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Abstract

A light scalar degree of freedom, as the one possibly responsible for the accelerated
expansion of the Universe, could leave observable traces in the inspiral gravitational
wave signal of binary systems. In order to study these effects, we extend the effective
field theory formalism of Goldberger and Rothstein to minimal scalar-tensor theories
of gravity. This class of models is still very broad, because the couplings of the scalar
to matter are far less constrained than those a massless spin-2 field. In most of the
paper we focus on conformal couplings. Using the effective field theory approach,
we discuss the emergence of violations of the strong equivalence principle even in
models that exhibit universality of free fall at the microscopic level. Our results on the
conservative dynamics of the binary and its power emitted in gravitational and scalar
radiation agree with those obtained with the standard post-Newtonian formalism.
We also compare them to more recent work. Finally, we discuss the implications of
considering a disformal coupling to matter.
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1 Introduction

The direct detection of gravitational waves (GW) [1], while opening an entire new window
on astrophysics and cosmology, is providing a precious direct test of general relativity
(GR). One of the main reasons why one could feel legitimated to put GR into question is
the latest acceleration of the Universe, a phenomenon whose cause is broadly called dark
energy, which contemplates some modification of gravity among its possible explanations.
Of course, we are talking about very different scales here: cosmic acceleration is active at
Hubble scales, i.e. at distances much larger than the size of any gravitational wave emitter.

On the other hand, the dynamics of a massless spin-2 field is extremely constrained
on theoretical grounds. According to our present understanding of effective field theory
(EFT), modifying GR necessarily implies introducing new degrees of freedom besides
the massless spin-2 field. This could have several effects on GW observables. First,
the new degree of freedom may exchange a fifth force, changing the conservative and
dissipative dynamics of the inspiral binaries emitting GW. Second, the new propagating
degree of freedom opens new channels of radiation emission that can be observed as extra
polarizations. Third, if this new field develops a non-trivial cosmological background
value, it can induce Lorentz-breaking effects on the GW such as modifying their dispersion
relation (see e.g. [2]). The most common of these types of effects is inducing a non-
luminal GW speed [3–6]. The recent detection of the neutron star merger GW170817
both in the gravitational and electromagnetic channels [7], has constrained such an effect
to the impressive level of 10−15, killing a large set of modified gravity models [8–11]. The
consequences of this event on the Vainshtein mechanism in scalar-tensor theories have
been discussed in [12–14]. Finally, GW may be damped [15–19] or decay into dark energy
fluctuations [20]. See also [21] for a review on the impact of present and future GW
observations on modified gravity.

In this work we study gravitational and scalar waves emission of a binary system in a
post-Newtonian expansion (see e.g. [22] and references therein), for theories that modify
gravity by the addition of a light scalar degree of freedom. To this aim, we extend the
formalism of Non-Relativistic General Relativity (NRGR), developed by Goldberger and
Rothstein [23, 24] (see also [25, 26], the nice reviews [27–29] and the interesting extension
discussed in [30]), to include an extra light scalar besides the massless graviton. After
having presented the general formalism, we highlight how violations of the strong Equiv-
alence Principle, as first derived by Nordtvedt [31], emerge in this approach. Moreover,
we derive the emitted gravitational and scalar power and the observable waveform of the
two tensor polarizations and the scalar one. Although we use different methods to obtain
them, our results overlap with some classic works of Damour and Esposito-Farèse, where
the standard Post-Newtonian formalism is applied to (multi) scalar-tensor theories [32,33],
recently extended up to 3PN order in [34,35]. When possible, we compare with the more
recent Ref. [36], where NRGR is used to study the effects of a light axion.

To describe the binary system coupled by gravity and the emitted gravitational wave
we use the action

S = Sgrav + Spp , (1.1)

where Sgrav governs the dynamics of the gravitational and scalar degrees of freedom and
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is given by

Sgrav =

∫
d4x
√
−g
(
M2

Pl

2
R− 1

2
gµν∂µφ∂νφ

)
, (1.2)

while Spp is the point-particle action describing the motion of the two inspiralling objects,
labelled by A = 1, 2,

Spp = −
∑
A=1,2

mA

∫
dτA

[
1− αA

φ

MPl
− βA

(
φ

MPl

)2

+ . . .

]
. (1.3)

We now discuss why we restrict to this action and some ways to extend it.

1.1 The gravitational action

While trying to extend the NRGR formalism to dark energy/scalar field models we im-
mediately encounter an obstruction. It is well known that, to pass Solar System tests,
modified gravity theories display screening mechanisms that make the scalar interac-
tions weaker in high density environments. For instance, most theories belonging to the
Galileon/Horndeski [37–39] and “beyond Horndeski” [40–44] classes have a rich structure
of non-linear terms in their Lagrangians that become more important close to the sources,
thereby screening the effects of the scalar fluctuations [45, 46]. While it is legitimate to
neglect such non-linearities on the largest cosmological scales, they are expected to play a
major role in the vicinity of the binaries, causing a breakdown of the perturbative expan-
sion that we use in this paper.

Another, related, complication in dealing with dark energy is represented by the spon-
taneously breaking of Lorentz symmetry. A time-evolving background scalar field allows,
in the action that governs cosmological perturbations, all sorts of terms that break boosts
and time-translations. This is made particularly explicit in the EFT approach to infla-
tion [47,48] and dark energy [49–52]. Let us consider, as an example, the Nambu-Goldstone
boson of some broken U(1) symmetry in Minkowski space,

L = −∂µφ∂µφ+
(∂µφ∂

µφ)2

Λ4
∗

+ . . . , (1.4)

where Λ∗ is a mass scale. When this theory is expanded around a homogeneous background
configuration φ(t), which is always a solution in Minkowski, the fluctuations of the field
develop a speed of propagation cs 6= 1—a very tangible sign of spontaneous breaking of
Lorentz symmetry already at quadratic order. At the same time, the non-linear terms
suppressed by the scale Λ∗ become important close to the source, giving rise, in this
case, to the “k-mouflage” mechanism [53], which is a variant of the screening mechanisms
discussed above.

As a full treatment of these non-linearities is beyond the scope of this paper (see how-
ever [54–57] for interesting steps forward in this direction), we focus on a very standard
scalar-tensor action, i.e. eq. (1.2). This action is in the so-called “Einstein frame” form:
possible non minimal couplings between the scalar and the metric fields have been reab-
sorbed with a field redefinition of the metric and transferred to the matter sector, i.e., to
the point-particle action. Moreover, motivated by the dark energy role of the scalar field,
we assume it to be effectively massless. The case of a massive axion has been studied in
the effective field theory approach in [36].
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1.2 The point-particle action

Let us now motivate the point-particle action (1.3). The size of the objects that are
orbiting around each other represents our UV scale, so they can be effectively described as
point particles. The couplings of a massless spin-2 field are famously constrained by gauge
invariance [58]. As a result, the presence of a scalar provides us with a richer structure of
possible point-particle couplings.

For most of the paper we focus on conformal couplings, obtained by assuming that
matter couples to the gravitational metric multiplied by a general function of the scalar
field. We have included up to terms quadratic in φ because, as we will see, higher-order
terms become important only at higher order in the Post-Newtonian expansion. Moreover,
we have allowed different scalar couplings for different particles because such couplings are
not protected against renormalization.

For example, let us consider the actual field theory describing the matter inside the
object. Such a “UV model” might well enjoy a universal scalar coupling of the type

SUV ⊃
∫
d4x α

φ

MP
Tm, (1.5)

Tm being the trace of the energy momentum tensor of the matter fields. Such a univer-
sal coupling is indeed radiatively stable under corrections coming from the sole matter
sector (see e.g. [59, 60]). However, the matching into the EFT point-particle action (1.3)
inevitably contains details about the actual shape and density of the body under consid-
eration. For example, as a body becomes more and more self-gravitating, its scalar charge
decreases, down to the point of disappearing when it becomes a black hole (see e.g. the
nice discussion in [61]). Equivalently, if we started with a universal EFT model (1.3) with
some bare mass parameters mbare,A and universal couplings αbare,1 = αbare,2 = αbare (and
βbare,1 = βbare,2 = βbare), we can make the corrections to the mass finite by imposing a
hard cutoff Λ in momentum space, which roughly corresponds to considering a body of
size Λ−1. We get

mA(Λ) = mbare,A + δmA(Λ) , (1.6)

where δmA(Λ) represents the (negative) gravitational energy of the body. The explicit
calculation is done in Sec. 3. As we show there, the scalar charge of the body renormalizes
in a way that is not universal but actually depends on δmA(Λ) (see equation (3.14)). This
result is often stated by saying that a scalar fifth force can satisfy the weak equivalence
principle (universality of the free fall for test particles) but not the strong one (universality
of the free fall for bodies of non-negligible gravitational self-energy). It is believed that
the latter is satisfied only by a purely metric theory as GR [62]. It is therefore important
to allow different scalar couplings for different objects at the level of the EFT, with the
understanding that, in most cases, such a charge is zero for a black hole.

In App. A we attempt a first systematic discussion of such couplings. In Sec. 7 we
present a second example of scalar-point-particle coupling that can be extracted from
the very general action (A.9)-(A.11), i.e. the disformal coupling. This corresponds to a
standard metric coupling to the point-particle trajectory xµ(t),

Spp = −m
∫
dt
√
−g̃µνvµvν , (1.7)
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where

vµ ≡ dxµ

dt
(1.8)

is the four-velocity vector and the metric g̃µν is defined as

g̃µν = A(φ)gµν +
1

Λ4
∗
∂µφ∂νφ . (1.9)

One interesting aspect of such a coupling is that it exhibits non-linearities at small dis-
tances, analogous to those responsible for screening effects in k-mouflage theories. In the
absence of non-linear terms in the field Lagrangian this seems hardly possible. After all,
the vacuum field equation that we get from (1.2) is still 2φ = 0, which means that sta-
tionary field configurations must display the usual 1/r behavior even arbitrarily close to
the source. On the opposite, in theories with screening, the scalar field profile smoothens
as we get closer to the origin—that is when the non-linear terms in the Lagrangian take
over.

The point is that, in the presence of a disformal coupling, the one-body static solution
does not capture some velocity-dependent non-linear features, which appear only at the
level of the two-body interactions. As detailed in Sec. 7, there is a typical distance r∗ '
(αm/MPl)

1/2/Λ∗, at which the diagrammatic expansion breaks down because higher-order
diagrams become more important than lower-order ones. Such a non-linear radius can be
parametrically larger than the Schwarzschild one and, for values of Λ∗ of cosmological
interest, i.e. Λ∗ ' (MPlH0)1/2, can end up being of the same order as the k-mouflage
radius. For example, for an object of the same mass as the sun, r∗ ∼ 1 parsec.

1.3 Outline

The plan of the paper is as follows. In Sec. 2 we extend the formalism of Goldberger and
Rothstein to modified gravity and introduce the Non-Relativistic Scalar-Tensor formalism.
This part should be understood as a toolbox, which provides all the necessary material
that is needed in order to reproduce the results obtained in the other sections. Section 3
deals with the renormalization of masses and charges due to the gravitational energy of the
bodies that we consider, and Sec. 4 presents the first relativistic correction to the two-body
Lagrangian. The corresponding Lagrangian in GR is the famous EIH Lagrangian, named
after Einstein, Infeld and Hoffmann. In Sec. 5 we explain the multipole expansion of
radiative fields at the level of the action, and we use it to describe in Sec. 6 the dissipative
dynamics of the system. Before concluding, we comment on the effects of a disformal
coupling in Sec. 7.

Finally, note that we use a different notation than [23], in that our Planck mass is re-
lated to the (bare) Newton constant by M2

Pl = 1/(8πGN )—instead of m2
P = 1/(32πGN )—

and our metric signature is (− + ++). This will make some factor of 4 appear in the
graviton propagator and will induce some sign differences.

2 Non-Relativistic Scalar-Tensor Theory

It is straightforward to extend the formalism of Goldberger and Rothstein to the scalar-
tensor action (1.1). We hereby review the basics of this approach and highlight the novelty
represented by the new degree of freedom.
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2.1 Lengthscales in binary systems

The EFT formalism of Goldberger and Rothstein, as much as the standard post-Newtonian
formalism, is based on the expansion in the small parameter v, the velocity of the objects
forming the binary system. More formally, v2 is the ratio between the size of the objects
rs (the effective cut-off of the theory, which for black holes and neutron stars is well
approximated by the Schwartzschild radius) and the size of the orbit r,

v2 ∼ GNm

r
∼ rs

r
. (2.1)

At the same time, v relates the orbital size r and the period T—equivalently, the wave-
length λ of the emitted gravitational waves,

v ∼ r

λ
. (2.2)

2.2 Integrating out fluctuating fields

As explained above, the binary system breaks Lorentz invariance spontaneously. The
formalism goes along with this splitting of spacetime into space and time because, in
order to estimate the powers of v that come from different terms in the action and/or
from a given Feynman diagram, we are suggested to split the metric field fluctuation hµν
into a potential part Hµν and a radiative part h̄µν , i.e.,

gµν(x) = g(0)
µν (t) +

hµν(t,x)

MPl
, hµν(t,x) = Hµν(t,x) + h̄µν(t,x) , (2.3)

where g
(0)
µν (t) is the background metric. The difference between the potential and radiative

parts is in the scaling of their momenta: emitted gravitons always have the momentum
and the frequency of the binary system v/r, while the spatial momentum of a potential
graviton is of the order of the inverse separation between the two components. Denoting
the four-momentum of the latter with kµ = (k0,k), one has k0 ∼ v/r and k ∼ 1/r.

The same separation applies to the scalar field, i.e.,

φ(x) = φ0(t) + ϕ(t,x) , ϕ(t,x) = Φ(t,x) + ϕ̄(t,x) , (2.4)

where φ0(t) is the homogeneous time-dependent expectation value of the field. As we
consider systems much smaller than the Hubble radius, we can take the background metric
to be the Minkowski metric. Moreover, as we are interested in a dark energy scalar field,
its time variation is of order Hubble and we can thus neglect it. Therefore, from now on
we use

g(0)
µν = ηµν , φ0 = const. . (2.5)

The constant scalar field VEV can be reabsorbed in the definition of the masses and scalar
charges in eq. (1.3) and can be thus set to zero without loss of generality, φ0 = 0.

The effective action is obtained as a two-step path integration, first over the poten-
tial gravitons and scalars, respectively Hµν and Φ, and then over the radiation ones,
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respectively h̄µν and ϕ̄. Thus, the first step consists in computing the effective action
Seff [xA, h̄µν , ϕ̄], defined by

exp
(
iSeff [xA, h̄µν , ϕ̄]

)
=

∫
DHµνDΦ exp

(
iS[xA, hµν , ϕ] + iSGF,H [Hµν , h̄µν ]

)
, (2.6)

where SGF,H is a gauge-fixing term to the so-called de Donder (or harmonic) gauge, which
allows to define the propagator of Hµν . Its expression is given by

SGF,H = −1

4

∫
d4x
√
−ḡ ḡµν Γ(H)

µ Γ(H)
ν , Γ(H)

µ ≡ DαH
α
µ −

1

2
DµH

α
α , (2.7)

where ḡµν ≡ ηµν + h̄µν/MPl is the background metric for Hµν and Dµ is the covariant
derivative compatible with it. Here we do not consider Faddeev-Popov ghosts because
they appear only in loops and we will only compute tree-level diagrams. Indeed, as
discussed below loop contributions can be shown to be suppressed with respect to tree
level diagrams by the (huge) total angular momentum L of the system [23].

The action obtained by this procedure contains the mechanical two-body Lagrangian
of the system and the coupling to radiation gravitons. For h̄µν = 0 and ϕ̄ = 0 the two body
dynamics is conservative and, to leading and next to leading order in v the Lagrangian
reduces to the Newtonian and EIH Lagrangians respectively, extended by the suitable
corrections coming from the scalar fifth force. We compute these in Sec. 2.5 and 4.

The second integration, i.e. over h̄µν and ϕ̄, gives

exp
(
iŜeff [xA]

)
=

∫
Dh̄µνDϕ̄ exp

(
iSeff [xA, h̄µν , ϕ̄] + iSGF,h̄[h̄µν ]

)
, (2.8)

where SGF,h̄ is the gauge-fixing term for h̄µν , defined as

SGF,h̄ = −1

4

∫
d4x ηµν Γ(h̄)

µ Γ(h̄)
ν , Γ(h̄)

µ ≡ ∂αh̄αµ −
1

2
∂µh̄

α
α . (2.9)

We have denoted with a hat the final effective action after the metric and scalar fields have
been totally integrated out. As we review in Sec. 6, Ŝeff [xA] (more precisely, its imaginary
part) contains information about the radiated power into gravitational and scalar waves.

2.3 Propagators and power counting

The fields propagators of the gravitational sector can be obtained from the quadratic
action,

S(2) = −1

8

∫
d4x

[
−1

2
(∂µh

α
α)2 + (∂µhνρ)

2

]
− 1

2

∫
d4x(∂µϕ)2 , (2.10)

where repeated indices are contracted with the Minkowski metric. In Fourier space it
becomes

S(2) = −1

2

∫
d4k

(2π)4
k2hµν(k)Tµν;αβhαβ(−k)− 1

2

∫
d4k

(2π)4
k2ϕ(k)ϕ(−k) , (2.11)

with k2 ≡ kµkµ and Tµν;αβ = 1
8

(
ηµαηνβ + ηµβηνα − ηµνηαβ

)
.
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(a) h̄µν (b) Hµν (c) φ̄ (d) Φ

Figure 1: Representation of the different fields propagators in Feynman diagrams.

Let us start discussing the propagators, defined as the inverse quadratic operator. For
the metric we have to find the inverse operator of Tµν;αβ, which is defined as Pµν;ρσT

ρσ;αβ =

Iαβµν where Iαβµν = 1
2(δαµδ

β
ν + δβµδαν ) is the identity on symmetric two-index tensors. It is

straightforward to find

Pµν;αβ = 2 (ηµαηνβ + ηµβηνα − ηµνηαβ) , (2.12)

where the factor 4 difference with [23] is due to the different normalization of the Planck
mass. The propagator for the h field is thus given by〈

Thµν(x)hαβ(x′)
〉

= DF (x− x′)Pµν;αβ , (2.13)

where T denotes time ordering and the Feynman propagator DF (x− x′) is given by

DF (x− x′) =

∫
d4k

(2π)4

−i
k2 − iε

e−ik(x−x′) . (2.14)

The term iε is the usual prescription for the contour integral.
At this point it is useful to make a distinction between the propagator of h̄µν and that of

Hµν . While for h̄µν we must use the relativistic propagator given in eq. (2.13), for Hµν we
can take advantage of the fact that its time and space derivatives scale differently with the
velocity v, k0 ∼ v/r � |k| ∼ 1/r. With the partial (only spatial) Fourier decomposition

Hµν(t,x) =

∫
d3k

(2π)3
Hkµν(t)eik·x , (2.15)

the v power counting becomes more transparent, as we have ∂0Hkµν ∼ v kHkµν . There-
fore, using the expansion

−i
k2 − iε

= − i

k2

(
1 +

k2
0

k2
+ . . .

)
, (2.16)

(on the right-hand side we have gotten rid of the iε prescription, which is irrelevant for
off-shell gravitons), one finds the propagator as the lowest-order term in this expansion,

〈THkµν(t)Hqαβ(t′)〉 = −(2π)3 i

k2
δ(3)(k + q)δ(t− t′)Pµν;αβ . (2.17)

Figures 1a and 1b illustrate how the propagators of h̄µν and Hµν are represented in Feyn-
man diagrams.

The first correction to the propagator of Hµν is supressed by v2 and reads

〈THkµν(t)Hqαβ(t′)〉v2 = −(2π)3 i

k4
δ(3)(k + q)

d2

dtdt′
δ(t− t′)Pµν;αβ , (2.18)
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(a) Hµν (b) Φ

Figure 2: Representation of the first velocity correction to the potential propagators.

which is represented as an insertion on the propagator, as illustrated in Fig. 2a.
For the treatment of the scalar field dynamics the procedure is analogous—and without

the complication of the indices. We define the partial Fourier transform of Φ by

Φ(t,x) =

∫
d3k

(2π)3
Φk(t)eik·x , (2.19)

and for the propagators we obtain

〈T ϕ̄(x)ϕ̄(x′)〉 = DF (x− x′) , (2.20)

〈TΦk(t)Φq(t′)〉 = −(2π)3 i

k2
δ(3)(k + q)δ(t− t′) . (2.21)

We display their Feynman diagram representation in Figs. 1c and 1d. The first correction
to the propagator of Φk reads

〈TΦk(t)Φq(t′)〉v2 = −(2π)3 i

k4
δ(3)(k + q)

d2

dtdt′
δ(t− t′) , (2.22)

and its representation is illustrated in Fig. 2b.
In order to organize systematically the Feynman diagrams in powers of v and estimate

their contributions to the effective action we need to find the power counting rules of the
theory. The power counting rules for the radiating and potential fields can be extracted
from their propagators. For a radiation graviton, the propagator in eq. (2.13) is given by
eq. (2.14). Using k ∼ v/r, this scales as (v/r)2, which gives h̄µν(x) ∼ v/r. The same
reasoning applies to ϕ̄, which gives ϕ̄(x) ∼ v/r.

For the potential graviton we can use the expression of its propagator, eq. (2.17).
Using that the delta function scales as the inverse of its argument, we obtain that the
right-hand side of this equation scales as k0/k5, which using that k0 ∼ v/r and k ∼ 1/r,
gives Hkµν(t) ∼ r2√v. The scaling of the scalar can be found in a similar way and gives
Φk ∼ r2√v.

One last subtlety that we need to address to determine the correct power counting of
the theory is the presence of the large parameter m/MPl in the point-particle actions, see
eq. (1.3). As discussed in [23], this can be resolved by treating the lowest-order diagrams
non-perturbatively, while the next-order diagrams are down by powers of v compared
to the leading ones. In order to make this fact more explicit one introduces the orbital
angular momentum associated to the point-particle worldlines,

L ≡ mvr , (2.23)

and uses the virial relation v2 ∼ m/(M2
Plr) to eliminate m and m/MPl from the power-

counting rules, replacing them by the appropriate combinations of L, v and r. For instance,
one obtains m/MPl ∼

√
Lv. For the diagrams describing the interactions between the two
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bodies, the leading operators scale as Lv0 and must be treated non-perturbatively in
accordance with the fact that particle worldlines are background non-dynamical fields.
Indeed, since they represent infinitely heavy fields that have been integrated out, they
have no associated propagators.

The large parameter L can be also used to count loop diagrams. Loops that are
closed by the particle worldlines are not quantum loops but give tree-level contributions.
Diagrams with actual quantum loops (i.e. not involving particle worldlines) are suppressed
by powers of ~/L� 1 and should therefore be discarded.

2.4 Vertices

We can now turn to compute the vertices of the action (1.3). They are of two kinds: the
ones generated by the Einstein-Hilbert and scalar field kinetic terms, i.e. Sgrav, and the
ones generated by the point-particle action Spp.

Let us first discuss the first kind. We will focus on vertices that are needed for our
calculations, i.e. cubic vertices containing only potential fields Hµν and Φ and vertices
that are linear in the radiation fields h̄µν and ϕ̄. The Einstein-Hilbert term, together with
the gauge-fixing term (2.7), generates a H3 and a h̄H2 vertex. These have been computed
in [23] (see eqs. (37) and (45) of that reference) and due to their complexity we do not
display them here. The relevant part of the scalar field action is

Shφ2 = − 1

2MPl

∫
d4x

(
1

2
hααη

µν − hµν
)
∂µϕ∂νϕ , (2.24)

where hµν(t,x) = h̄µν(t,x) +
∫

d3k
(2π)3Hkµν(t)eik·x and ϕ(t,x) = ϕ̄(t,x) +

∫
d3k

(2π)3 Φk(t)eik·x.

This generates a HΦ2, a h̄Φ2 and a Hϕ̄Φ vertex.
Turning to the point-particle action Spp, this can be rewritten, using an affine param-

eter λ, as

Spp =
∑
A

mA

∫
dλ

√
−gµν

dxµA
dλ

dxνA
dλ

[
−1 + αA

ϕ

MPl
+ βA

(
ϕ

MPl

)2
]
. (2.25)

We can use reparametrization invariance to set λ equal to the local time t of the observer.
Using the notation vµA(t) = (1,vA) and vA = |vA|, we arrive at the following expression
for Spp,

Spp =
∑
A

mA

∫
dt

√
1− v2

A −
hµν
MPl

vµAv
ν
A

[
−1 + αA

ϕ

MPl
+ βA

(
ϕ

MPl

)2
]

=
∑
A

mA

∫
dt

[
−1 +

v2
A

2
+
v4
A

8
+O(v6)

+
h00

2MPl
+

h0i

MPl
viA +

hij
2MPl

viAv
j
A +

h00

4MPl
v2
A +O(hv3)

+ αA
ϕ

MPl
− αA

ϕv2
A

2MPl
+O(ϕv3)

+
h2

00

8M2
Pl

+ βA
ϕ2

M2
Pl

− αA
ϕh00

2M2
Pl

+O(h2v, ϕ2v, hϕv)

]
,

(2.26)
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Operator PCR

mA

∫
dtv2

A L

αA
mA

MPl

∫
dtϕ,

mA

2MPl

∫
dth00

√
L

mA

MPl

∫
dtviAh0i

√
Lv

mA

∫
dt
v4
A

8
Lv2

mA

4MPl

∫
dth00v

2
A,

mA

2MPl

∫
dthijv

i
Av

j
A, −αA

mA

2MPl

∫
dtϕv2

A

√
Lv2

mA

8M2
Pl

∫
dth2

00, βA
mA

M2
Pl

∫
dtϕ2, −αA

mA

2M2
Pl

∫
dtϕh00 v2

h3 from
M2

Pl

2

∫
d4x
√
−gR (see ref [23] for the explicit expression), hϕ2 from eq. (2.24)

v2

√
L

Table 1: Power-counting rules for the vertices obtained by expanding the action, given
here for a potential graviton and scalar field. Multiply by

√
v if needed to replace by a

radiation graviton or scalar field.

where in the second equality we have expanded the Lagrangian up to order v5.
To get the vertices from the action, one should multiply by i and specify hµν and ϕ to

radiation or potential fields. In order to facilitate the power-counting needed to evaluate
the order of a Feynman diagram in the expansion in v, Table 1 sums up the power-counting
of the different vertices obtained in this section, which will be needed in the following.

2.5 Feynman rules

In this subsection we will give the Feynman rules and, for pedagogical purposes, calculate
some simple diagrams. The full set of Feynman rules can be summed up as follows:

• At a given order in v, draw all the diagrams that remain connected when remov-
ing the worldlines of the particles, discarding quantum (i.e. not involving particle
worldlines) loop diagrams.

• For each vertex, multiply the corresponding expression in the Einstein-Hilbert action,
in eqs. (2.24) and (2.26) by i and specify hµν to h̄µν or Hµν and ϕ to ϕ̄ or Φ, taking
into account the associated corresponding power counting rules.

• Contract all the internal graviton or scalar lines. This gives a combinatorial factor
corresponding to the number of Wick contractions. An internal potential gravi-
ton line corresponds to multiplying by eq. (2.17), while an internal radiation one
corresponds to a multiplication by eq. (2.13). An internal potential scalar line cor-
responds to multiplying by eq. (2.21), while an internal radiation one corresponds
to a multiplication by eq. (2.20).

• The combinatorial factor can be obtained from the explicit definition of the effective
action, eiSeff =

∫
DhDϕei(S0+Sint) where S0 is the quadratic action and Sint contains

12



the vertices. The rule of thumb is the following: divide by the symmetry factor of
the diagram (coming from the fact that for n vertices, the 1/n! of the exponential
is not always compensated by the rearrangement of the (vertex)n term if there are
identical vertices) and then multiply by the number of different Wick contractions
giving the diagram.

Note that if we focus only on the integration over the potential fields so as to obtain
Seff [xA, h̄, ϕ̄], potential gravitons and scalars, respectively Hµν and Φ, can only enter
Feynman diagrams as internal lines, while radiation gravitons and scalars, respectively
h̄µν and ϕ̄, can only enter Feynman diagrams as external lines, i.e. they cannot be used
as propagators.

Let’s now look at the calculation of simple diagrams. The simplest is given in Fig. 6a,
and represents the Newtonian potential. Using the Feynman rules, we have

iSeff |6a =

[
i
m1

2MPl

∫
dt1

∫
d3k1

(2π)3
eik1·x1(t1)

] [
i
m2

2MPl

∫
dt2

∫
d3k2

(2π)3
eik2·x2(t2)

]
× 〈TH00(t1,k1)H00(t2,k2)〉

= iP00;00
m1m2

4M2
Pl

∫
dt

∫
d3k

(2π)3

eik·(x1(t)−x2(t))

k2

= i

∫
dt
GNm1m2

r(t)
,

(2.27)

where for the last equality we used that∫
d3k

(2π)3

e−ik·x

k2
=

1

4π|x|
, (2.28)

and we have defined r ≡ x1 − x2 and r ≡ |r|. An analogous calculation can be done for
the scalar interaction given by Fig. 6b. This yields

iSeff |6b = i

∫
dt

2GNα1α2m1m2

r(t)
, (2.29)

so that the effective gravitational Newton constant between two objects A and B reads

G̃AB ≡ GN (1 + 2αAαB) . (2.30)

A second example with non-trivial symmetry factor is given by Fig. 7f below, i.e.

iSeff |7f =
1

2!

[
i
m1

8M2
Pl

∫
dt1

∫
d3k1

(2π)3

d3k′1
(2π)3

ei(k1+k′1)·x1(t1)

] [
i
m2

2MPl

∫
dt2

∫
d3k2

(2π)3
eik2·x2(t2)

]
×
[
i
m2

2MPl

∫
dt′2

∫
d3k′2
(2π)3

eik
′
2·x2(t′2)

] 〈
TH00(t1,k1)H00(t1,k

′
1)H00(t2,k2)H00(t′2,k

′
2)
〉

=
im1m

2
2P

2
00;00

25M4
Pl

∫
dt

(∫
d3k

(2π)3

eik·(x1(t)−x2(t))

k2

)2

= i

∫
dt
m1m

2
2G

2
N

2r2
.

(2.31)

Now we can move to the complete calculation of the effective action.
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(a) (b)

Figure 3: Diagrams contributing to the mass renormalization.

3 Renormalization of masses and charges

The action (1.3) contains body-dependent scalar charges αA and βA. As mentioned in
the introduction, even if we assume the validity of the weak equivalence principle—the
universality of free falling for test particles—in a scalar-tensor theory such a universality
is inevitably spoiled by the gravitational self-energy of massive bodies. It is instructive to
see how this happens in the adopted formalism. To this end, in this section, we derive the
dependence of the scalar charges on the gravitational self-energy, after computing how the
masses of the objects get similarly renormalized.

Let us consider the point-particle action (1.3) in the static case (i.e. for vA = 0),
focussing on a single body and neglecting for the moment the effect of the scalar. To
simplify the notation, we will omit the index A in this part of the discussion. The action
then reads

−m
∫
dτ . (3.1)

We want to show that the mass m gets renormalized by the contribution of the self-energy
of the object. In particular, at lowest order the two diagrams of Fig. 3 contribute to this
action. In the previous derivation, we ignored such diagrams because they are scale-less
power-law divergent and, as such, they vanish in dimensional regularization. However, here
we will be concerned about the physical significance of such self-energy diagrams, so we
choose instead a hard cutoff Λ in the momentum integrals, corresponding approximatively
to choosing an object of size rs ∼ 1/Λ. This regularization preserves rotational symmetry.
The fact that, on the other hand, it breaks boosts does not concern us too much here as
we are considering objects at rest.

Starting from a bare mass mbare, by including these diagrams we obtain a dressed mass
m(Λ), i.e.

−mbare

∫
dt → −m(Λ)

∫
dt , (3.2)

where

m(Λ) ≡ mbare + δm(Λ) , δm(Λ) = −2πG̃m2
bare

∫ Λ d3k

(2π)3

1

k2
, (3.3)

where we have used the Planck mass definition and we have defined

G̃ ≡ GN (1 + 2α2
bare) . (3.4)

This (negative) quantity coincides with the gravitational energy of the object, given by
the usual expression

E = −G̃
2

∫
d3xd3y

ρ(x)ρ(y)

|x− y|
, (3.5)

14



(a) (b) (c)

(d)

Figure 4: Diagrams contributing to the mass renormalization of the vertex m
2MPl

∫
dth00.

where ρ is the mass density of the object. Indeed, replacing the point-particle density by
a regularized version of a delta function, the energy density can be expressed as

ρ(x) = mbare

∫ Λ d3k

(2π)3
eik·x , (3.6)

and comparing this expression with the second equality in eq. (3.3), one obtains

E(Λ) ≡ δm(Λ) . (3.7)

Here we have studied the renormalization of the particle mass appearing in the lowest-
order vertex (3.1) but, by the equivalence principle, the same mass appears also in higher-
order operators of the point-particle action (1.3), such as

m

2MPl

∫
dt h00 . (3.8)

If the use of our hard-cutoff regulator is consistent, we should get the same result for the
renormalization of this vertex. Indeed, we have checked that this is the case by calculating
the Feynman diagrams shown in Fig. 4. We will not reproduce this lengthy computation
here, as it parallels the one for the scalar coupling that we are going to discuss next, with
the complication of the spin-2 vertex. The final result is the same mass renormalization
as in the lowest-order vertex (3.1), i.e.,

mbare

2MPl

∫
dt h00 → m(Λ)

2MPl

∫
dt h00 , (3.9)

which shows the consistency of the method 1.
We will now address the renormalization of the scalar charges of the objects A, ap-

pearing in the operator

αA
mA

MPl

∫
dt ϕ . (3.10)

1In calculating the diagrams of Fig. 4, there appears also terms proportional to hijδ
ij in the point-

particle action. Of course, for a particle at rest such terms should not appear, as in the proper time the
only combination involving hµν is hµνv

µvν = h00. We can trace back the appearance of such artifacts from
the fact that our regulator breaks Lorentz invariance.
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(a) (b) (c)

Figure 5: Diagrams contributing to the charge renormalization.

In particular, we will show that even if we assume the weak equivalence principle and start
with the same bare scalar charges for the two objects, αbare,1 = αbare,2 = αbare, these get
renormalized by the higher-order interactions,

αbare
mbare,A

MPl

∫
dt ϕ → αA(Λ)

mA(Λ)

MPl

∫
dt ϕ , (3.11)

where
αA(Λ) ≡ αbare + δαA(Λ) . (3.12)

To study which diagrams contribute to the charge it is convenient to split the scalar
field fluctuation into a potential mode, which we will integrate out, and an external source,
i.e. ϕ = Φ+ϕext. After using such a splitting in the action (2.26), the vertices contributing
to the renormalization of the operator (3.10) are

− αbarembare,A

∫
dt
ϕextH00

2M2
Pl

, 2βbarembare,A

∫
dt
ϕextΦ

M2
Pl

, (3.13)

where for these bare vertices we have assumed the weak equivalence principle, i.e. that
the scalar couplings αbare and βbare are common to the two objects. The corresponding
diagrams are shown in Fig. 5a and 5b. The correction to the renormalized scalar charge
appearing in the vertex αA(Λ) mAMPl

∫
dt ϕext reads

δαA(Λ) =

(
2α

1− 4β

1 + 2α2

)
bare

δmA(Λ)

mA(Λ)
, (3.14)

where for δmA and mA on the right-hand side we have used eqs. (3.3) and (3.7). A third
vertex, represented in Fig. 5c, comes from the scalar field action (2.24) and reads

− 1

MPl

∫
d4x

(
Hα
α

2
ηµν −Hµν

)
∂µϕext∂νΦ . (3.15)

However, the tensorial factor in the propagator of the potential graviton modes is non-
vanishing only for µ = 0 and ν = 0, which implies that this diagram vanishes in our static
case.

Plugging the renormalized values of the scalar couplings (3.12) with eq. (3.14) in the
expression for the effective Newton constant between two bodiesA andB given in eq. (2.30)
and expanding to leading order in δα, we obtain

G̃AB ' G̃
[
1 + 4α2 1− 4β

(1 + 2α2)2

(
EA
mA

+
EB
mB

)]
. (3.16)
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(a) (b)

Figure 6: Feynman diagrams contributing to the Lv0 potential

As first realized by Nordtvedt [31], this implies a violation of the strong Equivalence
Principle. This expression agrees with the one derived in Ref. [32], which shows that the
body-dependent gravitational constant G̃AB is given by

G̃AB = G̃

[
1 + (4β̃ − γ̃ − 3)

(
EA
mA

+
EB
mB

)]
, (3.17)

where β̃ and γ̃ are the parametrized post-Newtonian (PPN) parameters, given by2

β̃ = 1− 2

[
α4 + 2α2β

(1 + 2α2)2

]
bare

, (3.18)

γ̃ = 1− 4

[
α2

1 + 2α2

]
bare

. (3.19)

Considerations similar to the one for the renormalization of αA can be made for the
couplings βA.

Before concluding the section, let us notice that the renormalization of the scalar
charges can be also expressed in terms of the so-called “sensitivity” of a body to changes
in the local value of the effective gravitational constant GN due to changes in the scalar
field [63]. It is explicitely defined by

sA ≡ −
d lnmA

d lnGN
= −δmA

mA
, (3.20)

where in the last equality we have used eq. (3.3). Using eq. (3.14), the sensitivity can be
related to the scalar charges by

sA = −
(

1 + 2α2

1− 4β

)
bare

δαA
2αbare

. (3.21)

4 Conservative dynamics up to 1PN order

In Sec. 2 we have shown how to compute the effective action Seff [xA, h̄µν , ϕ̄] defined in
eq. (2.6) by integrating out the potential modes Hµν and Φ. We now focus on the con-
servative part of this action obtained by considering only diagrams without external (and
internal) radiation, i.e. Seff [xA, h̄µν = 0, ϕ̄ = 0].

2The PPN parameters are given in eqs. (4.12b) and (4.12c) of Ref. [32], where we the dictionary
between our notation and theirs is ϕhere =

√
2MPϕthere, αa = −α

√
2, βab = (−4β − 2α2)δab.
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v0

v0

(a)

v0

v0

(b)

v1

v1

(c)

v2

v0

(d)

v2

v0

(e) (f) (g) (h)

(i) (j) (k)

Figure 7: Feynman diagrams contributing to the Lv2 potential. Each diagram that is not
symmetric under the exchange of particles wordlines should be added with its symmetric
counterpart.

At lowest order in v, there are only two diagrams contributing to this action, illustrated
in Fig. 6: respectively one graviton and one scalar exchange. Therefore, the action to order
Lv0 is given by

SLv0 =

∫
dt

[
1

2
m1v

2
1 +

1

2
m2v

2
2 +

G̃12m1m2

r

]
. (4.1)

The first two terms correspond to the Newtonian kinetic energy of the particles whereas
the last term is the effective gravitational potential with the rescaled Newton constant
G̃AB computed in Sec. 2.5, see eq. (2.30).

Let us now compute the first relativistic correction to this result. For GR, the corre-
sponding Lagrangian has been calculated for the first time by Einstein, Infeld and Hoff-
mann [64]. It was generalized to multi-scalar-tensor theories of gravitation by Damour
and Esposito-Farèse [32] using a post-Newtonian expansion. In the final equation of this
section, see eq. (4.9) below, we will recover the result of [32] restricted to a single scalar.

To order v2, the power counting rules dictate that ten diagrams, shown in Fig. 7,
contribute to the potential. Let us see how each of them contributes. (For notational
convenience, since we focus on the Lagrangian, we remove the i

∫
dt factor in front of each

term.)

• Figures 7a and 7b respectively come from the exchange of a potential graviton and
scalar with lowest-order vertex and modified propagators (see eqs. (2.18) and (2.22))
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and yield
G̃12m1m2

2r

(
v1 · v2 −

(v1 · r)(v2 · r)

r2

)
. (4.2)

• Figure 7c comes from the exchange of a potential graviton with the vertex h0iv
i in

the action (2.26) and yield

− 4
GNm1m2

r
v1 · v2 . (4.3)

• Figures 7d (7e) comes from the exchange of a potential graviton (scalar) with one
of the vertices hv2 (φv2) in the action (2.26) and yields

GN (3− 2α1α2)m1m2

2r
(v2

1 + v2
2) . (4.4)

• Figures 7f, 7g and 7h, respectively coming from the h2, φ2 and hφ vertices in the
action (2.26), yield

G2
N (1 + 4f12 − 4α1α2)m1m2(m1 +m2)

2r2
, (4.5)

where
fAB ≡ βAα2

B + βBα
2
A + κAB

(
βBα

2
A − βAα2

B

)
(4.6)

is a symmetric (in the indices AB) function built out of αA, βA and the antisymmetric
mass ratio

κAB ≡
mA −mB

mA +mB
. (4.7)

• Figure 7i comes from the H3 term in the Einstein-Hilbert action and yields

−
G2
Nm1m2(m1 +m2)

r2
. (4.8)

• Finally, the last diagrams in Figs. 7j and 7k do not contribute because they are

proportional to ηαβ

2 P00,αβδij − P00,ij , which vanishes.

Gathering all these terms, we can put the action into the following form

SLv2 =

∫
dt

{
1

8

∑
A

mAv
4
A

+
G̃12m1m2

2r

[
(v2

1 + v2
2)− 3v1 · v2 −

(v1 · r)(v2 · r)

r2
+ 2γ12(v1 − v2)2

]
− G̃2

12m1m2(m1 +m2)

2r2
(2β12 − 1)

}
,

(4.9)
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where as usual G̃12 = GN (1 + 2α1α2) is the effective Newton constant and βAB and γAB
are PPN parameters given here by3

γAB = 1− 4
αAαB

1 + 2αAαB
, (4.10)

βAB = 1− 2
α2
Aα

2
B + fAB

(1 + 2αAαB)2
. (4.11)

For αA = 0 = βA we recover the EIH correction to the Newtonian dynamics originally de-
rived in [64] and reproduced in the the framework of the NRGR approach in [23,65]. More
generally, the above action agrees with that of Ref. [32] (see eq. (3.7) of that reference).4

5 Couplings to radiative fields

In this section we compute the couplings of the radiated fields to the point particles up to
2.5PN order. In general, we can expand the effective action Seff [xA, h̄µν , ϕ̄] as

Seff [xA, h̄µν , ϕ̄] = S0[xA] + S1[xA, h̄µν , ϕ̄] + S2[xA, h̄µν , ϕ̄] + SNL[xA, h̄µν , ϕ̄] . (5.1)

The first term of the right-hand side, S0, does not depend on external radiation gravitons.
This is the conservative part of the action that we have computed in Section 4 and can be
discarded from the following discussion. The next term, S1, is linear in the radiating fields
and contains the source that the radiating fields are coupled to. On general grounds, it
can be written as

S1 = S
(h)
int + S

(ϕ)
int , S

(h)
int ≡ −

1

2MPl

∫
d4xTµν(x)h̄µν(x) , S

(ϕ)
int ≡

1

MPl

∫
d4xJ(x)ϕ̄(x) ,

(5.2)
where Tµν and J are respectively the sources for the metric and the scalar field radi-
ation fields. In particular, Tµν is the (pseudo) matter energy-momentum tensor that
includes the gravitational self-energy—i.e. the contributions from the integrated out po-
tential gravitons. It is conserved in flat spacetime, ∂µT

µν = 0, by linear diffeomorphism
invariance.

The part quadratic in the radiating fields, S2, provides the kinetic terms of h̄µν and ϕ̄
while SNL contains higher-order coupling terms. The non-linear couplings in the radiating
fields give rise to the so-called tail effects [28, 66] and will not be discussed here because
they are of order 1.5PN higher than the leading order quadrupole.

Following [67], to discuss the couplings to the radiation fields and highlight the power
counting in v of the emission process [23], we will perform a multipole expansion of the
sources of h̄µν and ϕ̄ at the level of the action. To simplify the treatment, we will focus here
only on the lowest-order coupling but the full derivation can be found in [66,67]. We will
quickly review the graviton case, which has been discussed at length in the literature [66].
We will turn in more details to the scalar case below.

3Analgous parameters are defined in the context of multi-scalar-tensor gravity in Ref. [32], see eq. (6.26).
The dictionary between our and their notation is αthere

A = −αhere
A

√
2, βthere

A = −4βhere
A − 2(αhere

A )2.
4A similar calculation has been done in [36] for a massive axion-type field. However, their result

disagrees with ours (and with [32]) in the massless limit. The disagreement may be traced in the calculation
of the diagrams in Figs. 7j and 7k.
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5.1 Graviton interactions

5.1.1 Multipole decomposition

Let us first consider the coupling of radiation gravitons with the sources, S
(h)
int . In this

subsection we consider a general stress-energy tensor Tµν . In the next subsection we will
give the explicit expression of Tµν for our particular physical configuration.

To simplify the calculation and because this case has been studied at length in many
references (see e.g. [23,68]5), we directly focus on the so-called transverse-traceless gauge,
defined by

h̄0µ = 0 , ∂ih̄ji = 0 , h̄kk = 0 . (5.4)

Denoting by h̄TT
ij the radiated graviton in this gauge, the graviton interaction vertex of

eq. (5.2) is

S
(h)
int = − 1

2MPl

∫
d4xT ij h̄TT

ij . (5.5)

Using the equation of motion ∂µT
µν = 0, it is straightforward to rewrite this equation as

S
(h)
int = −1

2

∫
dtIijh

1

2MPl

¨̄hTT
ij , (5.6)

where Iijh is the quadrupole moment of the stress-energy tensor, defined as

Iijh ≡
∫
d3xT 00

(
xixj − 1

3
x2δij

)
. (5.7)

5.1.2 Quadrupole expression

As we have just seen in eq. (5.7), to find the gravitational interaction vertex up to order√
Lv5 we just needed T 00 to lowest order, because ḧTijT contains already two derivatives of

the radiated graviton and is thus suppressed by v2. After comparison with the full action,
eq. (2.26), this is given by

T 00 = −
∑
A

mAδ
3(x− xA) , (5.8)

and the expression of the lowest-order quadrupole is the usual one, i.e.,

Iijh = −
∑
A

mA

(
xiAx

j
A −

1

3
x2
Aδ

ij

)
. (5.9)

5If one does not chose this gauge and keeps all the components in the discussion, one finds that h̄00

couples to the total mass and Newtonian energy of the system while h̄0i couples to the leading-order
orbital angular momentum. These are conserved quantities at order

√
Lv5, which implies that they do

not contribute to the radiation emission. Moreover, one can find that the quadrupole moment of the
stress-energy tensor Iijh couples to the linearized “electric-type” part of the Riemann tensor, R0i0j , given
by

R0i0j ≡ −
1

2MPl

(
∂i

˙̄h0j + ∂j
˙̄h0i − ¨̄hij − ∂i∂j h̄00

)
, (5.3)

whose two-point function is proportional to the projection operator into symmetric and traceless two-index
spatial tensors.
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Therefore, at this order the vertex (5.5) is not modified by the presence of the scalar.
However, as we will discuss below, to compute the emitted power we will have to take
the third derivative of the quadrupole moment with respect to time, see eq. (6.16). This
involves the acceleration of the two bodies and thus, using the equations of motion, the
modified Newton constant G̃12 = GN (1 + 2α1α2).

5.2 Scalar interactions

5.2.1 Multipole decomposition

Let us now consider the coupling of radiation scalars with the sources, S
(ϕ)
int . Including

also the quadratic action of the radiating scalar, we have

Seff ⊃ S
(ϕ)
2 + S

(ϕ)
int =

∫
d4x

(
−1

2
ηµν∂µϕ̄∂νϕ̄+

1

MPl
Jϕ̄

)
, (5.10)

which leads to the following equation of motion

�ϕ̄ = − J

MPl
, � ≡ ηµν∂µ∂ν . (5.11)

Now we want to do a multipole expansion of the scalar field around the center-of-mass
xcm, which is defined by6

xcm ≡
1

E

∫
d3xT 00x , E ≡

∫
d3xT 00 , (5.13)

and can be set at the origin without loss of generality, xcm = 0. Since we are considering
the physical configuration where the radiating scalar field ϕ̄ varies on scales that are much

larger than the source term J , we can expand the scalar in the interaction S
(ϕ)
int defined in

eq. (5.2) around the center of mass. Expanding up to two derivatives (in order to get up
to the quadrupole order) gives

S
(ϕ)
int =

∫
d4x

Jϕ̄

MPl
=

∫
dt

∫
d3x

J(t,x)

MPl

(
ϕ̄(t,0) + xi∂iϕ̄(t,0) +

1

2
xixj∂i∂jϕ̄(t,0)

)
.

(5.14)
This allows to obtain an expansion of the interactions in terms of the moments of the
source,

∫
d3xJ(t,x)xn, n = 0, 1, . . .. Recalling that ∂iϕ̄ ∼ (v/r)ϕ̄, each moment n enters

suppressed by vn.

6This definition comes from the invariance of the theory under boosts, which via Noether theorem
gives that the following charge is conserved,

Q0i =

∫
d3x

(
T 00xi − T 0it

)
. (5.12)

Since the total momentum P i =
∫
d3xT 0i and energy E =

∫
d3xT 00 are also conserved, we get that the

center-of-mass moves with a constant velocity, thus justifying its definition. Even for standard gravity
and point-particle masses, since there are higher-order corrections implied by eq. (5.26) the definition
xicm ≡

∑
AmAx

i
A/
(∑

AmA

)
is valid only at lowest order in the velocity expansion.
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This is not yet organised as a multipole expansion. To achieve this, instead of the
moments one should use their irreducible representations under the rotation group. The
first term to be modified is the second moment. Instead of xixj we should use

Qij ≡ xixj − 1

3
x2δij . (5.15)

To compensate the additional term added, one is left with

1

6MPl

∫
d3xx2J ∇2ϕ̄ . (5.16)

We can then use the equation of motion that, up to a contact term renormalizing the
point-particle masses, transforms this term into a monopole one. Finally, this gives for
the interaction up to order v2,

S
(ϕ)
int =

1

MPl

∫
dt

(
Iϕϕ̄+ Iiϕ∂iϕ̄+

1

2
Iijϕ ∂i∂jϕ̄

)
, (5.17)

where

Iϕ ≡
∫
d3x

(
J +

1

6
∂2
t Jx

2

)
, Iiϕ ≡

∫
d3xJxi , Iijϕ ≡

∫
d3xJQij (5.18)

are respectively the scalar monopole, dipole and quadrupole. We can now discuss each of
these terms.

5.2.2 Scalar monopole

Let us discuss the coupling induced by the monopole, i.e. the first term on the right-hand
side of eq. (5.17). At lowest order in v, the source is

Jv0 =
∑
A

αAmAδ
3(x− xA) , (5.19)

which translates into a scaling

Iϕ
MPl

∼
∑
A

αA
√
Lv . (5.20)

This could be potentially very constraining if compared to the radiation graviton, which
starts at the quadrupole order of

√
Lv5. However, this gives a constant coupling and thus,

as we will see in Sec. 6.1.2, eq. (6.20), no scalar radiation is emitted. Therefore, we need
to go to higher order.

Integrating out potential gravitons and scalars, we find four diagrams that contribute
to J at order

√
Lv5, all shown in Fig. 8. The expression for these diagrams are (for

convenience we suppress the i
∫
dt in front of each diagram):

• Figure 8a, coming from the v2 term in
∫
dτϕ (see eq. (2.26)),

−
∑
A

αA
mAv

2
A

2

ϕ̄(t,xA)

MPl
. (5.21)
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v2

(a) (b) (c) (d)

Figure 8: Feynman diagrams contributing to the emission of one scalar, at order v2.
Diagrams that are not symmetric should be added with their symmetric counterpart.

• Figure 8b, coming from the ϕ̄H term in
∫
dτϕ,

− m1m2GN
r

∑
A

αA
ϕ̄(t,xA)

MPl
. (5.22)

• Figure 8c, coming from the ϕ̄Φ term in
∫
dτϕ2,

4
m1m2GN

r

∑
A

βAαĀ
ϕ̄(t,xA)

MPl
, (5.23)

where for compactness we have introduced the notation αĀ for the symmetric pa-
rameter, i.e. α1̄ = α2 and α2̄ = α1.

• Figure 8d, coming from the ϕΦH term of eq. (2.24). This vanishes as in the conser-

vative case, because it involves the same projector ηαβ

2 P00,αβδij − P00,ij .

In conclusion, the complete expression for the coupling J at order v2 is

Jv2 = −
∑
A

mAαA
v2
A

2
δ3(x− xA) +

m1m2GN
r

∑
A

(4βAαĀ − αA)δ3(x− xA) . (5.24)

Let us now discuss the second term in Iϕ, i.e.
∫
d3x1

6(∂2
t Jv0)x2. To calculate it, we use

the equations of motion for the point-particles at lowest order in the velocity expansion,
i.e.,

ẍ1 = −G̃12m2

r3
r , ẍ2 =

G̃12m1

r3
r , (5.25)

with the following center-of-mass relations, also valid at lowest order in the velocity ex-
pansion,

x1 =
m2

m1 +m2
r , x2 = − m1

m1 +m2
r . (5.26)

Summing up all contributions and using eq. (5.18), we finally find

Iϕ = −1

6

∑
A

mAαAv
2
A + g12

GNm1m2

r
, (5.27)

where gAB is a symmetric combination of the scalar couplings αA, βA and of the antisym-
metric mass ratio κAB defined in eq. (4.7),

gAB ≡ αA(4βB − 1) + αB(4βA − 1)− 1 + 2αAαB
6

(αA + αB + κAB(αB − αA)) . (5.28)
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5.2.3 Scalar dipole

The fact that scalar-tensor theories generically predict a dipole was first realized by Eardley
[63]. This could induce sizeable deviations from GR because the scalar dipole is a priori
of order

√
Lv3. Using in eq. (5.18) the lowest-order expression for J (eq. (5.19)), we obtain

Iiϕ =
∑
A

αAmAx
i
A . (5.29)

For equal scalar charges of the two objects, α1 = α2, the second derivative of Iiϕ vanishes
due to the conservation of the total momentum. As we will see below, it is this quantity
that enters the emitted power and therefore there is no dipole radiation for equal scalar
charges. Thus, for two black holes or two comparable neutron stars, the effect of the dipole
is very weak, while for a black hole-neutron star system it is maximal (a black hole has
αBH = 0 in traditional scalar-tensor theories due to the no-hair theorem). See [36] for a
detailed discussion.

5.2.4 Scalar quadrupole

The scalar quadrupole is of order
√
Lv5 and can be straightforwardly computed from

eq. (5.18) and the lowest-order expression for J . One finds

Iijϕ =
∑
A

αAmA

(
xiAx

j
A −

1

3
x2
Aδ

ij

)
. (5.30)

6 Dissipative dynamics

Now that we have a definite expansion for the interaction Lagrangian in terms of multipole
moments, we can calculate the power emitted in gravitational waves. As explained below,
this can be computed from the imaginary part of the effective action for the two point-like
bodies, Ŝeff [xA], obtained by integrating out the radiation fields, see eq. (2.8).

The real part of the effective action generates the coupled equations of motion for the
two-body system. If some energy leaves the system, then Ŝeff contains an imaginary part
that is related to the power emitted. To see why this is the case by a simple example, we
consider a scalar theory with a field φ coupled to an external source J entering the action
as
∫
d4xJ(x)φ(x). The effective action obtained by integrating the field φ is given by the

path integral

eiSeff [J ] =

∫
Dφ eiS[φ,J ] ≡ Z[J ] , (6.1)

where in the last equality we have defined the generating functional of the Green’s functions
Z[J ]. On the other hand, in the so-called “in-out” formalism, Z is also the overlap between
initial and final states, i.e.

Z[J ] = 〈0+|0−〉J . (6.2)

From the two equations above, the vacuum transition amplitude between the asymptotic
past and future differs from unity if the effective action is not real,

| 〈0+|0−〉J |
2 = e−2 Im[Seff ] . (6.3)
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Figure 9: Contribution of the radiation graviton and scalar to the imaginary part of the
effective action.

The difference with unity denotes the probability amplitude that particles are lost—or
emitted—by the system. Expanding the right-hand side of this equation for small Im[Seff ],
this can be written as

2 Im[Seff ] = T

∫
dEdΩ

d2Γ

dEdΩ
, (6.4)

where T is the duration of the interaction and dΓ is the differential rate for particle
emission. The latter can be employed to calculate the radiated power via

P =

∫
dEdΩE

d2Γ

dEdΩ
. (6.5)

We will use the two equations above to compute the power radiated into gravitons and
scalar particles.

6.1 Radiated power

6.1.1 Gravitons

Let us first compute the power radiated into gravitons (see e.g. [23, 65, 68, 69]). In the
classical approximation the path-integral (6.1) is computed at the saddle point of the
action, Ŝeff [xA] = Seff [xA, hcl, ϕcl], and thus decomposes into the two diagrams of Fig. 9:

Ŝeff = Ŝ
(h)
eff + Ŝ

(ϕ)
eff . The first term (Fig. 9a), contains the interaction vertex of eq. (5.6). In

particular, using the Feynman rules from this equation we find

iŜ
(h)
eff = −1

2
× 1

16M2
Pl

∫
dt1dt2I

ij
h (t1)Iklh (t2)

〈
T ¨̄hTT

ij (t1,0)¨̄hTT
kl (t2,0)

〉
, (6.6)

where we have included the symmetry factor 1/2 of the diagram.
To find the propagator for h̄TT

ij , we can first project h̄ij on the transverse-traceless
gauge. In terms of the unit vector n denoting the direction of propagation, we have

h̄TT
ij = Λij,kl(n)h̄kl , (6.7)

where

Λij,kl(n) ≡ (δik − nink)(δjl − njnl)−
1

2
(δij − ninj)(δkl − nknl) , (6.8)

is the projector—it satisfies Λij,kl Λkl,mn = Λij,mn—onto transverse-traceless tensors, in
the sense that it is transverse to n in all its indices and traceless in the ij, kl indices.
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Using the h̄µν propagator given by eqs. (2.13) and (2.14), applying the identities

〈ninj〉 =
1

3
δij , 〈ninjnknl〉 =

1

15
(δijδkl + δikδjl + δilδjk) , (6.9)

which follow from the rotational symmetry of the integral, and symmetrizing over the
indices ij and kl, the expectation value in eq. (6.6) can be written as

〈T ¨̄hTT
ij (t1)¨̄hTT

kl (t2)〉 =
8

5

[
1

2
(δikδjl + δilδjk)−

1

3
δijδkl

] ∫
d4k

(2π)4

−i(k0)4

k2 − iε
eik0(t1−t2) , (6.10)

where the bracket on the right-hand side contains the projection operator into symmetric
and traceless two-index spatial tensors. Plugging this expression into eq. (6.6), we find

Ŝ
(h)
eff =

1

20M2
Pl

∫
d4k

(2π)4

(k0)4

k2 − iε
|Iijh (k0)|2 , (6.11)

where we have introduced the Fourier transform of the quadrupole moment,

Iijh (k0) =

∫
dtIijh (t)eik0t . (6.12)

To extract the imaginary part of the above action, we use the relation for the principal
value of a function (denoted by PV). Specifically, we have

1

k2 − iε
= PV

(
1

k2

)
+ iπδ(k2) , (6.13)

where

δ(k2) =
1

2|k0|
[δ(k0 − |k|) + δ(k0 + |k|)] . (6.14)

Using these relations, the imaginary part of the effective action reads

Im[Ŝ
(h)
eff ] =

1

20M2
Pl

∫
d3k

(2π)3

|k|4

2|k|
|Iijh (|k|)|2 =

GN
5

∫ ∞
0

dω ω5

2π
|Iijh (ω)|2 , (6.15)

where for the second equality we have integrated over the angles, used 1/M2
Pl = 8πGN , the

on-shell condition |k| = ±k0 and defined the emitted frequency as ω ≡ |k0|. Comparing
with eq. (6.4) and applying eq. (6.5), the expression for the emitted power into gravitons
is

Pg =
2GN
5T

∫ ∞
0

dω ω6

2π
|Iijh (ω)|2

=
GN
5T

∫ ∞
−∞

dt
...
I
ij
h (t)

...
I
ij
h (t) ≡ GN

5

〈...
I
ij
h

...
I
ij
h

〉
,

(6.16)

where in the second line we have Fourier transformed back the multipoles to real space
and in the last equality we have used the brackets to denote the time average over many
gravitational wave cycles.

27



6.1.2 Scalars

Let us turn now to the power radiated into scalars. We will now calculate the imaginary

part of the effective action Ŝ
(ϕ)
eff obtained by integrating out the radiation scalars. This can

be done by computing the self-energy diagram of Fig. 9b, the interaction vertices being
the ones of eq. (5.17). Note that the two vertices in Fig. 9b must be of the same multipole
order—if they are not, the remaining indices should be contracted with rotationally in-
variant tensors, e.g. δij or εijk, but such expressions vanish because of the symmetry and
the tracelessness of the multipole moments. By applying the multipole expansion derived
in Sec. 5.2.1 and using the Feynman rules, we get

iŜ
(ϕ)
eff =− 1

2
× 1

M2
Pl

∫
dt1dt2

(
Iϕ(t1)Iϕ(t2) 〈T ϕ̄(t1,0)ϕ̄(t2,0)〉

+ Iiϕ(t1)Ijϕ(t2) 〈T∂iϕ̄(t1,0)∂jϕ̄(t2,0)〉+
1

4
Iijϕ (t1)Iklϕ (t2)〈T∂i∂jϕ̄(t1,0)∂k∂lϕ̄(t2,0)〉

)
,

(6.17)

where we have included again the symmetry factor of 1/2 for this diagram. By using the
expression of the ϕ̄ propagator, eq. (2.20), and the identities (6.9), we find

Ŝ
(ϕ)
eff =

1

2M2
Pl

∫
d4k

(2π)4

1

k2 − iε

(
|Iϕ(k0)|2 +

1

3
|k|2|Iiϕ(k0)|2 +

1

30
|k|4|Iijϕ (k0)|2

)
, (6.18)

where we have introduced the Fourier transforms of the multipole moments,

Iϕ(k0) =

∫
dtIϕ(t)eik0t , Iiϕ(k0) =

∫
dtIiϕ(t)eik0t , Iijϕ (k0) =

∫
dtIijϕ (t)eik0t . (6.19)

To extract the imaginary part of the above action we use once more eq. (6.13) with
(6.14). By an analogous treatment to that at the end of Sec. 6.1.1, we find the power
emitted into scalars,

Pφ = 2GN

[〈
İ2
ϕ

〉
+

1

3

〈
ÏiϕÏ

i
ϕ

〉
+

1

30

〈...
I
ij
ϕ

...
I
ij
ϕ

〉]
. (6.20)

Therefore, beside the quadrupole, the monopole and the dipole contribute as well to the
scalar radiation.

6.2 Detected signal

Here we compute the radiation field in gravitons observed at the detector. To simplify
the notation we remove the bar over the radiated fields. We need to evaluate the diagram
of Fig. 10a—which amounts to find the solution of the equations of motion—but using
a retarded Green’s function instead of the Feynman one, so as to enforce the physical
nature of the external field. Using the coupling of a radiation graviton to matter directly
expanded in multipoles, as found in eq. (5.6), in the transverse-traceless gauge this gives

hTT
ij (t,x) = − i

MPl
Λij,kl

∫
dt′GR(t− t′,x)Ïklh (t′,0) , (6.21)

28



(a) (b)

Figure 10: Feynman diagram giving the radiation field emitted by an object with energy-
momentum tensor Tµν .

where GR(t − t′,x) denotes the retarded Green’s function between the source located at
(t′,0) and the observation made at (t,x). Note that the retarded Green’s function is
given by a different iε prescription, which amounts to pick only physical waves modes. In
particular,

GR(t− t′,x− x′) =

∫
d4k

(2π)4

−i
−(k0 − iε)2 + k2

e−ik·(x−x
′)

=
i

4π|x− x′|
δ(t′ − t− |x− x′|) .

(6.22)

The second equality comes from the residue theorem. Finally, the observed wave (normal-
ized with the Planck mass, so as to agree with the GW literature) is given by

hTT
ij (t,x)

MPl
=

2GN
R

Λij,klÏ
kl
h (tret) , (6.23)

where R is the distance to the source, R = |x|, and tret = t−R is the retarded time.
The scalar waveform can be found by similar reasoning, evaluating the diagram of

Fig. 10b with the coupling of a radiation field to matter directly expanded in multipoles,
as in eq. (5.17). Given an on-shell scalar wave propagating in the direction n, we can use
∂iφ = −ni∂tφ and rewrite these couplings as

Ŝ
(ϕ)
int =

1

MPl

∫
dt ϕ̄

(
Iϕ + niİ

i
ϕ +

ninj
2

Ïijϕ

)
, (6.24)

so that the observed radiation field into scalars reads

ϕ(t,x) =
i

MPl

∫
dt′
(
Iϕ(t′,0) + niİ

i
ϕ(t′,0) +

ninj
2

Ïijϕ (t′,0)
)
GR(t− t′,x) . (6.25)

By a treatment analogous to the one for gravitons, we find the radiated field away from
the source,

ϕ(t,x)

MPl
= −2GN

R

(
Iϕ + niİ

i
ϕ +

ninj
2

Ïijϕ

)∣∣∣
tret

. (6.26)

We can now turn to the effect of the gravitational wave passage on the detector.
We denote by ξi the separation between two test masses—for instance the mirrors of a
detector—located at a distance shorter than the typical spatial variation of a gravitational
wave. In the proper detector frame, i.e. choosing coordinates such that the spacetime
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metric is flat up to tidal effects even during the passage of a gravitational wave, the
acceleration between the two masses is given by (see e.g. [70])

ξ̈i = −Ri0j0ξj , (6.27)

where

Ri0j0 =
1

2MPl

(
∂iḣ0j + ∂j ḣ0i − ∂i∂jh00 − ḧij

)
. (6.28)

In standard GR, computing the emitted gravitational wave in the transverse-traceless
gauge (so that h00 = h0i = 0) we have

Ri0j0 = − 1

2MPl
ḧTT
ij . (6.29)

However, in a scalar-tensor theory, test particles are non-minimally coupled to gµν . The
physical metric is the one of minimal coupling of test particles, the so-called Jordan frame
metric. Defining by α the universal scalar charge of a test particle, this can be found by∫

dτ̃ =

∫
dτ(1− αϕ) , (6.30)

which tells us that, to linear order in the fields, the physical metric is

h̃µν = hµν − 2αϕηµν . (6.31)

Using this metric to compute the components of the Riemann tensor in eq. (6.27), we
find

Ri0j0 =
1

2MPl

(
∂i

˙̃
h0j + ∂j

˙̃
h0i − ∂i∂j h̃00 − ¨̃

hij

)
= − 1

2MPl
ḧTT
ij + α (δijϕ̈− ∂i∂jϕ) = − 1

2MPl
∂2
t

[
hTT
ij − 2αϕ (δij − ninj)

]
,

(6.32)

where in the last equality we have used again ∂iϕ = −niϕ̇. Using the expressions for the
observed graviton and scalar waves, eqs. (6.23) and (6.26), the detector will observe the
following metric perturbation,

hdetector
ij

MPl
=

2GN
R

[
Λij,klÏ

kl
h + 2α (δij − ninj)

(
Iϕ + nkİ

k
ϕ +

nknl
2

Ïklϕ

)]
tret

, (6.33)

For a wave propagating in the direction n, it is convenient to define the three polarization
tensors

e+
ij ≡ eiej − ēiēj , e×ij ≡ eiēj + ēiej , eφij ≡ eiej + ēiēj , (6.34)

where e and ē are two unit vectors defining an orthonormal basis with n. We can then
decompose the metric into these three polarization states,

hdetector
ij

MPl
=

∑
s=+,×,φ

esij(n)hs , (6.35)

where for the two standard transverse-traceless polarizations we have

h+,× =
GN
R
e+,×
ij (n)Ïijh (tret) , (6.36)

while for the additional scalar polarisation we find

hφ =
4αGN
R

(
Iϕ + nkİ

k
ϕ +

nknl
2

Ïklϕ

) ∣∣∣
tret

. (6.37)
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6.3 Circular orbits

We now compute the wave amplitudes emitted by two binary objects in terms of the binary
system parameters. As before, we limit our calculation to the lowest post-Newtonian order.

As the emission of GW circularizes the orbit, we assume a circular orbit in which the
relative coordinate of the system, r = x1 − x2, has cartesian components parametrized in
time as

rx(t) = r cos(ωt+ π/2) ,

ry(t) = r sin(ωt+ π/2) ,

rz(t) = 0 .

(6.38)

We first assume that the frequency of the binary ω is constant. In the next subsection
we will consider its time dependence due to the backreaction of the GW emission on the
circular motion. For the following discussion it is convenient to define the reduced mass
of the system µ and the total mass M as

µ ≡ m1m2

M
, M ≡ m1 +m2 . (6.39)

We chose the axis of rotation of the binary system to coincide with the z axis while
the propagation vector of the GW is oriented in an arbitrary direction parametrized by
the angles θ and φ,

n ≡ (sin θ sinφ, sin θ cosφ, cos θ) . (6.40)

For the gravitational polarizations h+ and h×, replacing the above expressions in the
quadrupole moment given by eq. (5.9), and using this in eq. (6.36), one finds (see e.g. [70])

h+ =
4GNµ(ωr)2

R

(
1 + cos2 θ

2

)
cos(2ωtret + 2φ) ,

h× =
4GNµ(ωr)2

R
cos θ sin(2ωtret + 2φ) .

(6.41)

By using Kepler’s third law to lowest order, i.e.

ω2 =
G̃12M

r3
(6.42)

(we remind that G̃12 = (1 + 2α1α2)GN , see eq. (2.30)), we find ωr = (G̃12Mω)1/3. Note
that this quantity scales as v. Using this expression in eq. (6.43) to eliminate r, we can
rewrite the scalar waveform as

h+ =
4GNµ

R
(G̃12Mω)2/3

(
1 + cos2 θ

2

)
cos(2ωtret + 2φ) ,

h× =
4GNµ

R
(G̃12Mω)2/3 cos θ sin(2ωtret + 2φ) .

(6.43)

Let us now turn to the scalar polarization, given by eq. (6.37). For circular motion the
monopole term is constant in time and can be discarded. Using the center-of-mass rela-
tion (5.26) to compute the time derivative of the dipole, nkİ

k
ϕ in eq. (5.29), and eliminating

the r dependence using eq. (6.42) above, we find the dipolar scalar emission,

hdipole
φ = −4αGNµ

R
(α1 − α2)(G̃12Mω)1/3 sin θ sin(ωtret + φ) . (6.44)
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Similarly, we can compute the second time derivative of the quadrupole moment, nknlÏ
kl
ϕ

in eq. (5.29), and find the quadrupolar scalar emission,

hquadrupole
φ = −4αGNµ

R

α1m2 + α2m1

M
(G̃12Mω)2/3 sin2 θ cos(2ωtret + 2φ) . (6.45)

Few comments are in order here. First, notice that α is the universal coupling of
the detector to the scalar (the detector is not self-gravitating), while the αA’s are the
renormalized couplings of the inspiral objects, which can depend on their masses. Since
α � 1, we expect the scalar amplitude of the GW to be suppressed with respect to the
gravitational one. Second, comparing the powers of the combination (G̃12Mω)1/3 ∼ v in
eq. (6.44) and in eqs. (6.43) and (6.45) confirms that the dipole is of 0.5PN order less than
the gravitational quadrupole, as expected.

6.4 Frequency dependence

Because the number of gravitational wave oscillations within a typical LIGO/Virgo event
is very large, gravitational wave detectors are much more sensitive to a phase change
rather than a modification of the amplitude. For this reason, in this subsection we will
compute the frequency dependence of the waveform from our formalism.

To this aim, we can use the energy balance of the system, i.e. that the total power loss
is equal to the time derivative of the orbital energy. This reads

Pg + Pmonopole
φ + P dipole

φ + P quadrupole
φ = −dE

dt
, (6.46)

where Pg, P
monopole
φ , P dipole

φ and P quadrupole
φ are respectively the graviton, and the scalar

monopole, dipole and quadrupole contributions to the emitted power. As explained above,
since the scalar monopole is constant for circular orbits, its emitted power vanishes,
Pmonopole
φ = 0. The orbital energy is given by

E ≡ −G̃12m1m2

2r
= −1

2
(G̃12Mcω)2/3Mc , (6.47)

where for the last equality we have used again the Kepler’s law and we have defined the
chirp mass,

Mc ≡
(m1m2)3/5

M1/5
= µ3/5M2/5 . (6.48)

From eq. (6.16), the power emitted into gravitons reads

Pg =
32

5
GNµ

2ω6r4 (6.49)

and, using again Kepler’s law, one can rewrite this as

Pg =
32

5G̃12(1 + 2α1α2)
(G̃12Mcω)10/3 . (6.50)

One can then proceed analogously for the power emitted into scalars. At lowest order
in v, the power emitted by the scalar dipole contribution reads

P dipole
φ =

2

3G̃12(1 + 2α1α2)
(α1 − α2)2ν2/5(G̃12Mcω)8/3 , (6.51)
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where
ν ≡ m1m2

M2
(6.52)

is the symmetric mass ratio.
In order to obtain eq. (6.51), we have used the center-of-mass relation (5.26). But this

relation is valid only at lowest order in the relativistic expansion and is corrected by a
v2 term at higher orders, see e.g [32]. Since the quadrupole is suppressed by v compared
to the dipole (and so suppressed by v2 in the emitted power which is quadratic in the
multipole moments), this correction is of the same order as the quadrupole contribution
to the emitted power and should be included for consistency. To simplify the discussion,
we discard this correction here. This approximation can be used when α1 − α2 . v, so
that the dipole is smaller or of the same order as the quadrupole and its v2 corrections are
thus negligible or, alternatively, when α1 − α2 � v, in which case the dipole dominates
and we can ignore the quadrupolar terms.

Finally, from eq. (6.20) one finds that the power emitted by the scalar quadrupole
contribution is proportional to that of the gravitational quadrupole, i.e.,

P quadrupole
φ =

(α1m2 + α2m1)2

3M2
Pg . (6.53)

Using these expressions into the left-hand side of the energy balance equation, eq. (6.46),
we can find a differential equation for the time derivative of the frequency. Following [71],
it is convenient to define the scalar-tensor chirp mass,

M̃5/3
c ≡ M

5/3
c

1 + 2α1α2

[
1 +

(α1m2 + α2m1)2

3M2

]
, (6.54)

and the dipole parameter,

b ≡ 5

48
(α1 − α2)2Mc

M̃c

. (6.55)

In terms of these quantities, the evolution equation for ω reads

ω̇ =
96

5
(G̃12M̃c)

5/3ω11/3
[
1 + bν2/5(G̃12M̃cω)−2/3

]
. (6.56)

We compute the total phase accumulated in the GW detector, focussing on the quadrupole.
This reads

Φquadrupole = 2

∫
dt ω(t) = 2

∫
dω
ω

ω̇
, (6.57)

where the factor of two comes from the frequency dependence of the quadrupolar waveform
(6.43). Expanding for small b(G̃12M̃cω)−2/3 � 1, we can integrate eq. (6.56) to get

Φquadrupole =
1

16

[
(G̃12M̃cπf)−5/3 − 5

7
bν2/5(G̃12M̃cπf)−7/3

]fout

fin

, (6.58)

where we used f ≡ ω/π to convert the angular frequency of the binary system into the
GW frequency emitted by the quadrupole. Moreover, fin (fout) denotes the frequency at
which the GW signal enters (exits) the detector. For LIGO/Virgo, we have fin ∼ 10 Hz
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Figure 11: Feynman diagram corresponding to the first disformal correction to the con-
servative dynamics (it should also be added with its symmetric counterpart). The upper
vertex is the one of eq. 7.1.

� fout ∼ 1 kHz. By requiring that the phase modification is less than π, we obtain the
following approximate bound on the dipole parameter b,

b .
112π

5
ν−2/5(G̃12M̃cπfin)7/3 ' 10−6 . (6.59)

Note that the strongest constraint comes from the beginning of the inspiral, when the
signal at fin ∼ 10 Hz enters the detector. Our results are in agreement with earlier work
by Will [71], which uses the sensitivities sA defined in eq. (3.20), instead of the parameters
αA. Moreover, the waveform in scalar-tensor gravity has been computed up to 2PN order
in [72].

7 Extensions

As discussed in the introduction, dark energy models generally feature non-linearities that
become important in the vicinity of a massive body and can screen the effect of the scalar
field. When present, such non-linearities make our diagrammatic expansion meaningless.
In the Feynman perturbative expansion, propagators represent the free part of the La-
grangian, which dominates the dynamics, while interactions are treated perturbatively.
This is no longer the case close to the source.

However, we can consider an extension to the models studied in this paper in which
we can trust our usual propagator and where non-linearities show up in a more subtle
way. Consider the disformal coupling of eq. (1.9), relating the Jordan frame metric g̃µν
to the Einstein frame one gµν . A similar disformal coupling has been studied in theories
of dark energy (see e.g. [73]), where its natural value is Λ∗ ∼ Λ2 ≡ (H0MPl)

1/2. In the
Einstein frame, the standard point-particle minimal coupling to g̃µν induces, on top of
other various terms included in our point-particle action (2.26), a vertex of the type

mA

Λ4
∗

∫
dt(∂µϕv

µ
A)2 , (7.1)

which is part of the more general point-particle action discussed in the App. A.
The first contribution of this new vertex to the conservative dynamics of the objects

is given by the diagram of Fig. 11, and can be calculated to be

Fig. 11 = i
GNm1m2(α2

1m1 + α2
2m2)

2πΛ4
∗

∫
dt

(r · v)2

r6
, (7.2)

where v = v1 − v2.
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It is interesting to compare this quantity with the simple Newtonian potentialGNm1m2/r
plotted in Fig. 6a. Recalling that the virial theorem gives the approximate relation
v2 ∼ GNm/r, we get the following estimate,

Fig. 11

Fig. 6a
∼
(

αm

MPlΛ2
∗r

2

)2

∼
(r∗
r

)4
, (7.3)

where we have assumed that scalar couplings and masses are roughly the same, α1 ∼ α2 ∼
α and m1 ∼ m2 ∼ m, and in the last equality we have introduced the non-linear radius,7

r∗ =
1

Λ∗

(
αm

MPl

)1/2

. (7.4)

For r . r∗ the new term dominates on the Newtonian interaction, signalling a breakdown
of the diagrammatic expansion. In order for our perturbative calculations to be predictive
we should tune the mass parameter Λ∗ in such a way that r∗ is smaller than the size r of
the system. This would correspond to dealing with another independent UV scale on top
of the Schwarzschild radius rs � r: r∗ � r. From eq. (7.4) above one finds, for a system
of the mass of the Sun,

Λ∗ ∼ α1/2 rs
r∗

1011Λ2 , (7.5)

which for r∗ < rs and sizeable α is much larger than the typically expected value Λ2.
Let us stress the difference between such a non-linear coupling and those displayed

by k-mouflage and Galileon-like theories in screened regions. The latter contain non-
linear terms in the evolution equation of the scalar field, that show up directly in the
spherically symmetric solution of the scalar field configuration generated by a static source.
Equivalently, these terms, which become leading close to the source, do not allow to use
the standard propagator in a diagrammatic expansion. Here, non linearities are all hidden
in the coupling to the point-particle. In the vacuum the field obeys the usual Laplace
equation, ∇2ϕ = 0, and does not exhibit any transition to a Vainshtein regime at small
radii. The standard spherically symmetric/static analysis (equivalently, the one-body
diagrams like those, say, of Fig. 10) cannot grasp the non-linear dynamical aspects of
the disformal model, which are encoded in the velocity dependent two body diagrams
like the one if Fig. 11. The effects of such a disformal coupling on the dynamics of
gravitationally interacting bodies, already initiated in [74], will be further explored in a
future publication [75]

8 Concluding remarks

In this paper we have generalized to scalar-tensor theories the EFT formalism of Gold-
berger and Rothstein [23] for gravitational wave emission from a binary system. With an
eye on dark energy, we have assumed the scalar field to be massless. The basic power

7In the k-mouflage screening mechanism [53], the scalar field Lagrangian contains a quadratic term
and a non-linear term suppressed by a strong coupling scale Λ∗, such as in eq. (1.4). The lengthscale r∗
defined in eq. (7.4) is exactly the radius at which the non-linear term above dominates over the quadratic
one around overdense sources and inside which the fifth force is screened.

35



counting of the Feynman diagrams in the relative velocity v between the two objects fol-
lows quite closely that of pure gravity. For most of the paper we have considered standard
conformal couplings of the scalar to point particles. We have discussed violations of the
strong equivalence principle in terms of the matching conditions between the UV model
of the body (the one that “knows” about its size, density distribution, etc.) and the (low
energy) point-particle description. By integrating out potential gravitons and scalars we
recover the extended EIH Lagrangian that corrects the conservative Newtonian dynam-
ics to relative order v2. Our results are consistent with those of Damour and Esposito
Farèse [32]. Finally, we have obtained the radiated power in gravitational and scalar waves
by integrating out the radiation gravitons and scalars. At the same time, by using the
retarded propagator, we have worked out the waveform in the presence of a scalar field.

The latter has several potential distinct features [76]. The additional power loss in
scalar radiation (monopole, dipole and quadrupole) modifies the dynamics of the system,
and so the time evolution of the frequency of the GW, which ultimately modifies its
phase. Moreover, the dipole radiation, proportional to the difference of the scalar charges
of the two bodies, has the same frequency ω as the binary, as opposed to the quadrupole
radiation that has frequency 2ω. Finally, in the presence of a scalar field, there will be an
additional polarization associated to GW (see eq. (6.32)). It should be noted that these
last two effects modify the amplitude of the GW signal, which is far less constrained than
the phase by detectors.

The model that we have considered is an important test bench for generalizing the
EFT formalism of [23] to modified gravity, but it also contains obvious limits. Perhaps
the most serious one is that its observational signatures will be very hard to detect. The
departures from GR that we have just mentioned are proportional to the scalar coupling
α, which however is constrained to be less than 10−2 by Solar System tests [77]. More
realistic models of dark energy, on the other hand, contain non-linearities in the scalar
dynamics that are difficult to deal with. As discussed in Sec. 7, an interesting non-linear
behavior emerges dynamically in models with standard kinetic terms for the graviton
and the scalar and disformal couplings to the point particle. Other non-linearities of the
k-essence or Galileon-type are the subject of ongoing and future work.
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A General couplings to point particles

Cosmological models of dark energy and modified gravity with a single scalar field are very
conveniently studied in the unitary gauge, where the time coordinates are set in such a
way to coincide with the uniform-field hypersurfaces (see e.g. [52] for more details). This
allows, with relative ease, to write down the most general action for the gravity/scalar
sector that is consistent with the symmetries that are usually unbroken in a cosmological
set up: spatial translations and rotations [47, 48, 50, 51]. In the unitary gauge all degrees
of freedom end up encoded in the metric field. The presence of the scalar manifests itself
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in all those Lagrangian terms that (spontaneously) break time-diffeomorphisms. General
covariance can then be recovered with the Stückelberg procedure.

Before turning to the covariant formalism, it is interesting to look at the possible
matter couplings in the unitary gauge. We are interested in a point-like source described
by a trajectory xµ = xµ(λ), whose action is invariant under

i) worldline reparametrization λ→ λ̃(λ),

ii) spatial rotations SO(3) in the Lorentz frame of the object,

iii) spatial diffeomorphisms but not necessarily time-diffeomorphisms.

As described in [23], worldline reparameterization is taken care of simply by using the

proper time variable dτ = dλ
√
gµν dx

µ

dλ
dxν

dλ as the worldline parameter. SO(3) invariance

restricts the analysis to spherically symmetric spin-less objects. On the other hand, re-
laxing invariance under time-diffs allows for new terms in the particle Lagrangian. In
particular,

1. All couplings can be explicitly time-dependent. To lowest order in the v expansion,
this simply applies to the mass parameter,∫

dτ m

GR

−→
∫
dτ m(t)

GR+scalar

. (A.1)

2. The point particles can couple directly to metric invariants (four-dimensional scalars)
multiplied by functions of the time. In a derivative expansion, after the mass
term (A.1) we have ∫

dτ cR(t)R +

∫
dτ cV (t)Rµνv

µvν . (A.2)

It is easy to see that, like in the standard case (see the details in [24]), these terms
can be redefined away with a metric field redefinition because they are proportional
to the equations of motions in the vacuum. The first non-trivial of such couplings
involve two powers of the (Weyl) curvature and contribute only to order v10 to the
two body Lagrangian [23].

3. The point particles can couple also to three-dimensional scalars, i.e. quantities that
are scalars from the point of view of spatial diffeomorphisms, such as g00,

Spp ⊃
∫
dτ g00µ(t) . (A.3)

4. The t = const. hypersurfaces, up to a spatial rotation, pick out a preferred Lorentz

frame at any point-event. This can be represented by the unitary vector nµ =
δ0
µ√
−g00

orthogonal to this hypersurface. The (squared) velocity of the point particle with
respect to such a frame

V 2 = 1− 1

(nµvµ)2
(A.4)
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is an invariant which can appear in the point-particle Lagrangian.8

In summary, in the presence of a scalar degree of freedom we can expect a particle
Lagrangian of the type

Spp =

∫
dτ
[
m(t) + µ(t)δg00 + m̄(t)V 2 + . . .

]
. (A.5)

In the above, we have used δg00 = 1 + g00 to avoid redundancies with the mass term.
In order to make the couplings with the scalar explicit, we force a time diffeomorphism
(Stückelberg procedure) t→ t+ π(x), and interpret π as the scalar field perturbation. It
is immediate to recover the standard scalar-point-particle couplings of the “Brans Dicke
type” in the Einstein frame,

m(t) → m(t+ π) = m(t) + ṁ(t)π(x) +
1

2
m̈(t)π2(x) + . . . . (A.6)

The term g00, on the other hand, produces derivative couplings. By using the standard
transformation property of the metric under a diffeomorphism one gets

g00 → g00 + 2g0µ∂µπ + gµν∂µπ∂νπ . (A.7)

Finally, V 2 in (A.4) contains a rather rich structure,

V 2 = 1 +
g00(

∂µt
dxµ

dτ

)2 → 1 +
g00 + 2g0µ∂µπ + gµν∂µπ∂νπ

(1 + π̇ + ∂iπvi)2

(
dτ

dt

)2

. (A.8)

Action (A.5) becomes

Spp =

∫
dτ

{
m(t) + ṁ(t)π(x) +

1

2
m̈(t)π2 + . . . (A.9)

+

[
µ(t) + µ̇(t)π(x) +

1

2
µ̈(t)π2 + . . .

]
·
[
δg00 − 2π̇ + 2 δg0i ∂iπ + . . .

]
(A.10)

+

[
m̄(t) + ˙̄m(t)π(x) +

1

2
¨̄m(t)π2 + . . .

]
·
[
v2 + 2vi∂iπ + viδg0i + . . .

]
+ . . .

}
.

(A.11)

In the above expression terms have been ordered also according to their power counting
in v (see discussion in Sec. 2.3). Of course, we are in the presence of a much richer set
of possibilities than those represented by the coupling metric-matter, usually excluded by
the equivalence principle.

8We can indeed introduce a Lorentzian tetrad eµ(α) at any point and define V 2 through the boost

transformation that must be made upon n(α) in order to obtain v(α). nµv
µ = n(α)v

(α) is just the gamma
factor of such a boost. On the other hand, it is customary to define vi as the coordinate velocity of the

particle, vi = dxi

dt
.

38



References

[1] LIGO Scientific, Virgo Collaboration, B. P. Abbott et. al., “Observation of
Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116
(2016), no. 6 061102, 1602.03837.

[2] N. Yunes, K. Yagi, and F. Pretorius, “Theoretical Physics Implications of the
Binary Black-Hole Mergers GW150914 and GW151226,” Phys. Rev. D94 (2016),
no. 8 084002, 1603.08955.

[3] J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi, “Essential Building Blocks of
Dark Energy,” JCAP 1308 (2013) 025, 1304.4840.

[4] J. Beltran Jimenez, F. Piazza, and H. Velten, “Evading the Vainshtein Mechanism
with Anomalous Gravitational Wave Speed: Constraints on Modified Gravity from
Binary Pulsars,” Phys. Rev. Lett. 116 (2016), no. 6 061101, 1507.05047.

[5] L. Lombriser and A. Taylor, “Breaking a Dark Degeneracy with Gravitational
Waves,” JCAP 1603 (2016), no. 03 031, 1509.08458.

[6] D. Bettoni, J. M. Ezquiaga, K. Hinterbichler, and M. Zumalacrregui, “Speed of
Gravitational Waves and the Fate of Scalar-Tensor Gravity,” Phys. Rev. D95
(2017), no. 8 084029, 1608.01982.

[7] T. L. S. Collaboration and T. V. Collaboration, “GW170817: Observation of
Gravitational Waves from a Binary Neutron Star Inspiral,” Physical Review Letters
119 (Oct., 2017). arXiv: 1710.05832.

[8] P. Creminelli and F. Vernizzi, “Dark Energy after GW170817 and GRB170817A,”
Phys. Rev. Lett. 119 (2017), no. 25 251302, 1710.05877.

[9] J. M. Ezquiaga and M. Zumalacrregui, “Dark Energy After GW170817: Dead Ends
and the Road Ahead,” Phys. Rev. Lett. 119 (2017), no. 25 251304, 1710.05901.

[10] T. Baker, E. Bellini, P. G. Ferreira, M. Lagos, J. Noller, and I. Sawicki, “Strong
constraints on cosmological gravity from GW170817 and GRB 170817A,” Phys.
Rev. Lett. 119 (2017), no. 25 251301, 1710.06394.

[11] J. Sakstein and B. Jain, “Implications of the Neutron Star Merger GW170817 for
Cosmological Scalar-Tensor Theories,” Phys. Rev. Lett. 119 (2017), no. 25 251303,
1710.05893.

[12] M. Crisostomi and K. Koyama, “Vainshtein mechanism after GW170817,” Phys.
Rev. D97 (2018), no. 2 021301, 1711.06661.

[13] D. Langlois, R. Saito, D. Yamauchi, and K. Noui, “Scalar-tensor theories and
modified gravity in the wake of GW170817,” Phys. Rev. D97 (2018), no. 6 061501,
1711.07403.

[14] A. Dima and F. Vernizzi, “Vainshtein screening in scalar-tensor theories before and
after GW170817: Constraints on theories beyond Horndeski,” Physical Review D 97
(May, 2018).

39

http://xxx.lanl.gov/abs/1602.03837
http://xxx.lanl.gov/abs/1603.08955
http://xxx.lanl.gov/abs/1304.4840
http://xxx.lanl.gov/abs/1507.05047
http://xxx.lanl.gov/abs/1509.08458
http://xxx.lanl.gov/abs/1608.01982
http://xxx.lanl.gov/abs/1710.05877
http://xxx.lanl.gov/abs/1710.05901
http://xxx.lanl.gov/abs/1710.06394
http://xxx.lanl.gov/abs/1710.05893
http://xxx.lanl.gov/abs/1711.06661
http://xxx.lanl.gov/abs/1711.07403


[15] C. Deffayet and K. Menou, “Probing Gravity with Spacetime Sirens,” Astrophys. J.
668 (2007) L143–L146, 0709.0003.

[16] E. Calabrese, N. Battaglia, and D. N. Spergel, “Testing Gravity with Gravitational
Wave Source Counts,” Class. Quant. Grav. 33 (2016), no. 16 165004, 1602.03883.

[17] L. Visinelli, N. Bolis, and S. Vagnozzi, “Brane-world extra dimensions in light of
GW170817,” Phys. Rev. D97 (2018), no. 6 064039, 1711.06628.

[18] L. Amendola, I. Sawicki, M. Kunz, and I. D. Saltas, “Direct detection of
gravitational waves can measure the time variation of the Planck mass,” JCAP
1808 (2018), no. 08 030, 1712.08623.

[19] E. Belgacem, Y. Dirian, S. Foffa, and M. Maggiore, “Gravitational-wave luminosity
distance in modified gravity theories,” Phys. Rev. D97 (2018), no. 10 104066,
1712.08108.

[20] P. Creminelli, M. Lewandowski, G. Tambalo, and F. Vernizzi, “Gravitational Wave
Decay into Dark Energy,” JCAP 1812 (2018), no. 12 025, 1809.03484.

[21] J. M. Ezquiaga and M. Zumalacrregui, “Dark Energy in light of Multi-Messenger
Gravitational-Wave astronomy,” Front. Astron. Space Sci. 5 (2018) 44, 1807.09241.

[22] L. Blanchet, “Gravitational Radiation from Post-Newtonian Sources and
Inspiralling Compact Binaries,” Living Rev. Rel. 17 (2014) 2, 1310.1528.

[23] W. D. Goldberger and I. Z. Rothstein, “An Effective Field Theory of Gravity for
Extended Objects,” Physical Review D 73 (May, 2006). arXiv: hep-th/0409156.

[24] W. D. Goldberger, “Les Houches lectures on effective field theories and gravitational
radiation,” in Les Houches Summer School - Session 86: Particle Physics and
Cosmology: The Fabric of Spacetime Les Houches, France, July 31-August 25, 2006,
2007. hep-ph/0701129.

[25] V. Cardoso, O. J. C. Dias, and P. Figueras, “Gravitational radiation in d¿4 from
effective field theory,” Phys. Rev. D78 (2008) 105010, 0807.2261.

[26] C. R. Galley and M. Tiglio, “Radiation reaction and gravitational waves in the
effective field theory approach,” Phys. Rev. D79 (2009) 124027, 0903.1122.

[27] S. Foffa and R. Sturani, “Effective field theory methods to model compact binaries,”
Class. Quant. Grav. 31 (2014), no. 4 043001, 1309.3474.

[28] R. A. Porto, “The Effective Field Theorist’s Approach to Gravitational Dynamics,”
Physics Reports 633 (May, 2016) 1–104. arXiv: 1601.04914.

[29] M. Levi, “Effective Field Theories of Post-Newtonian Gravity: A comprehensive
review,” 1807.01699.

[30] S. Endlich, V. Gorbenko, J. Huang, and L. Senatore, “An effective formalism for
testing extensions to General Relativity with gravitational waves,” JHEP 09 (2017)
122, 1704.01590.

40

http://xxx.lanl.gov/abs/0709.0003
http://xxx.lanl.gov/abs/1602.03883
http://xxx.lanl.gov/abs/1711.06628
http://xxx.lanl.gov/abs/1712.08623
http://xxx.lanl.gov/abs/1712.08108
http://xxx.lanl.gov/abs/1809.03484
http://xxx.lanl.gov/abs/1807.09241
http://xxx.lanl.gov/abs/1310.1528
http://xxx.lanl.gov/abs/hep-ph/0701129
http://xxx.lanl.gov/abs/0807.2261
http://xxx.lanl.gov/abs/0903.1122
http://xxx.lanl.gov/abs/1309.3474
http://xxx.lanl.gov/abs/1807.01699
http://xxx.lanl.gov/abs/1704.01590


[31] K. Nordtvedt, “Equivalence Principle for Massive Bodies. 2. Theory,” Phys. Rev.
169 (1968) 1017–1025.

[32] T. Damour and G. Esposito-Farese, “Tensor-multi-scalar theories of gravitation,”
Classical and Quantum Gravity 9 (Sept., 1992) 2093–2176.

[33] T. Damour and G. Esposito-Farese, “Testing gravity to second postNewtonian order:
A Field theory approach,” Phys. Rev. D53 (1996) 5541–5578, gr-qc/9506063.

[34] L. Bernard, “Dynamics of compact binary systems in scalar-tensor theories:
Equations of motion to the third post-Newtonian order,” Phys. Rev. D98 (2018),
no. 4 044004, 1802.10201.

[35] L. Bernard, “Dynamics of compact binary systems in scalar-tensor theories: II.
Center-of-mass and conserved quantities to 3PN order,” 1812.04169.

[36] J. Huang, M. C. Johnson, L. Sagunski, M. Sakellariadou, and J. Zhang, “Prospects
for axion searches with Advanced LIGO through binary mergers,” 1807.02133.

[37] A. Nicolis, R. Rattazzi, and E. Trincherini, “The Galileon as a local modification of
gravity,” Phys. Rev. D79 (2009) 064036, 0811.2197.

[38] G. W. Horndeski, “Second-order scalar-tensor field equations in a four-dimensional
space,” Int. J. Theor. Phys. 10 (1974) 363–384.

[39] C. Deffayet, S. Deser, and G. Esposito-Farese, “Generalized Galileons: All scalar
models whose curved background extensions maintain second-order field equations
and stress-tensors,” Phys. Rev. D80 (2009) 064015, 0906.1967.

[40] M. Zumalacrregui and J. Garca-Bellido, “Transforming gravity: from derivative
couplings to matter to second-order scalar-tensor theories beyond the Horndeski
Lagrangian,” Phys. Rev. D89 (2014) 064046, 1308.4685.

[41] J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi, “Healthy theories beyond
Horndeski,” Phys. Rev. Lett. 114 (2015), no. 21 211101, 1404.6495.

[42] J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi, “Exploring gravitational theories
beyond Horndeski,” JCAP 1502 (2015) 018, 1408.1952.

[43] D. Langlois and K. Noui, “Degenerate higher derivative theories beyond Horndeski:
evading the Ostrogradski instability,” JCAP 1602 (2016), no. 02 034, 1510.06930.

[44] J. Ben Achour, M. Crisostomi, K. Koyama, D. Langlois, K. Noui, and G. Tasinato,
“Degenerate higher order scalar-tensor theories beyond Horndeski up to cubic
order,” JHEP 12 (2016) 100, 1608.08135.

[45] A. I. Vainshtein, “To the problem of nonvanishing gravitation mass,” Phys. Lett.
39B (1972) 393–394.

[46] E. Babichev and C. Deffayet, “An introduction to the Vainshtein mechanism,”
Class. Quant. Grav. 30 (2013) 184001, 1304.7240.

41

http://xxx.lanl.gov/abs/gr-qc/9506063
http://xxx.lanl.gov/abs/1802.10201
http://xxx.lanl.gov/abs/1812.04169
http://xxx.lanl.gov/abs/1807.02133
http://xxx.lanl.gov/abs/0811.2197
http://xxx.lanl.gov/abs/0906.1967
http://xxx.lanl.gov/abs/1308.4685
http://xxx.lanl.gov/abs/1404.6495
http://xxx.lanl.gov/abs/1408.1952
http://xxx.lanl.gov/abs/1510.06930
http://xxx.lanl.gov/abs/1608.08135
http://xxx.lanl.gov/abs/1304.7240


[47] P. Creminelli, M. A. Luty, A. Nicolis, and L. Senatore, “Starting the Universe:
Stable Violation of the Null Energy Condition and Non-standard Cosmologies,”
JHEP 12 (2006) 080, hep-th/0606090.

[48] C. Cheung, P. Creminelli, A. L. Fitzpatrick, J. Kaplan, and L. Senatore, “The
Effective Field Theory of Inflation,” JHEP 03 (2008) 014, 0709.0293.

[49] P. Creminelli, G. D’Amico, J. Norena, and F. Vernizzi, “The Effective Theory of
Quintessence: the w¡-1 Side Unveiled,” JCAP 0902 (2009) 018, 0811.0827.

[50] G. Gubitosi, F. Piazza, and F. Vernizzi, “The Effective Field Theory of Dark
Energy,” JCAP 1302 (2013) 032, 1210.0201. [JCAP1302,032(2013)].

[51] J. K. Bloomfield, a. . Flanagan, M. Park, and S. Watson, “Dark energy or modified
gravity? An effective field theory approach,” JCAP 1308 (2013) 010, 1211.7054.

[52] F. Piazza and F. Vernizzi, “Effective Field Theory of Cosmological Perturbations,”
Class. Quant. Grav. 30 (2013) 214007, 1307.4350.

[53] E. Babichev, C. Deffayet, and R. Ziour, “k-Mouflage gravity,” Int. J. Mod. Phys.
D18 (2009) 2147–2154, 0905.2943.

[54] Y.-Z. Chu and M. Trodden, “Retarded Greens function of a Vainshtein system and
Galileon waves,” Phys. Rev. D87 (2013), no. 2 024011, 1210.6651.

[55] C. de Rham, A. J. Tolley, and D. H. Wesley, “Vainshtein Mechanism in Binary
Pulsars,” Phys. Rev. D87 (2013), no. 4 044025, 1208.0580.

[56] C. de Rham, A. Matas, and A. J. Tolley, “Galileon Radiation from Binary
Systems,” Phys. Rev. D87 (2013), no. 6 064024, 1212.5212.

[57] F. Dar, C. De Rham, J. T. Deskins, J. T. Giblin, and A. J. Tolley, “Scalar
Gravitational Radiation from Binaries: Vainshtein Mechanism in Time-dependent
Systems,” 1808.02165.

[58] S. Weinberg, “Photons and Gravitons in s Matrix Theory: Derivation of Charge
Conservation and Equality of Gravitational and Inertial Mass,” Phys. Rev. 135
(1964) B1049–B1056.

[59] L. Hui and A. Nicolis, “An Equivalence principle for scalar forces,” Phys. Rev. Lett.
105 (2010) 231101, 1009.2520.

[60] F. Nitti and F. Piazza, “Scalar-tensor theories, trace anomalies and the
QCD-frame,” Phys. Rev. D86 (2012) 122002, 1202.2105.

[61] L. Hui, A. Nicolis, and C. Stubbs, “Equivalence Principle Implications of Modified
Gravity Models,” Phys. Rev. D80 (2009) 104002, 0905.2966.

[62] C. M. Will, Theory and experiment in gravitational physics. 1993.

[63] D. M. Eardley, “Observable effects of a scalar gravitational field in a binary pulsar,”
Astrophysical Journal 196 (Mar., 1975) L59–L62.

42

http://xxx.lanl.gov/abs/hep-th/0606090
http://xxx.lanl.gov/abs/0709.0293
http://xxx.lanl.gov/abs/0811.0827
http://xxx.lanl.gov/abs/1210.0201
http://xxx.lanl.gov/abs/1211.7054
http://xxx.lanl.gov/abs/1307.4350
http://xxx.lanl.gov/abs/0905.2943
http://xxx.lanl.gov/abs/1210.6651
http://xxx.lanl.gov/abs/1208.0580
http://xxx.lanl.gov/abs/1212.5212
http://xxx.lanl.gov/abs/1808.02165
http://xxx.lanl.gov/abs/1009.2520
http://xxx.lanl.gov/abs/1202.2105
http://xxx.lanl.gov/abs/0905.2966


[64] A. Einstein, L. Infeld, and B. Hoffmann, “The Gravitational Equations and the
Problem of Motion,” The Annals of Mathematics 39 (Jan., 1938) 65.

[65] B. Kol and M. Smolkin, “Non-Relativistic Gravitation: From Newton to Einstein
and Back,” Class. Quant. Grav. 25 (2008) 145011, 0712.4116.

[66] W. D. Goldberger and A. Ross, “Gravitational radiative corrections from effective
field theory,” Physical Review D 81 (June, 2010). arXiv: 0912.4254.

[67] A. Ross, “Multipole expansion at the level of the action,” Physical Review D 85
(June, 2012). arXiv: 1202.4750.

[68] C. R. Galley and M. Tiglio, “Radiation reaction and gravitational waves in the
effective field theory approach,” Physical Review D 79 (June, 2009).

[69] V. Cardoso, O. J. C. Dias, and J. P. S. Lemos, “Gravitational radiation in
D-dimensional space-times,” Phys. Rev. D67 (2003) 064026, hep-th/0212168.

[70] M. Maggiore, Gravitational Waves. Vol. 1: Theory and Experiments. Oxford Master
Series in Physics. Oxford University Press, 2007.

[71] C. M. Will, “Testing scalar - tensor gravity with gravitational wave observations of
inspiraling compact binaries,” Phys. Rev. D50 (1994) 6058–6067, gr-qc/9406022.

[72] N. Sennett, S. Marsat, and A. Buonanno, “Gravitational waveforms in scalar-tensor
gravity at 2PN relative order,” Phys. Rev. D94 (2016), no. 8 084003, 1607.01420.

[73] J. Gleyzes, D. Langlois, M. Mancarella, and F. Vernizzi, “Effective Theory of
Interacting Dark Energy,” JCAP 1508 (2015), no. 08 054, 1504.05481.

[74] P. Brax and A.-C. Davis, “Gravitational effects of disformal couplings,” Phys. Rev.
D98 (2018), no. 6 063531, 1809.09844.

[75] A. Kuntz, P. Brax, and A.-C. Davis in prep.

[76] C. M. Will, “The Confrontation between General Relativity and Experiment,”
Living Rev. Rel. 17 (2014) 4, 1403.7377.

[77] B. Bertotti, L. Iess, and P. Tortora, “A test of general relativity using radio links
with the Cassini spacecraft,” Nature 425 (2003) 374–376.

43

http://xxx.lanl.gov/abs/0712.4116
http://xxx.lanl.gov/abs/hep-th/0212168
http://xxx.lanl.gov/abs/gr-qc/9406022
http://xxx.lanl.gov/abs/1607.01420
http://xxx.lanl.gov/abs/1504.05481
http://xxx.lanl.gov/abs/1809.09844
http://xxx.lanl.gov/abs/1403.7377

	1 Introduction
	1.1 The gravitational action
	1.2 The point-particle action
	1.3 Outline

	2 Non-Relativistic Scalar-Tensor Theory
	2.1 Lengthscales in binary systems
	2.2 Integrating out fluctuating fields
	2.3 Propagators and power counting
	2.4 Vertices
	2.5 Feynman rules

	3 Renormalization of masses and charges
	4 Conservative dynamics up to 1PN order
	5 Couplings to radiative fields
	5.1 Graviton interactions
	5.1.1 Multipole decomposition
	5.1.2 Quadrupole expression

	5.2 Scalar interactions
	5.2.1 Multipole decomposition
	5.2.2 Scalar monopole
	5.2.3 Scalar dipole
	5.2.4 Scalar quadrupole


	6 Dissipative dynamics 
	6.1 Radiated power
	6.1.1 Gravitons
	6.1.2 Scalars

	6.2 Detected signal 
	6.3 Circular orbits
	6.4 Frequency dependence

	7 Extensions
	8 Concluding remarks
	A General couplings to point particles

