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The topological phases of random Kitaev α-chains are labelled by the number of localized edge
Majorana Zero Modes. The critical lines between these phases thus correspond to delocalization
transitions for these localized edge Majorana Zero Modes. For the random Kitaev chain with next-
nearest couplings, where there are three possible topological phases n = 0, 1, 2, the two Lyapunov
exponents of Majorana Zero Modes are computed for a specific solvable case of Cauchy disorder, in
order to analyze how the phase diagram evolves as a function of the disorder strength. In particular,
the direct phase transition between the phases n = 0 and n = 2 is possible only in the absence of
disorder, while the presence of disorder always induces an intermediate phase n = 1, as found
previously via numerics for other distributions of disorder.

I. INTRODUCTION

Many one-dimensional quantum models involving N quantum spins S = 1/2 (see the Appendix) or N spinless Dirac

fermions can be reformulated in terms of 2N of Majorana operators γj that are hermitian γ†j = γj , square to the

Identity γ2j = 1 and anti-commute with each other. For models respecting the Time-Reversal-Symmetry T defined
by its action [1, 2]

TiT−1 = −i
Tγ2j−1T

−1 = γ2j−1

Tγ2jT
−1 = −γ2j (1)

it is actually useful to relabel the Majorana operators with the flavors a and b to stress their different behaviors with
respect to T

γ2j−1 = aj

γ2j = bj (2)

Among the Hamiltonians respecting also the the total parity

P = iNγ1γ2γ3γ4...γ2N−1γ2N (3)

the simplest ones are the free-fermionic Kitaev α-chains [1–5]

Hα = i
∑
m

bmKm,m+αam+α (4)

where the diagonalization simply corresponds to the pairing of (bn, am+α), even for random couplings Km,m+α. Then
the possible edge Majorana zero modes are localized on single sites and are thus obvious. In particular, n = |α| counts
the number of Majorana Zero Modes of type a or b located near the two edges. For instance, α = 0 corresponds to
n = 0 zero modes, α = 1 corresponds to the single zero mode a1 on the left and the single zero mode bN on the right,
α = 2 corresponds to two zero modes (a1, a2) on the left and two zero modes (bN−1, bN ) on the right, etc.

Many interesting random free Majorana models respecting the (P, T ) symmetries, corresponding either to standard
quantum spin models (see the Appendix) or to spinless Dirac fermions superconducting models [1, 2, 6], can be
rewritten as a linear combinations with a finite number of values of α [3–5]

H =
∑
α

Hα = i
∑
m

bm

(∑
α

Km,m+αam+α

)
(5)

The topological phases are characterized by the number of edge localized Majorana Zero Modes, while the phase
transitions between them correspond to delocalization transitions for these edge Majorana Zero Modes. For instance,
the linear combination of the three values α = 0, 1, 2

H = H0 +H1 +H2 = i
∑
n

bn

(
2∑

α=0

Kn,n+αan+α

)
(6)
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has been much considered recently, mostly with homogeneous couplings [3, 4, 7–9] but also with random couplings
[9], in order to analyze the phase diagram of the three possible phases n = 0, 1, 2 and the phase transitions between
them. The standard method to analyze the phase diagram of the model of Eq 6 [3, 4, 7–9], or more generally of
the free-Majorana-models of Eq. 5, is the transfer matrix computation of the Majorana Zero Modes to characterize
their localization properties near the edges [6, 10–19]. In the random case, the analysis of the Lyapunov exponents of
the product of random transfer matrices [6, 9, 10, 12–16] is thus based on the methods that have been developed in
the field of Anderson localization and other one-dimensional disordered models (see the books [20, 21] and the more
recent Lectures Notes [22] as well as references therein).

The goal of the present paper is to compute the exact phase diagram between the topological phases n = 0, 1, 2 for
the Hamiltonian of Eq. 6 for a special case of disorder. The paper is organized as follows. In section II, we recall
the general method to compute zero modes in random Kitaev α-chains, and the explicit application for arbitrary
disorder to the three cases (H0 + H1), (H0 + H2) and (H1 + H2) containing only two values of α among the three
values of Eq. 6. In section III, we focus on the topological phases of the random Hamiltonian H0 +H1 +H2 of Eq. 6,
where the localizations properties of the Majorana zero modes can be then obtained via the product of 2× 2 random
transfer matrix and via the Riccati recurrence method. The explicit solution for a special type of Cauchy disorder
is given in section IV, in order to analyze the changes of the phase diagram as a function of the disorder strength.
Our conclusions are summarized in V. Appendix A contains a short dictionary between Majorana and quantum spin
chains.

II. REMINDER ON EDGE ZERO MODES IN RANDOM KITAEV α-CHAINS

A. General method to compute edge Majorana Zero Mode

For the general PT -symmetric quadratic models of Eq. 5, where each Majorana fermion of a given flavor, respectively
a or b, interacts only with Majorana fermions of the other flavor, respectively b or a, the zero modes can be also
separated into the two flavors, and can be constructed from some linear combination of the Majorana fermions of
flavor a only

A =
∑
j

ujaj (7)

or from some linear combination of the Majorana fermions of flavor b only

B =
∑
j

vjbj (8)

The linear combination A of Eq. 7 will be a Majorana fermion if the coefficients uj are real u∗j = uj and if they
satisfy the normalization condition ∑

j

u2j = 1 (9)

This Majorana fermion A will be a Zero Mode if the commutator with the Hamiltonian vanish

0 = [H,A] = 2i
∑
j

uj
∑
α

bj−αKj−α,n = 2i
∑
m

bm

(∑
α

Km,m+αum+α

)
(10)

This condition yields the following recursion for the coefficients uj that should be satisfied for any m

0 =
∑
α

Km,m+αum+α (11)

i.e. the coefficients uj correspond to a right eigenvector of the coupling matrix Km,m+α associated to the zero
eigenvalue.

Of course, on can apply the same analysis for the Majorana Zero Mode B of flavor b of Eq. 8, and one obtains that
the real normalized coefficients vj correspond to a left eigenvector of the coupling matrix Km,m+α associated to the
zero eigenvalue, but this will not be discussed further here in order to avoid repetitions.
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B. Example H = H0 +H1

For the case

H = H0 +H1 = i

N∑
n=1

bnKn,nan + i

N−1∑
n=1

bnKn,n+1an+1 (12)

corresponding to the random quantum spin Ising chain (see Eqs A3 and A4 in Appendix A), the competition is
between the phase n = 0 with no zero mode (when H0 dominates over H1) and the phase n = 1 with one zero mode
of flavor a localized on the left edge and one zero mode of flavor b localized on the right edge (when H1 dominates
over H0). To analyze the phase diagram, one thus needs to study the existence of a zero mode of flavor a localized
on the left edge via the recursion of Eq. 11

0 = Km,mum +Km,m+1um+1 (13)

This simple recursion between two consecutive coefficients

um+1 = − Km,m

Km,m+1
um (14)

can be trivially solved for any realization of the random couplings

um+1 =

(
− Km,m

Km,m+1

)
...

(
−K11

K12

)
u1 = u1

m∏
k=1

(
− Kk,k

Kk,k+1

)
(15)

The normalization condition of Eq. 9

1 =

N∑
n=1

u2n = u21

N∑
n=1

n−1∏
k=1

(
K2
k,k

K2
k,k+1

)
(16)

corresponds to the well-known structure of Kesten random variables [23–27] and has been much discussed in relation
with the surface magnetization in the ground-state of the one-dimensional transverse field Ising chain [28–30].

The Lyapunov exponent of this zero mode is then determined by the disorder-average of the logarithms of the
couplings

γ{H0+H1} ≡ lim
N→+∞

ln |uN+1

u1
|

N
= lim
N→+∞

∑N
k=1 ln | Kk,k

Kk,k+1
|

N
= ln |Kk,k| − ln |Kk,k+1| (17)

and allows to determine if one can construct a localized zero mode near the left edge satisfying the normalization of
Eq. 16.

One obtains the following topological phase diagram :
The phase n = 1 corresponds to the region of negative Lyapunov exponent γ{H0+H1} < 0, where the normalized

zero mode of flavor a is localized near the left edge and typically decays exponentially.
The phase n = 0 corresponds to the region of positive Lyapunov exponent γ{H0+H1} > 0, where there is no

normalizable zero mode of flavor a localized near the left edge.
The phase transition between the two phases n = 0, 1 corresponds to the vanishing of the Lyapunov exponent

γ{H0+H1} = 0, i.e. to the well-known criterion in the language of the Random Transverse Field Ising Chain [31, 32].
The corresponding Infinite Disorder character of the transition is reviewed in [33, 34].

C. Example H = H0 +H2

For the case

H = H0 +H2 = i

N∑
n=1

bnKn,nan + i

N−2∑
n=1

bnKn,n+2an+2 (18)
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(see Eqs A3 and A5 in Appendix A for the translation in the spin language), Eq. 11 yields one solvable recursion for
the odd coefficients

u2N+1 =

(
−K2N−1,2N−1

K2N−1,2N+1

)
u2N−1 = u1

m∏
k=1

(
−K2m−1,2m−1

K2m−1,2m+1

)
(19)

and one solvable recursion for the even coefficients

u2N+2 =

(
− K2N,2N

K2N,2N+2

)
u2N = u2

m∏
k=1

(
− K2m,2m

K2m,2m+2

)
(20)

The corresponding Lyapunov exponents

γ
{H0+H2}
odd = lim

N→+∞

ln |u2N+1

u1
|

2N
= lim
N→+∞

∑N
m=1 ln |K2m−1,2m−1

K2m−1,2m+1
|

2N
=

1

2
ln |Kk,k| − ln |Kk,k+2| (21)

and

γ{H0+H2}
even = lim

N→+∞

ln |u2N+2

u2
|

2N
= lim
N→+∞

∑N
m=1 ln | K2m,2m

K2m,2m+2
|

2N
=

1

2
ln |Kk,k| − ln |Kk,k+2| (22)

are thus equal to the value

γ
{H0+H2}
odd = γ{H0+H2}

even =
1

2
ln |Kk,k| − ln |Kk,k+2| ≡ γ{H0+H2} (23)

The phase n = 2 corresponds to to the region γ{H0+H2} < 0, where the two zero modes are localized near the left
edge and display the same typical exponential decay.

The phase n = 0 corresponds to to the region γ{H0+H2} > 0, where there is no localized edge zero mode.
The phase transition between the two phases n = 0, 2 corresponds to the simultaneous delocalization transition

γ{H0+H2} = 0 of the two zero modes.

D. Example H = H1 +H2

For the case

H = H1 +H2 = i

N−1∑
n=1

bnKn,n+1an+1 + i

N−2∑
n=1

bnKn,n+2an+2 (24)

(see Eqs A4 and A5 in Appendix A for the translation in the spin language), Eq. 11 reads

0 = Km,m+1um+1 +Km,m+2um+2 (25)

So there always exists the trivial zero mode a1 localized on the single site m = 1, corresponding to the singular
Lyapunov exponent

γ
{H0+H2}
− = −∞ (26)

while the possible second zero mode has for coefficients

uN+2 =

(
−KN,N+1

KN,N+2

)
uN+1 = u2

N∏
m=1

(
−Km,m+1

Km,m+2

)
(27)

and is thus characterized by the Lyapunov exponent

γ
{H0+H2}
+ = lim

N→+∞

ln |uN+2

u2
|

N
= lim
N→+∞

∑N
m=1 ln |Km,m+1

Km,m+2
|

N
= ln |Kk,k+1| − ln |Kk,k+2| (28)

The phase n = 2 corresponds to γ
{H1+H2}
+ < 0, where the second zero mode is localized near the left edge.

The phase n = 1 corresponds to γ
{H1+H2}
+ > 0, where one cannot construct a second normalized zero mode localized

near the left edge.

The phase transition between the two phases n = 1, 2 corresponds to the delocalization transition γ
{H1+H2}
+ = 0 of

the second zero mode.
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E. Discussion

As seen on the three examples above, the linear combination (Hα1 + Hα2) involving only two values of α can be
studied via the explicit computation of the possible zero modes for arbitrary couplings, so that the location of the
phase transition between the two possible topological phases are exactly known in the presence of arbitrary disorder.
In the following section, we focus on the case H = H0 +H1 +H2 involving three values of α.

III. STUDY OF THE TOPOLOGICAL PHASES OF RANDOM HAMILTONIAN H = H0 +H1 +H2

For the Hamiltonian H = H0 +H1 +H2 of Eq. 6 (see Eqs A3, A4 and A5 in Appendix A for the translation in the
spin language), the recursion equation 11 for the coefficients of the zero mode

0 = Km,mum +Km,m+1um+1 +Km,m+2um+2 (29)

corresponds to a linear recurrence involving three consecutive terms

um+2 = −Km,m+1

Km,m+2
um+1 −

Km,m

Km,m+2
um (30)

A. Product of random 2 × 2 matrices

It is standard to rewrite the recurrence of Eq. 30 as(
um+2

um+1

)
= Tm

(
um+1

um

)
(31)

in terms of the 2× 2 transfer matrix

Tm =

(
−Km,m+1

Km,m+2
− Km,m

Km,m+2

1 0

)
(32)

so that the solution can be obtained from the product of the random transfer matrices(
uN+2

uN+1

)
= TN ...T1

(
u2
u1

)
(33)

Since the product

TN ≡ TN ...T1 (34)

is a 2× 2 matrix, the product of its two eigenvalues τ
(N)
± can be computed from its determinant as

τ
(N)
+ τ

(N)
− = det(TN ) =

N∏
m=1

det(Tm) =

N∏
m=1

(
Km,m

Km,m+2

)
(35)

As a consequence, the two corresponding Lyapunov exponents γ±

γ± ≡ lim
N→+∞

ln |τ (N)
± |
N

(36)

satisfy the simple sum rule [9]

γ+ + γ− = lim
N→+∞

ln |det(TN )|
N

= lim
N→+∞

∑N
m=1 ln | Km,m

Km,m+2
|

N
= ln |Km,m| − ln |Km,m+2| (37)

with the following consequences [9] with the ordering γ− ≤ γ+ :
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(i) if ln |Km,m| − ln |Km,m+2| < 0, then the smallest Lyapunov exponent has to be negative γ− < 0 so there is at
least one zero mode, and the only possibles phases are n = 1, 2 (the phase n = 0 is excluded), while the transition
between the two corresponds to the vanishing of the biggest Lyapunov exponent

γ
criti(n=1,2)
+ = 0 (38)

(ii) if ln |Km,m| − ln |Km,m+2| > 0, then the biggest Lyapunov exponent has to be positive γ+ > 0, so there is at
most one zero mode, and the only possibles phases are n = 0, 1 (the phase n = 2 is excluded), while the transition
between the two corresponds to the vanishing of the smallest Lyapunov exponent

γ
criti(n=0,1)
− = 0 (39)

(iii) if ln |Km,m| − ln |Km,m+2| = 0, then either both Lyapunov exponent vanish γ− = 0 = γ+ corresponding to the
simultaneous delocalization transition of the two zero modes (see the example previously discussed at the end of the
subsection II C), or the two Lyapunov exponents are opposite γ− < 0 < γ+ = −γ− corresponding to the phase n = 1.

B. Non-linear recurrence for the Riccati ratio

Another standard approach [20–22] involves the introduction of the Riccati ratios

Rm ≡
um+1

um
(40)

in order to transform the second-order linear recurrence of Eq. 30 into the first-order non-linear recurrence

Rm+1 = −Km,m+1

Km,m+2
− Km,m

Km,m+2

1

Rm
(41)

In terms of these Riccati ratios, the biggest Lyapunov exponent reads

γ+ = lim
N→+∞

ln |uN+1

u1
|

N
= lim
N→+∞

∑N
m=1 ln |Rm|

N
=

∫ +∞

−∞
dR Pst(R) ln |R| (42)

where Pst(R) denotes the attractive stationary distribution for the recurrence of Eq. 41.
This formulation in terms of the Riccati ratios is also useful to characterize the finite-size fluctuations via the

Central-Limit-Theorem

ln

∣∣∣∣uN+1

u1

∣∣∣∣ =

N∑
m=1

ln |Rm| '
N→+∞

γ+N +
√
Nu (43)

where u is a Gaussian variable of zero mean and of variance given by the variance of (ln |R|) computed with the
stationary distribution Pst(R). As a consequence, the phase transition corresponds to an Infinite Disorder Fixed
point, where the typical correlation exponent νtyp = 1 characterizes the vanishing of γ+ as a function of the control
parameter, while the average correlation exponent νav = 2 characterizes the sample-to-sample fluctuations, as in the
much studied Random Transverse Field Ising Chain (see the review [33]). Hence Strong Disorder Renormalization
has been used to analyze the critical points and the Griffiths effects for this type of models in the langage of dirty
superconductors [6].

C. Reminder on the numerical results for the case of random couplings Kmm [9]

In the presence of arbitrary disorder, recurrences like Eq. 41 are not exactly soluble and are usually studied
numerically, for instance the results for the case with random Km,m and non-random Km,m+1 and Km,m+2 can be
found in Ref. [9], with the following conclusions for the phase diagram :

(a) The direct phase transition between the phases n = 0 and n = 2 that requires the simultaneous delocalization
of the two zero modes γ− = 0 = γ+ is possible only in the absence of disorder, while the presence of disorder induces
a splitting between the two Lyapunov exponents and thus introduces an intermediate phase n = 1 even for arbitrary
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weak disorder. More generally, the Lyapunov spectrum is expected to be non-degenerate in random systems so that
the phase transitions only change the topological index by one [6].

(b) The presence of disorder may favor the existence of Majorana Zero Mode, i.e. in the phase diagram, a point
corresponding to the phase n = 0 for the pure model may belong to the phase n = 1 in the presence of sufficient
disorder, or similarly a point corresponding to the phase n = 1 for the pure model may belong to the phase n = 2 in
the presence of sufficient disorder.

(c) As the disorder becomes very strong for the couplings Km,m, one expects transition n = 2 → n = 1 → n = 0
towards the trivial phase n = 0.

In the following, it is thus interesting to analyze the same questions for the phase diagram corresponding to another
type of disorder, namely in the coupling Km,m+1.

IV. EXPLICIT SOLUTION FOR H = H0 +H1 +H2 WITH CAUCHY DISORDER IN Km,m+1

Among the exactly soluble cases of first-order non-linear recurrence for Riccati ratios [20–22], the simplest explicit
case is the Lloyd model [35, 36], as already used in the context of random Majorana models in [12]. For our present
model, this soluble case for the Riccati recurrence corresponds the case where the couplings Km,m and Km,m+2 are
non-random

Km,m = k0

Km,m+2 = k2 (44)

while the couplings Km,m+1 are distributed with the Cauchy distribution Ck1,W of average k1 and broadness W

Ck1,W (Km,m+1) =
1

π

W

(Km,m+1 − k1)2 +W 2
(45)

A. Recurrence for the parameters of the Cauchy distribution

Then the recurrence of Eq. 41 simplifies into

Rm+1 = −Km,m+1

k2
− k0
k2

1

Rm
(46)

Since the Cauchy distribution is stable with respect to both addition and inversion, the Riccati ratios Rm are then
also distributed with the Cauchy distribution Cxm,ym with some average xm and some broadness ym > 0

Cxm,ym(Rm) =
1

π

ym
(Rm − xm)2 + y2m

(47)

with the Fourier transform ∫ +∞

−∞
dRme

iqRmCxm,ym(Rm) = eiqxm−|q|ym (48)

The recurrence of Eq. 46 yields the following recurrence for the Cauchy distributions

Cxm+1,ym+1(Rm+1) =

∫
dKm,m+1Ck1,W (Km,m+1)

∫
dRmCxm,ym(Rm)δ

(
Rm+1 +

Km,m+1

k2
+
k0
k2

1

Rm

)
(49)

or equivalently in Fourier transform

eiqxm+1−|q|ym+1 =

∫
dRm+1e

iωRm+1Cxm+1,ym+1
(Rm+1)

=

∫
dKm,m+1Ck1,W (Km,m+1)e−i

q
k2
Km,m+1

∫
dRmCxm,ym(Rm)e−iq

k0
k2

1
Rm

= e−i
q
k2
k1−| q

k2
|W e

−iq k0
k2

xm
x2
m+y2

m
−| qk0

k2
| ym
x2
m+y2

m (50)
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The recurrence for the average xm and the broadness ym thus reads

xm+1 = −k1
k2
− k0
k2

xm
x2m + y2m

ym+1 =
W

|k2|
+

∣∣∣∣k0k2
∣∣∣∣ ym
x2m + y2m

(51)

and the corresponding attractive fixed point (xf , yf ) satisfies

xf = −k1
k2
− k0
k2

xf
x2f + y2f

yf =
W

|k2|
+

∣∣∣∣k0k2
∣∣∣∣ yf
x2f + y2f

(52)

From the stationary distribution Pst(R) = Cxf ,yf (R) of the Riccati ratio R, Eq. 42 yields the biggest Lyapunov
exponent

γ+ =

∫ +∞

−∞
dRPst(R) ln |R| =

∫
dR

1

π

yf
(R− xf )2 + y2f

ln |R| =
ln(x2f + y2f )

2
(53)

while the sum rule of Eq. 37 yields the other Lyapunov exponent

γ− = ln

∣∣∣∣k0k2
∣∣∣∣− γ+ (54)

The solution of the fixed-point system of Eq. 52 depends on the sign of the ratio k0
k2

, i.e. whether the two couplings
k0 and k2 have the same sign or not. These two cases are thus analyzed in the two following subsections respectively.

B. Lyapunov exponents for the case k0
k2

= −
∣∣∣ k0
k2

∣∣∣ < 0

When the two couplings k0 and k2 have opposite signs, Eq 52 can be rewritten as

xf = −
k1
k2

1−
∣∣∣k0k2 ∣∣∣ 1

x2
f+y

2
f

yf =

W
|k2|

1−
∣∣∣k0k2 ∣∣∣ 1

x2
f+y

2
f

(55)

It is then convenient to introduce the polar coordinates

xf = rf cos θf

yf = rf sin θf (56)

Since the broadness is positive yf > 0, the angle belongs to θ ∈ [0, π[ and is determined by its tangent

tan θf =
yf
xf

= − Wk2
k1|k2|

(57)

while the modulus rf satisfies the bound
(

1−
∣∣∣k0k2 ∣∣∣ 1

r2f

)
> 0 and thus the equation

rf =
√
x2f + y2f =

√
k21+W

2

|k2|

1−
∣∣∣k0k2 ∣∣∣ 1

r2f

(58)
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The rewriting as a second order equation

r2f −
√
k21 +W 2

|k2|
rf −

∣∣∣∣k0k2
∣∣∣∣ = 0 (59)

yields that the only positive solution reads

rf =

√
k21 +W 2 +

√
k21 +W 2 + 4|k0k2|

2|k2|
(60)

The biggest Lyapunov exponent of Eq 53 becomes

γ+ =
ln(x2f + y2f )

2
= ln rf = ln

(√
k21 +W 2 +

√
k21 +W 2 + 4|k0k2|

2|k2|

)
(61)

while the other Lyapunov exponent γ− ≤ γ+ can be obtained from the sum of Eq. 37

γ− = ln |k0| − ln |k2| − γ+ = ln

(
2|k0|√

k21 +W 2 +
√
k21 +W 2 + 4|k0k2|

)
(62)

1. Phase n = 0

The phase n = 0 corresponds to two positive Lyapunov exponents 0 < γ−(≤ γ+), i.e. to the region√
k21 +W 2 +

√
k21 +W 2 + 4|k0k2| < 2|k0| (63)

which can be simplified into √
k21 +W 2 + |k2| < |k0| (64)

2. Phase n = 2

The phase n = 2 corresponds to two negative Lyapunov exponents (γ− ≤)γ+ < 0, i.e. to the region√
k21 +W 2 +

√
k21 +W 2 + 4|k0k2| < 2|k2| (65)

which can be simplified into √
k21 +W 2 + |k0| < |k2| (66)

3. Phase n = 1

Finally, the phase n = 1 corresponds to the case γ− < 0 < γ+, i.e. to the region

(|k2| − |k0|)2 < k21 +W 2 (67)

4. Conclusion : Locations of the phase transitions between the three phases in the region k0
k2

= −
∣∣∣ k0
k2

∣∣∣ < 0

The critical line between the phases n = 0 and n = 1 corresponds to√
k21 +W 2 + |k2| = |k0| (68)
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The critical line between the phases n = 1 and n = 2 corresponds to√
k21 +W 2 + |k0| = |k2| (69)

A direct transition between the phases n = 0 and n = 2 requires the condition√
k21 +W 2 = |k0| − |k2| = |k2| − |k0| (70)

which can be fulfilled only for the case |k0| = |k2| and (k1 = 0,W = 0) where the couplings Km,m+1 all vanish (this
case has been previously discussed in the subsection II C).

C. Lyapunov exponents for the case k0
k2

= +
∣∣∣ k0
k2

∣∣∣ > 0

When the two couplings k0 and k2 have the same sign, it is convenient to recast the system of Eq 52

xf = −k1
k2
− k0
k2

xf
x2f + y2f

yf =
W

|k2|
+
k0
k2

yf
x2f + y2f

(71)

into the following single equation for the complex variable zf = xf + iyf

zf = −ω − k0
k2

1

zf
(72)

where we have introduced the notation

ω ≡ k1
k2
− i W
|k2|

(73)

Rewriting Eq 71 as a second degree equation

z2f + ωzf +
k0
k2

= 0 (74)

one obtains the two solutions

zf± =
−ω ±

√
∆

2
(75)

in terms of the discriminant

∆ = ω2 − 4
k0
k2

(76)

Since we are interested into the squares of the modulus of the solutions, it is actually convenient to use that their
product reads

|zf+|2|zf−|2 =
k20
k22

(77)

while their sum is given by

S ≡ |zf+|2 + |zf−|2 =
|ω2|+ |∆|

2
=
|ω2|+

∣∣∣ω2 − 4k0k2

∣∣∣
2

(78)

So r2f = |zf |2 satisfies the second order equation

r4f − Sr2f +
k20
k22

= 0 (79)
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of discriminant

D = S2 − 4
k20
k22

=

(
|ω2|+

∣∣∣ω2 − 4k0k2

∣∣∣)2 − 16
k20
k22

4

=

(
|ω2|+

∣∣∣ω2 − 4k0k2

∣∣∣+ 4k0k2

)(
|ω2|+

∣∣∣ω2 − 4k0k2

∣∣∣− 4k0k2

)
4

(80)

which is positive (as it should to have real roots) as a consequence of the triangular inequality. From the two solutions

r2f± =
S ±
√
D

2
(81)

one obtains that the biggest Lyapunov exponent reads

γ+ =
ln(r2f+)

2
=

ln
(
S+
√
D

2

)
2

(82)

while the smallest reads (Eq. 37)

γ− = ln |k0| − ln |k2| − γ+ =
ln

k2
0

k2
2

(r2f+)

2
=

ln(r2f−)

2
=

ln
(
S−
√
D

2

)
2

(83)

In terms of the initial parameters, Eq 78 reads

S =
k21 +W 2 +

√
[(k1 + 2

√
k0k2)2 +W 2][(k1 − 2

√
k0k2)2 +W 2]

2k22

=
k21 +W 2 +

√
(k21 − 4k0k2)2 + 2W 2(k21 + 4k0k2) +W 4

2k22
(84)

1. Phase n = 2

The phase n = 2 corresponds to two negative Lyapunov exponents (γ− ≤)γ+ < 0, i.e. to the region

S < 1 +
k20
k22

< 2 (85)

leading finally to the two conditions

|k0| < |k2|
k21(k2 − k0)2 +W 2(k2 + k0)2 < (k2 − k0)2(k2 + k0)2 (86)

For the non-random case W = 0, these two conditions reduce to

|k0| < |k2|
|k1| < |k2 + k0| (87)

2. Phase n = 1

The phase n = 1 corresponds to the case γ− < 0 < γ+, i.e. to the region

S > 1 +
k20
k22

(88)

that finally leads to the condition

(k2 − k0)2(k2 + k0)2 < k21(k2 − k0)2 +W 2(k2 + k0)2 (89)

For the non-random case W = 0, Eq 89 reduces to

|k2 + k0| < |k1| (90)
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3. Phase n = 0

The phase n = 0 corresponds to two positive Lyapunov exponents 0 < γ−(≤ γ+), i.e. to the region

2 < S < 1 +
k20
k22

(91)

leading finally to the two conditions

|k2| < |k0|
k21(k2 − k0)2 +W 2(k2 + k0)2 < (k2 − k0)2(k2 + k0)2 (92)

For the non-random case W = 0, these two conditions reduce to

|k2| < |k0|
|k1| < |k2 + k0| (93)

4. Conclusion : Location of the phase transition between the three phases in the region k0
k2

= +
∣∣∣ k0
k2

∣∣∣ > 0

The critical line between the phases n = 1 and n = 2 corresponds to to the two conditions

|k0| < |k2|
k21(k2 − k0)2 +W 2(k2 + k0)2 = (k2 − k0)2(k2 + k0)2 (94)

For the non-random case W = 0, this reduces to

|k0| < |k2|
|k1| = |k2 + k0| (95)

The critical line between the phases n = 0 and n = 1 corresponds to to the two conditions

|k2| < |k0|
k21(k2 − k0)2 +W 2(k2 + k0)2 = (k2 − k0)2(k2 + k0)2 (96)

For the non-random case W = 0, this reduces to

|k2| < |k0|
|k1| = |k2 + k0| (97)

A direct transition between the phases n = 0 and n = 2 requires the condition

S = 1 +
k20
k22

= 2 (98)

Since in the present section the two couplings k0 and k2 have the same sign, one obtains the conditions

k0 = k2

W = 0

k21 < 2(k20 + k22) = 4k20 (99)

i.e. it is only possible in the absence of disorder W = 0.
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D. Figures of the phase diagram in the plane ( k0
k2
, k1
k2

) for various disorder strengths W
|k2|

It is now interesting to draw the phase diagram in the plane of the reduced variables

x =
k0
k2

y =
k1
k2

(100)

in order to see how it evolves as a function of the reduced disorder strength

w =
W

|k2|
(101)

For the non-random case w = 0, the phase diagram has been already discussed in previous works [3, 4, 7–9] and is
drawn as the first picture on Figure 1 as a comparison with the random cases w > 0.

1. Locations of the phase transitions between the three phases in the region x = k0
k2
< 0

In the half-plane x < 0, the critical line between the phases n = 0 and n = 1 corresponds to the full hyperbola
branch (Eq 68)

y = ±
√

(x+ 1)2 − w2

x ≤ −1− w (102)

The critical line between the phases n = 1 and n = 2 corresponds to the truncated other branch of the same hyperbola

y = ±
√

(x+ 1)2 − w2

−1 + w ≤ x ≤ 0 (103)

that exists only for sufficiently small reduced disorder w < 1 (see Fig 1).
In the non-random case w = 0, this hyperbola degenerate into the two straight lines y = ±(x+ 1) (see Fig 1) : the

direct transition between the phases n = 0 and n = 2 is then reduced to their intersection point (x = −1, y = 0).

2. Location of the phase transitions between the three phases in the region x = k0
k2
> 0

In the half-plane x > 0, the critical line between the phases n = 1 and n = 2 corresponds to the truncated branch

y = ±(1 + x)

√
1− w2

(1− x)2

0 ≤ x ≤ 1− w (104)

that exists only for sufficiently small reduced disorder w < 1 (see Fig 1). The critical line between the phases n = 0
and n = 1 corresponds to to the full other branch of the same curve

y = ±(1 + x)

√
1− w2

(1− x)2

1 + w ≤ x (105)

For the non-random case w = 0, the curve above degenerates into the straight lines y = ±(1 + x) and the direct
transition between the phases n = 0 and n = 2 becomes possible along the vertical segment (see Fig 1)

−2 ≤ y ≤ +2

x = 1 (106)
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n=0 n=0n=0n=0

n=0 n=0n=0n=0

n=0 n=0n=0n=0

n=1

n=1

n=1

n=1n=1

n=1 n=1

n=2

n=2

n=2

n=2

w=0

w=0.1

w=0.5

w=0.9

w=1

w=2

Figure 1: Phase diagram of the three topological phases n = 0, 1, 2 in the plane (x = k0
k2
, y = k1

k2
) for various disorder strengths

w = W
|k2|

. Note that the direct transition between n = 0 and n = 2 occurs only in the non-random case w = 0 and disappears

for any arbitrary disorder via an intermediate phase n = 1, as shown with the examples w = 0.1, w = 0.5 and w = 0.9. For
sufficiently strong disorder w ≥ 1, the phase n = 2 cannot exist anymore, as shown with the examples w = 1 and w = 2.

V. CONCLUSIONS

In this paper, we have considered the topological phase transitions in random Kitaev α-chains. We have first recalled
how the edge Majorana Zero Modes could be computed for any realization of disorder for Hamiltonians involving only
two values of α. We have then focused on the random Hamiltonian (H0+H1+H2) containing three values of α, where
the localization properties of the edge Majorana Zero Modes can be analyzed via the product of 2×2 random matrices



15

and via the Riccati non-linear recurrence. For the special case of Cauchy disorder in the couplings Km,m+1, we have
computed explicitly the two Lyapunov exponents in order to analyze how the phase diagram of the three topological
phases n = 0, 1, 2 evolves as a function of the disorder strength. In particular, we have obtained that the direct phase
transition between the phases n = 0 and n = 2 becomes impossible in the presence of disorder that always induces an
intermediate phase n = 1, as found previously via numerics for other distributions of disorder [9], and in agreement
with the more general expectation that topological phase transitions in random systems only change the topological
index by one as a consequence of the non-degeneracy of the Lyapunov spectrum [6]. We have also obtained that the
phase n = 2 completely disappears for strong enough disorder (w ≥ 1 in Figure 1).

Appendix A: Dictionary between Majorana fermions and quantum spin chains

For a chain of N quantum spins described by Pauli matrices, the (2N) string operators

aj = γ2j−1 ≡

(
j−1∏
k=1

σzk

)
σxj

bj = γ2j ≡

(
j−1∏
k=1

σzk

)
σyj (A1)

satisfy the Majorana anticommutation relations

γkγl + γlγk = 2δkl (A2)

The first examples of Kitaev α-chains of Eq. 4 reads in the spin language

H(α=0) = i
∑
m

bmKm,mam =
∑
m

Km,mσ
z
m (A3)

H(α=1) = i
∑
m

bmKm,m+1am+1 = −
∑
m

Km,m+1σ
x
mσ

x
m+1 (A4)

and

H(α=2) = i
∑
m

bmKm,m+2am+2 = −
∑
m

Km,m+2σ
x
mσ

z
m+1σ

x
m+2 (A5)
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[21] A. Crisanti, G. Paladin and A. Vulpiani, ”Products of random matrices in statistical physics”, Springer-Verlag (1993).
[22] A. Comtet and Y. Tourigny, arxiv: 1601.01822
[23] H. Kesten, Acta Math. 131, 208 (1973); H. Kesten et al. , Compositio Math 30, 145 (1975).
[24] B. Derrida and Y. Pomeau, Phys. Rev. Lett. 48 , 627 (1982).
[25] J. P. Bouchaud and A. Georges, Phys. Rep. 195, 127 (1990).
[26] B. Derrida and H. Hilhorst, J. Phys. A 16, 2641 (1983).
[27] C. de Callan, J.M. Luck, Th. Nieuwenhuizen and D. Petritis, J. Phys. A 18, 501 (1985).
[28] C. Monthus, Phys. Rev. B 69, 054431 (2004).
[29] C. Monthus, J. Stat. Mech. P06036 (2015).
[30] C. Monthus, J. Stat. Mech. 123304 (2017).
[31] P. Pfeuty, Ann. Phys. 57, 79 (1970).
[32] D. S. Fisher, Phys. Rev. Lett. 69, 534 (1992);

D. S. Fisher, Phys. Rev. B 51, 6411 (1995).
[33] F. Igloi and C. Monthus, Phys. Rep. 412, 277 (2005).
[34] F. Igloi and C. Monthus, arXiv:1806.07684.
[35] P.J. Lloyd, J. Phys. C 2, 1717 (1969).
[36] D. J. Thouless, J. Phys. C 5, 77 (1972).

http://arxiv.org/abs/1806.07684

	I  Introduction
	II  Reminder on edge Zero Modes in random Kitaev -chains 
	A  General method to compute edge Majorana Zero Mode
	B  Example H=H0+H1 
	C  Example H=H0+H2 
	D  Example H=H1+H2 
	E  Discussion 

	III  Study of the topological phases of random Hamiltonian H=H0+H1+H2 
	A  Product of random 2 2 matrices 
	B  Non-linear recurrence for the Riccati ratio 
	C  Reminder on the numerical results for the case of random couplings Kmm lieu2018 

	IV  Explicit solution for H=H0+H1+H2 with Cauchy disorder in Km,m+1 
	A  Recurrence for the parameters of the Cauchy distribution 
	B  Lyapunov exponents for the case   k0  k2 = - "026A30C  k0 k2  "026A30C <0 
	1  Phase n=0 
	2  Phase n=2 
	3  Phase n=1 
	4  Conclusion : Locations of the phase transitions between the three phases in the region   k0 k2  = -"026A30C  k0 k2 "026A30C <0

	C  Lyapunov exponents for the case   k0 k2  = +"026A30C  k0 k2 "026A30C >0 
	1  Phase n=2 
	2  Phase n=1 
	3  Phase n=0 
	4  Conclusion : Location of the phase transition between the three phases in the region   k0 k2  = +"026A30C  k0 k2 "026A30C >0

	D  Figures of the phase diagram in the plane (k0k2,k1k2) for various disorder strengths W"026A30C k2 "026A30C  
	1  Locations of the phase transitions between the three phases in the region  x=  k0 k2  <0
	2  Location of the phase transitions between the three phases in the region  x= k0 k2  >0


	V  Conclusions 
	A  Dictionary between Majorana fermions and quantum spin chains 
	 References

