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We carry out a principal component analysis of fluctuations in a hydrodynamic simulation of
heavy-ion collisions, and compare with experimental data from the CMS collaboration. The leading
and subleading principal components of elliptic and triangular flow reproduce the trends seen in
data. By contrast, the principal components of multiplicity fluctuations show an interesting dif-
ference in their pT dependence for simulations compared to experimental data. Specifically, the
leading component increases with pT in hydrodynamics, while it is constant in experiment. In order
to understand how the leading and subleading modes arise, we construct a toy model where the
principal components have a simple analytic form. We show how the PCA components depend on
fluctuations of the average transverse momentum and of the total multiplicity, as well as correlations
between the two, and we verify that hydrodynamic simulations agree with the predictions of the toy
model. The difference in the momentum trend is likely due to the fact that hydrodynamic models
typically have transverse momentum fluctuations that are larger than seen experimentally.

I. INTRODUCTION

The expansion of the matter formed in nucleus-nucleus
collisions at relativistic energies produces a collective
transverse flow. This flow is the response to the den-
sity gradients in the initial fireball. It is azimuthally
asymmetric because the initial fireball is anisotropic and
contains hot spots. These inhomogeneities are of inter-
est: they reflect the poorly known mechanism of energy
deposition, via the strong interaction, when two nuclei
collide, and their influence on the final flow depends on
fluid properties, which are also poorly known (e.g. shear
and bulk viscosities). A lot of work has been done to
relate initial inhomogeneities and final flow of produced
particles. In particular the mapping between initial con-
ditions and anisotropic flow has been studied globally
and event-by-event [1–6]. To get more detailed infor-
mation on fluctuations in the initial state, a useful ob-
servable is the factorization breaking ratio [7–13], which
encodes the correlations of flow harmonics at different
transverse momenta or pseudorapidities. More recently a
new more precise tool was proposed, the Principal Com-
ponent Analysis (PCA) for event-by-event fluctuations
[14–16] and first experimental results for such an analy-
sis have been presented by the CMS collaboration [17].
The aim of this paper is to present a hydrodynamical
study of these observables and point out an interesting
difference between data and some hydrodynamic simula-
tions for the n = 0 leading and sub-leading components,
corresponding to multiplicity fluctuations. These compo-
nents are sensitive to physics not explored by anisotropic
flow and can put new constraints on initial conditions
models.

II. PRINCIPAL COMPONENT ANALYSIS

Principal Component Analysis is a common technique
for finding patterns in data of high dimension. One tries
to find new variables that incorporate as much as possi-
ble of the variations. This amounts to diagonalizing the
covariance matrix (e.g. [18]). It was first suggested to use
it to study event-by-event fluctuations in relativistic nu-
clear collisions in [14]. For self-consistency, the method is
summarized below. Consider a set of collisions or events.
For each event, the single particle distribution can be
expanded as

dN

d~p
=

1

2π

+∞∑
n=−∞

N(pT )Vn(pT )e−inφ (1)

=

+∞∑
n=−∞

Vn(pT )e−inφ (2)

where d~p = dydpT dφ, φ is the azimuthal angle of the par-
ticle momentum. Vn(pT ) is a Fourier coefficient (without
the usual normalization by multiplicity) which is complex
for n 6= 0. Its magnitude and orientation vary for each
event.

For each transverse momentum bin, the variance can
be computed 〈|Vn(paT )|2〉 − |〈Vn(paT )〉|2 (the average is
performed over events) but brings no information about
possible relationship between different bins. To investi-
gate how different bins are correlated, one constructs the
covariance matrix:

Vn∆(paT , p
b
T ) ≡ 〈Vn(paT )V∗n(pbT )〉−〈Vn(paT )〉〈V∗n(pbT )〉. (3)

The terms 〈Vn(paT )〉 are zero by azimuthal symmetry, ex-
cept for n = 0.

This covariance matrix is real, symmetric, positive-
semidefinite. It can be diagonalized and re-written in
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term of its real orthogonal eigenvectors V(α)
n (pT )

Vn∆(paT , p
b
T ) =

∑
α

V(α)
n (paT )V(α)

n (pbT ), (4)

from where one can express the flow vector in a given
event as

Vn(pT ) =
∑
α

ξ(α)
n V(α)

n (pT ), (5)

where ξ
(α)
n are coefficients that vary from event to

event (specifically, uncorrelated, random complex num-
bers with zero mean and unit variance). Terms in the
right-hand side of Eq. (4) are ordered according to the
magnitude of the eigenvalues. Even by truncating the
sum to the first two or three terms, one typically obtains
a very good approximation to the left-hand side. The

largest component V(1)
n (pT ) is called the leading mode,

V(2)
n (pT ) the sub-leading mode, etc. For comparison

with standard flow, it is useful to introduce the following
scaled principal components

v(α)
n (pT ) =

V(α)
n (pT )

〈V0(pT )〉
. (6)

Once the dominant terms in Eq. (4) are determined (i.e.
patterns are found in our high dimension data), the phys-
ical meaning of these terms must be investigated. This
was done in [14–16, 19, 20] and is discussed in section III
(n = 2, 3) and IV (n = 0).

III. RESULTS FOR ANISOTROPIC FLOW

In this section and the next, we present results ob-
tained from a hydrodynamic simulation for a perfect fluid
expanding in 3+1 dimensions starting from NeXus initial
conditions [21]. The code used, NeXSPheRIO, has been
shown to lead to a consistent description of many flow
data at top RHIC energies [22–29].

We also have some data accumulated for two centrality
windows (0-5 and 20-30%) at

√
s = 2.76 TeV and their

compatibility with flow observables more subtly related
to fluctuations (scaled harmonic flow distributions, fac-
torization breaking ratio) has been tested [30]. This code
is therefore an interesting tool for a first investigation of
the PCA results obtained recently by CMS at the LHC
[17].

For n=2–3, we show the first two scaled principal com-
ponents and comparison with CMS data in Fig. 1. Our
cuts are |η| < 2.5 (equivalent to CMS) but pT > 0.5 GeV,
slightly higher than CMS pT > 0.3 GeV. We used similar
pT bins as experimentally.

The leading component is straightforward to in-
terpret [14–16]. If it dominates, Eq. (4) yields

Vn∆(paT , p
b
T ) ∼ V(1)

n (paT )V(1)
n (pbT ) i.e. there is flow fac-

torization. The event flow defined by Eq. (5) reduces to

Vn(pT ) ∼ ξ
(1)
n (pT )V(1)

n (pT ), i.e., the leading component
corresponds to usual anisotropic flow. We have checked
explicitly that this is the case (not shown). Concentrat-
ing on the region from 0 to 2 GeV, we see that our hy-
dro simulation slightly overestimates the leading compo-
nents. Inclusion of viscosity would damp them and im-
prove agreement with data, as explicitly shown for the
pT -integrated n = 3 leading component in Ref. [15].

Higher-order principal components encode the infor-
mation about the momentum dependence of flow fluctu-
ations. In this context, it is customary to introduce the
factorization breaking ratio

rn =
Vn∆(paT , p

b
T )√

|Vn∆(paT )|2|Vn∆(pbT )|2
, (7)

which drops below unity in the presence of pT -dependent
flow fluctuations. Note that the numerator and the de-
nominator involve all the principal components, accord-
ing to Eq. (4). In practice, however, as in [16], we have
checked that the first three principal components give
a very good approximation of rn (not shown). The in-
dividual principal components express the information
contained in the factorization ratio in a simpler way be-
cause they are functions of a single variable paT , while rn
is a function of two variables paT and pbT . In the range 0
to 2 GeV, the simulations for the scaled sub-leading com-
ponent capture the main features of the data (the sub-
leading component is perpendicular to the leading one,
the slightly higher pT cut should shift the point where it
crosses the horizontal axis a little to the right). In [15],
it was shown that the pT integrated scaled sub-leading
component for n=3 depends less on viscosity than the
leading one.

IV. RESULTS FOR MULTIPLICITIES

We now discuss multiplicity fluctuations, correspond-
ing to n = 0 principal components. The comparison be-
tween our results and CMS data is displayed in the top
panels of Fig. 2. There is rough overall agreement, but
not as good as in Fig. 1. The leading component is rather
independent of pT in experiment, while it increases with
pT in our hydrodynamic calculation. The same increase
is not seen at RHIC energies (bottom panel of Fig. 2).
The increase at LHC energies is not specific to our imple-
mentation, as it has been seen by other groups [16, 31].
Such qualitative disagreement between hydrodynamics
and experimental data is rare, therefore, we investigate
its origin in detail.1

In order to understand the principal components for
n = 0, we introduce a toy model where the fluctuation of

1 Note that the transport model AMPT without hydrodynamics
predicts a flat leading component, as seen in data.
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FIG. 1. First two scaled principal components from the ideal fluid calculation in two centrality windows corresponding to
central (left) and midcentral (right) collisions. Top: elliptic flow (n = 2). Bottom: triangular flow (n = 3). Experimental data
are from the CMS collaboration [17] (n=2,3).
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FIG. 2. First two scaled principal components for n = 0 (multiplicity fluctuations). The top panels display a comparison
between our ideal fluid calculation and CMS data [17], as in Fig. 1. The bottom panels display our predictions for Au+Au
collisions at 200 GeV in two centrality windows.
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the multiplicity in a pT bin originates from two sources:
1) fluctuations of the total multiplicity N . 2) fluctuations
of the mean transverse momentum p̄T . In addition, we
assume for simplicity that the pT spectrum is exponen-
tial:

1

2π

dN

dydpT
= V0(pT ) =

2pTN

πp̄2
T

e
− 2pT

p̄T (8)

where N is the total multiplicity per unit rapidity and p̄T
is the mean transverse momentum in one event. Next, we
allowN and p̄T in a given event to deviate from the event-
averaged total multiplicity 〈N〉, and the event-averaged
mean transverse momentum 〈p̄T 〉 in a centrality bin, re-
spectively:

N = 〈N〉+ δN, (9)

p̄T = 〈p̄T 〉+ δp̄T . (10)

Expanding Eq. (8) to first order in δN and δp̄T , one
obtains:

δV0(pT )

〈V0(pT )〉
=

δN

〈N〉
− 2

δp̄T
〈p̄T 〉

+ 2
pT δp̄T
〈p̄T 〉2

. (11)

The covariance (3) is then given by

V0∆(paT , p
b
T ) ≡ 〈δV0(paT )δV0(pbT )〉, (12)

where angular brackets denote an average over events in
a centrality bin. Inserting Eq. (11) into Eq. (12), one
obtains:

V0∆(paT , p
b
T )

〈V0(paT )〉〈V0(pbT )〉
=

σ2
N

〈N〉2
+ 4

σ2
pT

〈p̄T 〉2
− 4
〈δNδp̄T 〉
〈N〉〈p̄T 〉

+2

(
〈δNδpT 〉
〈N〉〈p̄T 〉

− 2
σ2
pT

〈p̄T 〉2

)
paT + pbT
〈p̄T 〉

+4
σ2
pT

〈p̄T 〉2
paT p

b
T

〈p̄T 〉2
, (13)

where σ2
N ≡ 〈δN2〉 and σ2

pT ≡ 〈δp̄
2
T 〉 denote the variance

of the multiplicity and mean pT , respectively. Inspection
of the dependence on paT and pbT shows that the scaled
principal components defined by Eqs. (4) and (6) can
only be of the form

v
(α)
0 (pT ) = a(α) + b(α) pT

〈p̄T 〉
, (14)

i.e., they are linear in pT . Since they span a two-
dimensional space, this in turn implies that there are at
most two principal components (remember that principal
components are mutually orthogonal). The full analytic
expressions of these principal components are cumber-
some. Therefore, we make further simplifying assump-
tions, by identifying the leading terms in Eq. (13).

Table I gives the values of the relative fluctuations of N
and p̄T in our hydrodynamic calculation, as well as their
covariance. The relative fluctuations of N are larger by
an order of magnitude, which is explained by the large

TABLE I. Values of the variances and covariance of N and p̄T
at LHC and RHIC in our hydrodynamical calculation using
NeXSPheRIO.

2.76TeV 200GeV

centrality σN
〈N〉

σpT
〈p̄T 〉

√
〈δNδp̄T 〉
〈N〉〈p̄T 〉

σN
〈N〉

σpT
〈p̄T 〉

√
〈δNδp̄T 〉
〈N〉〈p̄T 〉

0-5 % 0.12 0.026 0.041

0-10 % 0.11 0.017 0.017

20-30 % 0.16 0.041 0.070 0.12 0.025 0.031

width of the centrality bin. In the limit where σpT and
〈δNδp̄T 〉 can be neglected, only the first term remains
in the right-hand side of Eq. (13). The covariance ma-
trix trivially factorizes, i.e., there is only one principal
component. The scaled principal component, defined by
Eq. (6), is:

v
(1)
0 (pT ) ' σN

〈N〉
. (15)

It is independent of pT . Thus, the fact that our hydrody-

namic calculation reproduces the magnitude of v
(1)
0 (pT )

at low pT (i.e., for the bulk of produced particles) simply
means that it has the correct multiplicity fluctuations.
These are largely dominated by the width of the central-
ity bin used for the analysis, or, equivalently, by impact
parameter fluctuations.

We now consider the more general case where σpT /〈p̄T 〉
and

√
〈δNδp̄T 〉/〈N〉〈p̄T 〉 are not zero, but can still be

treated as small quantities. Then, to leading order in
these quantities, the scaled principal components are:

v
(1)
0 (pT ) ' σN

〈N〉
+

−
(
σpT

〈p̄T 〉

)2

+ 2 〈δNδpT 〉〈N〉〈p̄T 〉(
σN

〈N〉

)
 pT
〈p̄T 〉

,

v
(2)
0 (pT ) ' −3

2

σpT
〈p̄T 〉

(
1− 4

3

pT
〈p̄T 〉

)
. (16)

One can check that with these expressions, the decompo-
sition (4) is satisfied. In terms of the scaled components,
this equation can be written:

V0∆(paT , p
b
T )

〈V0(paT )〉〈V0(pbT )〉
= v

(1)
0 (paT )v

(1)
0 (pbT ) + v

(2)
0 (paT )v

(2)
0 (pbT ).

(17)
Inserting Eq. (16) into Eq. (17), and expanding to first
order in 〈δNδp̄T 〉 and σ2

pT , one recovers Eq. (13) except
for the second and third terms of the first line, which are
subleading corrections to the first term.

Equation (16) is a refinement of the zeroth-order result,

Eq. (15). A subleading mode v
(2)
0 (pT ) appears, which is

directly proportional to σpT /〈p̄T 〉. The connection be-
tween the subleading mode and pT fluctuations was al-
ready made in Ref. [16]. The subleading mode changes
sign as a function of pT , which is imposed by orthogo-
nality with the leading mode. The change of sign occurs
at pT = (3/4)〈p̄T 〉, which is rather independent of the
centrality, and is in agreement with CMS data.
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FIG. 3. Comparison between scaled principal components of a full hydrodynamical model (symbols) and the approximate
result from the toy model, Eq. (16) (lines). Top: Au+Au collisions at RHIC. Bottom: Pb+Pb collisions at the LHC. As in
Figs. 1 and 2, the left panels correspond to central collisions, and the right panels to mid-central collisions.

Figure 3 displays a comparison between Eq. (16) and
the result from the full hydrodynamic calculation. Agree-
ment is very good at RHIC and a little worse at LHC
(presumably due to the different lower pT cuts), so one
concludes that Eq. (16) captures the physics of the first
two n = 0 modes.

The motivation for building the toy model was to un-
derstand under which condition the leading mode is inde-
pendent of pT , or rises with pT . The first line of Eq. (16)
shows that a rise with pT can be ascribed to a positive
correlation between the mean transverse momentum and
the multiplicity, represented by the quantity 〈δNδp̄T 〉.
The fact that this rise is seen in hydrodynamic calcula-
tions, not in data, implies that hydrodynamic calcula-
tions overestimate 〈δNδp̄T 〉. This can be related to the
fact that hydrodynamic models yield too large δpT in
general, as pointed out by a study of transverse momen-
tum fluctuations [32]. Since transverse momentum fluc-
tuations in hydrodynamics originate from fluctuations in
the transverse size of the interaction region [33], this in
turn implies that existing models of initial fluctuations
tend to overestimate the size fluctuations.

The conclusion of this study is that a model which
predicts the right multiplicity and pT fluctuations should
capture the first two principal components for n = 0. The
reason why our hydrodynamical model predicts a rise of
the leading mode with pT , which is not seen in data,
is that the pT fluctuations from Table I are too large
compared to experimental data from ALICE [38]. The

bottom panels of Fig. 2 display our predictions for RHIC.
The values of σN/〈N〉 from Table I are comparable with
experimental values from PHENIX [36], while the values
of σpT /〈p̄T 〉 are slightly too large compared to STAR
data [37], but in fair agreement. We therefore expect
that our calculation should correctly predict the first two
modes of multiplicity fluctuations at RHIC.

V. CONCLUSION

We have compared results from a hydrodynamic sim-
ulation using the code NeXSPheRIO with recent experi-
mental data by CMS, on the Principal Component Anal-
ysis. The trends for the leading and sub-leading compo-
nents of elliptic and triangular flow are in fair agreement
with data. In contrast, for multiplicity fluctuations, we
have pointed out a qualitative disagreement: The leading
component increases with pT in hydrodynamics (here as
well as in [16, 31]) while it is constant in data at LHC
energies. This has prompted us to analyze this case more
thoroughly. We have constructed a toy model which gives
result in good agreement with the full hydrodynamic cal-
culation. In this toy model, the subleading component is
proportional to the standard deviation of the mean pT ,
σpT . The leading component is close to σN/〈N〉 at low
pT , but increases with pT if the fluctuations of pT are
large and correlated with the fluctuations of the multi-
plicity.
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We have thus related n = 0 results from the principal
component analysis to multiplicity and transverse mo-
mentum fluctuations. Fluctuations in N and p̄T have
been attracting attention for a long time because they
may probe the QCD phase transition (see e.g. [34]), as
well as initial inhomogeneities (see for example [33, 35]).
The principal components are sensitive not only to the
width of multiplicity and transverse momentum fluctua-
tions, but also to their mutual covariance. They open a
new window on initial fluctuations, which can be used to
rule out initial condition models.
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