ωt− (δU/Ω) cos Ωt. (S9)

It is useful to introduce the operators K0 and K± as in
the main text (n̄iσ = 1− niσ, ↑̄ =↓ and ↓̄ =↑):

K0 =
∑

ijσ
(Vij/V )c†iσcjσ(niσ̄njσ̄ + n̄iσ̄n̄jσ̄), (S10)
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FIG. S3. Effective temperature (symbols) as a function of
drive frequency for the isolated model (λ = 0.0) and the dis-
sipative one (λ = 0.2). In the former, the effective tempera-
ture diverges as (Ω∗ −Ω)−1 (dashed line). The divergence at
Ω = Ω∗ signals the resonant thermalization, while the nega-
tive effective temperature for Ω > Ω∗ signals the population
inversion [20]. In contrast, the dissipative model has temper-
ature ' Tbath (solid line) fixed by the thermal reservoir.

K+ =
∑

ijσ
(Vij/V )c†iσcjσniσ̄n̄jσ̄ = (K−)†. (S11)

It is easy to verify that
∑
Vijc

†
iσcjσ = V (K0 +K+ +K−).

Then, using [D,K0] = 0 and [D,K+] = ±K± we find:

H̄Hub(t) = V (K0 + eiF (t)K+ + e−iF (t)K−)

+ (U0 − Ω)
∑

i
(ni↑ − 1

2
)(ni↓ − 1

2
).

(S12)

The rotated Hamiltonian maintains the 2π/Ω-periodicity.
Its Fourier components contain the Bessel function of

the first kind
∫ 2π

0
dτ exp(i(x cos τ −mτ)) = 2πimJm(x)

through the following expansions:

eiF (t) =
∑

m
(−i)1+mJ1+m( δU

Ω
)e−imΩt, (S13)

e−iF (t) =
∑

m
i1−mJ1−m( δU

Ω
)e−imΩt. (S14)

In particular, the average Hamiltonian and the first
Fourier components read:

H̄
(0)
Hub = V K0 − iJ1( δU

Ω
)V K+ + iJ1( δU

Ω
)V K− (S15a)

+ (U0 − Ω)
∑

i
(ni↑ − 1

2
)(ni↓ − 1

2
),

H̄
(1)
Hub = −J2( δU

Ω
)V K+ + J0( δU

Ω
)V K−, (S15b)

H̄
(−1)
Hub = J0( δU

Ω
)V K+ − J2( δU

Ω
)V K−. (S15c)

Eqs. (3) and (4) of main text

Here we calculate the first two terms of the (van-Vleck)
large-frequency expansion, with general expression [38]:

HF = H0 +
∑
m>0

[H−m, Hm]

mΩ
+O( 1

Ω2 ). (S16)
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The Fourier components Hm are given in Eqs. (S15) and
depend on frequency through the Bessel function. When
the large-frequency limit is taken at fixed δU/Ω, this de-
pendence does not show up in the expansion. In con-
trast, here we keep δU constant and we have to consider
the asymptotic behavior Jn(δU/Ω) ∼ (δU/Ω)n. Then,
there are terms in the average Hamiltonian (S15a) which
vanish as Ω−1 and do not enter the lowest order of the
expansion (cf. Eq. (3) of main text):

H̄
eff(0)

Hub = V K0 + (U0 − Ω)
∑

i
(ni↑ − 1

2
)(ni↓ − 1

2
). (S17)

For the same reason, at first order only enter those terms
which actually vanish as Ω−1 (cf. Eq. (4) of main text):

H̄
eff(1)

Hub = (−iJ1( δU
Ω

)V K+ + H.c.) + V 2

Ω
(J0( δU

Ω
))2[K+,K−].

(S18)

Eq. (5) of main text

Here we calculate the commutator in Eq. (S18):

[K+,K−] =
∑
ijσ

∑
klσ′

[c†iσcjσniσ̄n̄jσ̄, c
†
kσ′clσ′ n̄kσ̄′nlσ̄′ ]

=
∑
ijσ

∑
klσ′

[c†iσcjσ, c
†
kσ′clσ′ ]niσ̄n̄jσ̄n̄kσ̄′nlσ̄′

+
∑
ijσ

∑
klσ′

c†kσ′clσ′ [c†iσcjσ, n̄kσ̄′nlσ̄′ ]niσ̄n̄jσ̄

+
∑
ijσ

∑
klσ′

c†iσcjσ[niσ̄n̄jσ̄, c
†
kσ′clσ′ ]n̄kσ̄′nlσ̄′ .

(S19)

The commutators in Eq. (S19) give three- and two-site
terms. If we retain only the two-site terms, then the first
sum in Eq. (S19) reads:∑

ij
(niσniσ̄n̄jσ̄ − njσniσ̄n̄jσ̄) =

∑
ij

(niσ − njσ)niσ̄n̄jσ̄.

(S20)

Now, with the identitites ciσniσ = ciσ and niσciσ = 0,
together with their Hermitian conjugates, it is easy to
see that terms in the second sum in Eq. (S19) are non-
vanishing only if {i = l, j = k, σ′ = σ̄}, giving:∑

ij
c†jσciσ(−c†iσ̄cjσ̄niσ̄ − n̄jσ̄c

†
iσ̄cjσ̄)

=
∑

ij
c†iσ̄ciσc

†
jσcjσ̄

=
∑

ij
(c†i↑ci↓c

†
j↓cj↑ + c†i↓ci↑c

†
j↑cj↓)

=
∑

ij
(S+
i S
−
j + S−i S

+
j ) = 2

∑
ij

(Sxi S
x
j + Syi S

y
j ).

(S21)

Analogously, terms in the third sum in Eq. (S19) are
non-vanishing only if {i = k, j = l, σ′ = σ̄}, giving:∑

ij
c†iσcjσ(niσ̄c

†
iσ̄cjσ̄ + c†iσ̄cjσ̄n̄jσ̄)

=
∑

ij
c†iσcjσc

†
iσ̄cjσ̄ = 2

∑
ij
c†i↑c

†
i↓cj↓cj↑.

(S22)

To proceed, we restrict ourselves to a subspace with
double occupancy so large that we can neglect sinlgy oc-
cupied sites. In other words, we restrict ourselves to the
local subspace {|0〉 , |↑↓〉}. Within this subspace we have
niσ = niσ̄ so that Eq. (S20) simplifies to:∑

ij
niσn̄jσ̄ =

∑
ij
niσniσ̄n̄jσ̄n̄jσ = 2

∑
ij
ni↑ni↓n̄j↓n̄j↑.

(S23)

Moreover, within this subspace Eq. (S21) vanishes, so
that the final result reads (cf. Eq. (5) of main text):

2V
2

Ω
(J ( δU

Ω
))2

∑
ij

(c†i↑c
†
i↓cj↓cj↑ + ni↑ni↓n̄j↓n̄j↑). (S24)

This reproduces Eq.(2) of Ref. [41] for δU = 0, Ω = U0.

η-spin ferromagnetic Heisenberg

To recast Eq. (S24) to the ferromagnetic Heisenberg
model considered in the main text, we carry out a trans-
formation on the spin-down only:

ci↑ → c̃i↑ = ci↑, (S25)

ci↓ → c̃i↓ = (−1)ic†i↓. (S26)

Here (−1)i = ±1 on different sublattices of a bipartite
lattice. Then the first term in Eq. (S24) transforms to:

−
∑

ij
(c̃†i↑c̃i↓c̃j↓c̃j↑ + c̃†i↓c̃i↑c̃j↑c̃j↓)

=−
∑

ij
(η+
i η
−
j + η−i η

+
j ) = −2

∑
ij

(ηxi η
x
j + ηyi η

y
j ).

(S27)

This has the same form of Eq. (S21) with the additional
minus sign (−1)i+j = −1 for nearest-neighbor sites. The
η-spin has the same definition of the physical spin for the
transformed electrons ηi = 1

2

∑
αβ c̃

†
iασαβ c̃iβ where σ is

the vector of the three Pauli matrices:

ηxi =
c̃†i↑c̃i↓ + c̃†i↓c̃i↑

2
,

ηyi =
c̃†i↑c̃i↓ − c̃

†
i↓c̃i↑

2i
,

ηzi =
c̃†i↑c̃i↑ − c̃

†
i↓c̃i↓

2
.

(S28)

Additionally, if one defines η+
i = c̃†i↑c̃i↓ and η−i = c̃†i↓c̃i↑

then ηxi = (η+
i + η−i )/2 and ηyi = (η+

i − η
−
i )/2.

To consider the second term in Eq. (S24), we notice
that under the transformation (S25) the density operator
transforms as ni↑ → ñi↑ = ni↑ and ni↓ → ñi↓ = 1− ni↓.
Then, this term transforms to (keep in mind that in the
considered subspace niσ = niσ̄):∑

ij
ñiσ̄ñjσ =

∑
ij

(ñi↑ñj↓ + ñi↓ñj↑) = −2
∑

ij
(ηzi η

z
j − 1

4
).

(S29)

The last equality is best demonstrated veryfing that the
operators have the same matrix elements in the consid-
ered subspace. Alternatively, an explicit derivation reads:

ñi↑ñj↓ + ñi↓ñj↑

= 1
2
(ñi↑ñj↓ + ñi↓ñj↑) + 1

2
(ñi↑ñj↓ + ñi↓ñj↑)

= 1
2
(ñi↑ñj↓ + ñi↓ñj↑) + 1

2
(ñi↑(1− ñj↑) + ñi↓(1− ñj↓))

= −2( 1
4
(ñi↑ − ñi↓)(ñj↑ − ñj↓)− 1

4
).

Here it is crucial the use of ñi↑ + ñi↓ = 1.
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