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We present a simple description of the energy density profile created in a nucleus-nucleus colli-
sion, motivated by high-energy QCD. The energy density is modeled as the sum of contributions
coming from elementary collisions between localized charges and a smooth nucleus. Each of these
interactions creates a sharply-peaked source of energy density falling off at large distances like 1/r2,
corresponding to the two-dimensional Coulomb field of a point charge. Our model reproduces the
one-point and two-point functions of the energy density field calculated in the framework of the color
glass condensate effective theory, to leading logarithmic accuracy. We apply it to the description of
eccentricity fluctuations. Unlike other existing models of initial conditions for heavy-ion collisions,
it allows us to reproduce simultaneously the centrality dependence of elliptic and triangular flow.

In an ultrarelativistic nucleus-nucleus collision, the
strong interaction deposits energy between two crossing
nuclei right after the collision takes place. The resulting
profile of energy density is a crucial quantity, as it de-
termines the bulk of particle production. After a short
pre-equilibrium phase [1, 2], this energy density provides
the initial condition for the equations of viscous hydro-
dynamics which govern the subsequent evolution of the
fluid [3, 4], until it freezes out into individual hadrons
which decay [5] into the detected stable hadrons.

At ultrarelativistic energies, the energy density can be
determined from first principles in the Color Glass Con-
densate (CGC) approach [6–8]. It is an interesting case
where weakly coupled QCD can be used as an input to
model non-perturbative phenomena, such as collective
flow [9]. Event-by-event fluctuations of the energy den-
sity are essential for phenomenology [10]. Their magni-
tude and shape is characterized by the two-point function
of the density field, which has recently been calculated
analytically in the CGC approach [8].

In this article, we propose a simple model of event-by-
event fluctuations of energy density which reproduces the
CGC results to leading logarithmic accuracy. We model
the energy density field as the sum of contributions of ele-
mentary collisions between a localized color charge and a
dense nucleus. Each elementary collision yields a source
of energy density which is independent of rapidity and
decreases with transverse distance r like 1/r2, charac-
teristic of a 2-dimensional Coulomb field. We apply our
model to the description of elliptic and triangular flows
in Pb+Pb collisions.

We denote by ρ(r) the energy density at a transverse
point r in a single event. Its value averaged over many
events, denoted by 〈ρ(r)〉, has been calculated in the

CGC1 [7, 8]:

〈ρ(r)〉 =
N2

c − 1

2g2Nc
Q2

BQ
2
A. (1)

In this equation, QA and QB are the saturation momenta
of the colliding nuclei A and B, Nc is the number of col-
ors (Nc = 3 for QCD), and g denotes the dimensionless
coupling constant of QCD. For now, we treat nuclei as
uniform objects with infinite transverse extension, so that
the saturation momenta, as well as 〈ρ(r)〉, are indepen-
dent of r.

The fluctuation around the average value is quantified
by the two-point function of the field, defined by:

S(r1, r2) ≡ 〈ρ(r1)ρ(r2)〉 − 〈ρ(r1)〉〈ρ(r2)〉. (2)

The details of the structure of this correlator as a func-
tion of the relative distance |r1− r2| are complicated [8],
but most of these details are irrelevant for our purposes.
Indeed, the phenomenology of collective flow in heavy-
ion collisions is driven by hydrodynamics, which is a de-
scription of the large-scale structure of the system [11].
The relevant fluctuations are not the fluctuations of the
energy density itself, but those of its integral over a
transverse area much larger than Q−2A,B [12, 13], which
is the scale of short-range dynamics. The variance of
this integrated fluctuation is proportional to the integral
of S(r1, r2) over the relative position r1− r2 [9], which is
the most important quantity for phenomenology:

ξ(r) ≡
∫
s

S
(
r +

s

2
, r− s

2

)
, (3)

where we use the short hand
∫
s

=
∫

dxdy for the integra-
tion over the transverse plane. In the CGC, the integrand

1 The expressions given in Eq. (1) and Eq. (4) were obtained in
Ref. [8] using the McLerran-Venugopalan model, though neglect-
ing the logarithms inherent to the saturation scales in that model.
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FIG. 1. The four plots on the left illustrate the decomposition of the energy density according to Eq. (5) in a central Pb+Pb
collision at

√
sNN = 5.02 TeV. The upper left and lower right plots depict the positions of sources in nuclei A and B in one

event, sampled according to the probability density Eq. (10), where the saturation momentum at the center of the nucleus is
Qs0 = 1.24 GeV, and the infrared cutoff is m = 0.14 GeV [9]. The lower left and upper right plots depict the map of saturation
momentum over the nuclear area, which is simply proportional to the thickness of the 208Pb nucleus. The large circles have
radius equal to R = 6.62 fm, i.e., the radius parameter used in the Fermi parametrization of the 208Pb. The larger plot on
the right depicts the energy density, Eq. (5), for that event, obtained upon adding the contributions from sources from A and
B. We have chosen g2 = π, corresponding to αs = 0.25. With this value, the mean energy density at the center, defined by
Eq. (1), is 131 GeV/fm3.

decreases at large distance like 1/|s|2, so that the inte-
gral diverges logarithmically at infinity. This divergence
must be regulated through an infrared cutoff, which we
shall introduce in the form of a parameter m of the or-
der of the pion mass. The CGC result for the integrated
variance is, to leading logarithmic accuracy [9]:

ξ(r) ≈ 2π(N2
c − 1)

g4N2
c

Q4
BQ

2
A ln

(
1 +

Q2
A

m2

)
+(A↔ B), (4)

where we have regulated the argument of the logarithm
to ensure that the variance is always positive [9].

We now construct an event-by-event prescription for
ρ(r) which incorporates the CGC results, Eqs. (1) and
(4). We assume that, in a given event, each nucleus con-
tains sources [14] located at transverse coordinates sj ,
where j labels the source, and that ρ(r) after the colli-
sion is the superposition of the contributions of individual
sources coming from both nuclei:

ρ(r) = Q2
B

∑
j∈A

∆A(r− sj) +Q2
A

∑
j∈B

∆B(r− sj) (5)

where ∆A/B is the profile of a source from nucleus A/B,
to be specified below. We assume that the positions
sj are independent random variables, and we denote by
nA/B the density of sources in nucleus A/B. Note that
the energy density profile defined by Eq. (5) is a sum of
two terms, symmetric under the exchange of A with B.

Each term is the product of a random function involving
one nucleus by the saturation momentum squared of the
other nucleus. This decomposition is illustrated in Fig. 1.

The one- and two-point functions of the energy density
defined by Eq. (5) are given by:

〈ρ(r)〉 = Q2
BnA

∫
s

∆A(r− s) + (A↔ B),

S(r1, r2) = Q4
BnA

∫
s

∆A(r1 − s)∆A(r2 − s) + (A↔ B).

(6)

We now determine nA and ∆A(r) such that one recovers
the CGC results. By taking the ratio of the first terms
in the right-hand side of these equations, one eliminates
nA. Thus, the ratio of the two-point function and the
one-point function directly determines the source profile
∆A(r).2 As argued above, the most important quantity
for phenomenology is the integrated variance (3):

ξ(r) = Q4
BnA

[∫
s

∆A(r− s)

]2
+ (A↔ B). (7)

2 Interestingly enough, the ultra-violet divergences which plague
the calculation of the energy density at proper time τ = 0+

cancel when computing the ratio S/〈ρ〉 (see Eqs. (3.22) and (4.50)
of Ref. [8]). Hence the source profile, ∆A(r), at τ = 0+ turns out
to be a more robust quantity than the 1-point and the 2-point
functions individually.
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Substituting the expressions from the CGC, Eqs. (1) and
(4), and assuming that the two terms in the right-hand
side of the first line of Eq. (6) contribute symmetrically
( 1
2 each), one obtains:∫

s

∆A(r− s) =
8π

g2Nc
ln

(
1 +

Q2
A

m2

)
. (8)

Choosing the following source profile:

∆A(r) =


8

g2Nc

1

|r|2 +Q−2A

, |r| < 1/m,

0, |r| > 1/m.

(9)

one recovers Eq. (8), and also the 1/|r1 − r2|2 decrease
of the two-point function at large distances.3

We now discuss the physical interpretation of Eq. (9).
The large-distance behavior of ∆A(r) is that of a
Coulomb field in two dimensions. The electric field de-
creases like 1/r, and its energy density like 1/r2. Note
that ∆A(r) goes to a finite value for r → 0, while it would
diverge for a pointlike charge. The physical interpreta-
tion is that the charge is spread over a distance ∼ 1/QA.
Now, the number of elementary charges contained in an
area of this size is of order 1/g2, which explains the corre-
sponding factor in Eq. (9). Finally, each source profile in
Eq. (5) is multiplied by the saturation momentum of the
incident nucleus. This is related to the fact that, during
the collision process, the (initially transverse) chromo-
electric and chromo-magnetic fields acquire longitudinal
components [15]. This is a genuine non-Abelian effect,
that one may view as resulting from the fusion of two
gluons (one from each nucleus). Thus, the longitudinal
fields produced during the collision must be proportional
to the color charges of both nuclei, hence the factor Q2

B

(Q2
A) in the first (second) term of Eq. (5).
The density of sources, nA, is eventually obtained from

the first line of Eq. (6). Substituting Eqs. (1) and (8),
we obtain:

nA =
N2

c − 1

32π

Q2
A

ln
(

1 +
Q2

A

m2

) . (10)

It is naturally proportional to the number of gluon colors
N2

c − 1 since the CGC is an effective theory of small-x
gluons [16]. Up to the logarithmic correction, it is also
proportional to Q2

A, which is the typical behavior for the
density of partons in the McLerran-Venugopalan (MV)
model [17].

So far we have treated nuclei as infinite and uniform,
with constant saturation momenta QA and QB . In order

3 The two-point function defined by the second line of Eq. (6) in-
volves the convolution of ∆A(r) with itself, which is proportional
to 1/|r1 − r2|2, up to a slowly-varying logarithm.

to apply this framework to phenomenology, one needs
to take into account the finite size of the nucleus, or,
equivalently, the dependence of QA and QB on trans-
verse coordinates. This can be done unambiguously if
QA and QB vary over a scale much larger than other
scales in the system, in particular the infrared scale 1/m.
The straightforward generalization of Eq. (5), taking into
account the variation of QA/B , is:

ρ(r) =
∑
j∈A

Q2
B(sj)∆A(r− sj) + (A↔ B). (11)

Similarly, one takes into account the variation of QA/B

when sampling the sources according to Eq. (10). In
Eq. (9), one simply replaces QA/B with its value at the
center of the source.

In summary, the present model provides a transparent
physical picture of the Glasma [15] energy density profile
as a superposition of contributions coming from collisions
between localized charges and a uniform nucleus. Note
that fluctuations in this picture solely arise from the po-
sitions of the charges, which are sampled randomly over
the area of the nucleus. This is reminiscent of the Monte
Carlo Glauber model, where fluctuations originate from
positions of nucleons within the nucleus [18]. The colli-
sion process itself, on the other hand, is it deterministic.
The physical interpretation is that the Glasma dynamics
is governed by classical field equations.

The model is particularly suitable for a Monte Carlo
implementation, which we shall use in the remainder of
this paper, and which we name magma. Let us move,
then, to a phenomenological application.

In this article, as in Ref. [9], we assume that Q2
A/B is

proportional to the integral of the nuclear density over
the longitudinal coordinate, which is usually denoted by
TA/B [18]. Thus, the only free parameter in our calcula-
tion is the proportionality constant or, equivalently, the
value of the saturation momentum at the center of the
nucleus, which we denote by Qs0. Note that our ap-
proach differs from that of the IP-Glasma model [19],
in which one samples the positions of nucleons within
each nucleus, and then evaluates locally the saturation
momentum depending on these positions. We consider
instead that fluctuations associated with the wavefunc-
tions of incoming nuclei are already effectively taken care
of by sampling the sources sj within each nucleus.

Figure 1 presents a Monte Carlo realization of our
model for a central Pb+Pb collision. The points on the
left plot represent the positions of the sources in each nu-
cleus, sampled according to the density (10). Note that
there are sources lying outside the nucleus. The reason
is that for small QA, the density of sources (10) does not
vanish, but goes to a constant proportional to m2. How-
ever, these outliers are physically irrelevant, as they give
a negligible contribution to the energy density, as explic-
itly observed on the right panel of Fig. 1, where most of
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FIG. 2. Symbols: Experimental data on v2 and v3, as function of centrality percentile, measured by the ATLAS Collabora-
tion [20] in 5.02 TeV Pb+Pb collisions. Lines: results from the magma calculation. Panel (a) shows v2{2}, v2{4} and v3{2},
while panel (b) displays the ratio v2{2}/v3{2}.

the energy is within the nuclear radius. Note that void
areas appear, even close to the center. These void areas
are filled during the early pre-equilibrium evolution of
the system, before the hydrodynamics applies [2]. Note
that, in the case of a central collision as in Fig. 1, the
contribution of each source to the energy density only
depends on its distance to the center.

We now apply this model to the description of
anisotropic flow in Pb+Pb collisions. The coefficient of
anisotropic flow, vn, is defined as the n-th Fourier har-
monic of the azimuthal distribution of outgoing parti-
cles [21]. The largest harmonics in the spectrum are el-
liptic flow, v2, and triangular flow, v3. Hydrodynamic
simulations show that, in a given class of impact param-
eter, vn is to a good approximation [22–24] linearly cor-
related with the initial anisotropy of the density profile
ρ(r) in harmonic n, which is given by [12]:

εn ≡
∣∣∫

z
(z − z0)nρ(z)

∣∣∫
z
|z − z0|nρ(z)

, (12)

where we have used the complex notation z ≡ x+iy, and
z0 is the center of energy:

z0 ≡
∫
z
zρ(z)∫

z
ρ(z)

. (13)

Therefore, in a narrow bin of collision centrality we can
use vn ' κnεn, where κn is a positive response coeffi-
cient, whose centrality dependence can be neglected if
one focuses on central collisions [26].

Anisotropic flow is not measured on an event-by-event
basis. Quantities accessible experimentally are moments,

or cumulants of the distribution of vn. The lowest order
cumulants are [27]:

vn{2} ≡
√
〈|vn|2〉

vn{4} ≡
(
2〈|vn|2〉2 − 〈|vn|4〉

)1/4
, (14)

where angular brackets denote an average value over
many events in a narrow centrality class. The most accu-
rately measured cumulants are v2{2}, v2{4}, v3{2} [20,
28, 29]. Their centrality dependence in 5.02 TeV Pb+Pb
collisions is displayed in Fig. 2 (a). Linear response im-
plies that they are proportional to the corresponding cu-
mulants of the initial anisotropy εn:

v2{2} = κ2ε2{2},
v2{4} = κ2ε2{4},
v3{2} = κ3ε3{2}. (15)

Our Monte Carlo calculation goes as follows: We sample
the position of the sources in each nucleus, we calculate
εn for each event by inserting Eq. (5) into Eqs. (13) and
(12), and we evaluate the integrals analytically4 for differ-
ent impact parameters. We treat κ2, κ3, and Qs0 as free
parameters, which we adjust to data. The values of Qs0

and m are the same as in Ref. [9],5 where the same quan-
tities were evaluated directly as a function of the 1-point

4 Since the integral in the denominator of ε3 cannot be evaluated
analytically, we make the approximation that the relative fluctu-
ations of 〈r3〉 are identical to the relative fluctuations of 〈r2〉3/2
at every centrality.

5 Changing the cutoff amounts to renormalizing the value of Qs0

(Appendix B of Ref. [9]) but does not change the physical quan-
tities in the chosen centrality range.
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and 2-point functions within a small-fluctuation approxi-
mation [13]. The response coefficients κ2 and κ3 required
to match data are by a few percent larger than in Ref. [9].
The main reason for this small difference is that our new
calculation consistently takes into account the spatial ex-
tension of individual sources. Our results, displayed as
lines in Fig. 2, are in very good agreement with exper-
imental data. In particular, the centrality dependence
of the ratio v2{2}/v3{2}, which is typically missed by
hydrodynamic calculations [30], is naturally reproduced.

In conclusion, we have proposed a simple model of
event-by-event fluctuations in heavy-ion collisions, where
the energy density in each event has a simple analytic
form given by Eq. (5). Our model reproduces the fea-
tures of the one-point and two-point functions computed
in the Glasma approach, to leading logarithmic accuracy.
Equations (5) and (9) give an intuitive picture of the ini-
tial density in a heavy-ion collison, as the sum of contri-
butions from two-dimensional Coulomb fields of charges
spread over a distance of order 1/Qs. Implementing this
effective description through Monte Carlo calculations is
straightforward and numerically fast. It provides a ro-
bust initial condition for pre-equilibrium and hydrody-
namic studies, motivated by QCD.
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