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We study the stochastic dynamics of a particle in a periodically driven potential. For atomic
ions trapped in radio-frequency Paul traps, noise heating and laser cooling typically act slowly in
comparison with the unperturbed motion. These stochastic processes can be accounted for in terms
of a probability distribution defined over the action variables, which would otherwise be conserved
within the regular regions of the Hamiltonian phase space. We present a semiclassical theory of
low-saturation laser cooling applicable from the limit of low-amplitude motion to large-amplitude
motion, accounting fully for the time-dependent and anharmonic trap. We employ our approach to
a detailed study of the stochastic dynamics of a single ion, drawing general conclusions regarding the
nonequilibrium dynamics of laser-cooled trapped ions. We predict a regime of anharmonic motion
in which laser cooling becomes diffusive (i.e., it is equally likely to cool the ion as it is to heat it),
and can also turn into effective heating. This implies that a high-energy ion could be easily lost
from the trap despite being laser cooled; however, we find that this loss can be counteracted using
a laser detuning much larger than Doppler detuning.

I. INTRODUCTION

In the past 50 years, Paul traps have become a major
tool for confining charged particles [1]. Certain atomic
ion species can be cooled with laser light over more
than six orders of magnitude in temperature to the mil-
likelvin regime [2], and with suitable methods further to
their quantum ground state, making Paul traps a promi-
nent tool in experiments demonstrating quantum control
[3, 4]. However, the nonequilibrium dynamics leading
ions from the high energies at creation or after a collision
with background gas to the near-equilibrium “Doppler
cooling limit” remain poorly understood. Partly, the rea-
son is that Paul traps are based on radio-frequency (rf)
electric fields whose interplay with additional external
fields that act on the ions poses a theoretical and exper-
imental challenge.

The rapidly oscillating fields of the Paul trap lead to an
averaged effective trapping potential with (slower) mo-
tion at the characteristic “secular” frequencies. Super-
imposed on the secular motion is a smaller-amplitude
motion at the rf-drive frequency called “micromotion”.
Additional, periodic rf-driven motion that is independent
of the secular motion amplitude, known as “excess micro-
motion”, can often be carefully reduced, and we assume
here that it can be neglected. The interplay of rf-driven
motion and stochastic noise forms a basic example of a
system driven far from equilibrium, and has been a con-
cern since the early experiments with trapped ions. The
potential in the early Paul traps was typically quadrupo-
lar near the effective potential minimum, leading to linear
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equations of motion. In [5] a model for a one-dimensional
(1D) periodically driven Mathieu oscillator subject to dis-
sipation and white noise generalized previous works on
Brownian motion. The Fokker-Planck (FP) equation for
the probability distribution of the particle in phase-space
(of position and momentum) admits a Gaussian solution
that is periodic with the trap frequency [6–8]. The inter-
play of the periodic driving with laser cooling was elab-
orated for a quadrupole trap in some parameter regimes
[9], mostly in the final stage of the cooling when the ion
settles around the effective potential minimum, and also
with excess micromotion [10].

However, above a certain distance from the potential
minimum that depends on the trap geometry, the anhar-
monicity of the potential may start to play an impor-
tant role. In general, in the absence of stochastic per-
turbations, the Hamiltonian phase-space for motion in rf
Paul traps contains one or more approximately regular
(integrable) regions. Within a regular region the mo-
tion of the ion is characterized by conserved quantities
(the Hamiltonian actions, Ij), whose number is equal to
the spatial dimension. Each trajectory is then restricted
to rotations in phase-space on a manifold determined
by the conserved actions, with the topology of a torus.
The time evolution is described by the angle variables
θj(t) = θj(0) + νjt with an angular frequency νj that is
only a function of the actions (and is time-independent),
and the initial condition. Due to the micromotion, the
invariant tori are periodically modulated in time within
the phase-space, at the rf-drive frequency.

Beyond the integrable motion, some phase-space re-
gions may become chaotic, and from some chaotic regions
the ion can escape the trap on a very fast timescale [11].
Even for chaotic motion that is bounded, the ion explores

ar
X

iv
:1

80
8.

07
81

6v
3 

 [
ph

ys
ic

s.
at

om
-p

h]
  1

6 
M

ay
 2

01
9

mailto:haggaila@gmail.com


2

a non-zero volume in phase-space whose dimension is not
reduced by conservation laws, and typically does so in an
apparently random manner. Thus we can expect that a
weak stochastic perturbation within an already chaotic
region does not change the evolution qualitatively. In the
originally regular region however, a stochastic perturba-
tion breaks the conserved quantities, changing the nature
of the motion.

In this work, we consider stochastic heating and laser
cooling processes in situations where the ion is initially
far from the cooling limit, but within the regular phase-
space parts. We strive to answer three main questions:
First, due to the widespread use of a time-independent
approximation of the rf trap potential (known as the
pseudopotential), where can it be employed to obtain a
good description of the stochastic dynamics, and where
does it fail? Second, how do the stochastic dynamics
vary with the amplitude of motion, and does the trap’s
anharmonicity introduce qualitative changes in compar-
ison with harmonic motion? If it is possible to answer
these two questions in a broad way, we can seek answers
to the third and final question about the most advanta-
geous values of laser cooling parameters such as detuning
and intensity and also trap parameters such as electrode
potentials, to efficiently load ions and to recover the ion
to near the cooling limit from collisions with background
gas that may put the ion in a state of high kinetic and
potential energy.

In Sec. II we approach the task by first transform-
ing the Hamiltonian description of dynamics without
stochastic and dissipative events to action-angle vari-
ables. We describe the effects of noise and cooling under
the assumption that the actions change slowly due to
such stochastic perturbations, as compared to the char-
acteristic frequencies νj . In this case, one can capture
the dynamics by a Fokker-Planck equation where the ac-
tions alone suffice to describe the slow stochastic dynam-
ics [12], while the much faster rates of change of θj can
be eliminated by averaging over these coordinates. The
stochastic processes can then be characterized by action-
dependent drift and diffusion rates that dynamically re-
shape a probability distribution over the actions as time
goes on. Due to the linearity of the FP equation, dif-
ferent stochastic processes can be accounted for just by
adding their coefficients.

In order to approximate the photon scattering dur-
ing laser cooling, we employ well-established semiclas-
sical simplifying assumptions [2, 9, 13–23]. In Sec. III
we treat photon scattering in two approximations: The
coarser assumption posits that the excited state of the
electron has a lifetime that is negligible on all timescales
of the ion dynamics. In this case, each photon is as-
sumed to be absorbed and then spontaneously emitted at
the same point in time. We call this the “zero lifetime”
limit and it is the limit that Javanainen and Stenholm

called the “heavy particle” limit in their seminal work
on laser cooling [14]. The conditions of the zero lifetime
limit are violated when the ion’s amplitude of motion
grows [15], or when the driven micromotion oscillations
are too fast. We remove these restrictions by treating ab-
sorption and emission as two events separated in time by
intervals that are randomly picked based on the excited
state lifetime. We call this the “finite lifetime” limit,
and we restrict our treatment to a low saturation of the
transition (when the ion spends most of the time in its
electronic ground-state). This derivation consistently re-
duces to the zero lifetime limit when the lifetime of the
excited state approaches zero, and our findings agree with
previous results in the limits of their scope.

In the remainder of the paper, we apply this frame-
work to study white noise heating and laser cooling with
a concrete trap model. In Sec. IV we review the rele-
vant aspects of Hamiltonian motion within Paul traps. In
many trap variants [19] there is a region around the effec-
tive trap minimum where the potential is approximately
a quadrupole, with a symmetry axis along which the mo-
tion corresponds to a (time-independent) harmonic os-
cillator, and in the transverse directions it is described
by decoupled Mathieu oscillators. Within a quadrupole
potential, the heating and cooling coefficients can be ap-
proximated in closed form in some limits [Sec. V]. To go
beyond harmonic motion, we focus on a model surface-
electrode trap with a five-wire configuration, where it
is possible to separate the motion perpendicular to the
electrode surface, from the other motional degrees of free-
dom. We restrict our attention to this 1D motion for
which the potential is also strongly anharmonic in a large
region, with a detailed characterization of the ranges of
validity of the various approximations as a function of
the action given in Sec. VI.

A self-contained summary of our results and a dis-
cussion of general conclusions is presented in Sec. VII,
with Fig. 7 depicting schematically the different regimes
of laser cooling. An outlook for possible applications
and generalizations is laid out in Sec. VIII. To answer
briefly the questions at the outset, for white noise heat-
ing we find that the pseudopotential can be safely used,
which presents a significant simplification for future stud-
ies, while for laser cooling dynamics it turns out to give
quantitatively and qualitatively wrong results in most
scenarios far from equilibrium. In addition, we find that
within a quadrupole potential, the efficiency of laser cool-
ing remains independent of the amplitude of motion in
the high action region, while for the strongly anharmonic
potential of a surface-electrode trap we find that cooling
may become heating, and also change its nature to dif-
fusive at large amplitude motion. This result would be
completely lacking in an approximation of the potential
as a quadrupole, and even in an approximation using an
anharmonic pseudopotential, serving to emphasize the
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importance of the interplay of nonlinearity, micromotion
and stochastic dynamics in Paul traps. We also present
a simple characterization of heating and cooling dynam-
ics at different noise, laser, and trap parameters, and
answer the third question posed above, for the studied
model five-wire trap. The framework that we provide al-
lows to answer further related questions quantitatively,
such as the probability or the time required for the ion
to safely arrive at the cooling limit. Moreover, we find
that far-from-equilibrium regions are governed by com-
plex dynamics that hold much intrigue by themselves.
The presented theory gives a quantitative tool for study-
ing such dynamics and gaining better understanding of
the underlying nonequilibrium mechanisms.

II. GENERAL MODEL

A. The Hamiltonian Motion

We consider an ion of mass m and charge e trapped
in a general Paul trap, with ~r and ~v ≡ ~̇r being its vector
coordinate and velocity in D = 3 dimensions, and ~p the
canonical momentum. We assume that the Hamiltonian
depends quadratically on the momenta, with a potential
energy that is a function of the coordinates and is driven
periodically in time at rf-drive frequency Ω, so our start-
ing point is the Hamiltonian

H0(~r, ~p, t) =
1

2
(~p)2+V (~r, t), V (~r, t) = V (~r, t+T ), (1)

with the potential having period T = 2π/Ω (which can
include the particular case where it is time-independent).
We also assume that the Hamiltonian H0 can be approx-
imated as integrable (regular) in some region of phase
space, i.e. that D conserved actions exist, and the canon-
ical action-angle coordinates (~I, ~θ) can be defined and
calculated explicitly, at least numerically [11]. A canoni-
cal transformation from the real space coordinates is then
defined by

Ij = Λj(~r, ~p, t), θj = Θj(~r, ~p, t), (2)

with the transformation functions Λj and Θj depending
explicitly on time (and being T -periodic), if V (~r, t) is. In
action-angle coordinates, the Hamiltonian H0 transforms
into a Hamiltonian of ~I alone, and the corresponding
equations of motion (with an over-dot denoting the time
derivative), are

İj = 0, θ̇j = νj(~I), (3)

νj(~I) being the fundamental frequencies of the motion on

the torus defined by fixed actions ~I, which are conserved
and thus time-independent.

B. The Fokker-Planck Equation

A trapped ion is subject to different sources of noise
and random perturbations [24–27]. In the absence of
laser cooling, these typically include collisions of the ion
with molecules of the background gas present in the trap,
fluctuations of the trap parameters (e.g. Johnson noise
on voltages), and fluctuations of ambient electric fields.
Stochastic dynamics resulting from such noise can be
studied using a probability distribution in phase-space,
P (~r, ~p, t), that evolves under stochastic terms in addition
to the motion generated by the trap Hamiltonian, and we
follow here the presentation of van Kampen [28]. Noise
heating and laser cooling with experimentally relevant
parameters (discussed in more detail later) can be mod-
elled by additive, stationary Gaussian white noise (ap-
proximating the noise as having no correlation after an
infinitesimal time interval) with a nonzero mean. Then
the evolution of P (~r, ~p, t) is described by momentum drift
and diffusion coefficients, Bα(~r, ~p, t) and Dαβ(~r, ~p, t) re-
spectively, with α, β ∈ {x, y, z}, using the FP equation

∂P (~r, ~p, t)

∂t
= L0P−

∑
α

∂[BαP ]

∂pα
+

1

2

∑
α,β

∂2 [DαβP ]

∂pα∂pβ
, (4)

where the Liouvillian L0 generates the Hamiltonian flow
due to H0 in phase-space, and is defined by

L0(~r, ~p, t) = −
∑
α

pα
m

∂

∂rα
+
∑
α

∂V (~r, t)

∂rα

∂

∂pα
. (5)

We now transform to the canonical action-angle coordi-
nates (~I, ~θ) defined in Eq. (2). In these variables the Liou-

villian of Eq. (5) reduces to L0(~I, ~θ) = −
∑
j νj(

~I)∂/∂θj .
Using the formulas of App. D, Eq. (4) will transform
to an equation in the new canonical variables. Since
the Jacobian of a canonical transformation is equal to
1, the measure of P is unchanged. When the timescale
for change in ~I is much longer than the quasi-periods of
rotation on the invariant torus, it is possible to approxi-
mate P (~I, ~θ, t) by its average over the angles, P (~I, t). In
the transformed FP equation (see in general App. D), all

terms with derivatives with respect to the angles ~θ drop
out when averaged over the angle. In the case of the
rf potential, the averaging is over the entire motion at
fixed action, and hence includes also an averaging over
the short timescale of the rf potential. This timescale
enters through the transformation functions defined in
Eq. (2). For any function Ξ(~I, ~θ, t) of the phase space
which is periodic with the rf-drive frequency,

Ξ
(
~I, ~θ, t+ T

)
= Ξ

(
~I, ~θ, t

)
, (6)

we define the torus average denoted with an overbar,

Ξ
(
~I
)
≡ 1

T

∫ T

0

dt
1

(2π)D

∫
Ξ
(
~I, ~θ, t

)
dD~θ. (7)
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After averaging, we obtain the final form of the FP
equation in action and time, that can be written in com-
pact form using the probability flux vector ~S whose com-
ponents are given by

Sj(~I, t) ≡ ΠjP −
1

2

∑
k

∂

∂Ik
[ΠjkP ] , (8)

with the FP equation taking the form

∂P (~I, t)

∂t
= −

∑
j

∂Sj(~I, t)

∂Ij
=

−
∑
j

∂

∂Ij
[ΠjP ] +

1

2

∑
j,k

∂2

∂Ij∂Ik
[ΠjkP ] , (9)

and the action drift and diffusion coefficients are, respec-
tively,

Πj(~I) =
∑
α

Bα
∂Λj
∂pα

+
1

2

∑
α,β

Dαβ
∂2Λj
∂pα∂pβ

, (10)

Πjk(~I) =
∑
α,β

Dαβ
∂Λj
∂pα

∂Λk
∂pβ

. (11)

A minimal criterion for the validity of this approximation
would be a small relative change in action due to both
drift and diffusion, during a cycle of the motion, i.e.,

Πj(~I)/νj(~I)� Ij , Πjk(~I)/

√
νj(~I)νk(~I)� IjIk. (12)

It is clear that this adiabatic approximation breaks for
νj(~I) → 0, i.e. close enough to a separatrix (a trajec-
tory passing through a saddle-point in the potential en-
ergy). We return to this point later, where we calculate
the stochastic coefficients in the high action regime of a
surface trap.

The FP equation can be defined for Ij > 0, and is
completely posed when boundary and initial conditions
are specified. We have a reflecting boundary condition
at the origin [S(Ij = 0, t) = 0], and an absorbing bound-
ary condition (P itself equals 0) could be enforced at

some maximal boundary of ~I (corresponding to the ion
escaping the trap). For an initial value problem, a typi-
cal initial condition would be e.g. that the ion starts at
t = 0 with some given distribution (e.g. thermal if it
is cooled or arriving from an oven, or power-law after a
background-gas collision [29, 30]), or more simply, that

it is approximately localized at some action value ~I.
In the following section we consider laser cooling, that

allows to counteract the effects of heating in the trap and
cool the ion.

III. LASER COOLING

In this section we derive the FP equation describing
the process of laser cooling in two different semiclassical

approximations. In Sec. III A we review the well estab-
lished derivation of the FP equation in the limit that the
motion of the ion can be considered as frozen during a
photon absorption-emission cycle, stating detailed condi-
tions for the validity of this limit. In Sec. III B we derive
the action drift and diffusion coefficients for cooling be-
yond this limit, by considering the variation of the action
due to photon scattering directly.

A. The zero lifetime limit

The ion’s valence electron couples the ion’s center of
mass motion to the electromagnetic field, while making
transitions between its ground state and an excited level.
We consider the internal states of the ion in a two-level
approximation and a monochromatic laser beam in a
travelling wave configuration with the following parame-
ters: a laser wavevector ~k and wavenumber k = |~k|, an
on-resonance Rabi-frequency ΩR (with its squared mag-
nitude proportional to the laser intensity), and a laser
frequency ωL detuned by ∆ from the resonant electronic
transition, whose linewidth (inverse lifetime) is Γ. For
each absorption or emission process, the atom suffers
a recoil of magnitude pr = ~k which is parallel (anti-
parallel) to the momentum of the absorbed (emitted)
photon, and ensures conservation of the total momentum
(~ being Planck’s constant).

For optical transitions and nonrelativistic ion veloci-
ties ~v (much smaller than the speed of light c), the same
parameter k can be used for photons resonant with the
internal electronic transition, for the detuned laser pho-
tons, and for Doppler-shifted photons, i.e.,

k =
ωL

c
≈ ωL + ∆

c
≈ ωL − ~k · ~v

c
. (13)

A stochastic laser cooling process can be described in
a semiclassical approximation by using the FP equation
for the probability distribution P (~r, ~p, t) of the ion’s cen-
ter of mass coordinates alone. When the requirements
of the derivation are fulfilled (with the exact conditions
discussed below), which can be qualified schematically as
the limit of slow enough motion at low amplitude within
the pseudopotential approximation, the ion motion can
be assumed as frozen during the lifetime of the excited
level (in [14] this was called the heavy particle limit).
The FP equation in this limit, takes the form of Eq. (4),
with two functions that we denote by Bz

α(~p) and Dz
αβ(~p).

The vector function Bz
α(~p) gives the mean momentum

transfer rate due to the radiation pressure force, that
acts on the ion as a function of its momentum. The
mean momentum gain per cycle is just pr of the absorbed
photon, since the probability to emit a photon in a certain
direction is invariant under inversion of the coordinates.
The rate of absorption-emission cycles is given by Γ times
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the occupation probability of the electron in the excited
level, for an ion having momentum ~p in phase-space:

ρs(~p) =
s/2

1 + s+ (2∆eff/Γ)
2 . (14)

Here the saturation parameter s is defined by

s = 2 (|ΩR|/Γ)
2
, (15)

and using the relation of the phase-space momentum to
the velocity,

~v = ~p/m, (16)

we have that due to the Doppler shift, the detuning of the
laser relative to the ion resonance at rest, in the frame of
reference of the ion, is

∆eff = ∆− ~k · ~v. (17)

Thus ρs(~p) describes a Lorentzian with velocity center
and velocity half-width given respectively (along the di-

rection of ~k) by

v0 = ∆/k, δv = Γ/k. (18)

We note that ρs(~p) < 1/2, which expresses the saturation

of the two-level system for large values of s. With k̂α =
~kα/k to specify the direction of the laser wavevector, the
momentum change rate is given by

Bz
α(~p) = prk̂αΓρs(~p). (19)

The tensor function Dz
αβ(~p) describes diffusion in mo-

mentum due to two sources – the variance in photon
absorption, and the spontaneous emission. The second
moment of the angular distribution of emitted photons,
assumed to be a dipolar transition [13], is for a linearly
polarized beam,

µαβ =
2

5
δαβ −

1

5
êαêβ , (20)

(with ê the polarization unit vector). The assumed lin-
ear polarization can be replaced by circular polarization
with just the values of µαβ changing appropriately. This
tensor enters as a prefactor in the mean diffusion per
cycle due to spontaneous emission, with the cycles pro-
ceeding at the rate Γρs(~p). In addition, since the photon
absorption events are discrete, there is an independent
contribution proportional to the variance of their num-
ber per unit time [17]. Assuming uncorrelated Poissonian
photon statistics, the variance in the number of absorp-
tions is equal to their mean number, multiplied by a term
proportional to k̂αk̂β accounting for the well-defined di-
rection of momentum transfer, for a total momentum dif-
fusion coefficient

Dz
αβ(~p) = p2

r

(
k̂αk̂β + µαβ

)
Γρs(~p). (21)

Plugging Bz
α of Eq. (19) and Dz

αβ of Eq. (21) into
Eqs. (10)-(11) gives the coefficients for the angle-averaged
FP equation [Eq. (9)] of cooling in the zero lifetime limit,

Πz
j(~I) =

∑
α

Bz
α

∂Λj
∂pα

+
1

2

∑
α,β

Dz
αβ

∂2Λj
∂pα∂pβ

(22)

Πz
jk(~I) =

∑
α,β

Dz
αβ

∂Λj
∂pα

∂Λk
∂pβ

. (23)

The derivation of the FP equation [14] assumes an ex-
pansion in the following small parameter,

kpr/(mΓ)� 1 ⇐⇒ Erecoil = p2
r/(2m)� ~Γ, (24)

implying that the relative change of P (~r, ~p, t) in each cy-
cle is small, due to the smallness of the recoil momentum
and the associated kinetic energy (Erecoil), with respect
to the scale determined by the Lorentzian due to the
width of the excited level. In addition, the ion’s inter-
nal (electronic) degrees of freedom have to be adiabati-
cally eliminated. The rate of decay of the excited state
(Γ) must be faster than the unperturbed evolution of
P (~r, ~p, t) due to the Liouvillian of Eq. (5), i.e. we require∣∣∣∣pα ∂P∂rα

∣∣∣∣� ΓP,

∣∣∣∣ ∂V∂rα ∂P

∂pα

∣∣∣∣� ΓP. (25)

For motion within a 3D harmonic potential, assuming a
single length scale of variation for P with rα, determined
by the amplitude of the motion in the harmonic limit,
the first condition in Eq. (25) amounts to

νj � Γ, (26)

known as the unresolved sideband limit. The second con-
dition in Eq. (25) can be written as

max{~̇v · ~k} � Γ2, (27)

by using the fact that the largest variation of P with mo-
mentum results from absorption at the velocity range δv
(around v0), defined in Eq. (18). Thus the condition in
Eq. (27) limits the validity of the treatment to low am-
plitude and low velocity motion in a harmonic oscillator.

For motion in the time dependent rf potential, the av-
eraging over the torus takes care of the rf modulated ve-
locity along the trajectory due to the micromotion, which
modifies the instantaneous Doppler shift. Equation (25)
still gives conditions for the validity of the current treat-
ment, which must be amended with

Ω/2π � Γ. (28)

The conditions that limit the treatment to a small am-
plitude of motion, and the limitation to the unresolved
sideband limit and a small rf frequency in Eq. (28) are
very restricting, in particular with state-of-the-art-traps.
In the next subsection we develop the semiclassical laser
cooling theory in the limit of finite lifetime of the excited
electronic state.
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B. Laser cooling in the finite lifetime limit

When either of the conditions Eq. (26), Eq. (27) or
Eq. (28) do not hold, the ion motion can no longer be
considered to be frozen during the absorption-emission
cycle, and within the lifetime of the excited level (1/Γ),
the ion’s velocity and position may change significantly.
A Fokker-Planck equation in energy space has been de-
rived for the large amplitude motion of an ion in a 1D
harmonic oscillator potential [15], by making explicit use
of harmonic oscillator wavefunctions. We now develop a
semiclassical derivation [2, 20, 23], that allows to gener-
alize the results of the previous subsection to the motion
in any trap potential, including micromotion, at any am-
plitude.

The basic principle of this semiclassical derivation is to
assume conservation of energy and momentum at each
absorption and at each emission event separately, ac-
counting for the ion’s centre of mass and internal co-
ordinates together with the photon. Between the ab-
sorption and emission, we assume that the ion moves
completely classically and is decoupled from the electro-
magnetic field. It is worth noting that this treatment
only alters the description of the emission events, while
absorption events are effectively equivalent to their zero-
lifetime description. As we will see below, the validity of
this treatment requires a low laser intensity, i.e.

s� 1. (29)

With that condition, the probability of an ion to absorb a
photon at a given point in phase-space in a small time in-
terval dt equals Γρdt, with ρ obtained from ρs of Eq. (14)
by expansion in s,

ρ(~p) =
s/2

1 + (2∆eff/Γ)
2 , ∆eff = ∆− ~k · ~v, (30)

and ~v = ~p/m [Eq. (16)]. The resulting absorption and
emission rates are equal on average, even if there are fi-
nite delays between these events. A more detailed deriva-
tion of the photon absorption probability from the optical
Bloch equations will be presented separately in [31] us-
ing a Floquet approach, which allows one to improve the
accuracy of accounting for the micromotion drive.

Let us consider an ion moving in the trap, and at some
arbitrary time ta when it is at position ~ra with momen-
tum ~pa (velocity ~va), it absorbs a laser photon of energy
~(ωL + ∆). Due to the absorption, the ion’s momen-

tum changes by prk̂, and the electron is excited by the
Doppler shifted photon, consistent with the level width
Γ and the Lorentzian of Eq. (14), and the condition in
Eq. (13). To simplify the notation below, we define the
phase-space point

Za ≡ {~ra, ~pa, ta}. (31)

The change in each action Ij due to the absorption is
then, to second order in the recoil momentum,

δI
(a)
j = Ij(~ra, ~pa + prk̂, ta)− Ij(~ra, ~pa, ta) ≈

pr

∑
α

k̂α
∂Λj(Za)

∂pα
+

1

2
p2

r

∑
α,β

k̂αk̂β
∂2Λj(Za)

∂pα∂pβ
. (32)

In Eq. (32), δI
(a)
j is a random variable, that is condi-

tioned on the absorption taking place at Za.
Continuing, the ion moves under the influence of the

trap and at time te reaches the phase space point {~re, ~pe}.
We take this point to be just the position and momentum
that the ion would have reached, if it hadn’t absorbed
a photon, due to the Hamiltonian evolution from ta to
te on the torus of fixed ~I. Hence we neglect the small
change for the initial condition at ta due the ion having
made a step prk̂, which is just the approximation at the
basis of the FP approach, that a lot of stochastic events
are required to cause a significant change in the action
distribution. Now at time te the ion spontaneously emits
a photon with momentum ~~κ ≈ prκ̂, where the condition
of Eq. (13) has been used. The change in action due to
emission occurring at Ze, of a photon propagating along
κ̂, and conditioned on absorption at Za, is

δI
(e)
j = Ij(~re, ~pe − prκ̂, te)− Ij(~re, ~pe, te) ≈

− pr

∑
α

κ̂α
∂Λj(Ze)

∂pα
+

1

2
p2

r

∑
α,β

κ̂ακ̂β
∂2Λj(Ze)

∂pα∂pβ
. (33)

Summing Eqs. (32)-(33), the total change to the ac-
tion given that the absorption occurred at Za and the
emission at Ze with the photon going along κ̂, is

δIj = δI
(a)
j + δI

(e)
j . (34)

To recap, the ion drift and diffusion in action is due to
three sources of randomness: the time and phase-space
point of the absorption event, the time and phase-space
point of the emission event through decay from the ex-
cited level with finite lifetime of 1/Γ, and the direction
κ̂ of the emitted photon. We assume that when coarse-
grained over many absorption-emission cycles, the action
evolves in small deviations δ~I [as in Eq. (34)] about the

given torus ~I, due to the accumulation of many small ac-
tion kicks. The mean action drift and diffusion rates have
to be calculated by averaging over multiple emission-
absorption cycles using the distribution of the action in-
crements. To a good approximation, the distribution of
the sum of many such small action kicks may be taken
to be Gaussian due to the central limit theorem. Here
we can invoke Eq. (29) and neglect any correlation be-
tween the absorption and emission coming from the fact
that absorption is impossible while the ion is in the ex-
cited level, which can only contribute at order s2, and
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similarly for stimulated emission processes that can be
neglected to lowest order in s. In the following we calcu-
late the first and second moments of the distribution of
action kicks, on the torus ~I of the motion.

We start with the random variables of the emission.
The mean change in action due to emission is obtained
by taking the expectation value of Eq. (33) over the two
random variables of emission; the direction of the emitted
photons and the phase-space point they are emitted at.
The mean over the spherical distribution of κ̂ is denoted
by 〈·〉κ̂, and we have

〈κα〉κ̂ = 0, 〈κακβ〉κ̂ = µαβ , (35)

in which the term linear in κ̂ components vanishes since it
is reflection-invariant, and the second moment is defined
by the tensor µαβ in Eq. (20). The emission time is also
a random variable with an exponential distribution for
decay from the excited level. Given an absorption that
occurred at Za, the mean value of any function of phase-
space at the time of emission, averaged over the random
times of emission, denoted by 〈·〉Γ, is

〈Ξ(Za)〉Γ ≡
∫ ∞

0

Γe−Γt′Ξ(Z(ta + t′;Z(ta) = Za))dt′.

(36)
The time integral is to be performed along the trajectory
Z(ta + t′) in the notation of Eq. (31). Therefore we get
for the emission

〈δI(e)
j 〉κ̂,Γ =

1

2
p2

r

∑
α,β

µαβ

〈
∂2Λj(Za)

∂pα∂pβ

〉
Γ

. (37)

We consider now the effect of the randomness of the ab-
sorption event, conditioned so far to occur at the phase-
space point and time given by Za. As discussed above,
the probability of the ion to absorb a photon at a given
point in phase-space in a time interval dt equals Γρdt
[Eq. (30)]. The mean of any random process that de-
pends on absorption at Za, calculated for motion during
a time interval δt, can be obtained from

〈Ξ〉δt ≡
∫ δt

0

Ξ (Za(ta)) Γρ (Za(ta)) dta, (38)

where δt is the intermediate timescale over which many
absorption-emission cycles occur during a large number
of rotations on the torus, while the action variation re-
mains small. We assume ergodicity for motion on the
torus – i.e. that the average over many photon scatter-
ing events during many rotations on the torus, is equal
to the average over the torus angles (and the relative
micromotion phase), defined in Eq. (7). This ergodic-
ity assumption, over a timescale given by δt is given by
writing for the rate of any random process

1

δt
〈Ξ〉δt = ΓρΞ, (39)

with the torus average operation

ΓρΞ ≡ 1

π

∫ π

0

dt
1

(2π)D

∫
Γρ (Za) Ξ (Za) dD~θ. (40)

Averaging over the absorption events allows us to ob-
tain the FP equation [Eq. (9)] for P (~I, t), evolving adi-
abatically at a timescale longer than that for multiple
emission-absorption cycles. The first two moments of the
action deviations determine the FP equation coefficients
[32],

Πf
j(~I) = 〈δIj〉/δt, Πf

jk(~I) = 〈δIjδIk〉/δt, (41)

where 〈·〉 denotes the ensemble average to first order in
δt, i.e. 〈·〉 = 〈·〉κ̂,Γ,δt. Hence we get the FP coefficients

Πf
j(~I) = Γρ(Za)〈δIj〉κ̂,Γ, (42)

and

Πf
jk(~I) = Γρ(Za)〈δIjδIk〉κ̂,Γ, (43)

where we find using Eqs. (34)-(37),

〈δIj〉κ̂,Γ = pr

∑
α

k̂α
∂Λj(Za)

∂pα

+
1

2
p2

r

∑
α,β

[
k̂αk̂β

∂2Λj(Za)

∂pα∂pβ
+ µαβ

〈
∂2Λj(Za)

∂pα∂pβ

〉
Γ

]
,

(44)

and to order p2
r and s,

〈δIjδIk〉κ̂,Γ =

p2
r

∑
α,β

[
k̂αk̂β

∂Λj
∂pα

∂Λk
∂pβ

+ µαβ

〈
∂Λj
∂pα

∂Λk
∂pβ

〉
Γ

]
, (45)

in which, as in Eq. (44), all terms are functions of Za,
the phase-space time and point where the absorption oc-
curred, on a given torus with actions ~I.

The expressions in Eqs. (42) and (43) hold for an arbi-
trary rf potential, with the conditions in Eq. (24) and (29)
assumed in the derivation, in addition to the adiabatic-
ity conditions of Eq. (12). Assuming that the timescale
separation (expressed by these adiabaticity conditions) is
justified, the only foreseeable case where the ergodicity
assumption of Eq. (39) may fail to hold is the case of one
or two decoupled degrees of freedom of the motion which
are directed transversally to the laser ~k-vector. Close to
such a degenerate case, e.g. when there are two nearly
degenerate modes of oscillation, the dynamics have to
be treated in more detail (such as in [13], for the case
of time-independent harmonic oscillators). The absorp-
tion probability taken in Eq. (30) can be improved as in
[31] or generalized to a more complicated setup or level-
structure.
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The difference of the derived action drift and diffusion
coefficients to their expressions within the zero lifetime
limit [in Eqs. (22)-(23)], lies in the integration over the
waiting time distribution for spontaneous emission from
the excited electronic state. As a basic consistency check,
we see that whenever we can assume an instantaneous
absorption-emission cycle and write Γe−Γt′ ≈ δ(t′) in 〈·〉Γ
of Eq. (36), the drift and diffusion coefficients reduce in
form to those calculated for the zero lifetime limit (and
under the assumption s � 1), whence Πf

j → Πz
j and

Πf
jk → Πz

jk. The cooling coefficients can be further sim-
plified in some limits, and in some cases even integrated
in closed form, as we show in the following.

IV. HAMILTONIAN MOTION IN 1D

A. Anharmonic trap potential

For a general anharmonic and time-dependent rf po-
tential V (~r, t), the motion has to be solved numerically.
In [11] the Hamiltonian motion of an ion in the 3D po-
tential of a model surface-electrode trap has been treated
for a broad range of parameters, and a range of param-
eters has been identified wherein the Hamiltonian mo-
tion within the full time dependent rf potential is well
described by the (time-independent) pseudopotential ap-
proximation, with a phase space which is to a high de-
gree regular. To clearly illustrate the main results that
we derive here, we present numerical calculations for mo-
tion in one spatial dimension, orthogonal to the electrode
surface, along the z axis (see Fig. 1). In the five-wire
trap in a symmetric configuration (without DC coupling
of the radial yz motion), the z motion (which is both
time-dependent and nonlinear) decouples exactly for the
initial conditions y = ẏ = 0, for which y(t) = 0 at all
times. The canonical momentum is pz = mvz, with the
velocity vz = ż.

From this point on we use nondimensional units, ob-
tained by rescaling the time t by half the micromotion
frequency, (we choose Ω = 2π × 100 MHz), and measur-
ing distances using a natural length scale of the prob-
lem, the width of each of the two rf electrodes (we take
w = 50µm);

z → z/w, t→ Ωt/2. (46)

The details of this rescaling (which makes all physi-
cal quantities and parameters nondimensional), includ-
ing the values of the parameters chosen for the numerical
calculations, are summarized in App. A. With this rescal-
ing, the rf-drive frequency becomes Ω = 2 and its period
T = π. We also set the ion’s mass and charge m = 1
and e = 1, absorbing their values in the parameters of
the nondimensional 1D rf potential, given by

V 1D
rf (z, t) = V0(z) + V2(z) cos 2t, (47)

0

0.1

0.2

0.3

0.4

0.5

FIG. 1. Layout and rf-potential of the five-wire surface trap.
All electrodes lie in the z = 0 plane, with the two electrodes
connected to the rf-drive shown in red. They are of width w
in the y-direction with their center offset by ±w from y = 0.
Along the x-direction they are approximated as having an
infinite extent. The remainder of the z = 0 plane is filled by
grounded surfaces, shown in gold. Setting the rf-electrodes
to 1 V produces the equipotential lines in the plane x = 0
shown as a contour plot in the back of the figure, with the
bar legend showing the potential in units of V. The thick solid
black line shows the potential minimum line (z = zs) and the
thick dashed line shows the saddle-line of the potential.

with

V0(z) =
1

2
az(z − zs)2

, (48)

V2(z) = − 4

π
q5

[
arctan(

1

2z
)− arctan(

3

2z
)

]
. (49)

The nondimensional parameters az and q5 are deter-
mined by the electrode voltages and geometry (and the
ion’s charge to mass ratio), see Eq. (A6). The potential
V2 of Eq. (49) vanishes at the saddle-point z =

√
3/2, and

hence setting zs =
√

3/2 ≈ 0.866 in V0 of Eq. (48), makes
V 1D

rf (z, t) vanish for any value of t at zs, which then forms
the center of the trapping region (see below). The action-
angle coordinates (I, θ), in the integrable approximation
of the motion, can be calculated using a stroboscopic map
of the motion taken at times t (mod π), where the action
is then related to the phase-space area J bounded within
an invariant curve ([11]), by

I = J/2π. (50)

The pseudopotential approximation to Eq. (47) can be
obtained by a time dependent canonical transformation
from the phase space variables {z, pz, t}, to new canonical
variables that we denote as ζ for the coordinate and πζ
for the momentum. The transformation is a perturbative
expansion to second order in ν, the ratio of the secular
frequency to the rf frequency, assuming that V0 ∼ ν2 and
V2 ∼ ν, and results in a time-independent Hamiltonian,
with the time-averaged pseudopotential given by [11]

V 1D
ps (ζ) = az

(ζ − ζs)2

2
+ q2

5

16
(
3− 4ζ2

)2
π2 (9 + 40ζ2 + 16ζ4)

2 . (51)
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FIG. 2. (a) The phase space of 1D motion perpendicular to
the electrodes plane of a five-wire trap, in the pseudopoten-
tial approximation [Eq. (51)], with ζ and πζ being the co-
ordinate and conjugate momentum in nondimensional units
(see Eq. (46) and App. A). The stable fixed point ζs ≈ 0.866
forms the center of the island, and the unstable fixed point
ζu ≈ 1.48 sits at the “tip” of the bounded part of phase space,
with the curve passing through it forming the separatrix. (b)
The frequency ν(I) of rotation around the invariant curves of
the phase space, as a function of the action I. We see that
ν(I = 0) = νz ≈ 0.112, and a close examination shows that
only very close to the maximal action, which corresponds to
the separatrix going through the unstable fixed point, the fre-
quency sharply goes to 0, i.e. ν(I)→ 0 (this happens within a
segment of width δI . 0.01×10−3, about Imax ≈ 3.67×10−3).

The pseudopotential has two fixed points, where the field
vanishes. The first point, ζs = zs =

√
3/2 ≈ 0.866, is the

stable fixed point at the center of the trap, whose value
is independent of the parameters az and q5, within the
pseudopotential (as well as the rf potential). The second
point, ζu, is an unstable fixed point, a local maximum of
the pseudopotential, beyond which the ion escapes the
trap (see Fig. 2). The canonical transformation relating
the pseudopotential coordinates {ζ, πζ} to the original
coordinates {z, pz} at every point of phase-space is, to
the leading order in the expansion,

ζ = z, πζ = pz +
1

2
sin(2t)V ′2(z). (52)

For our numerical study, although obtaining the trans-
formation functions of Eq. (2) to the action-angle coor-
dinates within the 1D rf potential is numerically acces-
sible (as demonstrated in [11]), obtaining smooth par-
tial derivatives [required in Eqs. (10)-(11)] is numerically
more demanding. Hence we approximate the 1D trans-
formation I = Λ(z, pz, t) using the pseudopotential ap-
proximation. Introducing explicit subscripts to denote
the form of the potential within which Λ is calculated,

we derive in App. C the approximate relations

∂Λrf(z, pz, t)

∂pz
≈ ∂Λps(ζ, πζ)

∂πζ
=

πζ
ν(I)

,

∂2Λrf(z, pz, t)

∂p2
z

≈ ∂2Λps(ζ, πζ)

∂π2
ζ

=
1

ν(I)
−

π2
ζ

ν(I)3

dν(I)

dI
.

(53)

The corrections to Eq. (53) for the case of the rf potential
will be of a higher (at least second) order in ν, and hence
are expected to be quantitatively small.

B. Quadrupole trap potential

As discussed in the introduction, in many cases the
Paul trap potential can be approximated as a quadrupole
potential around an effective minimum of the trap. Often
the motion along a certain direction is nearly decoupled
from the other directions due to the symmetry of the trap
electrodes. Depending on the nature of the potential in
this direction, it can be described by a time-dependent
Mathieu oscillator if the potential is periodically modu-
lated in time, or a harmonic oscillator if the potential is
static (time-independent). For concreteness, we consider
the idealized five-wire surface electrode trap introduced
in Sec. IV A in the following. This geometry naturally
implements the harmonic oscillator along the trap axis
of symmetry (x, not considered here), and Mathieu os-
cillators in the transverse plane. For simplicity we here
consider motion along one direction (denoted by z) and
compare a Mathieu oscillator and a harmonic oscillator
with identical secular frequencies.

The leading order expansion of V 1D
rf of Eq. (47) about

zs gives the Mathieu oscillator potential

V 1D
rf → V 1D

M.o. ≡
1

2
(az − 2qz cos 2t)z2, (54)

that results in a linear equation of motion, with the
Mathieu parameter qz = 2q5/(

√
3π). The nondimen-

sional secular frequency of oscillation in the trap (also
called the characteristic exponent), νz(az, qz), can be ap-
proximated in the limit az, q

2
z � 1 by

νz ≈
√
az + q2

z/2. (55)

The transformation functions between real space coor-
dinates and action-angle variables for Mathieu oscilla-
tors can be obtained exactly as presented separately [31].
Here we use a leading order approximation, obtained us-
ing Eq. (52), which for the Mathieu oscillator reduces
to

ζ → z, πζ → pz − qz sin(2t)z. (56)

The expansion of V 1D
ps of Eq. (51) about ζs gives the

harmonic oscillator potential,

V 1D
h.o. ≡

1

2
ν2
zζ

2, (57)
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whose frequency coincides with νz appearing in Eq. (55).
The action is related to the energy E by I → E/νz and
the (inverse) action-angle transformation is

ζ →
√

2I

νz
cos θ, πζ → −

√
2Iνz sin θ, (58)

where the angle is defined by

θ = νzt+ φ, (59)

with φ determined by the initial conditions. The motion
lies on an ellipse in phase space with area J = 2πI, evolv-
ing clockwise in the (ζ, πζ) plane. The approximation of
Eq. (53) then reduces to

∂ΛM.o.

∂pz
≈ ∂Λh.o.

∂pz
,

∂2ΛM.o.

∂p2
z

≈ ∂2Λh.o.

∂p2
z

, (60)

with the simple formulae for the harmonic oscillator,

∂Λh.o.

∂pz
=
πζ
νz
,

∂2Λh.o.

∂p2
z

=
1

νz
. (61)

Throughout the numerical simulations in this work we
have compared the results obtained by using the approxi-
mation given in Eq. (60), to the exact value of ∂ΛM.o./∂pz
(obtained using [33] and presented separately [31]), and
the difference is quantitatively very small (given by ap-
proximately q2

z).

V. ANALYTIC LIMITS OF STOCHASTIC
MOTION IN 1D

In this section we consider the form of the action drift
and diffusion coefficients that enter the FP equation de-
scribing different heating and cooling processes in 1D.
We summarize here all of the analytic results that apply
to 1D motion, with a simplified notation. In some of the
cases, the averaging of the FP coefficients can be carried
out explicitly and closed form expressions are presented
in the following. We postpone however a detailed discus-
sion of the results to the following sections (to Sec. VI
where all figures are presented together and the different
dynamics compared, and to Sec. VIII which contains a
summary and an outlook). For the 1D motion the gen-
eral FP equation in action [Eq. (9)], takes the simplified
form

∂P (I, t)

∂t
= −∂S(I, t)

∂I
= − ∂

∂I
[ΠIP ] +

1

2

∂2

∂I2 [ΠIIP ] .

(62)

We can gain insight into the cooling dynamics by using
the drift and diffusion rates at any value of I to define
(respectively) a drift timescale τdrift(I) and a diffusion

timescale τdiffuse(I), and form a nondimensional coeffi-
cient that measures the cooling efficiency,

ε(I) ≡ ΠII

ΠII
∝ τdiffuse(I)

τdrift(I)
. (63)

The sign of ε depends on the sign of the drift coefficient,
and is negative when the laser is cooling the ion (in the
mean), while if it is positive, the laser effectively heats
the ion. A large value of |ε| signifies that the drift time
is much shorter than the time it takes to diffuse a sim-
ilar range of action, so that for ε � −1 the cooling is
efficient. In contrast, for −1 . ε . 1 the width of the
ion’s distribution in I grows faster than its mean drifts.
Diffusive motion has no directionality, and may equally
well lead the ion down or up in action.

For completeness we note that a steady-state of the
Eq. (62) [assuming one exists], can be obtained in terms
of the FP coefficients, with a distribution which can be
thermal-like (exponential) or very different, as will be
discussed in a future publication.

A. White Noise Heating in 1D

For an ion subject to position-independent Gaussian
white noise, the 1D action drift and diffusion coefficients
are

Πw
I (I) = D

∂2Λ

∂p2
z

, Πw
II(I) = 2D

(
∂Λ

∂pz

)2

, (64)

with D being the nondimensional diffusion coefficient.
White noise can be thought of as being produced by a
reservoir at infinite temperature and causes only heating.
In this case there is no steady-state distribution.

For the harmonic oscillator V 1D
h.o. of Eq. (57), we have

Πw
I → D/νz, Πw

II → 2DI/νz, (65)

and for the quadrupole potential V 1D
M.o., the Mathieu oscil-

lator of Eq. (54), within the approximation of Eqs. (52)-
(53), the result is identical to the harmonic oscillator,
neglecting as discussed above, a small correction of ap-
proximately q2

z . In addition, as we confirm by numerical
simulations, due to the form of Eq. (64) and by using
Eq. (53) explicitly, also for motion within an anharmonic
Paul trap potential, the effect of the micromotion is av-
eraged out and can be neglected.

In the case of heating within a quadrupole potential,
a solution by separation of variables, with a reflecting
boundary condition at I = 0, and the initial condition
P (I, t = 0) = δ(I) (the ion starting at the origin), can be
integrated in closed form. As can be verified directly by
substitution it results in the time-dependent distribution

P (I, t) =
νz
Dt

exp
{
− νz
Dt

I
}
, (66)
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with the expected mean torus drift

〈I(t)〉 = Dt/νz. (67)

For the harmonic oscillator (for which energy is con-
served), this is equivalent to the mean heating rate in
energy 〈Ė〉 = 〈νz İ〉 = D.

In the following section we study quantitatively the
laser cooling process in the trap, and we will compare
the heating rate values calculated for white noise with
the laser-induced cooling rates.

B. Laser cooling in a general 1D potential

For motion in 1D, the FP coefficients of Eqs. (22)-
(23) for cooling in the zero lifetime limit with the decay
occurring at the phase-space point of the absorption, are

Πz
I = Γρs

[
pr
∂Λ

∂pz
+

1

2
p2

r (1 + µ)
∂2Λ

∂p2
z

]
, (68)

Πz
II = Γp2

r(1 + µ)ρs

(
∂Λ

∂pz

)2

, (69)

with µ ≡ µzz of Eq. (20). All terms in the right hand side
of the equations above are functions of Za = {z, pz, t},
the phase-position, momentum and time where the ab-
sorption occurred, that is averaged on a given torus by
the definition in Eq. (7).

For the finite lifetime case, Eqs. (42)-(43) become

Πf
I = Γρ

[
pr
∂Λ

∂pz
+

1

2
p2

r

(
∂2Λ

∂p2
z

+ µ

〈
∂2Λ

∂p2
z

〉
Γ

)]
, (70)

Πf
II = Γp2

rρ

[(
∂Λ

∂pz

)2

+ µ

〈(
∂Λ

∂pz

)2
〉

Γ

]
, (71)

with the emission point Ze averaged by the integration
of the waiting time distribution 〈·〉Γ defined in Eq. (36).

The dynamics of the laser cooling around a given torus
are determined both by the form of the potential (that
depends on the displacement of the ion), and by the ve-
locity, as compared to a relevant scale determined by the
laser parameters. The limits of low velocity and of high
velocity lend themselves to expansion in a suitable, dis-
tinct small parameter. For motion in a quadrupole po-
tential this allows a simplification of the FP coefficients,
explored in the following two subsections for 1D motion.

C. The linear limit of laser cooling

In a Paul trap whose potential reduces to a quadrupole
at its center (as in linear Paul traps and surface-electrode
traps, but not in higher multipole traps), and in the ab-
sence of excess micromotion, the ion velocities can be

assumed to be small at the center of the trap. These
two conditions define a specific limit of the cooling, that
can be analyzed analytically. The Lorentzian can be lin-
earized in the velocity, with the coefficients written in a
well-known form [13, 19], for s� 1,

prΓρ(pz) ≈ Fr + γvz, (72)

with

Fr =
prΓs/2

1 + (2∆/Γ)2
, γ =

4kprs∆/Γ

[1 + (2∆/Γ)2]
2 . (73)

Here Fr gives a mean radiation force (for pz = 0), and
γ/m (with m = 1 in the rescaled units) is the damping
rate. This linearization is valid if

kvz �
[
Γ2 + 4∆2

]
/(8|∆|), (74)

which can be rewritten in terms of the action,

I � Ilinear =

(
Γ2 + 4∆2

8k∆

)2
1

2νz
. (75)

In this approximation, since the Lorentzian is linear in
the momentum, and the partial derivatives of the action
are (at most) linear in the momentum (for a quadrupole
potential), the resulting cooling coefficients are at most
linear in the actions. For the harmonic oscillator the
integration in closed form of the action drift and diffusion
coefficients is straightforward and we can write

Πl
I = γI + hz/2, Πl

II = hzI, (76)

with

hz = prFr(1 + µ)/νz. (77)

Then the linear limit of the cooling is characterized by
a thermal equilibrium-like distribution (for ∆ < 0), de-
termined by the balance of momentum dissipation and
diffusive heating. The mean value and standard devia-
tion of the action, 〈I〉 =

√
〈(I − 〈I〉)2〉 = Ilimit, reads

Ilimit ≡ ~
Γ

8νz
(1 + µ)

[
Γ

2 |∆|
+

2 |∆|
Γ

]
. (78)

The expression above is identical to the known results
for the thermal distribution of an ion cooled within a
1D harmonic oscillator [19], in the limit of s � 1. Re-
markably we find in the numerical simulations presented
in Sec. VI A that the results for the Mathieu oscillator
are nearly identical [up to the accuracy of Eq. (60), ne-
glecting a correction of approximately q2

z ]. Analytic ex-
pressions for the coefficients can be obtained for general
3D motion in a Mathieu oscillator potential, which is be-
yond the scope of the current work and will be presented
separately.
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D. The (quadrupole) fast particle limit of laser
cooling

A second regime of motion that allows a simplification
of the expressions of the action coefficients of laser cool-
ing is the (quadrupole) fast particle limit, where the mo-
tion is of a large enough amplitude, within a quadrupole
potential. In this case, the ion velocity creates a large
Doppler shift which tunes the cooling light out of the
resonance with the ion for most of the time. In a har-
monic motion the measure on the invariant torus where
the light field is resonant with the ion, bounded within
the strip ~k·~v = v0±δv [the resonance has width δv around
v0, defined in Eq. (18)], is independent of the action, and
its fraction of the total torus measure decreases with I.
Within the tori averages, the contribution from the res-
onance region decreases accordingly, while the contribu-
tion from the rest of the torus increases with I due to
the tails of the Lorentzian distribution, which eventually
dominate the torus averages.

The cooling and diffusion terms within the fast particle
limit are derived in App. B on the basis of an expansion
for the Lorentzian expression of the excited state occu-
pation. For the case that the laser propagates along one
of the principal axes of the motion [here, ~k = kẑ], and if
in addition the motion is descirbed by a harmonic oscil-
lator [Eq. (58)], the fast particle limit expressed in terms
of the action is

I � Ifast ≡
max

{
4∆2,Γ2/4

}
νzk2/2

. (79)

We have integrated the drift and diffusion coefficients in
closed form [Eqs. (B3)-(B4)], and a basic property of the
coefficients in this limit is their action dependence [15],

Πf.p.
I ∝ −1/

√
I, Πf.p.

I ∝
√
I. (80)

We note that the zero lifetime treatment for a harmonic
oscillator gives the same cooling rate in terms of the en-
ergy (which has been used, e.g., in [20, 23]), but results in
a constant (independent of I) diffusion term [Eq. (B5)],
which is incorrect since Eq. (80) shows a scaling ∝

√
I.

As discussed in Sec. VI B, for motion within a Math-
ieu oscillator potential we find by numerical integration
that the action dependence is identical in form [obeying
Eq. (80)], with the prefactors depending on the Mathieu
oscillator parameters. The implications of these func-
tional relations are discussed in Sec. VI B, and the devi-
ations from them for motion in the anharmonic rf poten-
tial, in Sec. VI C.

VI. A STUDY OF HEATING AND COOLING IN
1D

In this section we present a detailed numerical study of
heating and cooling processes for ion motion in 1D. We

Potential is Time-independent Time-dependent

Quadrupole Harmonic oscillator Mathieu oscillator

(h.o.) (M.o.)

Anharmonic Pseudopotential Rf potential

(ps) (rf)

TABLE I. The four different types of trap potentials, summa-
rized with their acronyms used in the figures to follow and in
the equations. Depending on the Paul trap type, along each
of its spatial dimensions the potential can be quadrupole or
anharmonic, and either static or periodically driven.

Notation Definition

Πw
I , Πw

II Position-independent additive white noise

Eq. (64)

Πz
I , Πz

II Laser cooling in the zero lifetime

(heavy particle) limit Eqs. (68)-(69)

Πf
I , Πf

II Laser cooling in the finite lifetime limit

Eqs. (70)-(71)

Πf.p.
I , Πf.p.

II Laser cooling in the fast particle limit

Eq. (80)

Πl
I , Πl

II Laser cooling in the linear limit

Eq. (76)

TABLE II. The different types of action drift and diffusion
coefficients, used in figures to follow and in the equations.

compare the results for motion within the four realiza-
tions of a trap potential described in Sec. IV. For refer-
ence, these are summarized in Table I, together with their
acronyms (used in the figures and equations). In Table
II we summarize the notation indicating the action drift
and diffusion coefficients that correspond to the different
physical processes and parameter regimes, presented in
the figures that follow in this section and the equations
used to calculate them..

For most of the calculations in the following (except
where explicitly stated otherwise), we set the laser de-
tuning to the Doppler detuning, with a low saturation
parameter,

∆ = −Γ/2, s = 0.01. (81)

For the chosen 9Be+ ion and in the nondimensional units
introduced in Eq. (46), we have Γ = 0.38, see App. A for
details of the laser (and trap) parameters. Motional heat-
ing is represented by a white noise rate, and we choose a
representative value of the nondimensional diffusion co-
efficient D that corresponds to a heating rate in units of
motional quanta per second near the effective potential
minimum (see App. A), of

˙̃n = 0.1 ms−1, (82)

except in Fig. 3.
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FIG. 3. The action drift coefficients for laser cooling [Πf
I ,

Eq. (70)], and for white noise heating [Πw
I , Eq. (64)] in nondi-

mensional units, for low amplitude motion. In this regime the
rf potential is accurately approximated by its Mathieu oscilla-
tor limit. The trap parameters, laser parameters, and heating
rate parameters are given in App. A. For this figure only, we
have set the saturation parameter to s = 0.001, and the heat-
ing rate, in terms of quanta per unit time, to ˙̃n = 1 ms−1.
The vertical lines show Ilinear, the border of validity of the
linear limit of the cooling [Eq. (75)], and the action at the
Doppler cooling limit, Ilimit [Eq. (78)]. It can be seen how
the Mathieu and the harmonic oscillator (of the same secular
frequency) converge for I � Ilinear to the same curve, and for
both curves the drift vanishes as I = Ilimit. See the text for
a discussion of the competing effects of heating Πw

I ∝ D and
cooling Πf

I ∝ s.

A. Cooling in the low velocity regime

Although ions are cooled from high-amplitude motion
towards low amplitude, we present our detailed study of
laser cooling starting with low amplitude motion with
I . Ilinear [defined in Eq. (75)]. The action drift coeffi-
cient Πf

I is composed of the sum of the absorption term
(linear in pr), and the emission term (∝ p2

r ). The dynam-
ics is determined by the competition of the two terms,
since the first is negative (for ∆ < 0) and the second
is positive, resulting from the diffusion in phase-space.
The action value for which Πf

I = 0 (and has a negative
slope), is where the mean drift balances, with the ion be-
ing heated (by momentum diffusion) for lower values of
I, and cooled back from higher I. Figure 3 shows that
for I � Ilinear, both the Mathieu and harmonic oscilla-
tor drift rates converge to the same curve, reducing in
this limit to the expression of Eq. (76). The numerically
calculated zero-crossing for both the harmonic oscillator
and the Mathieu oscillator coincide very closely with the
(thermal-equilibrium-like) limit of Eq. (78). The crossing
points are independent of s (in the limit s � 1) but the
slope is proportional to s, which is important if heating
of a comparable rate is present. The action drift rate
resulting from white noise heating at a rate of 1 quan-

tum per millisecond (10 times more than in the following
figures, a value that can be considered as high but not
excessive in current state-of-the-art traps), is shown for
comparison. Such a high heating rate will shift the cool-
ing limit to a action value where the sum Πw

I +Πf
I crosses

0, and increase the final mean value of the action (with
these parameters to ∼ 2Ilimit). However, the saturation
parameter in this figure is taken to be s = 0.001, much
lower than what is typically used in experiments. Since
the heating drift rate scales linearly with D ∝ ṅ, and
the cooling rate scales linearly with the intensity ∝ s
(for s� 1), the cooling limit is quite insensitive to heat-
ing at this order of magnitude. For I & 0.5 × 10−7,
i.e. where the condition I � Ilinear no longer holds, the
Mathieu and harmonic oscillator cooling rates begin to
deviate (with the former being smaller).

B. Cooling in the high velocity regime of a
quadrupole potential

The Mathieu and harmonic oscillator cooling rates, al-
though deviating from each other for I & Ilinear, both
show an asymptotic slow approach towards zero at high
action. The numerically calculated values of the FP co-
efficients are shown in Fig. 4 for motion within a purely
quadrupole potential up to a large amplitude. Although
the zero lifetime treatment does not apply to the pa-
rameters of our study, we find it instructive to compare
the coefficients calculated by using the expressions for
zero lifetime with the finite lifetime treatment. For har-
monic oscillator motion, the action drift (cooling) rates
Πz
I and Πf

I nearly coincide in this limit and are given by

Πf.p.
I ∝ −1/

√
I of Eq. (B3), since the correction to the

drift coefficient that comes from the spontaneous emis-
sion term ∝ µ in Eq. (70), where the zero lifetime and
finite lifetime expressions differ, is negligible for these pa-
rameters. The diffusion coefficient calculated by Πz

II for
a harmonic oscillator can be seen to saturate [Eq. (B5)],
while it in fact grows as the amplitude of the motion gets
larger [Πf.p.

II ∝
√
I, Eq. (B4)].

For the time-dependent Mathieu oscillator, the action
drift rates again nearly coincide within the zero and finite
lifetime limits. The diffusion coefficients show a more dis-
tinct behavior. The Mathieu oscillator diffusion is much
larger than the harmonic oscillator diffusion. In addition,
in contrast to the harmonic oscillator case, the large dif-
fusion is predicted by the zero lifetime expressions. This
is because the emission occurring at some later time af-
ter the absorption [as expressed by the averaging over
the decay process, 〈·〉Γ in Eq. (71)], is no longer the main
cause for the large diffusion. Rather, due to the fast mi-
cromotion, the absorption and following emission occur
at various phase-space points along the trajectory, where
the kick to the action (determined by ∂Λ/∂pz ∝ πζ) can
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FIG. 4. (a) The action drift and (b) diffusion coefficients
in the large amplitude regime within a quadrupole poten-
tial, calculated using the expressions of the zero lifetime limit
(Πz

I ,Π
z
II) and the finite lifetime treatment (Πf

I ,Π
f
II), with

trap and laser parameters given in App. A and Eq. (81). (a)
The drift curves calculated (for the harmonic oscillator and
separately for the Mathieu oscillator) using the zero lifetime
expressions very closely coincide with their values within the
finite lifetime treatment. (b) For the harmonic oscillator, the
diffusion rate in the zero lifetime limit saturates at a constant
value, which quantitatively and qualitatively differs from the
results of the finite lifetime treatment. For the Mathieu oscil-
lator the diffusion coefficient calculated using the zero lifetime
expression (Πz

II) nearly coincides with the curve for the finite
lifetime (Πf

II). See the text for a detailed discussion.

be both positive and negative. Although the average of
all kicks remains negative, their variance is much bigger.

As Fig. 4 suggests, although the dynamics within the
time-independent potential are simpler than within the
time-dependent one, laser cooling with the latter can in
some cases be well described using the simpler zero life-
time limit. Formulating a criterion that explicitly states
under which circumstances the tori averages of the drift
and (in particular) the diffusion coefficients for the fi-
nite lifetime limit can be approximated by the zero life-
time limit appears to be hard. However, since the zero
lifetime expressions are simpler and faster to calculate
numerically, it is worth having this possible shortcut in
mind when performing a numerical study of laser cooling
based on concrete trap and laser parameters.

Our results allow us to derive a further important con-
clusion regarding the nature of the cooling. The numeri-
cally calculated coefficients show that in the fast particle
limit, the asymptotic behaviour within the Mathieu oscil-
lator has the same functional dependence as that within
a harmonic oscillator, Πf.p.

I ∝ −1/
√
I and Πf.p.

II ∝
√
I,

which immediately implies that in this limit, the effi-
ciency coefficient of Eq. (63) is independent of the am-
plitude, since

εf.p.(I) ≡
Πf.p.
I I

Πf.p.
II

= const < 0. (83)

FIG. 5. (a) The action drift and (b) diffusion coefficients for
white noise heating and laser cooling within different types
of Paul trap potentials. The laser cooling coefficients (Πf

I for
the drift and Πf

II for the diffusion) are compared for motion
within a Mathieu oscillator, the surface trap full rf potential,
and its pseudopotential approximation. The coefficients of
white noise heating (Πw

I and Πw
II , within the rf potential)

are shown as well. The trap and laser parameters are as in
Fig. 4, and the heating rate is given in Eq. (82). We note
that the I axis here extends to I = 3.65×10−3 (where ν(I) ≈
0.03), at the border where the rf potential motion becomes
chaotic for the presented parameters). See text for details and
a discussion.

We note that in this ratio, the saturation parameter
drops out (in our low saturation limit). As long as an ap-
propriate choice of the laser parameters guarantees that
|εf.p.(I)| � 1, the cooling process is efficient (and non-
diffusive), independent of the action.

C. Cooling in an anharmonic Paul trap potential

Comparing the cooling coefficients for motion within
the surface-electrode trap potential, Fig. 5(a) shows that
a calculation using the pseudopotential results in a laser-
induced drift rate very different from the rf potential.
Cooling within the rf potential is well described by the
Mathieu oscillator approximation throughout most of the
trap. However, beyond a certain amplitude of motion,
the cooling turns into heating as evidenced by the drift
coefficient becoming positive. In this region, the cor-
rections to the cooling rate coming from the two terms
at order p2

r , dominate the drift rate. The heating from
white noise corresponding to a heating rate of 0.1 ms−1

[Eq. (82)] is shown for comparison, calculated for the mo-
tion in the anharmonic potential. Both can be seen to
start diverging in the region of motion that approaches
the separatrix. This results from the term ∝ ν−3dI/dν
that enters Πf

I through ∂2Λ/∂p2
z [Eq. (53)], and becomes

important only close enough to the separatrix, although
it should be noted that ν(I) at the maximal value of I in
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FIG. 6. The cooling efficiency coefficient εw+f(I) of Eq. (85),
in the large amplitude regime of a surface-electrode trap. Four
values of of the detuning ∆ are shown, with the rest of the
parameters as in Fig. 5. The vertical axis is truncated at
ε = 0, beyond which the combined effect of the noise and
laser is a mean positive drift. However, already in the range
ε & −1, the cooling is inefficient, with the diffusion (due to
the noise and laser together) dominating the drift, which can
quickly lead the ion above the trap’s barrier.

Fig. 5 is still ∼ 1/4 of its value at the trap center, so our
adiabatic approximation still holds. The action axis ex-
tends up to the maximal value for which a simulation of
the full rf potential shows that the ion is still bounded (by
the last unbroken torus [11]). For the presented parame-
ters the voltage on the rf electrodes is within the border
of validity of the pseudopotential, and the chaotic region
close to the separatrix is very small.

The trap anharmonicity plays a bigger role in the dif-
fusion coefficients [Fig. 5(b)]. Here again, the pseudopo-
tential curve is quantitatively very different. Also the
approximation of the rf potential by a Mathieu oscilla-
tor, results in an underestimate of the action diffusion for
nonlinear motion. Turning to the cooling efficiency

εf(I) =
Πf
II

Πf
II

, (84)

for low detuning as in Fig. 5 (where ∆ = −Γ/2) we find
that εf(I)� −1 throughout most of the trap (beyond the
very low amplitude motion of thermal equilibrium), and
it increases only for very high amplitude motion (ε(I) >
−1 for I & 3.5× 10−3). This border is close to (but still
lower than) the point where the laser would start heating
the ion (ε(I) > 0). The reason that |ε(I)| becomes of
order 1 is inherent to the anharmonic rf potential. As
can be seen in Fig. 5, the diffusion grows more steeply
than in a quadrupole dependence (for which Πf.p.

II ∝
√
I),

already at values of I where the drift is still close to its
quadrupole behaviour. We can conclude that due to the
nonlinearity the cooling efficiency strongly decreases with
the amplitude, and beyond a certain threshold action, the
ion motion under cooling becomes diffusive in nature.

Nonetheless, this threshold can be pushed up by vary-
ing other parameters of the cooling [though not the in-
tensity, which cancels out in Eq. (84)]. We find that for
a larger detuning the cooling efficiency can be increased.
This is clear from, e.g. Eq. (B3), for a quadrupole po-
tential. The action value above which ε(I) & −1 (where
the motion under cooling becomes diffusive), depends on
other parameters of the trap, laser, and on their com-
bined effect together with the white noise. The white
noise diffusion coefficient is plotted in Fig. 5(b), for com-
parison with the laser induced diffusion. For the chosen
parameters we see that the laser diffusion is comparable
to the noise diffusion for high amplitude motion. The
linearity of the FP equation allows us to examine the
cooling efficiency in the presence of white noise,

εw+f(I) =

(
Πw
I + Πf

I

)
I

Πw
II + Πf

II

, (85)

presented in Fig. 6. For the lowest value of the detuning,
the cooling becomes inefficient already at I & 3.36×10−3,
due to the white noise (however increasing the laser inten-
sity reduces the relative importantce of the noise contri-
bution). For increased detuning, the limits of this region
can be pushed noticeably up. A detailed study of this
regime of high amplitude motion could prove important
for optimizing ion loading, and we will examine some as-
pects of ion dynamics subject to a large laser detuning
in [34].

VII. SUMMARY

The main purpose of the current paper has been to lay
down a framework for treating stochastic processes in rf
traps, throughout the regular parts of the unperturbed
Hamiltonian phase-space. In general this requires ac-
counting for the trap’s periodic drive and its anharmonic-
ity. This can be achieved by employing action-angle coor-
dinates, which also permit significant simplification of the
treatment of slow stochastic processes by integrating over
the angles. We have kept the derivations of the theory
completely general for 3D motion within these assump-
tions, which should allow extending our detailed analytic
and numerical study for 1D motion, to more spatial di-
mensions and even to more ions. We begin this section
with a summary of the main results.

In Sec. V A we study heating by additive, position-
independent Gaussian white noise (modelling fluctuating
electric fields). The simplest case is that of a quadrupole
potential, where the ion is heated up at a constant rate,
which is approximately equal for both the harmonic and
the Mathieu oscillator. Studying an anharmonic poten-
tial, we find that the drift and diffusion rates significantly
increase on the high action tori of the trap and, depend-
ing on the parameters, may become comparable with the
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FIG. 7. A schematic depiction of the drift and diffusion rates
of the action I, for an ion being laser-cooled in the different
regimes of motion within a realistic surface-electrode Paul
trap with substantial anharmonicity far away from the effec-
tive potential minimum. The axes are not to scale, and the
two plotted quantities have different dimensions – see the leg-
end. In the linear limit of the cooling (in the limit of low
velocity without “excess micromotion”), the cooling drift and
diffusion are linear in the action, and converge to those found
for a time-independent trap, with the drift coefficient cross-
ing zero at the action corresponding to the Doppler cooling
limit. For high velocity and still within an approximately
quadrupole potential, the cooling rate drops as ∝ 1/

√
I and

the diffusion rate grows as ∝
√
I. For a very high amplitude

of motion within the anharmonic, rf potential, the diffusion
grows more sharply and may dominate the drift (so the dis-
tribution broadens faster than its mean is cooling down), and
the drift itself may become positive (turning into effective
heating). In this region the ion is likely to escape the trap,
however both effects can be partly remedied by using a large
detuning of the cooling beam.

effects of laser cooling.

For laser cooling dynamics, in addition to the degree
of the anharmonicity of the potential (that varies with
the ion’s displacement from the trap center), a velocity
scale determined by the laser parameters is important.
When the ion’s velocity is small enough the Lorentzian
describing the absorption probability can be linearized in
the velocity, while when the ion’s velocity is large enough
the ion spends most of its time on the torus within the
tails of the Lorentzian. The different regimes of laser
cooling are depicted schematically in Fig. 7. For low ve-
locity the cooling coefficients become linear in the action
and we find (in Sec. V C and in Sec. VI A) that they
nearly coincide for a Mathieu oscillator in this limit with
those of the corresponding harmonic oscillator.

For a quantitative measure of the cooling efficiency we
define a nondimensional coefficient ε(I) [in Eq. (63)] pro-
portional to the diffusion timescale divided by the drift
timescale. A large negative value of ε(I) indicates that
the ion drifts towards lower action at a rate which over-
comes the spread of its probability distribution. For high

velocity motion within a quadrupole potential we find
(Sec. VI B) that the cooling efficiency parameter is inde-
pendent of the action, ε(I) = const, so the cooling re-
mains effective for any amplitude, if the parameters are
chosen to guarantee ε� −1.

This simple picture breaks down, however, when the
anharmonicity of the potential can no longer be ne-
glected. We find (Sec. VI C) that for a typical low de-
tuning value (optimal for reaching the lowest cooling
limit around the trap center), the trap’s anharmonicity
in combination with the micromotion lead to diffusive
dynamics (dominated by nondirectional diffusion), with
ε(I) & −1 as the motion amplitude increases within a
surface-electrode trap. Moreover, in the very highly an-
harmonic region close to a separatrix, the drift rate may
become positive, with the laser effectively heating the
ion past the trap’s boundaries. We also find that a laser
detuning much larger than the Doppler detuning allows
cooling of the ion from much higher action values.

We can draw general conclusions about the usefulness
of the time-independent pseudopotential approximation.
As discussed in [11], there exists a regime of parameters
where an ion’s motion in a Paul trap is nearly integrable,
whence the structure of the phase-space can be well ap-
proximated by the pseudopotential, which is simpler to
tackle theoretically and to simulate numerically. As we
find here, the pseudopotential is also sufficient for a quan-
titative calculation of white noise heating, where micro-
motion can be neglected. In contrast, except in its linear
limit, laser cooling requires that the micromotion be ac-
counted for even for a quadrupole potential. Moreover,
neglecting the micromotion in anharmonic regions within
a surface-electrode trap leads to incorrect descriptions of
the dynamics. With the (realistic) values of qz and νz
stated in Eqs. (A7)-(A8), the pseudopotential approxi-
mation fails even for a small micromotion amplitude.

Finally, we note that as discussed in Sec. II A, we have
used an approximate canonical transformation to obtain
the rf potential phase-space variables from the pseudopo-
tential ones, simplifying the numerical analysis signifi-
cantly in the 1D case. This approach neglects corrections
of order ν(I)2, and, as we have verified with a Mathieu
oscillator (for which exact analytic expressions are avail-
able [33]), amounts to roughly a few percent for our pa-
rameters. The frequency ν(I) and with it the expected
inaccuracy only decrease with the amplitude of motion
due to anharmonicity in the potential studied here [see
Fig. 2(b)], provided that the motion remains nearly inte-
grable. Close enough to a separatrix of the pseudopoten-
tial the micromotion introduces chaotic dynamics, posing
a natural boundary to the applicability of the presented
theory. For the presented parameters the chaos is limited
to a very small region of action near the separatrix.
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VIII. OUTLOOK

For a study of the stochastic processes of a single ion,
the theory can be directly applied in regions of regular
motion in those cases where the actions can be calculated.
For a quadrupole potential there is no chaotic motion and
moreover analytic expressions can be used. If the po-
tential attains a weak anharmonic component, it may be
treated perturbatively starting from a quadrupole poten-
tial up to some amplitude scale, which makes the calcu-
lation feasible [35]. Even for potentials where the anhar-
monicity is relatively strong (requiring a nonpertubative
treatment), there are important cases with a symmetry
axis along which the motion nearly decouples from the ra-
dial plane [11, 36]. The pseudopotential phase-space for
motion in the two radial coordinates is 4D and amenable
to an analysis using 2D planar Poincaré surfaces of sec-
tion, which allow one to calculate the actions. The drift
and diffusion coefficients become functions of two vari-
ables, which can be readily visualized and analyzed and
the micromotion can be accounted for using the canonical
transformation employed here. Numerically, one compli-
cation in such a study (beyond the tools that have been
used in this work and in [11]), could arise from the need
to obtain smooth enough maps of phase-space allowing
one to take partial derivatives of the actions.

In this work we have focused on a study of the drift
and diffusion coefficients and the information that can be
extracted directly from them. With different initial con-
ditions, the drift and diffusion coefficients can be used to
obtain time-dependent solutions of the FP equation, or to
obtain some partial statistics such as the mean time to es-
cape the trap in the absence of cooling, or in contrast, to
be cooled to the cooling limit from high amplitude. Our
theory can be directly applied to the analysis of Doppler
cooling thermometry [20, 23, 37, 38] and related meth-
ods [39]. A complex setup can be treated by adding the
drift and diffusion coefficients calculated separately for
each stochastic process. To account for a spatially inho-
mogeneous laser profile, the saturation parameter can be
generalized to be a function of the coordinates, and the
laser parameters can also be modulated in time.

Beyond a single ion, the extension to a crystal of many
ions whose motions are linearized about their (periodi-
cally driven) equilibrium positions would be immediate
using analytic expressions for a coupled Mathieu oscilla-
tors system [33, 40], with applications ranging from the
cooling of 1D chains of ions [41–48], to planar, 2D and 3D
crystals in Paul and also Penning traps [49–55], and ap-
plications in quantum information processing [33, 40, 56–
73]. The extension of the theory to account for more than
two electronic levels could be relevant for different types
of ions [23, 74].

In this work we have focused on adiabatic noise heat-
ing, typically applicable to electric field fluctuations in

vacuum-operated traps. Collisions of background gas
molecules with atomic ions typically induce a nonadia-
batic energy change [29, 30, 75], and their separation in
time is much larger than the cooling timescale. However,
recently objects ranging from large biomolecules, through
graphene nanoplatelets to micrometer- and nanometer-
scale spheres and diamonds, are being trapped [76–89],
and whose dynamics, depending on the pressure in the
experiment, can be modelled as Brownian motion. The
extension to nonisotropic noise [90] is immediate. Be-
yond the noise that is inherent to the trap [25, 91–95],
it is also possible to introduce forces with differently tai-
lored noise spectra [96, 97] and study the ion’s dynamics
or its probability distribution. Such questions stand at
the heart of nonequilibrium formulations of reaction-rate
theory (Kramer’s escape problem [98]) and stochastic res-
onances [99]. In combination with laser cooling, a single
ion may be captured in a complicated motion [100, 101],
and nonequilibrium models of interacting particles cou-
pled to different baths [102–105] could be tested with
trapped ions [106], along with various ideas of stochas-
tic, nonequilibrium and active systems.
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Appendix A: Transformation to nondimensional
variables and trap parameters

For the numerical calculations presented in this work
we use nondimensional units, obtained by rescaling the
time t by half the micromotion frequency, Ω/2, and mea-
suring distances using a natural lengthscale of the prob-
lem, w, which, for our case, is the electrode width in a
five-wire surface-electrode Paul trap [11]). The rescaling
introduced in Eq. (46) is,

z → z/w, t→ Ωt/2, vz → vz/(wΩ/2). (A1)

This rescaling allows us also to use the ion mass m in or-
der to define a nondimensional momentum, and its charge
e to define a nondimensional potential energy V that de-
pends on an electrostatic voltage U ,

pz → pz/(mwΩ/2), U → U/[mw2Ω2/(4e)]. (A2)
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The full potential of the trap can be composed of a sum
of a few similar potential terms. The laser parameters
are similarly rescaled

pr →
pr

mwΩ/2
, Γ→ Γ

Ω/2
, ∆→ ∆

Ω/2
, k → kw,

(A3)
in addition to ωL → ωL/(Ω/2) and ΩR → ΩR/(Ω/2),
together with the rescaled Planck’s constant,

~→ ~/(mw2Ω/2). (A4)

For the numerical calculations, we assume throughout
this work a 9Be+ ion, and the parameters of Eq. (A1) are

w = 50µm Ω = 2π × 100 MHz. (A5)

The other trap parameters are defined by

az =
4eUDC/Cz
mw2Ω2

, q5 =
2eUrf

mw2Ω2
, (A6)

with UDC a voltage on electrodes providing confinement
along the trap’s symmetry axis, Cz is a nondimensional
parameter that characterizes the geometric properties of
this harmonic potential, and Urf is the voltage on the rf
electrodes. The nondimensional parameter values that
we choose are

q5 ≈ 0.43, az = −0.0002, qz ≈ 0.16, (A7)

which correspond to Urf = 20 V, and this gives

νz ≈ 0.112, ωz ≈ 2π × 5.60 MHz, (A8)

with ωz the dimensional secular frequency. For the 9Be+

ion, the laser parameters in dimensional units are

k̃ ≈ 2π/313 nm−1, Γ̃ ≈ 120× 106 s−1, (A9)

and we take ~k = kẑ, with a transverse laser polarization,
giving a spontaneous emission coefficient [using Eq. (20)],

µ ≡ µzz = 2/5, (A10)

(where µ is often denoted by α or ξ in the literature). The
nondimensional diffusion coefficient D [after the rescaling
of Eq. (46)] is given by

D =
8D̃

m2w2Ω3
, (A11)

where D̃/m is the dimensional diffusion coefficient with
units of energy increase rate (energy per unit time). Typ-
ical measured values are reported as the heating rate ˙̃n in
quanta per second (obtained at center of the trap, where
the motion can be quantized in terms of a harmonic os-
cillator). Hence if the oscillator is heated at a rate in

dimensional units of ˙̃E = ~̃ωz ˙̃n, it corresponds to the
nondimensional diffusion coefficient,

D = Ė =
~̃

mw2 (Ω/2)

ωz
(Ω/2)

˙̃n

(Ω/2)
. (A12)

Appendix B: The fast particle Expansion

Expanding the Lorentzian of Eq. (30) in ∆ we get

ρ ≈ s

2

 Γ2

4(~k · ~v)2 + Γ2
+

8~k · ~v Γ2∆(
4(~k · ~v)2 + Γ2

)2

 , (B1)

where this expansion is valid for∣∣∣~k · ~v∣∣∣� Γ/2,
∣∣∣~k · ~v∣∣∣� 2 |∆| . (B2)

Under the conditions described in Sec. V D (that the laser

propagates along ~k = kẑ, and if in addition the z motion
is described by the harmonic oscillator of Eq. (58)), the
conditions in Eq. (B2) are equivalent to Eq. (79), and we
can use Eq. (58) to perform the integrals in Eqs. (70)-
(71), to get the harmonic oscillator fast particle limit,

Πf.p.
I ≈ ~

∆

νz

sΓ2/4

k
√

2Iνz
+ ~2k

sΓ2/4

2νz
√

2Iνz
(1 + µ), (B3)

Πf.p.
II ≈ ~2 2(sΓ2/4)

4ν2
z + Γ2

(
Γ3(1 + µ) + 4ν2

zΓ

4ν2
z

+ µk
√

2Iνz

)
.

(B4)

The first term in Eq. (B3) for Πf.p.
I gives cooling

(for ∆ < 0), and coincides with the result derived for
the fast particle limit, using quantum harmonic oscilla-
tor wavefunctions, in [15] (where the second term has
been neglected). The second term in Eq. (B3) is pos-
itive, heating-like, and may counteract the cooling in
this asymptotic region of harmonic oscillator motion.
Both terms scale with 1/

√
I, and the ratio of the sec-

ond term to the first term of the drift coefficient Πf.p.
I ,

equals (1+µ)kpr/(2∆), and for typical parameters (with
|∆| & Γ/2) this ratio is small by Eq. (24), implying that
the positive drift term can be neglected (but not, how-
ever, too close to resonance).

The value of Πf.p.
II is again the sum of two terms, but

these have different asymptotics; the first is constant
while the second term scales with

√
I and gives the domi-

nant functional dependence in the fast particle limit. The
latter has the same scaling as that derived in [15] using
the quantum harmonic oscillator wavefunctions, however
with a different prefactor, consistent with our model of
a classical ion [107]. We note for comparison, that the
zero lifetime treatment results in the same cooling rate in
terms of the energy, but gives a constant diffusion term
instead of a term ∝

√
I, which is an incorrect result,

Πz
II → ~2 2(sΓ2/4)Γ(1 + µ)

4ν2
z

, (h.o.). (B5)

This diffusion coefficient can be obtained in the limit of
both Γ � νz and I → 0 from Eq. (B4), which gives a
simple consistency check of the fast particle limit.
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Appendix C: Derivatives of the canonical
transformation

Using the pseudopotential Hamiltonian,

Hps(ζ, πζ) =
1

2
π2
ζ + Vps(ζ), (C1)

and the fact that the Hamiltonian becomes angle-
independent in the action-angle coordinates, we can write

∂Hps(ζ, πζ)

∂πζ
=
∂Hps(I, θ)

∂I

∂Λps(ζ, πζ)

∂πζ
. (C2)

By rearranging and using the definition of the frequency
ν(I) = ∂H/∂I, we get

∂Λps(ζ, πζ)

∂πζ
=

πζ
ν(I)

. (C3)

Similarly,

∂(πζ/ν)

∂πζ
=
∂2Λps(ζ, πζ)

∂π2
ζ

=
1

ν
+ πζ

∂(1/ν)

∂πζ
, (C4)

and again,

∂(1/ν)

∂πζ
=
∂(1/ν)

∂I

∂Λps

∂πζ
= − 1

ν2

dν

dI

∂Λps

∂πζ
, (C5)

which together with Eqs. (C3)-(C4) allows to obtain
Eq. (53) by using Eq. (52) to substitute ∂/∂pz ≈ ∂/∂πζ .

Appendix D: Transformations of the Fokker-Planck equation

We consider a general from of the Fokker-Planck equation for the distribution ρ(R,P, t), written here for 1D case
for simplicity, with canonical coordinates {R,P},

∂ρ(R,P, t)

∂t
= L0(R,P, t)ρ−

∑
i∈{R,P}

∂

∂i
Ai(R,P, t)ρ+

1

2

∑
i,j∈{R,P}

∂2

∂i∂j
Bij(R,P, t)ρ, (D1)

where L0(R,P, t) is the Liouvillian. For a canonical transformation {r, p} = {φr (R,P, t) , φp (R,P, t)}, Eq. (D1)
transforms to

∂ρ(r, p, t)

∂t
= L0(r, p, t)ρ−

∑
k∈{r,p}

∂

∂k
Ãk(r, p, t)ρ+

1

2

∑
k,l∈{r,p}

∂2

∂k∂l
B̃kl(r, p, t)ρ, (D2)

where the coefficients Ãk and B̃kl with k, l ∈ {r, p} are given by [108]

Ãk =
∑

i∈{R,P}

Ai
∂φk
∂i

+
1

2

∑
i,j∈{R,P}

Bij
∂2φk
∂i∂j

, B̃kl =
∑

i,j∈{R,P}

Bij
∂φk
∂i

∂φl
∂j

, (D3)

and we note that the Liouvillian in the new coordinates has to be constructed using the Hamiltonian in the transformed
coordinates, K(r, p, t) = H(r, p, t) + ∂F/∂t with F the generating function of the canonical transformation. More
general, time-dependent but noncanonical transformations, and an averaging treatment, are presented in [35].
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Gina T Vişan, Mihai Ganciu, Vladimir Filinov, Dmitry
Lapitsky, Lidiya Deputatova, and Roman Syrovatka.
Multipole electrodynamic ion trap geometries for mi-
croparticle confinement under standard ambient tem-
perature and pressure conditions. Journal of Applied
Physics, 119(11):114303, 2016.

[82] Pavel Nagornykh, Joyce E Coppock, and BE Kane.
Cooling of levitated graphene nanoplatelets in high vac-
uum. Applied Physics Letters, 106(24):244102, 2015.

[83] P. Z. G. Fonseca, E. B. Aranas, J. Millen, T. S. Mon-
teiro, and P. F. Barker. Nonlinear dynamics and strong
cavity cooling of levitated nanoparticles. Phys. Rev.
Lett., 117:173602, Oct 2016.

[84] Irene Alda, Johann Berthelot, Raúl A Rica, and Ro-
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