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We study the magnetic susceptibility in the normal state of Sr2RuO4 using dynamical mean-field
theory including dynamical vertex corrections. Besides the well known incommensurate response,
our calculations yield quasi-local spin fluctuations which are broad in momentum and centered
around the Γ point, in agreement with recent inelastic neutron scattering experiments [P. Steffens,
et al., Phys. Rev. Lett. 122, 047004 (2019)]. We show that these quasi-local fluctuations are
controlled by the Hund’s coupling and account for the dominant contribution to the momentum-
integrated response. While all orbitals contribute equally to the incommensurate response, the
enhanced Γ point response originates from the planar xy orbital.

The importance of spin fluctuations for the physics of
Sr2RuO4 has been emphasized long ago [1]. This material
is close to a spin-density-wave instability and small con-
centrations of impurities trigger ordering [2, 3]. Inelastic
neutron scattering experiments (INS) pioneered by Sidis
et al. [1] and refined over the years [4–10] have revealed
that the magnetic response is essentially the sum of (i)
a weakly momentum-dependent contribution centered at
Γ (in agreement with the Stoner enhancement factor of
the uniform susceptibility by ∼ 7 as compared to the
band value [11, 12]) and (ii) a peak at an incommensu-
rate wavevector QSDW ≈ (0.3, 0.3, 0) [13] signaling the
proximity to a spin-density-wave (SDW) instability [10].
The peak at QSDW was predicted by Mazin and Singh
[14] using density functional theory (DFT) and the ran-
dom phase approximation (RPA). However, DFT+RPA
does not account for the broad structure at Γ, and it
also predicts substantial anti-ferromagnetic fluctuations
at the X point, QX = (0.5, 0.5, 0), in contradiction to
experiments [10].

More recently, however, it has been realized that the
origin of the strong correlations in this material may
not be associated with long-wavelength magnetic corre-
lations, but with local correlations driven by the Hund’s
coupling [15, 16]. A successful description of an ex-
tensive set of physical properties of Sr2RuO4 has been
obtained following this picture, supported by quantita-
tive dynamical mean-field (DMFT) calculations. This
includes the large mass enhancements of quasiparticles
observed in de Haas-van Alphen experiments [17] and
angle resolved photo-emission spectroscopy [18], as well
as quasi-particle weights and lifetimes [15], nuclear mag-
netic resonance [15], optical conductivity [19, 20], ther-
mopower [21], Hall coefficient [22], quasiparticle disper-
sions [23–25], and magnetic response [26–29].

In this letter, we bridge this gap between the spin fluc-

tuations picture and the Hund’s metal picture of the nor-
mal state of Sr2RuO4 by analyzing the magnetic response
function using DMFT. Our results reproduce the overall
momentum dependence obtained in experiments [10], see
Fig. 1, and reveal strong coupling effects which cannot
be accounted for in RPA, such as a suppression of the
antiferromagnetic response at QX . We find that the re-
sponse is dominated by quasi-local (weakly momentum-
dependent) spin fluctuations, and show that these fluctu-
ations are controlled by the strength of the Hund’s cou-
pling. As discussed at the end of this letter, our findings
have direct relevance for theories of the superconduct-
ing pairing mechanism, which is still an outstanding and
much debated question [30].

We compute the magnetic susceptibility χSzSz
(Q) us-
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FIG. 1. Spin-susceptibility χSzSz (Q) from DMFT at T =
464 K in the qx, qy-plane at qz = 0, with incommensurate hot-
spots at QSDW (red), cold-spots at QM and QX (blue), and
a broad response centered around QΓ (yellow), in units of the
reciprocal tetragonal lattice vectors 2π/a and 2π/c.
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ing DMFT [31], a DFT derived effective three-band
t2g model without spin-orbit coupling [32], and a local
Kanamori interaction [33] with Hubbard U = 2.3 eV and
Hund’s J = 0.4 eV [15]. The DMFT equations were
solved using the hybridization expansion continuous time
quantum Monte Carlo [34] implementation in TRIQS
[35, 36]. The DMFT particle-hole irreducible vertex was
used to compute the static lattice susceptibility from the
Bethe-Salpeter equation (BSE) [31] as implemented in
the TRIQS two-particle response function toolbox [37].
Moreover, the static response at three specific momenta
was computed down to much lower temperature, using
self-consistent DMFT in applied magnetic fields by zero
field extrapolation in supercells.

Fig. 1 displays the momentum dependent magnetic
susceptibility from DMFT, with hot-spots at QSDW and
ridges in qx and qy connecting these hot spots. This SDW
component can be understood from the DFT electronic
structure [38] of this material, which has three Ru(4d)-t2g
bands crossing the Fermi level, filled with four electrons.
The quasi-two-dimensional γ band, with dominant xy or-
bital content, has a larger bandwidth (by a factor of ∼2)
and slightly lower energy than the quasi-one-dimensional
α and β bands, originating mainly from the xz and yz
orbitals. The peak at QSDW is generated by nesting in
the α and β (xz, yz) Fermi surface sheets, yielding ridges
at (0.3, qy, 0) and (qx, 0.3, 0) that cross and produce the
peak at QSDW [14].

The response in Fig. 1 also shows a large component,
broad in momentum, with enhanced intensity centered
at Γ in comparison to the cold-spots at M and X. This
is the signature of the important quasi-local spin fluc-
tuations. Antiferromagnetic fluctuations are suppressed,
with the X point being the global minimum of the re-
sponse. This is qualitatively different from the results
of weak-coupling approaches such as RPA [14, 39–42] –
even when basing RPA on the dressed DMFT Lindhard
function [28] – or the fluctuation-exchange approxima-
tion [43, 44]. In contrast, these approximations yield
an enhanced response at the X point and fail to ac-
count for the quasi-local response. The latter was not
discussed in previous DMFT work [27], but noted in a re-
cent DMFT+GW calculation [29]. Both the quasi-local
response and the suppression of the X-point fluctuations
are in qualitative agreement with the recent INS experi-
ments [10].

Studying the susceptibility along the high symmetry
path Γ–X–M–Γ–Z gives a quantitative picture of the re-
sponse, see Fig. 2a. The incommensurate response at
QSDW yields a peak on Γ–X and the nesting ridges be-
come local maxima on X–M and M–Γ. The response
at QΓ = (0, 0, 0) is enhanced relative to the cold-spots
at QX = (0.5, 0.5, 0) and QM = (0.5, 0, 0) (green-shaded
area) with QX being the global minimum. We note in
passing that the negligible dispersion on Γ–Z shows that
the response is quasi two-dimensional. The quasi-local
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FIG. 2. a) Spin-susceptibility χSzSz (Q) from DMFT at
T = 464 K, along the high-symmetry path Γ–X–M–Γ–Z
(see Fig. 1) with (gray dotted line) and without (blue line)
SOC, together with the applied field response at QΓ (green

diamond), QX (red triangle), Q̃SDW (orange circle), and
χ(r=0) (yellow star). b) Temperature dependence of χ(QX),

χ(QΓ), and χloc. c) Temperature dependence of 1/χ(Q̃SDW )
without (circles) and with (pentagon) SOC.

response (red- and green-shaded area) is the dominant
part of the susceptibility, accounting for more than half
of the momentum averaged response (yellow stars).

We also perform complementary calculations of the
susceptibility down to much lower temperature through
self-consistent DMFT in applied fields at QΓ, QX , and
in the vicinity of the incommensurate wave vector QSDW

at Q̃SDW = (1/3, 1/3, 0) (using a
√

2×
√

5 three site su-
percell), see Fig. 2b and 2c. The result is in quantitative
agreement with the DMFT response obtained from the
BSE after extrapolating to infinite fermionic frequency
cutoff [45], see markers in Fig. 2a. This serves as a non-
trivial consistency check of our calculations and is, to the
best of our knowledge, the first demonstration of thermo-
dynamical consistency in DMFT at the two-particle level
in a multiorbital model [31, 46, 47].

When lowering temperature the spin susceptibility is
enhanced, see Fig. 2b. In particular, both χ(QΓ) and
χ(QX) grow with decreasing temperature, where χ(QX)
can be taken as a direct measure of the background re-
sponse (red shaded area). However, the relative Γ point
enhancement (green shaded area) is robust and roughly
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constant, χ(QΓ)/χ(QX) ≈ 4/3, in the studied temper-
ature range. The precise value of this ratio, however,
strongly depends on J (see below). The DMFT local
impurity susceptibility χloc shows a similar temperature
dependence, and is approximately equal to the local sus-
ceptibility χ(r = 0) ≡ 1

V

∑
Q χ(Q) at T = 464 K. This

rough agreement strengthens the use of χloc as a proxy
for the momentum average, χloc ∼ χ(r = 0) [15, 21].

While it is known that pristine Sr2RuO4 does not order
magnetically [12], the question of whether DMFT yields
SDW order at low temperature (like DFT [48]) has not
been addressed previously. To answer this question we
make a linear extrapolation of χ−1(Q̃SDW ) in tempera-
ture, see Fig. 2c. For the established values of U and J
[15], and in the absence of spin-orbit coupling, we find
that DMFT yields SDW order at TSDW ≈ 123 K, much
lower than RPA [49]. However, the transition tempera-
ture is very sensitive to the precise value of the micro-
scopic parameters, in particular the Hund’s coupling J
(not shown).

The sensitivity in J raises the question how the rel-
atively small spin-orbit coupling (SOC) λDFT ≈ 0.1 eV
[23] affects the ordering temperature. Full DMFT calcu-
lations with SOC, in the relevant temperature range, are
out of reach with currently available algorithms. Instead
we resort to an approximate treatment – following Ref.
24 – and add a static self-energy correction to the DMFT
bubble in the BSE, with a correlation-enhanced SOC cou-
pling λ = 2λDFT , see also Ref. 50. This accounts for
the first order SOC contributions to the DMFT bubble
χ(0) but neglects the effect of SOC on the vertex. In
momentum space the magnetic susceptibility with SOC
corrections exhibits an overall suppression of the incom-
mensurate and ridge response while the Γ, X, and M
points are only weakly affected, see Fig. 2a. The re-
duced incommensurate response yields a higher inverse
susceptibility, see Fig. 2c, shifting the transition to lower
temperature. Using the linear slope of the non-SOC case
gives TSOC

SDW . 0. Our tentative conclusion is thus that a
full DMFT+SOC calculation down to low temperature is
likely not to yield SDW ordering. This obviously deserves
further studies. Since the inclusion of SOC primarily af-
fects the SDW response, which is not the main focus of
our study, we will neglect it in the following.

To disentangle the microscopic mechanisms driving the
different components of the magnetic response, we study
their dependence on the Hund’s coupling J , see Fig. 3.
While the incommensurate spin-density-wave response
χ(Q̃SDW ) displays a non-monotonic behavior in J , in-
creasing J suppresses χ(QX) and drastically increases
χ(QΓ) and χloc. Hence, the Hund’s coupling drives the
observed Γ point enhancement (green shaded area in
Figs. 2a and 2b), as well as the enhancement of the local
susceptibility. Since the response around the Γ point is
very broad in momentum space (see Fig. 1) this in turn
suggests that the Hund’s coupling is responsible for the
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FIG. 3. Spin-susceptibility χSzSz (Q) for T = 464 K from

DMFT at Q̃SDW (orange circles), QΓ (green diamonds), QX

(red triangles), and the impurity local susceptibility χloc (pur-
ple squares), as a function of J at U = 2.3 eV and around
J = 0.4 eV. The local lattice susceptibility χ(r=0) (yellow
star) is also shown.

overall quasi-local magnetic response. We note in passing
that the opposite trends of χ(QΓ) and χ(QX) as a func-
tion of J produces a qualitative change of the magnetic
response at J ∼ 0.32 eV where the two terms cross. We
conclude that the Hund’s coupling is responsible for the
enhanced quasi-local fluctuations and plays a key role in
the overall momentum space structure of the magnetic
response.

We finally investigate how the magnetic response is
distributed over the planar xy, and out-of-plane xz and
yz orbitals, by studying the decomposition

χ(Q)≡ χSzSz (Q)=
∑
ab

χ
S

(a)
z S

(b)
z

(Q) , a, b ∈ {xy, xz, yz} ,

shown in Fig. 4a. We find that the orbital-off-diagonal
response (a 6= b) is roughly 50% of the total magnetic
response and confirm [27] that xy, xz, and yz contribute
approximately equally to the QSDW response, see mark-
ers in Fig. 4. However, χ

S
(xy)
z S

(xy)
z

(Q) is markedly higher

than χ
S

(xz)
z S

(xz)
z

(Q) around Γ and along M−Γ. It is this

part of the χ
S

(xy)
z S

(xy)
z

(Q) response, shown in Fig. 4b,

that is the origin of the broad plateau around Γ and cold
spots at X and M in Fig. 1, and the QΓ enhancement
(green area) in Fig. 2a. While this only gives a weak
momentum dependence to the large quasi-local magnetic
response (red and green areas in Fig. 2a), the momentum
space variations are extremely sensitive to the Hund’s
coupling, as seen in Fig. 3.

We now compare our results to simpler approximations
and show that the DMFT results are the only one qual-
itatively compatible with experiments and that the full
frequency-dependent vertex is a crucial part of the cal-
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FIG. 4. a) Orbitally resolved χ
S
(a)
z S

(b)
z

(Q) with a, b ∈
{xy, xz, yz} at T = 464 K from DMFT with diagonal xy, xy
(red) and xz, xz (light red) response and off-diagonal xy, xz
(blue) and yz, xz response (light blue) which contribute
equally at QSDW (black markers). b) The difference in the
diagonal orbital response (xy, xy)− (xz, xz) (green).

culation which can not be neglected [51]. Indeed, in Fig.
5a the DMFT result is compared to the bare DFT and

DMFT bubbles (χ
(0)
DFT, χ

(0)
DMFT) and the screened RPA

result χRPA. The RPA calculation uses – in spirit of Ref.
28 – the DMFT bubble χ(0) and screened effective in-
teraction parameters Ũ = 1.37 eV and J̃/Ũ = 0.4/2.3,
where Ũ has been taken to reproduce the local suscep-
tibility χ(r = 0) ≈ 7.3µ2

B/eV of DMFT. The frequency
dependent particle-hole vertex is clearly essential in the

DMFT calculation, as χ
(0)
DMFT is much smaller than the

DMFT result χDMFT. χ
(0)
DFT is also strongly suppressed

compared to χDMFT, and the X-point response is higher
than both the Γ and M points (see Fig. 5b). Finally, the
screened RPA using the DMFT bubble χRPA severely
overestimates the strength of the nesting peaks, underes-
timates the constant background response, and fails both
to enhance χ(QΓ) and to suppress χ(QX), see Fig. 5c.

In conclusion, we have analyzed the momentum-
dependent magnetic response of Sr2RuO4 using dynam-
ical mean-field theory, taking full account of vertex cor-
rections. The latter are found to play a crucial role,
leading to key effects absent at the RPA level such as
the suppression of the antiferromagnetic response at QX .
In agreement with neutron scattering experiments [10],
the magnetic response has two main components: an
SDW incommensurate response at QSDW and a quasi-
local weakly momentum-dependent component, which
provides the main contribution to the overall momen-
tum integrated response. Our main result, on a qualita-
tive level, is the demonstration that the physical origin of
the quasi-local magnetic response is the Hund’s coupling,
hence reconciling the experimental emphasis put on spin
fluctuations in this material with the theoretical picture
of Sr2RuO4 as a ‘Hund’s metal’.

This has far-reaching consequences: both our theoreti-
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FIG. 5. a) Spin-susceptibility χSzSz (Q) at T = 464 K on the
high-symmetry path Γ–X–M–Γ–Z (see Fig. 1). The DMFT
response (blue) is compared to the the screened RPA result
(purple) and the DFT (green) and DMFT (orange) bare bub-

bles χ
(0)
SzSz

(Q) ∝ GG. Note the scaling of the dashed lines.
Planar cuts at qz = 0 for b) DFT and c) screened RPA are
also shown, cf. DMFT in Fig. 1.

cal calculations and neutron scattering experiments indi-
cate that there is no dispersing ‘quasi-ferromagnetic’ spin
fluctuation mode in Sr2RuO4. Hence, pairing mecha-
nisms based on a mediating bosonic mode (‘glue’) associ-
ated with ferromagnetic spin fluctuations [11, 12, 14, 52]
have to be seriously reconsidered. The observed sup-
pression of the magnetic response at the X point also
invalidates an antiferromagnetic ‘glue’. Instead, pairing
mechanisms based on a quasi-local mode associated with
Hund’s coupling offer a promising route. Recent work has
appeared in this direction for model Hamiltonians [53–55]
and for iron-based superconductors [56]. However, these
mechanisms were proposed in the regime of slow spin fluc-
tuations above the Fermi liquid temperature, and need
to be extended to be applicable to Sr2RuO4. This is a
key agenda for future work aiming at solving the 25-years
old puzzle of superconductivity in this material [30].
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