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We express the recently introduced real-time diagrammatic Quantum Monte Carlo, Phys. Rev. B 91, 245154
(2015), in the Larkin-Ovchinnikov basis in Keldysh space. Based on a perturbation expansion in the local
interaction U , the special form of the interaction vertex allows to write diagrammatic rules in which vacuum
Feynman diagrams directly vanish. This reproduces the main property of the previous algorithm, without the
cost of the exponential sum over Keldysh indices. In an importance sampling procedure, this implies that only
interaction times in the vicinity of the measurement time contribute. Such an algorithm can then directly address
the long-time limit needed in the study of steady states in out-of-equilibrium systems. We then implement and
discuss different variants of Monte Carlo algorithms in the Larkin-Ovchinnikov basis. A sign problem reappears,
showing that the cancellation of vacuum diagrams has no direct impact on it.

I. INTRODUCTION

The development of high-precision and controlled com-
putational methods for non-equilibrium models in strongly-
correlated regimes is a subject of growing interest in theoreti-
cal condensed-matter physics. Recent years have seen signif-
icant experimental progress with quantum transport through
mesoscopic systems1, metal-insulator transitions driven by an
electric field2 or light-induced superconductivity3–7.

Powerful tools have been designed for the study of quan-
tum systems at equilibrium. Notably, the combination of dy-
namical mean-field theory8–10 and state-of-the-art continuous-
time Quantum Monte Carlo (QMC) algorithms such as CT-
INT11,12, CT-AUX13, or CT-HYB14,15 have allowed for great
advances. When considering out-of-equilibrium systems,
however, early attempts to construct similar perturbation-
expansion-based real-time QMC algorithms encountered an
exponential sign problem that prevented them from reaching
long times and large interactions16–20. Other approaches such
as the density matrix renormalization group (DMRG)21–23

also struggle in the long-time limit due to entanglement
growth. There is therefore still a great need for high-precision
numerical methods that would be able to access the non-
equilibrium steady states of strongly-interacting quantum sys-
tems.

Current efforts to build real-time quantum Monte Carlo
methods mainly explore two routes: the inchworm
algorithm24–30 and the so-called “diagrammatic” QMC31–33

which is the subject of this article. Using an expansion
of physical quantities in powers of the interaction U , this
algorithm has been shown to directly address the infinite-
time steady states. The name “diagrammatic” refers to its
imaginary-time counterparts that were historically construct-
ing a Markov chain in the space of Feynman diagrams34–37.

First introduced in Ref. 31, the real-time diagrammatic
QMC algorithm stochastically samples physical quantities us-
ing an importance sampling. At a given perturbation order n,
its key idea is to regroup a factorial number of Feynman dia-

grams in a sum over Keldysh indices of 2n determinants. This
exponential sum has been shown to cancel vacuum diagrams,
a property also used in recent diagrammatic QMC methods
in imaginary-time38–40. As a direct consequence, the Monte
Carlo sampling only involves interaction times in a neighbor-
hood around the measurement time tmax: we talk about the
clusterization of times. The computation of the Monte Carlo
weight is exponential in the perturbation order but uniform in
time, at any temperature. The algorithm can therefore address
long, even infinite, times in the computation of contributions
to the perturbation theory. This method was recently gener-
alized to compute the Green’s function and tested in quantum
impurity models32,33. The current form of the algorithm is
able to compute the Kondo resonance at low temperature in
the strongly-correlated Kondo regime.

Coefficients of the expansion being written in terms of
high-dimensional integrals of the sum of determinants, its ex-
ponential scaling limits our capability to compute high orders
with great precision (we typically are limited to 10 of them).
Even though non-perturbative information and Bayesian tech-
niques can overcome noise amplification occurring in the re-
summation of the series33, this can prevent the algorithm to
reach very large U .

In this article, we show that we can obtain the cancellation
of diagrams and the long-time clusterization property without
summing an exponential number of terms. Using the Larkin-
Ovchinnikov (LO) basis in Keldysh space, we rewrite the in-
tegrand as a sum of 4n determinants, but we show that dia-
grammatic rules in this basis are such that every diagram has
the clusterization property. In other words, the elimination
of vacuum diagrams is directly achieved in the diagrammat-
ics without the need of an exponential sum. We then im-
plement and compare two Monte-Carlo algorithms based on
this mathematical property. Both sample single determinants
at a polynomial cost, but then one measures in the LO basis
(LO algorithm) while the other measures in the original basis
(mixed algorithm). We obtain that a simple implementation of
the real-time diagrammatic QMC in the Larkin-Ovchinnikov
basis leads to a severe sign problem, which is reduced in the
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mixed algorithm. This shows that the main effect of the expo-
nential sum of determinants, beyond the cancellation of vac-
uum disconnected diagrams, is to reduce the sign problem of
this class of algorithms.

This article is organized as follows. First, we present in Sec.
II the usual Keldysh formalism in the {±} basis, briefly sum-
marize the diagrammatic rules and then derive the cancellation
of vacuum diagrams and the clusterization of the density when
summing over Keldysh indices. We follow the same structure
in Sec. III where we introduce the Larkin-Ovchinnikov ba-
sis, showing that all vacuum diagrams are equal to zero, so
that density contributions directly clusterize around the mea-
surement time. We then detail in Sec. IV the Monte Carlo
implementation of the original algorithm presented in Ref.
31 (± algorithm) and two algorithms based on the Larkin-
Ovchinnikov formalism (LO and mixed algorithms). In Sec.
V we compute the density of an impurity level coupled to a
bath, present the results of all three algorithms and explain
the origin of the observed error bars. We finally conclude in
Sec. VI.

II. KELDYSH FORMALISM

We work in the Keldysh formalism41–44. In this framework,
operators act on the Keldysh contour C consisting of a for-
ward branch, from an initial time t0 (that we take equal to 0
in the following) to a given time tmax, and a backward branch,
from tmax to t0. The system is initially prepared at equilibrium
without interactions. A Keldysh point k on C is defined as a
pair k ≡ (t, α) with a time t ∈ [0, tmax] and a Keldysh index
α ∈ {±} indicating which branch is to be considered. The +
(resp. -) index denotes the forward (resp. backward) branch,
as depicted below.

0

+

- tmax
Note that both branches are along the real axis and are dis-

placed only for graphical purposes. In the following, Greek
letters refer to ± indices unless otherwise stated. We define
a contour operator TC that follows the arrows on the above
picture: TC coincides with the usual time-ordering operator T
on the + branch, with the anti-time ordered operator Ť on the
− branch, and considers all Keldysh points on the backward
branch to be later than points on the forward branch.

The formalism we develop in this section is valid for any
general model described by a noninteracting Green’s function
g and a density-density interaction. However, for the sake of
simplicity, we consider interacting electrons on a single en-
ergy level. The operator cσ (resp. c†σ) destroys (resp. creates)
an electron with spin σ =↑, ↓. The interaction term, turned
on at t = 0, is given by the interaction vertex Un↑n↓, where
nσ ≡ c†σcσ is the density operator.

We define the time-dependent Green’s function

Ĝσ(t, t′) ≡ −i〈TCcσ(t)c†σ(t′)〉, (1)

where c(†)σ (t) is the Heisenberg representation of c(†)σ and the
average is taken with respect to the initial noninteracting state.

The Green’s function takes the form of a 2 × 2 matrix in the

{±} basis: Ĝσ =

(
G++
σ G<σ
G>σ G−−σ

)
, where

G<σ (t, t′) ≡ i〈c†σ(t′)cσ(t)〉, (2a)

G>σ (t, t′) ≡ −i〈cσ(t)c†σ(t′)〉, (2b)

G++
σ (t, t′) ≡ −i〈Tcσ(t)c†σ(t′)〉, (2c)

G−−σ (t, t′) ≡ −i〈Ťcσ(t)c†σ(t′)〉. (2d)

Throughout the article, noninteracting Green’s functions will
be denoted by lower case letters, interacting ones by upper
case letters, and a ˆ denotes a matrix.

A. Diagrammatic rules

In this article, we construct perturbation series in the inter-
action U for physical observables of interest. Computing con-
tributions at different perturbation orders relies on the evalua-
tion of Feynman diagrams obeying rules that we briefly sum-
marize.

A straight line represents a noninteracting Green’s func-
tion

σ
t′, β t, α = i (ĝσ)αβ (t, t′). (3)

Because the interaction has the form Un↑n↓, an interaction
vertex is characterized by a single Keldysh point {t, α}, and
the indices of the four legs all have to be equal to the Keldysh
index α

α, ↑

α, ↑

α, ↓

α, ↓

{t, α} = −iαU. (4)

Hence, for every interaction time t, there are two possible ver-
tices. The sum of the different {±} configurations can be writ-
ten in theH↑ ⊗H↓ space, in the form

− iU (m+ ⊗m+ −m− ⊗m−) , (5)

where m+ =

(
1 0
0 0

)
and m− =

(
0 0
0 1

)
are matrices in the

{±} basis, and Hσ is the Hilbert space for spin σ. Further-
more, an interaction of the form hc†σcσ in the Hamiltonian
would give rise to 2-leg vertices of the form

σ

{t, α}
h

α α = −iαh. (6)

These do not appear directly in the diagrammatics but will be
formally useful when deriving the expression of the fermionic
bubble. The sum over Keldysh indices reads −ih(m+−m−)
in bothH↑ andH↓ spaces.

With the expression of the 4-leg interaction vertex, the fol-
lowing fermionic bubble reads

σ
σ̄

α α{t, α}
= αUgαασ̄ (t, t). (7)
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Because of the form of the interaction term, we have

gαασ (t, t) = g<σ (t, t). (8)

Hence, the above diagram reduces to αUg<σ̄ (t, t), which can
be formulated as a 2-leg vertex with a iUg<σ̄ (t, t) field

σ
σ̄

α α{t, α}
= σ {t, α}

iUg<σ̄ (t, t)
α α (9)

If M is the quantity we want to compute (later on
the density), its perturbation expansion is given by M =∑
nMnU

n. Because of the form of the interaction vertex,
we have

Mn =

∫
C

dk1 . . . dknM±n (k1, . . . , kn) (10)

=

∫ tmax

0

dt1 . . . dtn
∑

α1...αn

M±n ({ti, αi}1≤i≤n), (11)

whereM±n ({ti, αi}1≤i≤n) can be expressed as a product of
determinants, their precise form depending on the measured
quantity. Throughout this paper, the ± superscript will de-
note quantities expressed in the {±} basis. Moreover times
integrated over are always considered ordered.

B. Cancellation of vacuum diagrams when summing over
Keldysh indices

Due to the forward-backward nature of the contour C, the
partition function Z is exactly equal to 1 in the real-time
Keldysh formalism. Expressing Z as a series in U (Z =∑
n ZnU

n), this property implies that all Zn are vanishing
for n ≥ 1. Because of the form of Eq. (10), this cancella-
tion involves both the integral over times and the sum over
Keldysh indices. However, it was proven by Profumo and co-
workers in Ref. 31 that only the latter is needed. For all n ≥ 1,
{t1, . . . , tn} ∈ [0, tmax]n,∑

α1...αn

Z±n ({ti, αi}1≤i≤n) = 0, (12)

where

Z±n ({ti, αi}1≤i≤n) = (−iα1) . . . (−iαn)× inin

×
∏
σ

det
[
(ĝσ)αiαj (ti, tj)

]
1≤i,j≤n

. (13)

Each (−iαk) comes from Eq. (4), and the two in factors from
the fact that a straight line actually represents an iĝ (Eq. (3)).

For every configuration of times {t1, . . . , tn}, vacuum dia-
grams therefore cancel when performing the explicit 2n sum
over Keldysh indices. Recent developments in imaginary-
time diagrammatic QMC also achieved, through an iterative
procedure, the cancellation of vacuum (and, later on, non one-
particle irreducible) diagrams at every Monte Carlo step at an
exponential cost in the perturbation order.38–40

C. Density computation and clusterization

In the following, we compute the density d of electrons with
spin ↑ on the impurity level at the end point of the Keldysh
contour, d ≡ 〈n↑(tmax)〉.

In the {±} basis, let us note that d = (Ĝ↑)01(tmax, tmax)/i.
Hence we can represent the measurement vertex as a “special”
vertex bearing time tmax, such that the ingoing and outgoing
Keldysh indices are 0 and 1:

0

tmax

1
(14)

Note that the surrounding lines are dashed because they should
bear a ĝ propagator (instead of an iĝ one as in the rest of the
formalism). The order-n contribution to d reads

dn =

∫ tmax

0

dt1 . . . dtn
∑

α1...αn

(−iα1) . . . (−iαn)

× in+1in

i2

∏
σ

detD±σ ({ti, αi}1≤i≤n),

(15)

where

D±↑ ({ti, αi}1≤i≤n) =


[
(ĝ↑)αiαj (ti, tj)

]
1≤i,j≤n

(ĝ↑)α11(t1, tmax)
...

(ĝ↑)αn1(tn, tmax)
(ĝ↑)0α1(tmax, t1) . . . (ĝ↑)0αn(tmax, tn) (ĝ↑)01(tmax, tmax)

 , (16)

and

D±↓ ({ti, αi}1≤i≤n) =
[
(ĝ↓)αiαj (ti, tj)

]
1≤i,j≤n . (17)

Using the cancellation of vacuum diagrams when summing
over Keldysh indices, we reproduce in Appendix A the argu-
ment of Ref. 31 showing that the computation of dn only in-

volves the sampling of interaction times close to tmax. As a di-
rect consequence, Monte Carlo algorithms implementing this
sum in the calculation of the weight can address any measure-
ment time tmax, when earlier methods were limited to short-
term measurements16–20. We talk about the clusterization of
interaction times in the computation of the density.
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III. LARKIN-OVCHINNIKOV FORMALISM

Starting from the expression of the Green’s function in the
{±} basis, we define its counterpart in the LO basis, ĜLO,
through the following transformation42,45

ĜLO
σ (t, t′) ≡ L†τ3Ĝσ(t, t′)L, (18)

where L = 1√
2

(
1 1
−1 1

)
and τ3 =

(
1 0
0 −1

)
. The Green’s

function now takes the 2× 2 form ĜLO
σ =

(
Rσ Kσ

0 Aσ

)
, where

R, K, and A are respectively the retarded, Keldysh and ad-
vanced Green’s functions defined as

Rσ(t, t′) ≡ −iθ(t− t′)〈{cσ(t), c†σ(t′)}〉, (19a)

Aσ(t, t′) ≡ iθ(t′ − t)〈{cσ(t), c†σ(t′)}〉, (19b)

Kσ(t, t′) ≡ −i〈[cσ(t), c†σ(t′)]〉. (19c)

In this basis, the Keldysh index α ∈ {±} is replaced by an
LO index 0 or 1. In the following, l will always denote such
an index unless otherwise stated.

A. Diagrammatic rules

To expose the diagrammatic rules in this formalism, let us
first determine from Eq. (5) the form of the 4-leg interaction
vertex in the LO basis. The m+ and m− matrices transform
as

L†τ3m+L =
1

2

(
1 1
1 1

)
≡ 1

2
τ↑, (20a)

L†τ3m−L =
1

2

(
−1 1
1 −1

)
≡ 1

2
τ↓. (20b)

Hence the sum of different LO contributions can be written

− iU
4

(τ↑ ⊗ τ↑ − τ↓ ⊗ τ↓) = − iU
2

(1⊗ τ↓ + τ↑ ⊗ 1) , (21)

where 1 is the 2×2 identity matrix. Note that this is consistent
with the symmetric form − iU2 (1 ⊗ τ + τ ⊗ 1) noted in Ref.

46, where τ =

(
0 1
1 0

)
. The rhs form of Eq. (21) is the one

we will retain in the rest of this article. We will show in Sec.
III B and III C that the identity part of the vertex is essential
in the proof of the cancellation of vacuum diagrams and the
clusterization of times in the computation of observables.

The key point of this expression of the vertex is that we can
reduce the number of indices involved in the diagrammatics
using the fact that τ↑ and τ↓ are rank-1 matrices: τ↑ = v↑v

>
↑

with v↑ =

(
1
1

)
and τ↓ = v↓(−v>↓ ) with v↓ =

(
1
−1

)
. We

can therefore absorb the τσ part of the vertex in a redifinition
of the noninteracting propagator (see below).

An LO vertex can then be characterized by a tuple {t, iτ , l},
where t ∈ [0, tmax], iτ ∈ {−1, 1} and l ∈ {0, 1}. iτ = 1

(resp. -1) indicates that the ↑ (resp. ↓) spin is carrying the τ↑
(resp. τ↓) side, and l is the LO index entering the identity-part
of the vertex. We store the information about both the bare

propagator ĝLO
σ =

(
rσ kσ
0 aσ

)
and the nature of the vertices it

is connected to in the form of a 3× 3 matrix ˆ̃gσ . The two first
indices corresponds to a connection to the identity (with l =
0 or 1), and the third one to the connection to a τσ:(

ˆ̃gσ

)
ll′

=
(
ĝLO
σ

)
ll′
, (22a)(

ˆ̃gσ

)
l2

=
(
ĝLO
σ vσ

)
l
, (22b)(

ˆ̃gσ

)
2l

=
(
σv>σ ĝ

LO
σ

)
l
, (22c)(

ˆ̃gσ

)
22

= σv>σ ĝ
LO
σ vσ, (22d)

with the convention that σ =↑ should be understood as +1
and σ =↓ as −1.

We obtain

ˆ̃gσ =

 rσ kσ rσ + σkσ
0 aσ σaσ
σrσ σkσ + aσ σ[rσ + aσ] + kσ

 . (23)

To simplify upcoming equations, we express the indices of
ˆ̃g↑ and ˆ̃g↓ at a vertex {t, iτ , l} in the form of two composite
indices L↑ and L↓:

Lσ =

{
2 if iτ = σ

l otherwise (24)

Note that this 3× 3 form of the Green’s function comes from
the absorption of the τσ part of the vertex and has nothing to
do with the Baym-KadanoffL-shaped contour used in thermal
real-time computations.

With this notation, a straight line represents a noninteract-
ing (modified) Green’s function

σ
t′, L′σ t, Lσ = i

(
ˆ̃gσ

)
LσL′σ

(t, t′). (25)

As discussed previously, the interaction vertex, proportional
to the identity in the {±} basis, is now proportional to
1⊗τ↓+τ↑⊗1

2 in theH↑ ⊗H↓ space

L↑, ↑

L↑, ↑

L↓, ↓

L↓, ↓

{t, iτ , l} = − iU
2

(δiτ1δL↑2δL↓l

+δiτ−1δL↓2δL↑l) .

(26)

As m+ −m− transforms into the 2× 2 identity matrix in the
LO basis, a 2-leg vertex is simply characterized by an interac-
tion time t and an LO index l. A term hc†σcσ in the Hamilto-
nian would therefore give rise to the following vertex

σ

{t, l}
h

Lσ Lσ = −ihδLσl. (27)
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With this expression of the interaction vertex, the following

fermionic bubble σ
σ̄

Lσ Lσ{t, iτ , l}
evaluates to

U

2
δLσ2 [rσ̄(t, t) + aσ̄(t, t)]

+
U

2
δLσl [σ̄rσ̄(t, t) + σ̄aσ̄(t, t) + kσ̄(t, t)] .

(28)

For the equal-time limit of the retarded, Keldysh and advanced
Green’s function, we choose a convention which ensures the
consistency between the {±} and LO basis. We consider

kσ(t, t) = 2g<σ (t, t), (29a)
rσ(t, t) = aσ(t, t) = 0, (29b)

and we show that this is consistent with Eq. (8). Using Eq.
(29), the above fermionic bubble reduces to Ug<σ̄ (t, t)δLσl. It
can be rewritten as a 2-leg vertex with a iUg<σ̄ (t, t) field

σ
σ̄

Lσ Lσ{t, iτ , l}
= σ {t, l}

iUg<σ̄ (t, t)
Lσ Lσ (30)

This equation is, up to a change of basis, the same as Eq.
(9). The choice of equal-time limit described in Eq. (29) is
therefore consistent with the {±} basis formalism.

The order-n contribution to the quantity M we want to
measure in an expansion in U is similar to Eq. (10), but has to
take account of the new form of the vertex

Mn =

∫ tmax

0

dt1 . . . dtn
∑

iτ1 ...iτn
l1...ln

MLO
n ({ti, iτi , li}1≤i≤n).

(31)
where the MLO

n ({ti, iτi , li}1≤i≤n) can once again be ex-
pressed as a product of determinants, their precise form de-
pending on the computed quantity.

This formalism leads to 4n LO configurations for a given
set of n interaction times, to be compared with 2n possible
configurations in the ± basis. However, we show in the next
section that vacuum diagrams now directly cancel in this for-
malism, without the actual need to perform an explicit sum
over all configurations.

B. Cancellation of vacuum diagrams

In this section, we show the main result of this article: con-
tributions to the partition function are directly equal to zero
in the LO basis. For all n ≥ 1, {t1, . . . , tn} ∈ [0, tmax]n,
{iτ1 , . . . , iτn} ∈ {−1, 1}n, {l1, . . . , ln} ∈ {0, 1}n,

ZLO
n ({ti, iτi , li}1≤i≤n) = 0, (32)

where the contributions to the partition function are

ZLO
n ({ti, iτi , li}1≤i≤n) =

(
− i

2

)n
inin

×
∏
σ

det
[
(ˆ̃gσ)Lσi Lσj (ti, tj)

]
1≤i,j≤n

.

(33)

Each− i
2 comes from Eq. (26) and the two in factors from the

fact that a straight line actually represents an iˆ̃g (Eq. (25)).
Let us consider an order n ≥ 1 diagram contributing to Z.

The interaction times are denoted t1, . . . , tn. We introduce
t̂ = maxiti and î such that t̂i = t̂. We label σ the spin on
the identity side of the (1 ⊗ τ↓ + τ↑ ⊗ 1)/2 interaction ver-
tex at t̂, and l the corresponding LO index. In the consider,
we consider the diagrammatic line following spin σ. If t̂ is
surrounded by no other interaction vertex, the diagram is then
proportional to

(ˆ̃gσ)ll(t̂, t̂) = δl0rσ(t̂, t̂) + δl1aσ(t̂, t̂) = 0. (34)

In the case where t̂ is surrounded by at least one other inter-
action vertex, we label its surrounding interaction times (that
can be equal) ti and tj , i, j 6= î, with corresponding composite
indices Lσi , Lσj . We then obtain

(ˆ̃gσ)Lσj l(tj , t̂) = δLσj 2δl1
[
σkσ(tj , t̂) + aσ(tj , t̂)

]
+ δLσj 1δl1aσ(tj , t̂) + δLσj 0δl1kσ(tj , t̂),

(35)

and

(ˆ̃gσ)lLσi (t̂, ti) = δLσi 2δl0
[
rσ(t̂, ti) + σkσ(t̂, ti)

]
+ δLσi 1δl0kσ(t̂, ti) + δLσi 0δl0rσ(t̂, ti).

(36)

The full diagram is then proportional to δl0δl1 = 0. Hence
every diagram contributing to Z in the LO basis is exactly
equal to 0. This formalism directly cancels vacuum diagrams.

Finally, we note that this proof relies only on having the
identity on one side of the interaction vertex, and not on the
explicit contraction with τ↑, τ↓. Had we kept the diagrammat-
ics with ĝ lines instead of ˆ̃g ones, we would also obtain the
cancellation of vacuum diagrams.

C. Density computation and clusterization

In order to understand how to write the density of ↑ elec-
trons on the energy level in the LO basis, we use the follow-
ing property of the Keldysh formalism: the average value of
an operator does not depend on the branch of C where it is
computed. Considering d on the + branch of the contour, the
computation of the density can be understood as the action of
the m+ matrix in the {±} basis, which transforms in the 1

2τ↑
matrix in the LO basis according to Eq. (20a). Hence we can
represent the measurement vertex as a “special” interaction
vertex at time tmax with iτ = 1:

τ↑

tmax
(37)

As previously, surrounding lines are dashed because they bear
a ˆ̃g (and not an iˆ̃g). Hence the order-n contribution to d reads

dn =

∫ tmax

0

dt1 . . . dtn
∑

iτ1 ...iτn
l1...ln

(
− i

2

)n
in+1in

i2

×
∏
σ

detDLO
σ ({ti, iτi , li}1≤i≤n).

(38)
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The DLO
σ matrices are defined as

DLO
↑ ({ti, iτi , li}1≤i≤n) =


[
(ˆ̃g↑)L↑

iL
↑
j
(ti, tj)

]
1≤i,j≤n

(ˆ̃g↑)L↑
12(t1, tmax)

...
(ˆ̃g↑)L↑

n2(tn, tmax)

(ˆ̃g↑)2L↑
1
(tmax, t1) . . . (ˆ̃g↑)2L↑

n
(tmax, tn) (ˆ̃g↑)22(tmax, tmax)

 , (39)

and

DLO
↓ ({ti, iτi , li}1≤i≤n) =

[
(ˆ̃g↓)L↓

iL
↓
j
(ti, tj)

]
1≤i,j≤n

. (40)

Before considering the clusterization of interaction times,
we note that half of the contributions to the density vanish.
Let us consider a given set {ti, iτi , li}1≤i≤n of LO vertices at
order n, and let us label t̂ = maxi ti and î such that t̂i = t̂.
If iτî = 1, then the ↓ spin is carrying the identity side of the
vertex. As we measure the density on the ↑ spin, the argument
used in the cancellation vacuum diagrams (see III B) applies
again and DLO

↓ ({ti, iτi , li}1≤i≤n) is the n × n null matrix. If
iτî = −1, the contribution does not vanish. Hence, when
computing the density, at every order n and for every set of
n interaction times, 4n/2 LO configurations (out of 4n) are
exactly zero.

The clusterization of interaction times around tmax in the
calculation of the density is then a direct consequence of the
cancellation of vacuum diagrams and is very similar to the
proof in the {±} basis (now without the exponential sum).
Let n be a given perturbation order, and t1 < t2 < · · · < tn
n interaction times. Let us assume that the first j times are
located far away from the measurement time tmax, and that the
last n − j times are located in the vicinity of tmax. We can
formally consider

∀1 ≤ i ≤ j, |ti − tmax| → ∞. (41)

Because the Green’s function is a local quantity in time, this
means that for all t ∈ {t1, . . . , tj}, t′ ∈ {tj+1, . . . , tn; tmax}

||ˆ̃gσ(t, t′)|| → 0, ||ˆ̃gσ(t′, t)|| → 0. (42)

We therefore have∏
σ

detDLO
σ ({ti, iτi , li}1≤i≤n) '

∏
σ

detAσ
∏
σ

detBσ,

(43)
with

Aσ =
[
(ˆ̃g)Lσi Lσi′ (ti, ti

′)
]

1≤i,i′≤j
, (44a)

B↓ =
[
(ˆ̃g)L↓

iL
↓
i′

(ti, ti′)
]
j+1≤i,i′≤n

, (44b)

andB↑ is the
[
(ˆ̃g)L↑

iL
↑
i′

(ti, ti′)
]
j+1≤i,i′≤n

matrix where a last

line and column corresponding to tmax are added, similar to

Eq. (39). However,
∏
σ Aσ is a contribution to Z at order j,

and it vanishes according to (32). Therefore
∏
σ detDσ ' 0,

and this proves the clusterization of times around tmax in the
computation of the density.

In the next section, we present different algorithms to
stochastically sample Eqs (15) and (38).

IV. MONTE CARLO IMPLEMENTATION

In this section, we describe how to compute the density
d introduced above using quantum Monte Carlo (MC) tech-
niques. We present three different algorithms to compute this
quantity, one using the ± algorithm presented in Ref. 31 and
the other two based on the LO formalism presented above.

A. Monte Carlo algorithms

We first describe how to stochastically generate MC config-
urations to sample the order-n contribution, dn, as expressed
in Eqs (15) and (38).

The ± algorithm works directly on the Keldysh contour. A
configuration c is determined by a given perturbation order
n and a set of n interaction times (and not Keldysh points):
c = {n; t1, . . . , tn}. The contribution to dn of a given config-
uration is

w±c = −in+1
∑

α1...αn

α1 . . . αn

×
∏
σ

detD±σ ({ti, αi}1≤i≤n).
(45)

In the Monte Carlo, configurations are sampled stochastically
according to their weight, which we choose to be |w±c |. We
then have

dn =

∫ tmax

0

dt1 . . . dtn w
±
c ∝

MC±∑
c

signw±c . (46)

Note that it was shown in Ref. 31 that w±c ∈ R.
In the LO algorithm, a configuration c is now determined

by a given perturbation order n and a set of n interaction LO
vertices: c = {n; y1, . . . , yn}, where yi = {ti, iτi , li}. Be-
cause the density is a real quantity, the contributions to dn of
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a configuration c can be written as

wLO
c = − 1

2n+1
Re

(
in+1

∏
σ

detDLO
σ (c)

)
. (47)

If |wLO
c | is the statistical weight of c in the Monte Carlo pro-

cess, then

dn =

∫ tmax

0

dt1 . . . dtn
∑

iτ1 ...iτn
l1...ln

wLO
c ∝

MC LO∑
c

signwLO
c . (48)

The third algorithm that we study is a mixed algorithm that
samples the configurations according to their LO weight |wLO

c |
but computes dn in the original {±} basis, from the contri-
butions w±c at the sampled times. A configuration c is then
determined by a given perturbation order n and a set of n in-
teraction LO vertices: c = {n; y1, . . . , yn} and the MC weight
is |wmixed

c | = |wLO
c |, so that

dn =
1

N

∫ tmax

0

dt1 . . . dtn
∑

iτ1 ...iτn
l1...ln

∣∣wLO
c

∣∣ w±c
|wLO

c |

∝ 1

N
MC mixed∑

c

w±c
|wLO

c |
,

(49)

whereN is the number of non-zero LO configurations. When
computing the density, N = 4n/2 at order n (see Section
III C).

In all three techniques, we use a standard Metropolis
algorithm47 to generate Markov chains distributed according
to the weights |wc|. Starting from a given configuration c, a
new configuration c′ is proposed according to one of the fol-
lowing two Monte Carlo updates:

1. Remove a randomly chosen interaction time (for the
± algorithm) or interaction LO vertex (for the LO and
mixed algorithms) from c.

2. Add a new interaction time (for the ± algorithm) or
an interaction LO vertex (for the LO and mixed algo-
rithms). In all three techniques, because of the cluster-
ization of times around tmax, we choose the new inter-
action time according to a Cauchy law (see below). We
randomly choose the iτ and l indices.

The new configuration c′ is accepted or rejected with the usual
Metropolis ratio

paccept
c→c′ = min

(
1,
Tc′c|wc′ |
Tcc′ |wc|

)
, (50)

where Tcc′ is the probability to propose c′ after c.

B. Proposition of times

We have shown previously that times clusterize around
tmax. It is therefore more efficient to propose times located

around it compared to uniformly distributed between 0 and
tmax. We consider a Cauchy law determined by two parame-
ters t0 and a

ρ(t) =
1

C

1

1 +
(
t−t0
a

)2 . (51)

C is a normalization factor such that the integral of ρ between
0 and tmax gives 1, defined as C = a [C2 − C1], where C1 =
arctan

(
− t0a

)
and C2 = arctan

(
tmax−t0
a

)
.

To obtain a new time that follows this probability law, one
can perform these three steps:

1. Choose a random number u uniformly distributed be-
tween 0 and 1.

2. Construct

x =
1

2
+

1

π
[(1− u)C1 + uC2] , (52)

uniformly distributed between 1
2 + 1

πC1 and 1
2 + 1

πC2.

3. Compute

t = t0 + a tan

(
π

(
x− 1

2

))
, (53)

distributed between 0 and tmax according to ρ.

The parameters t0 and a are then fitted to the 1D projection
of times visited by the Monte Carlo, accumulated during the
first part of the computation.

C. Redefinition of noninteracting propagators

As shown in previous works12,31,48,49, there is some free-
dom in the choice of the noninteracting propagator used to
construct the perturbation expansion, since the interaction can
be redefined as

Un↑n↓ = U(n↑−α)(n↓−α)+Uα(n↑+n↓)+ const. (54)

Note that in this subsection α does not denote a Keldysh index
but a scalar, in order to be consistent with the existing litera-
ture. In particular, it was shown that α can strongly modify
the radius of convergence of the perturbation series31,48. This
redefinition of the interaction term in Eq. (54) is taken into ac-
count by subtracting α on the diagonal of the determinants as
explained and proved in Ref. 31. The second term in Eq. (54)
acts as a shift in the chemical potential and can be absorbed in
a redefinition of the noninteracting propagators.

Let us first consider the LO basis. This shift acts a diagonal
term in the self-energy and hence in(

ĝLO
σ

)−1
=

(
r−1
σ −kσ/|rσ|2
0 a−1

σ

)
. (55)

α therefore modifies rσ and aσ into

r̄σ(ω) =
[
r(ω)−1 − Uα

]−1
, (56)

āσ(ω) =
[
a(ω)−1 − Uα

]−1
. (57)
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As kσ/|rσ|2 is not impacted by the shift, the modified Keldysh
Green’s function is then

k̄σ(ω) =

∣∣∣∣ r̄σ(ω)

rσ(ω)

∣∣∣∣2 kσ(ω). (58)

From these expressions, we can then deduce the modified
Green’s functions in the {±} basis through a change of ba-
sis tranformation.

D. Normalization procedure

All Monte Carlo algorithms presented above compute the
order-n contribution to the density d, however the MC results
need to be normalized. Hence we restrict our calculation to
two consecutive orders, n and n+ 1, and a time or vertex can
be added (resp. removed) only if the current configuration c
is at order n (resp n + 1). We measure both the density (dn
and dn+1) and a normalization factor (ηn and ηn+1). In all
algorithms, the normalization factor is chosen to be the sum
of the absolute value of the contributions to the density:

ηn ∝
MC∑
c

|wc|, (59)

where the proportionality constant is the same as in the cal-
culation of dn. If d̃n and η̃n are the unrenormalized sums of
the contributions accumulated in the Monte Carlo procedure,
then the normalized values for dn and ηn are obtained as

dn+1 =
ηn
η̃n
d̃n+1; ηn+1 =

ηn
η̃n
η̃n+1, (60)

and ηn is then used to normalize the following simulation be-
tween orders n + 1 and n + 2. The lowest order is computed
analytically to close the equations.

V. RESULTS

A. Density

In this section, we present actual computations of the den-
sity according to the algorithms described in the previous sec-
tion and compare their efficiency. In the following, we con-
sider an energy level εd coupled to a bath described by a semi-
circular density of states of bandwidth 4t. The Green’s func-
tion describing this bath is defined on the complex plane as8

gbath(ζ) =
ζ − sgn(Imζ)

√
ζ2 − 4t2

2t2
. (61)

The noninteracting retarded Green’s function of the impurity
level is

rσ(ω) =
1

ω − εd − γ2gbath(ω)
, (62)

1 2 3 4 5 6 7 8 9
Perturbation order n
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FIG. 1. Comparison of the error bar divided by the mean value in a
density computation, for the three different MC algorithms consid-
ered: the one working in the Keldysh ± basis (blue dots), the one in
the LO basis (orange stars) and the mixed algorithm (green dots, see
text). t = 1, βt = 100, γ2 = 0.04t2, εd = −0.36t, U = 1.2t,
α = 0.3. Computational effort is 240 CPU*hours for every order.

where γ is a coupling term between the energy level and the
bath. The Keldysh Green’s function is then deduced using the
fluctuation-dissipation theorem

kσ(ω) = tanh

(
βω

2

)
[rσ(ω)− r∗σ(ω)] . (63)

In the following, t = 1 is our energy unit. We consider
βt = 100, γ2 = 0.04t2, εd = −0.36t. Electrons on the
impurity experience a local Coulomb interaction U = 1.2t.
We choose the α shift to be α = 0.3 (see Sec. IV C), such
that Uα = −εd. The bath being particle-hole symmetric, this
creates a shifted retarded Green’s function r̄(ω) that is itself
particle-hole symmetric (see Eq. (56)). However, we have
checked that this particular choice of α does not influence
our conclusions. We provide in Appendix B a table bench-
marking the LO and mixed algorithms against the original ±
algorithm. This shows in particular that the LO and mixed
algorithms yield correct results and that we can indeed reach
long times in the LO algorithm without an exponential sum of
determinants.

Our main result is shown on Figure 1 where we compare
the relative error bar in the density computation as a function
of the perturbation order. Blue dots denote the ± algorithm,
orange stars the LO algorithm, and green dots the mixed al-
gorithm. The order-9 relative error is not shown for the LO
algorithm as it exceeds 1 and is therefore meaningless. In all
three cases, dotted lines are guides to the eye. The computa-
tional time is 240 CPU*hours for each order.

We see that all three relative error bars increase with per-
turbation order. This can either come from the increasing dif-
ficulty of computing the series coefficients, or an error prop-
agation coming from the normalization factor η. We plot in
Appendix C the relative error bar on η, which is much smaller
than the final relative error on the density, showing that the
latter mainly comes from the increasing difficulty to compute
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0.0

0.5

1.0

LO weights

−10

0

10

Sum over all LO indices

−1.0

−0.5

0.0

0.5

1.0 Partial sum

−20

0

20

40
Partial sum

FIG. 2. Upper panel: Sorted array of the LO weights ac-
cording to their absolute value (blue dots) and their sum (red
line), normalized to 1. Lower panel: Partial sum of the above
LO weights, from left to right, the red dot being the last
point, by definition 1. Left panels correspond to the T1 =
{273.2, 277.8, 280.9, 331.7, 366.4, 390.5} time configuration, and
the right panels to T2 = {338.3, 343.2, 366.9, 369.7, 393.9, 394.5}.
Order 7, tmax = 400.

higher order coefficients. Moreover, the LO relative error bars
very quickly become much larger than the± ones, their differ-
ence nearly reaching two orders of magnitude at order 8. The
mixed algorithm is found to perform better than the LO algo-
rithm but its error bars slowly grow larger than the ± ones.
This is surprising, as one could have expected to at least gain
the decorrelation time over the algorithm of Ref. 31. We dis-
cuss the origin of the error bars in both algorithms in the next
section.

B. The return of the sign problem

In this section, we discuss the origin of the large variance
in the computation of the density in the LO algorithm in terms
of a sign problem in the Monte Carlo sampling and we show
how this impacts the error bars of the mixed algorithm.

On the upper panel of Figure 2, we plot as blue dots the non-
zero LO weights for two different time configurations, sorted
according to their absolute value. The left and right panel cor-
respond to two different time configurations (Cf caption). In
both cases, the red line indicates the full sum over all LO in-
dices, normalized to 1 (which coincides with the ± weights).
The lower panel shows the partial sum, from left to right, of
the LO weights plotted above. The last point, equal to 1 by
construction, is emphasized as a red dot. As roughly half of
the weights are positive and half negative, we see that the sum
of the LO weights over the indices at fixed time configuration
is characterized by a massive cancellation. This is the origin
of the large error bar in the Monte-Carlo, i.e. another man-
ifestation of the sign problem. Furthermore, the partial sum

0 50 100 150 200 250 300 350 400
t

0.000

0.002

0.004

0.006

0.008

±
LO

FIG. 3. Histograms of the times visited by the Monte Carlo algo-
rithms, projected in one dimension. Order 9, tmax = 400.

shows that there is no clear feature or cutoff from which one
could extract the value of the full sum.

Let us now turn to the mixed algorithm. On both the left and
right panels of Figure 2, the sum over all LO indices, which
coincides with the ± weight, is normalized to 1. However, on
the left panel, the weights of the different LO configurations
are small compared to the final result, reaching at most 20%
of it. On the right panel, those same weights are much bigger,
reaching up to 1700% of the full sum. Hence the Monte Carlo
implemented in the LO basis does not sample the same time
configurations as the algorithm in the {±} basis. This is il-
lustrated in Figure 3 where the histograms of the times visited
by the Monte Carlo, projected in one dimension, are plotted
for both the± algorithm (blue line) and LO one (orange line).
First, we observe the clusterization of times proved at the be-
ginning of this article: interaction times contributing to the
density tend to be in the vicinity of tmax. Then, we see that
some times located far away from the measurement but still
contributing significantly to the ± algorithm are almost never
visited in the LO algorithm. On the other hand, times close
to tmax are more sampled in the latter. As times visited by the
mixed algorithm coincide with the LO ones, this explains the
difference in error bars between the mixed and ± algorithms
observed in Figure 1.

VI. CONCLUSION

In conclusion, the explicit sum over the Keldysh indices of
the original ± algorithm of Ref. 31 has two functions: i) it
allows to reach the very long times due to the clusterization
of the integrand caused by the cancellation of vacuum dia-
grams; ii) it strongly reduces the error bar by performing a
massive cancellation of terms. In this article, we have shown
that one can obtain the first properties for each determinant
using the Larkin-Ovchinnikov basis, hence without the expo-
nentially large sum of determinants. A direct implementation
of the algorithm in the LO basis indeed reaches the steady
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state, but also has an error bar growing quickly with the order
n due to a sign problem. An interesting possibility would be
the existence of an optimum between the LO and original ±
algorithms, using partial groupings of terms in the LO basis
with less than 2n terms that would reduce the sign problem
and yields a better scaling than the original algorithm in the
{±} basis. Work is in progress in this direction.
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Appendix A: Clusterization of the density in the {±} basis

We reproduce here the argument of Ref. 31 showing that
the cancellation of vacuum diagrams when summing over
Keldysh indices implies the clusterization of interaction times
near tmax.

Let n be a given perturbation order, and t1 < t2 < · · · < tn
n interaction times. Let’s assume that the first j times are
located far away from the measurement time tmax, and that the
last n − j times are located in the vicinity of tmax. We can
formally consider

∀1 ≤ i ≤ j, |ti − tmax| → ∞. (A1)

Because the Green’s function is a local quantity, this means

that for all t ∈ {t1, . . . , tj}, t′ ∈ {tj+1, . . . , tn; tmax}

||ĝσ(t, t′)|| → 0, ||ĝσ(t′, t)|| → 0. (A2)

We therefore have∑
α1...αn

α1 . . . αn
∏
σ

detD±σ ({ti, iτi , li}1≤i≤n)

'
∑

α1...αj

α1 . . . αj
∏
σ

detAσ

×
∑

αj+1...αn

αj+1 . . . αn
∏
σ

detBσ,

(A3)

with

Aσ =
[
(ĝσ)αiα′

i
(ti, ti′)

]
1≤i,i′≤j , (A4a)

B↓ =
[
(ĝ↓)αiα′

i
(ti, ti′)

]
j+1≤i,i′≤n , (A4b)

andB↑ is the
[
(ĝ↑)αiα′

i
(ti, ti′)

]
j+1≤i,i′≤n matrix where a last

line and column corresponding to tmax are added, similar to
Eq. (16). However,

∑
α1...αj

α1 . . . αj
∏
σ Aσ is a contribu-

tion to Z at order j, and it vanishes according to (12). There-
fore

∑
α1...αn

α1 . . . αn
∏
σ detD±σ ' 0, and this proves the

clusterization of times in around tmax in the computation of
the density.

Appendix B: Benchmark

The table below benchmarks the contributions to the den-
sity between the±, LO, and mixed algorithms. We take t = 1
as our energy unit, and parameters are βt = 100, γ2 = 0.04t2,
εd = −0.36t, U = 1.2t, α = 0.3. Computation effort is 240
CPU*hours for each perturbation order.

± LO mixed
Order 1 −1.7013454± 0.00014% −1.7013431± 0.00026% −1.7013466± 0.00073%

Order 2 14.47243± 0.0015% 14.47252± 0.0015% 14.47214± 0.0022%

Order 3 −33.3479± 0.014% −33.3610± 0.030% −33.3583± 0.022%

Order 4 −431.09± 0.041% −431.51± 0.071% −431.30± 0.028%

Order 5 5094.7± 0.025% 5100.6± 0.18% 5092.6± 0.039%

Order 6 −16173± 0.12% −15802± 1.8% −16171± 0.21%

Order 7 −1.6411× 105 ± 0.13% −1.6595× 105 ± 3.9% −1.6554× 105 ± 0.26%

Order 8 2.2332× 107 ± 0.18% 2.1071× 107 ± 9.0% 2.2316× 107 ± 0.42%

Order 9 −7.865× 107 ± 0.66% 2.852× 107 ± 240% −8.079× 107 ± 2.1%

Appendix C: Origin of error bar

We have seen in Sec. IV D that the contributions to the
density have to be normalized by a factor η, see Eq. (60).
To verify that the error bars on the density are not due to this

normalization factor, we plot its relative error bars on Figure
4. Blue dots denote the ± algorithm, orange stars the LO
algorithm, and green dots the mixed algorithm. Comparing it
to Figure 1, we see that the relative error bars on η are much
smaller than the ones on the density.
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FIG. 4. Comparison of the error bar divided by the mean value of
the normalization coefficient, for the three different MC algorithms
considered: the one working in the Keldysh ± basis (blue dots), the
one in the LO basis (orange stars) and the mixed algorithm (green
dots). t = 1, βt = 100, γ2 = 0.04t2, εd = −0.36t, U = 1.2t,
α = 0.3. Computational effort is 240 CPU*hours for every order.
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