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Asymmetric scaling in large deviations

for rare values bigger or smaller than the typical value

Cécile Monthus
Institut de Physique Théorique, Université Paris Saclay, CNRS, CEA, 91191 Gif-sur-Yvette, France

In various disordered systems or non-equilibrium dynamical models, the large deviations of some
observables have been found to display different scalings for rare values bigger or smaller than
the typical value. In the present paper, we revisit the simpler observables based on independent
random variables, namely the empirical maximum, the empirical average, the empirical non-integer
moments or other additive empirical observables, in order to describe the cases where asymmetric
large deviations already occur. The unifying starting point to analyze the large deviations of these
various empirical observables is given by the Sanov theorem for the large deviations of the empirical
histogram : the rate function corresponds to the relative entropy with respect to the true probability
distribution and it can be optimized in the presence of the appropriate constraints. Finally, the
physical meaning of large deviations rate functions is discussed from the renormalization perspective.

I. INTRODUCTION

In macroscopic systems with a large number N of degrees of freedom, it is interesting to analyze how much physical
observables can fluctuate as a function of the size N . When u is some intensive variable, one usually distinguishes
the three following levels of descriptions for its probability distribution PN (u) :
(i) for large N , the probability distribution PN (u) becomes concentrated on the typical value utyp that does not

depend on N

PN (u) ≃
N→+∞

δ(u− utyp) (1)

This statement is the analog of the law of large numbers for the empirical average of independent random variables.
Another well-known example is the typical Lyapunov exponent for product of random matrices [1, 2].
(ii) zooming in Eq. 1 reveals the order 1

TN
of the small typical fluctuations around the typical value utyp, where

TN is some appropriate scale that grows with N (for instance like a power-law Nχ with some exponent 0 < χ < 1 or
like a power of ln(N))

u ≃
N→+∞

utyp +
v

TN

(2)

and the rescaled variable v ≡ TN(u − utyp) is distributed with some universal limiting distribution V (v). This

statement is the analog of the Central Limit Theorem with the scale TN =
√
N and where V (v) is the Gaussian

distribution for the universality class of probability distributions whose two first moments are finite (if they are not
finite, one obtains the other universality classes involving Lévy stable laws). Another famous example is given by
the three universality classes Gumbel-Fréchet-Weibull of Extreme Value Statistics [3, 4], with many applications in
various physics domains (see the reviews [5–7] and references therein).
(iii) in the field of large deviations, one is interested instead in evaluating how rare it is for large N to observe some

finite value u different from utyp. The standard theory of large deviations is based on the exponential decay [8–10]

PN (u) ≃
N→+∞

e−NI(u) (3)

where the rate function is positive I(u) ≥ 0 and vanishes only for the typical value utyp of Eq 1

I(utyp) = 0 (4)

While the region (ii) of universal typical fluctuations has been traditionally the main focus of studies for various
physical observables, the theory of large deviations (iii) is nowadays considered as the unifying language for the
statistical physics of equilibrium, non-equilibrium and dynamical systems (see the reviews [8–10] and references
therein). In particular, the large deviations with respect to the large time limit of dynamical trajectories has produced
an appropriate statistical physics approach for various Markovian processes (see the reviews [11–17] and the PhD
Theses [18–21] and the HDR Thesis [22]).
However the recent huge activity on large deviations in the field of random matrices has shown that the maximal

eigenvalue [23–28] and many other observables involving the eigenvalues [29–39] display asymmetric scaling in large
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deviations, i.e. the probability PN (u) to observe bigger values than typical u > utyp and smaller values than typical
u < utyp are governed by two different scalings D±

N (for instance two different power-laws D±
N = Nθ±) and two rate

functions I±(u)

PN (u) ≃
N→+∞

e−D
+
N
I+(u) for u ≥ utyp

PN (u) ≃
N→+∞

e−D−

N
I−(u) for u ≤ utyp (5)

instead of the standard form of Eq. 3. For the maximal eigenvalue [23–28], the physical interpretation of this
asymmetry is that to push the maximal eigenvalue inside the Wigner sea, one needs to reorganize all the other
eigenvalues, whereas to pull the maximal eigenvalue outside the Wigner sea, one may leave the other eigenvalues
unchanged. Via mapping between models belonging to the Kardar-Parisi-Zhang universality class (see the list in the
review [27] and references therein), these asymmetric large deviations properties for the biggest eigenvalue of some
random matrices ensembles can be rephrased in many other frameworks, in particular :
(a) for the Asymmetric Exclusion process, which is one of the most studied models in the field of the non-equilibrium

dynamics of interacting particles (see the reviews [11, 16, 17] and references therein), the interpretation of the asym-
metric large deviations is that to slow down the traffic, it is sufficient to slow down a single particle, whereas to speed
up the traffic, one needs to speed up all particles [40].
(b) for the Directed Polymer in random medium in dimension d = 2, which is one of the simplest disordered model

displaying a low temperature glassy frozen phase (see the review [41] and references therein), the interpretation is
that an anomalously good ground state energy requires only L anomalously good on-site energies along the polymer,
while an ’anomalously bad’ ground state energy requires Ld bad on-site energies in the sample.
These examples and their very clear physical meanings show that asymmetric large deviations of Eq. 5 are likely

to occur in many other problems in the fields of non-equilibrium dynamics or disordered systems, while they are not
considered in the standard theory of large deviations [8–10] based on Eq. 3. As a consequence, it seems useful to revisit
simpler observables based on independent random variables where asymmetric large deviations have been found to
occur, in particular for the empirical maximum [42, 43], for the empirical average [44–47], and in joint linear statistics
[48]. Since these problems have been already studied in details in these references by exact methods, the goal of the
present paper is to give a unifying perspective based on the large deviation properties of the empirical histogram in
the presence of constraints corresponding to the observables under study. This point of view also allows to make the
link with the studies of large deviations in the field of random matrices [23–39] where the Coulomb gas technique is
based on the large deviations of the empirical histogram of eigenvalues, in the presence of constraints corresponding to
the observables under study. The main difference is that the large deviations of the empirical histogram are governed
by the Coulomb interaction energy in the case of random matrices eigenvalues, while it is governed by the relative
entropy of the Sanov theorem for the case of independent variables [8–10]. This large deviation framework also makes
the link with the Gibbs theory of ensembles in equilibrium statistical physics [8–10] and thus allows to understand
why it is natural to expect the possibility of phase transitions in large deviation rate functions (see the recent review
[49] and references therein).
The paper is organized as follows. In section II, we recall how the empirical histogram of independent random

variables allows to reconstruct interesting observables like the empirical maximum, the empirical average, or other
additive empirical observables, with the consequences for typical values. In section III, the large deviations of the
empirical histogram is presented as the unifying starting point to analyze the large deviations of empirical observables.
In section IV, the asymmetry in the large deviations of the empirical maximum is analyzed on various scales. In section
V, the asymmetry in the large deviations of the empirical average is described for the case of stretched exponential
decay or power-law decay of the initial distribution. In section VI, the generalization for the large deviations of
arbitrary non-integer empirical moments is discussed. In section VII, these large deviations properties are analyzed
from the renormalization perspective. Our conclusions are summarized in section VIII.

II. EMPIRICAL OBSERVABLES FOR INDEPENDENT RANDOM VARIABLES

A. Notations

Since our main goal is to analyze the asymmetry in large deviation properties that may occur for simple observables
involving N independent random variables xi drawn with some probability distribution π(x), we will focus on the
cases of positive variables 0 ≤ x < +∞, where the decay of the probability distribution π(x) for large x → +∞ is :
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(i) either an exponential decay with some exponent α > 0

πexp
α,ν (x) ≃

x→+∞
Kxν−1e−xα

(6)

with possibly some power-law prefactor if ν 6= 1, while K is a constant amplitude.
ii) or a power-law decay with some exponent µ > 2 (in order to ensure the existence of the two first moments x

and x2)

πpower
µ (x) ≃

x→+∞

K

x1+µ
(7)

But of course these assumptions are not restrictive, and if one is interested into another cases, one can adapt the
methods described below by considering the various possible tail behaviors for x → −∞.

B. Empirical histogram

If one is not interested in the order of appearance of the variables [xi]1≤i≤N (otherwise see the pedagogical intro-
duction [50] and references therein), all the information is contained in the empirical histogram

pN(x) ≡ 1

N

N
∑

i=1

δ(x − xi) (8)

Its typical value is of course the ’true’ probability distribution π(x)

p
typ
N (x) = π(x) (9)

while the large deviations around this typical value are postponed section III. Let us first recall how the empirical
histogram allows to reconstruct the usual empirical observables of interest.

C. Empirical maximum

The information on the empirical maximum

xmax
N ≡ max

1≤i≤N
(xi) (10)

is contained in the empirical histogram of Eq. 8 as follows : the empirical maximum xmax
N corresponds to the value

x where the empirical number of variables bigger than x

NN (x) ≡
N
∑

i=1

θ(xi − x) = N

∫ +∞

x

dypN (y) (11)

jumps from 0 to 1

0 = NL(x
max
N + 0) = N

∫ +∞

xmax
N

+0

dypN(y)

1 = NL(x
max
N − 0) = N

∫ +∞

xmax
N

−0

dypN(y) (12)

The typical value of the empirical histogram of Eq. 9 yields that the typical value MN of the empirical maximum
xmax
N of Eq. 10

MN ≡ (xmax
N )typ (13)

is given by the typical position of the jump of Eq. 12

1 = N

∫ +∞

MN

dyp
typ
N (y) = N

∫ +∞

MN

dyπ(y) ≡ NC(MN ) (14)
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where we have introduced the complementary cumulative distribution function that measures the integrated tail above
the threshold x

C(x) ≡
∫ +∞

x

dx′π(x′) (15)

The large deviations properties of the ratio

rN ≡ xmax
N

MN

=
1

MN

(

max
1≤i≤N

(xi)

)

(16)

of typical value unity

r
typ
N = 1 (17)

will be discussed in section IV. To be self-contained, let us now recall the behavior of the typical values MN as a
function of N for the two types of decay under study here.

1. Typical value MN of the maximum for the exponential decay

For the asymptotic behavior of Eq. 6, the asymptotic behavior of its primitive of Eq. 15 reads

C(x) ≃
x→+∞

K

α
xν−αe−xα

(18)

Then Eq. 14 determining the typical value MN of the empirical maximum becomes for large N

1

N
= C(MN ) ≃

N→+∞

K

α
Mν−α

N e−Mα
N (19)

and the inversion yields at leading order the well-known logarithmic behavior [3, 4]

MN ≃
N→+∞

[

lnN +
ν − α

α
ln(lnN)− ln

( α

K

)

]
1
α

(20)

2. Typical value MN of the maximum the power-law decay

For the power-law decay of Eq. 7, the asymptotic behavior of its primitive of Eq. 15

C(x) =

∫ +∞

x

dx′π(x′) =
K

µxµ
(21)

yields that the solution of Eq. 14 follows the well-known power-law [3, 4]

MN =

(

KN

µ

)
1
µ

(22)

D. Empirical additive observables

The empirical histogram of Eq. 8 allows to reconstruct any additive observable GN involving some function g(x)

GN ≡ 1

N

N
∑

i=1

g(xi) =

∫ +∞

0

dxg(x)pN (x) (23)

Th most studied observable in the whole history of probability is of course the empirical average

aN ≡ 1

N

N
∑

i=1

xi =

∫ +∞

0

dxxpN (x) (24)
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The empirical moments of arbitrary non-integer order q

a
(q)
N ≡ 1

N

N
∑

i=1

x
q
i =

∫ +∞

0

dxxqpN (x) (25)

have been also considered [6, 24] in order to interpolate between the case q = 1 of the empirical average of Eq. 24 and
the empirical maximum of Eq. 10 that should dominate the empirical moment of Eq 25 for large q → +∞. Another
examples include the exponential case g(x) = etx considered in Ref [51] or the logarithmic case g(x) = ln(x).
The typical value of the empirical histogram of Eq. 9 yields that the typical values of additive observables of Eq.

23 are simply

G
typ
N =

∫ +∞

0

dxg(x)ptypN (x) =

∫ +∞

0

dxg(x)π(x) (26)

In particular the typical value of the empirical average of Eq. 24 corresponds to the first moment x of π(x)

a
typ
N =

∫ +∞

0

dxxp
typ
N (x) =

∫ +∞

0

dxxπ(x) = x (27)

The possibility of asymmetric large deviations properties around this typical value will be discussed in section V.

III. ANALYSIS BASED ON THE LARGE DEVIATIONS OF THE EMPIRICAL HISTOGRAM

A. Reminder on the Sanov theorem involving the relative entropy

The large deviations of the empirical histogram pN(x) of Eq. 8 around its typical value p
typ
N (x) = π(x) of Eq 9 are

described by the Sanov theorem (see the reviews [8–10] and the pedagogical introduction [50])

PN [pN(.)] ≃
N→+∞

δ

(

1−
∫

dxpN (x)

)

e−NSrel(pN (.)|π(.)) (28)

that involves of course the normalization constraint of the empirical histogram
∫

dxpN (x) = 1, while the rate function
in the exponential is the relative entropy of the empirical histogram pN (x) with respect to the true probability
distribution π(x)

Srel(pN (.)|π(.)) ≡
∫

dxpN (x) ln

(

pN (x)

π(x)

)

(29)

B. Exact generating function of the empirical histogram for finite N

Among the various derivations of Eq. 28, one is based on the exact generating function ZN [κ(.)] of the empirical
histogram for any finite N

ZN [κ(.)] ≡
∫

DpN (.)PN [pN (.)] e
N

∫

dxκ(x)pN (x)
=

∫

dx1π(x1)...

∫

dxNπ(xN ) e

N
∑

i=1

κ(xi)

=

N
∏

i=1

(
∫

dxiπ(xi)e
κ(xi)

)

=

(
∫

dxπ(x)eκ(x)
)N

≡ eNΦ[κ(.)] (30)

where the scaled cumulant generating function

Φ[κ(.)] = ln

(
∫

dxπ(x)eκ(x)
)

(31)

is related to the relative entropy of Eq. 29 via the appropriate Legendre transform (see [50] for more details on the
Legendre transforms in the two directions).
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C. Constraint to reproduce the cumulative distribution of the maximum xmax
N

The probability distribution XN (xmax
N ) of the empirical maximum xmax

N of Eq. 10 is well known to be [3, 4]

XN (xmax
N ) = Nπ(xmax

N ) [1− C(xmax
N )]

N−1
(32)

in terms of the cumulative function C(x) introduced in Eq. 15.
Here it is instructive to mention how it can be reproduced from the large deviations of the empirical histogram of Eq.

28 : the cumulative probability of the maximum xmax
N amounts to replace the normalisation constraint

∫

dxpN (x) = 1
by the two constraints

∫ +∞

xmax
N

dxpN (x) = 0

∫ xmax
N

0

dxpN (x) = 1 (33)

leading to

∫ xmax
N

0

dxXN (x) =

∫

DpN (.)δ

(

1−
∫ xmax

N

0

dxpN (x)

)

δ

(

∫ +∞

xmax
N

dxpN (x)

)

e−NSrel(pN (.)|π(.)) (34)

Introducing the Lagrange multiplier ω, one needs to optimize the functional

L(pN (.)) = −Srel(pN (.)|π(.)) + ω

(

1−
∫ xmax

N

0

dxpN (x)

)

= −
∫

dxpN (x) ln

(

pN (x)

π(x)

)

+ ω

(

1−
∫ xmax

N

0

dxpN (x)

)

(35)

over the empirical histogram pN (.)

0 =
∂L(pN (.))

∂pN(x)
= − ln

(

pN (x)

π(x)

)

− 1− ω (36)

The optimal solution is thus simply proportional to the true distribution π(x) on [0, xmax
N ] (while it vanishes for

x > xmax
N )

p∗N (x) = π(x)e−1−ωθ(0 ≤ x ≤ xmax
N ) (37)

where the normalization constraint determines the Lagrange multiplier ω

1 =

∫ xmax
N

0

dxp∗N (x) = e−1−ω

∫ xmax
N

0

dxπ(x) = e−1−ω [1− C(xmax
N )] (38)

Plugging the corresponding optimal value of the functional of Eq. 35

L(p∗N (.)) = −
∫

dxp∗N (x) ln

(

p∗N(x)

π(x)

)

= 1 + ω = ln [1− C(xmax
N )] (39)

into Eq. 34

∫ xmax
N

0

dxXN (x) ≃
N→+∞

eNL(p∗
N (.)) = eN ln[1−C(xmax

N )] (40)

thus allows to recover the exact cumulative distribution of Eq. 32. In this derivation, Eq. 34 thus corresponds to
the entropic cost for the emptiness of the region [xmax

N ,+∞[. Section IV will be devoted to the asymmetric large
deviations properties of this distribution.
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D. Standard large deviations for additive empirical observables

The probability distribution GN (GN ) of the additive observable of Eq. 23

GN ≡ 1

N

N
∑

i=1

g(xi) =

∫ +∞

0

dxg(x)pN (x) (41)

can be directly characterized by its exact generating function for finite N by applying Eq 30 to the case κ(x) = kg(x)

ZN(k) ≡
∫

dGGN (G)eNkG =

∫

DpN (.)PN [pN (.)] e
Nk

∫

dxg(x)pN (x)
=

(
∫

dxπ(x)ekg(x)
)N

≡ eNφ(k) (42)

with the scaled cumulant generating function φ(k)

φ(k) = ln

(
∫

dxπ(x)ekg(x)
)

(43)

The alternative evaluation of Eq. 42 based on the standard Large deviation form for the probability

GN (G) ≃
N→∞

e−NI(G) (44)

yields

eNφ(k) ≡
∫

dGGN (G)eNkG ≃
N→+∞

∫

dGeN(kG−I(G)) (45)

via the saddle-point method for the integral over G that φ(k) is the Legendre transform of the rate function I(G)

φ(k) = kG− I(G)

0 = k − I ′(G) (46)

with the reciprocal Legendre transform

I(G) = kG− φ(k)

0 = G− φ′(k) (47)

Another way to understand the physical meaning of these Legendre transforms consists in evaluating the probability
GN (G) via the addition of the sum constraint in the large deviations of the empirical histogram of Eq. 28 :

GN (G) =

∫

DpN (.)δ

(

1−
∫ +∞

0

dxpN (x)

)

δ

(

G−
∫ +∞

0

dxg(x)pN (x)

)

e−NSrel(pN (.)|π(.)) (48)

Introducing the two Lagrange multiplier ω and k, one needs to optimize the functional

L(pN (.)) = −Srel(pN (.)|π(.)) + ω

(

1−
∫ +∞

0

dxpN (x)

)

− k

(

G−
∫ +∞

0

dxg(x)pN (x)

)

= −
∫

dxpN (x) ln

(

pN(x)

π(x)

)

+ ω

(

1−
∫ +∞

0

dxpN (x)

)

− k

(

G−
∫ +∞

0

dxg(x)pN (x)

)

(49)

over the empirical histogram pN (.)

0 =
∂L(pN (.))

∂pN(x)
= − ln

(

pN (x)

π(x)

)

− 1− ω + kg(x) (50)

The optimal solution reads

p∗N(x) = e−1−ω+kg(x)π(x) (51)
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where the the Lagrange multipliers are fixed by the two constraints

1 =

∫ +∞

0

dxp∗N (x) = e−1−ω

∫ +∞

0

dxekg(x)π(x)

G =

∫ +∞

0

dxg(x)p∗N (x) = e−1−ω

∫ +∞

0

dxg(x)ekg(x)π(x) (52)

i.e. in terms of the function φ(k) introduced in Eq. 43

1 + ω = φ(k)

G = φ′(k) (53)

The corresponding optimal value of the functional of Eq. 49 using 53 thus involves the Legendre transform I(G) of
φ(k) (Eqs 46 and 47)

L(p∗N (.)) = −
∫

dxp∗N (x) ln

(

p∗N (x)

π(x)

)

= 1 + ω − kG = φ(k)− kG = −I(G) (54)

as it should to recover via Eq. 48

GN (G) ≃
N→+∞

eNL(p∗N (.)) = e−NI(G) (55)

Here the analogy with the Gibbs theory of ensembles in equilibrium statistical physics is obvious : the effective
distribution of Eq 51 for an individual random variable x is the analog of the Boltzmann distribution in the canonical
ensemble, where the Lagrange multiplier k is conjugated to the quantity g(x), whose average G over the N variables
is fixed.
Of course these computations make sense only if the integrals of Eq. 52 converge : depending on the function

g(x) defining the empirical observable GN under study, these integrals may diverge in some region of the Lagrange
multiplier k. The consequences for the non-standard large deviations properties will be discussed for the case of the
empirical average in section V and for the empirical moments in section VI.

E. Large deviations for joint additive empirical observables

If one is interested in the large deviations of the joint probability of two additive empirical observables, one needs
to add another constraint in Eq. 48, as described in detail in Ref [48] for the joint probability of the empirical average
and of an empirical moment of order q. More generally, one can add as many constraints as needed for the problem
one is interested in.

IV. ASYMMETRY IN THE LARGE DEVIATIONS OF THE EMPIRICAL MAXIMUM

A. Probability distribution of the ratio rN =
xmax
N

MN

Via the change of variables r =
xmax
N

MN
of Eq. 16, the probability distribution XN (xmax

N ) of Eq. 32 becomes the
probability distribution

RN (r) = NMNπ(rMN ) [1− C(rMN )]
N−1

(56)

Since the typical value MN is large as a consequence of the equation C(MN ) = 1
N
, while the ratio r is finite, the value

of (rMN ) is also large, i.e. the value of C(rMN ) is also small . Then Eq. 56 becomes

RN (r) ≃
N→+∞

NMNπ(rMN )e−NC(rMN ) (57)

It is thus more convenient to substitute N = 1
C(MN ) in order to write everything in terms of the single scale MN

RN (r) ≃
N→+∞

MNπ(rMN )

C(MN )
e
−C(rMN )

C(MN ) (58)



9

B. Case of the exponential decay

For the exponential decay of Eq. 6, the asymptotic behavior of the function C(x) given in Eq. 18 yields in Eq. 58

RN (r) ≃
N→+∞

αMα
Nrν−1eM

α
N (1−rα)e−rν−αeM

α
N (1−rα)

(59)

This means that the rescaled variable

y ≡ Mα
N(rα − 1) + (α− ν) ln r ≃

MN→+∞
Mα

N (rα − 1) (60)

is distributed with the Gumbel probability distribution [3, 4]

G(y) ≡ e−ye−e−y

(61)

whose very strong asymmetry for the asymptotic behaviors for y → ±∞ is well-known

G(y) ≃
y→+∞

e−y

G(y) ≃
y→−∞

e−e−y

(62)

As a consequence when r is finite and different from the typical value rtyp = 1, the variable y of Eq. 60 will be near
(±∞) depending on the sign of (r − 1) : the asymptotic behaviors of Eqs 62 will thus produce completely different
scalings in the region bigger than typical r > 1 [42, 43]

RN (r) ∝
N→+∞

e−Mα
N (rα−1) for r > 1 (63)

and in the region smaller than typical 0 < r < 1

RN (r) ∝
N→+∞

e−rβ+1−αeM
α
N (1−rα)

for 0 < r < 1 (64)

The link with the region of small typical fluctuations around the typical value rtyp = 1 usually considered in the
Extreme Value Statistics [3, 4] corresponds here to the Taylor expansion at first order of the variable y of Eq. 60

y ≃
r→1

Mα
N

[

α(r − 1) +O(r − 1)2)
]

(65)

i.e. the appropriate rescaling to have a finite variable y distributed with the Gumbel distribution G(y) is

r = 1 +
y

αMα
N

(66)

i.e. for the unrescaled maximum of Eq. 10

xmax
N = rMN =

(

1 +
y

αMα
N

)

MN = MN +
y

α
M1−α

N (67)

where the behavior of MN as a function of N was recalled in Eq. 20.

C. Case of the power-law decay

For the power-law decay of Eq. 7, the asymptotic behavior of its primitive of Eq. 21 yields in Eq. 58

RN (r) ≃
N→+∞

µ

r1+µ
e
− 1

rµ ≡ Fµ(r) (68)

where the Fréchet distribution Fµ(r) of parameter µ appears for any finite value r, while the scale MN has completely
disappeared, in contrast to the exponential decay case described above. So here the probability of the values r 6=
rtyp 6= 1 do not decay with N .
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D. Asymmetry beyond the regime of finite ratio r

In the following section, we will need the probability of the maximum of Eq 32 beyond the regime of finite ratio r with
respect to the typical value MN . In the region much bigger than typical xmax

N ≫ MN where C(xmax
N ) ≪ C(MN ) = 1

N
,

the factor [1− C(xmax
N )]N−1 can be neglected in Eq 32 and one obtains the leading behavior

XN (xmax
N ) ≃

xmax
N

≫MN

Nπ(xmax
N ) (69)

The physical meaning is that one just needs to draw the anomalously big value xmax
N , while the other (N−1) variables

may remain typical and thus have no probabilistic cost.
On the contrary, in the region much smaller than typical xmax

N ≪ MN where C(xmax
N ) ≫ C(MN ) = 1

N
, the factor

[1− C(xmax
N )]

N−1
is the leading behavior in Eq 32 and produces an extensive cost in N in the exponential

XN (xmax
N ) ≃

xmax
N

≪MN

[1− C(xmax
N )]

N−1 ≃
xmax
N

≪MN

e−NC(xmax
N ) (70)

This asymmetry is thus very strong, and reads for the exponential decay of Eq. 6 with Eq. 18,

XN (xmax
N ) ≃

xmax
N

≫MN

KN(xmax
N )ν−1e−(xmax

N )α

XN (xmax
N ) ≃

xmax
N

≪MN

e−N K
α
(xmax

N )ν−αe−(xmax
N

)α

(71)

while for the power-law decay of Eq 7 with Eq 21, it is given by

XN (xmax
N ) ≃

xmax
N

≫MN

NK

(xmax
N )1+µ

XN (xmax
N ) ≃

xmax
N

≪MN

e
− NK

(xmax
N

)µ (72)

V. POSSIBLE ASYMMETRY IN THE LARGE DEVIATIONS OF THE EMPIRICAL AVERAGE

Whenever the first moment x and the variance σ2 ≡ x2 − (x)2 are finite, the Central Limit Theorem means that
the empirical average of Eq 24 will display typical fluctuations of order 1√

N
around the typical value x

aN ≡ 1

N

N
∑

i=1

xi ≃
N→+∞

x+
v√
σ2N

(73)

where v is a Gaussian random variable of zero mean and variance unity. In this section, we focus on the large
deviations properties for the probability distribution AN (a) of the empirical average a

AN (a) ≡
∫ +∞

0

dx1π(x1)...

∫ +∞

0

dxNπ(xN )δ

(

a− 1

N

N
∑

i=1

xi

)

(74)

to discuss how rare it is to observe a 6= x for large N and when an asymmetry will occur.

A. Standard Large deviation theory for the exponential decay with exponent α ≥ 1

The standard large deviation theory recalled in section IIID for additive empirical observable applies to the empirical
average G = a with g(x) = x : the probability to observe a value a 6= atyp = x is exponentially small in N

AN (a) ≃
N→∞

e−NI(a) (75)

and the rate function I(a) can be either evaluated directly or can be computed as the Legendre transform (Eqs 46
and 47) of the scaled cumulant generating function of Eq. 43

φ(k) = ln

(
∫ +∞

0

dxπ(x)ekx
)

(76)
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For the exponential decay of Eq. 6 with an exponent α > 1, the scaled cumulant generating function of Eq. 76 is
defined for any k ∈]−∞,+∞[, and the above large deviation theory can be applied.
For the exponential decay of Eq. 6 with an exponent α = 1, the scaled cumulant generating function of Eq. 76 is

defined only for k ∈]−∞, 1[, and it is thus useful to describe the example of the gamma distribution of parameter ν

γν(x) ≡
1

Γ(ν)
xν−1e−x (77)

Its Laplace transform is simply

∫ +∞

0

dxe−pxγν(x) =
1

(1 + p)ν
(78)

so that computing its power N simply amounts to change the parameter ν into (Nν). As a consequence, the sum of N
variables xi is distributed with the gamma distribution γNν(.) of parameter (Nν) that corresponds to the convolution
of N distributions γν(.). After the rescaling by N , the probability distribution of the empirical average is thus exactly
given by

AN (a) = NγNν(Na) = N
1

Γ(Nν)
(Na)Nν−1e−Na (79)

For large N , the Stirling approximation for Γ(Nν) yields the large deviation form of Eq. 75 where the rate function

Iν(a) = a− ν − ν ln
(a

ν

)

(80)

is well defined for a ∈]0,+∞[ and measures how rare it is to observe a value a different from the typical value atyp = ν.
The corresponding scaled generating cumulant function φ(k) of Eq. 76 is defined only for k < 1.

φν(k) = −ν ln(1 − k) (81)

The correspondence between k and a via the Legendre transform of Eq. 46 is

ka = I ′ν(a) = 1− ν

a
(82)

or equivalently via the reciprocal Legendre transform of Eq. 47

ak = φ′
ν(k) =

ν

1− k
(83)

So the region k ∈] − ∞, 0[ allows to parametrize the whole smaller than typical region a ∈]0, ν[ while the region
k ∈]0, 1[ allows to parametrize the whole bigger than typical region a ∈]ν,+∞[ without problems.

B. Asymmetry in the large deviations for stretched exponential decay 0 < α < 1

1. Usual large deviation form in the region smaller than typical a ≤ atyp = x

For the exponential decay of Eq. 6 with an exponent 0 < α < 1, the scaled cumulant generating function of Eq.
76 is defined only for k ∈]−∞, 0] that corresponds to the region smaller than typical a ≤ atyp = x, where the usual
large deviation form will thus be valid

AN (a) ∝
N→+∞

e−NI−(a) for a ≤ atyp = x (84)

The rate function I−(a) for a ≤ atyp = x corresponds to the Legendre transform of the function φ(k) defined for
k ≤ 0.
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2. Unusual large deviation in the region a > atyp

For k > 0 that corresponds to the region bigger than the typical value a > atyp = x, the function φ(k) as defined
by Eq. 76 does not exist as a consequence of the divergence of the integral at (+∞) when π(x) decays only as a
stretched exponential with 0 < α < 1

∫ +∞
dxπ(x)ekx ∝

∫ +∞
dxekx−xα

= +∞ (85)

This suggests to consider the strategy based on the maximum alone : one considers that (N − 1) variables have
their typical sum (N − 1)x, which happens with probability one for large N , i.e. with no probabilistic cost, while the
remaining variable, that will have to coincide with the maximum xmax

N of Eq. 10, should be anomalously big in order
to satisfy the sum constraint

xmax
N = Na− (N − 1)x ∝

N→+∞
N(a− x) (86)

So the cost of this strategy directly involves the probability XN (xmax
N ) of Eqs 69 and 71 of the anomalously extensive

value of Eq. 86

AStrategyMax
N (a) ∝

N→+∞
XN (xmax

N ≃ N(a− x)) ≃
xmax
N

≫MN

≃ KNν(a− x)ν−1e−Nα(a−x)α ∝
N→+∞

e−NαI+(a) (87)

that decays only as the stretched exponential of exponent α ∈]0, 1[. The corresponding rate function

I+(a) = (a− x)α for a > x (88)

has been proven to be valid in the whole region a > x in Refs [44, 46].

C. Asymmetry in the large deviations for power-law decay

For the power-law decay of Eq. 7, one has the same scenario as for the stretched exponential case discussed above:
(i) in the region smaller than typical a ≤ atyp = x, the usual large deviation form is valid

AN (a) ∝
N→+∞

e−NI−(a) for a ≤ atyp = x (89)

where the rate function I−(a) corresponds to the Legendre transform of the function φ(k) defined for k ≤ 0.
(ii) in the region bigger than the typical value a > atyp = x where the function φ(k) of Eq. 76 does not exist as a

consequence of the divergence of the integral, the strategy based on the anomalous maximum of Eq. 86 leads to the
probability (using Eqs 69 and 72)

AStrategyMax
N (a) ∝

N→+∞
XN (xmax

N ≃ N(a− x)) ≃
xmax
N

≫MN

≃ K

Nµ(a− x)1+µ
(90)

that decays only as the power-law N−µ. This phenomenon of condensation in the power-law case has been studied in
great detail in the references [45, 47, 48], with motivations coming from the zero-range process (see explanations and
references in [45, 47, 48]).

VI. ASYMMETRY IN THE LARGE DEVIATIONS OF THE EMPIRICAL MOMENT OF ORDER q > 0

The analysis of the previous section concerning the empirical average can be directly generalized to obtain the large
deviations properties of the empirical moment of arbitrary non-integer order q > 0 of Eq 25.

A. Standard Large deviation theory for the exponential decay with exponent α ≥ q

The standard Large deviation theory recalled in section IIID for additive empirical observable applies to the

empirical moment GN = a
(q)
N of arbitrary non-integer order q > 0 of Eq 25 with g(x) = xq : the probability to observe

a value aq 6= xq is exponentially small in N

A(q)
N (aq) ≃

N→∞
e−NIq(aq) (91)
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and the rate function I(aq) corresponds to the Legendre transform (Eqs 46 and 47) of the scaled cumulant generating
function of Eq. 43

φq(k) = ln

(
∫ +∞

0

dxπ(x)ekx
q

)

(92)

which is well defined for any k ∈] − ∞,+∞[ when π(x) displays the exponential decay of Eq. 6 with an exponent
α > q.

B. Asymmetry in the large deviations for stretched exponential decay 0 < α < q

1. Usual large deviation form in the region smaller than typical aq ≤ xq

For the exponential decay of Eq. 6 with an exponent 0 < α < q, the scaled cumulant generating function of Eq.
92 is defined only for k ∈]−∞, 0] that corresponds to the region smaller than typical aq ≤ xq , where the usual large
deviation form will thus be valid

AN (aq) ∝
N→+∞

e−NI−
q (a) for a ≤ xq (93)

The rate function I−q (aq) corresponds to the Legendre transform of the function φq(k) defined for k ≤ 0.

2. Unusual large deviation in the region aq > xq

For k > 0 that corresponds to the region bigger than the typical value aq > xq the function φq(k) as defined by
Eq. 92 does not exist. The strategy based on the maximum alone explained in the previous section can be then
considered: (N − 1) variables xq

i have their typical sum (N − 1)xq, which happens with probability one for large N ,
i.e. with no probabilistic cost, while the remaining variable will have to coincide with the power q of the maximum
xmax
N of Eq. 10. This maximum should be anomalously big in order to satisfy the sum constraint

xmax
N = [Naq − (N − 1)xq]

1
q ∝
N→+∞

N
1
q (aq − xq)

1
q (94)

So the cost of this strategy reads in terms of the probability XN (xmax
N ) of Eqs 69 and 71 of the anomalously big value

of Eq. 94

A(q)StrategyMax

N (aq) ∝
N→+∞

XN

(

xmax
N ≃ N

1
q (aq − xq)

1
q

)

≃
xmax
N

≫MN

≃ KN1+ ν−1
q (aq − xq)

ν−1
q e−N

α
q (aq−xq)

α
q

∝
N→+∞

e−N
α
q I+

q (aq) (95)

that decays only as the stretched exponential of exponent α
q
∈]0, 1[, with the corresponding rate function

I+q (aq) = (aq − xq)
α
q for aq > xq (96)

3. Discussion

So for any exponential decay with exponent α > 0 in Eq. 6, only the empirical moments of order q < α display a
standard form of large deviations, while the empirical moments of order q > α will be characterized by asymmetric
large deviations. For instance for the gamma distribution of Eq. 77 corresponding to α = 1, where the large
deviations of the empirical average a corresponding to q = 1 are still standard (with the rate function of Eq. 80),
all the empirical moments of order q > 1 will have asymmetric large deviations, in particular the empirical second
moment corresponding to q = 2.
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VII. RENORMALIZATION INTERPRETATION OF LARGE DEVIATIONS RATE FUNCTIONS

The region of typical fluctuations around the typical value (see the Introduction around Eq. 2) has been analyzed
in detail from the renormalization point of view, both for the sum of random variables [52–54] and for the maximum
of random variables [55–59]. In this section, it is thus interesting to discuss the meaning of large deviations from the
renormalization perspective.

A. Merging two sets of N variables

To see more clearly the renormalization meaning of large deviations, it is interesting to consider the merging of two
sets of N random variables :
(1) the first set [xi]1≤i≤N of variables is drawn with the probability distribution π1(x) and is characterized by the

empirical histogram

p
(1)
N (x) ≡ 1

N

N
∑

i=1

δ(x − xi) (97)

(2) the second set [xi]N+1≤i≤2N of variables is drawn with the probability distribution π2(x) and is characterized
by its empirical histogram

p
(2)
N (x) ≡ 1

N

2N
∑

i=N+1

δ(x− xi) (98)

B. Renormalization for the large deviations of the empirical histogram

Each of these two sets labelled by b = 1, 2 is characterized by the large deviation properties of its empirical histogram

p
(b)
N (x) (Eq. 28 and 29)

P(b)
N [p

(b)
N (.)] ≃

N→+∞
δ

(

1−
∫

dxp
(b)
N (x)

)

e−NSrel(p
(b)
N (.)|πb(.)) (99)

or its exact generating function Z(b)
N [κ(.)] of Eq. 30 for any finite N

Z(b)
N [κ(.)] ≡

∫

Dp
(b)
N (.)P(b)

N [p
(b)
N (.)] e

N

∫

dxκ(x)p
(b)
N (x)

=

(
∫

dxπb(x)e
κ(x)

)N

≡ eNΦb[κ(.)] (100)

Via the merging of the data of Eqs 97 and 98, the global histogram for the (2N) variables is simply the average of
the two histograms

p2N (x) ≡ 1

2N

2N
∑

i=1

δ(x− xi) =
p
(1)
N (x) + p

(2)
N (x)

2
(101)

with the typical value

p
typ
2N (x) =

π1(x) + π2(x)

2
(102)

Its generating function is simply the products of the generating functions of Eq. 100

Z2N [κ(.)] = Z(1)
N [κ(.)]Z(2)

N [κ(.)] =

(
∫

dxπ1(x)e
κ(x)

)N (∫

dxπ2(x)e
κ(x)

)N

= eN(Φ1[κ(.)]+Φ2[κ(.)]) ≡ e2NΦ[κ(.)] (103)

i.e. the scaled cumulant generating function follows the renormalization rule

Φ[κ(.)] =
Φ1[κ(.)] + Φ2[κ(.)]

2
(104)
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In particular, when the two sets are drawn with the same probability distribution π1 = π2 = π, the scaled cumulant
generating function Φ[κ(.)] is exactly conserved along the RG flow.
In terms of large deviations form of Eq. 99, the probability of the histogram of Eq. 101

P2N [p2N (.)] =

∫

Dp
(1)
N (.)P(1)

N [p
(1)
N (.)]

∫

Dp
(2)
N (.)P(2)

N [p
(2)
N (.)]δ

(

p2N(.)− p
(1)
N (.) + p

(2)
N (.)

2

)

≃
N→+∞

∫

Dp
(1)
N (.)

∫

Dp
(2)
N (.)δ

(

1−
∫

dxp
(1)
N (x)

)

δ

(

1−
∫

dxp
(2)
N (x)

)

δ

(

p2N (.)− p
(1)
N (.) + p

(2)
N (.)

2

)

e
N
[

−Srel(p
(1)
N (.)|π1(.)) − Srel(p

(2)
N (.)|π2(.))

]

(105)

corresponds to the optimization of the function
[

−Srel(p
(1)
N (.)|π1(.))− Srel(p

(2)
N (.)|π2(.))

]

in the exponential in the

presence of the constraints that can be taken into account via Lagrange multipliers. One obtains the optimal solution

p
(1)
N (x) = p2N (x)

2π1(x)

π1(x) + π2(x)

p
(2)
N (x) = p2N (x)

2π2(x)

π1(x) + π2(x)
(106)

and the corresponding sum of the relative entropies in the exponential

N
[

−Srel(p
(1)
N (.)|π1(.)) − Srel(p

(2)
N (.)|π2(.))

]

= N

[

−
∫

dxp
(1)
N (x) ln

(

p
(1)
N (x)

π1(x)

)

−
∫

dxp
(2)
N (x) ln

(

p
(2)
N (x)

π2(x)

)]

= −2N

∫

dxp2N (x) ln

(

2p2N (x)

π1(x) + π2(x)

)

= −2NSrel

(

p2N (x)
∣

∣p
typ
2N (x) =

π1(x) + π2(x)

2

)

(107)

coincides with the relative entropy of the histogram p2N (x) with respect to its typical value of Eq. 102 as it should
for consistency. In particular, when the two sets are drawn with the same probability distribution π1 = π2 = π,
the optimal solution to produce an anomalous empirical histogram p2N (x) consists in choosing the same anomalous
empirical histogram for the two subsets (Eq. 106).

C. Renormalization for the large deviations of the empirical maximum

For each set b = 1, 2, the cumulative probability distribution of the empirical maximum of Eq. 32 can be interpreted
as an exact large deviation form

∫ x

0

dx′X (b)
N (x′) = [1− Cb(x)]

N = e−NJb(x) (108)

where the rate function reads

Jb(x) = − ln [1− Cb(x)] (109)

in terms of the complementary cumulative distribution function (Eq 15) associated to each distribution πb(x)

Cb(x) ≡
∫ +∞

x

dx′πb(x
′) (110)

The empirical maximum of the (2N) variables is of course the maximum of the two maximal values associated to
the two sets of Eqs 97 and 98

xmax
2N ≡ max

(

x
max(1)
N , x

max(2)
N

)

(111)

So the corresponding cumulative distribution
∫ x

0

dx′X2N (x′) =

[
∫ x

0

dx′X (1)
N (x′)

] [
∫ x

0

dx′X (2)
N (x′)

]

= e−N [J1(x)+J2(x)] ≡ e−2NJ(x) (112)
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is written exactly in a large deviation form with the rate function

J(x) =
J1(x) + J2(x)

2
= − ln [1− C1(x)] + ln [1− C2(x)]

2
(113)

When the two sets are drawn with the same probability distribution π1 = π2 = π, one obtains that the rate function
J(x) is exactly conserved along the RG flow.

D. Renormalization for the large deviations of the empirical average

1. Case of standard large deviations

In the case of standard large deviations, each set b = 1, 2 is described by the large deviation form of Eq. 75) for its
empirical average ab

A(b)
N (ab) ≃

N→∞
e−NIb(ab) (114)

where the rate function Ib(ab) is the Legendre transform of the scaled cumulant generating function of Eq. 76

φb(k) = ln

(
∫ +∞

0

dxπb(x)e
kx

)

(115)

involved in the generating function

Z
(b)
N (k) ≡

∫

dabA(b)
N (ab)e

Nkab ≡ eNφb(k) (116)

Via the merging of the data of Eqs 97 and 97, the empirical average of the (2N) variables is simply the average of
the two empirical averages of the two sets b = 1, 2

a ≡ 1

2N

2N
∑

i=1

xi =
a1 + a2

2
(117)

Its generating function is simply the products of the generating functions of Eq. 116

Z2N (k) ≡
∫

daA2N (a)e2Nka =

∫

da1A(1)
N (a1)

∫

da2A(2)
N (a2) e

2Nk(a1+a2)

= Z
(1)
N (k)Z

(2)
N (k) = eN [φ1(k)+φ2(k)] =≡ e2Nφ(k) (118)

so the renormalization rule for the scaled cumulant generating function is simply

φ(k) =
φ1(k) + φ2(k)

2
(119)

In particular, when the two sets are drawn with the same probability distribution π1 = π2 = π, the scaled cumulant
generating function φ(k) is exactly conserved along the RG flow.
In terms of large deviations form of Eq. 114, the probability of the empirical average reads for this case π1 = π2 = π

A2N (a) =

∫

da1AN (a1)

∫

da2AN (a2)δ

(

a− a1 + a2

2

)

≃
N→+∞

∫

da1e
−N [I(a)−I(2a−a1)] (120)

The saddle-point evaluation of this integral requires to find the maximum of the function in the exponential

L(a1) = −I(a1)− I(2a− a1) (121)

The vanishing of the first derivative

0 =
∂L(a1)
∂a1

= −I ′(a1) + I ′(2a− a1) (122)
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gives the symmetric solution a1 = a = 2a− a1 = a2 which is indeed a maximum if the second derivative is negative

0 =
∂2L(a1)
∂2a1

|a1=a = [−I ′′(a1)− I ′′(2a− a1)]a1=a = −2I ′′(a) < 0 (123)

For instance for the gamma distribution of parameter ν of Eq. 77 the second derivative of the rate function of Eq. 80

I ′′ν (a) =
ν

a2
> 0 (124)

satisfies this condition.

2. Case of large deviations with asymmetric scaling

It is now interesting to compare the above discussion with the case of the large deviations for stretched exponential
decay 0 < α < 1 that display the asymmetric scaling (Eqs 84 and 87)

AN (a) ∝
N→+∞

e−NI−(a) for a ≤ x

AN (a) ∝
N→+∞

e−NαI+(a) for a > x (125)

Then Eq. 120 is replaced by the sum of four possible contributions of various orders with respect to N

A2N (a) =

∫

da1

[

e−NI−(a1)θ(a1 ≤ x) + e−NαI+(a1)θ(x < a1)
]

[

e−NI−(2a−a1)θ(2a− x ≤ a1) + e−NαI+(2a−a1)θ(a1 < 2a− x)
]

=

∫

da1e
−N [I−(a1)+I−(2a−a1)]θ(2a− x ≤ a1 ≤ x)

+

∫

da1e
−NI−(a1)−NαI+(2a−a1)θ(a1 ≤ x)θ(a1 < 2a− x)

+

∫

da1e
−NαI+(a1)−NI−(2a−a1)θ(x < a1)θ(2a− x ≤ a1)

+

∫

da1e
−Nα[I+(a1)+I+(2a−a1)]θ(x < a1 < 2a− x) (126)

The fourth contribution of order e−Nα

will be the leading contribution whenever the domain of integration for a1
is not empty, i.e. in the region a > x : then the saddle-point evaluation requires the maximization of the function
involving the rate function I+(a) = (a− x)α of Eq. 88

L(a1) = −I+(a1)− I+(2a− a1) (127)

However the symmetric solution a1 = a = 2a− a1 = a2 is a minimum here as a consequence of the sign of the second
derivative for any 0 < α < 1

L′′(a) = −2I ′′+(a) = 2α(1− α)(a − x)α−2 > 0 (128)

The maximization of Eq 121 occurs instead at the boundaries a1 = x and a2 = 2a− x (or vice-versa) and one obtains
the leading contribution in the region a > x

A2N (a) ≃ e−NαI+(2a−x) = e−Nα(2a−2x)α = e−(2N)α(a−x)α = e−(2N)αI+(a) for a > x (129)

as it should for consistency with Eq. 125 in the region a > x.

VIII. CONCLUSION

In this paper, we have revisited the empirical observables based on independent random variables, namely the
empirical maximum, the empirical average, the empirical non-integer moments or other additive empirical observables,
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in order to describe the cases where asymmetric large deviations occur. We have stressed the analogy with equilibrium
statistical mechanics : the Sanov theorem for the large deviations of the empirical histogram that involves as rate
function the relative entropy with respect to the true probability distribution has been taken as the unifying starting
point. The various empirical observables have been then analyzed by optimizing this relative entropy in the presence
of the appropriate constraints. Finally, we have discussed the physical meaning of large deviations rate functions from
the renormalization perspective.
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