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We describe the effects of the cosmological background on the K-mouflage screening properties
of an astrophysical structure. We show that the K-mouflage screening of the spatial gradients
of the scalar field, i.e. the screening of the fifth force, happens inside a dynamically generated
screening radius. This radius is smaller than the location where the quasistatic approximation, i.e.
where the spatial gradients exceed the time derivative, holds. Even though this quasistatic radius
is much smaller than the size of the matter overdensity, spatial gradients remain well described by
the quasistatic approximation up to the horizon. Cosmologically we find that the time derivatives
can remain dominant at redshifts z & 2, when the cosmic web shows a faster growth. Despite
the existence of K-mouflage screening, we confirm that the values of the scalar field itself are still
dominated by the cosmological background, down to the center of the matter overdensity, and that
for instance the time drift of Newton’s constant due to the large-scale cosmological evolution highly
constrains K-mouflage models.

PACS numbers: 98.80.-k

I. INTRODUCTION

Scalar models with derivative actions and a coupling
to matter such as K-mouflage [1–4] and Galileon-like the-
ories [5, 6] screen fifth force effects in the presence of
matter. This is due to the non-linearities in the kinetic
terms of the scalar field. This is sufficient to guarantee
that most Solar System tests of gravity are fulfilled by
these models. Now that the observation of the equality,
up to a very high accuracy, between the speeds of gravity
and light has ruled out most Horndeski models with self-
tuning properties [7], K-mouflage remains a serious alter-
native to the Λ-CDM paradigm. Of course, K-mouflage
models do not propose a solution to the “old” cosmo-
logical constant problem [8], but their peculiar features
on the growth of structures are sufficiently compelling to
motivate further studies, in particular on the influence
on the large-scale cosmological evolution and its backre-
action on small-scale properties [9]. This is the case of
the time drift of Newton’s constant, due to the absence
of screening by the K-mouflage mechanism of the time
dependence of the scalar field. In this paper, we charac-
terise this property by going beyond the usual quasistatic
approximation, which assumes that any slow dependence
on time of the background scalar field can be added to the
static profile associated with dense objects. We analyse
the nonlinear regime with a fully time-dependent cosmo-
logical solution describing the matter era. We show how,
when screening of the spatial gradients occurs inside an
overdensity, the time drift itself is not affected.

In section II, we define the K-mouflage models by the
nonlinear Klein-Gordon equation that governs the evo-
lution of the scalar field. In section III, we consider the

situation with nonscreening, which corresponds to a stan-
dard kinetic term, and we study how the cosmological
background propagates down to the center of the over-
density while spatial gradients converge to the quasistatic
limit on subhorizon scales. In section IV, we investigate
how the situation is modified by the screening effects due
to the nonlinearities associated with large field gradients.
In section V we conclude.

II. K-MOUFLAGE MODELS

A. The dynamics

The scalar field φ in K-mouflage models obeys the non-
linear Klein-Gordon equation [10]

∇µ [K
′∇µφ] =

βρ

MPl
, (1)

where ∇µ is the covariant derivative with respect to the
Einstein-frame metric gµν , ρ the matter density and β
the coupling constant. The function K is a function of

the kinetic term χ = − (∂φ)2

2M4 , where M4 is of the order
of the dark-energy scale.
For the cosmological background, or on large cosmo-

logical scales, matter density fields and the scalar field are
exactly or almost homogeneous, so that χ is dominated
by the time derivative and χ > 0. In the vicinity of static
compact objects, such as stars, or in high-density regions
such as the cores of galaxies, spatial gradients dominate
over time derivatives and χ < 0. Thus, the high-density
cosmological background associated with the early Uni-
verse corresponds to χ → +∞, whereas the high-density
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regions associated with quasistatic astrophysical objects
correspond to χ → −∞. This corresponds to two unre-
lated screening regimes, if the function K is nonlinear for
both large positive and negative argument.
The faster-than-linear growth of K for χ → +∞, i.e.

K ′ → +∞, ensures that the scalar field energy density
is negligible at high redshift as compared with the mat-
ter density, so that one recovers the standard cosmology
[10]. For small values of χ, associated with low redshifts,
we expand K = −1 + χ+ ... (the unit factors define the
normalization of M4 and φ) and we recover a canonically
normalized scalar field (the linear term) with a cosmolog-
ical constant (the constant term −1).
In a quasistatic high-density region, or close to a com-

pact astrophysical object, spatial gradients become large
and a screening mechanism also comes into play if K ′ be-
comes large for large negative χ [1, 3]. This slows down
the growth of the scalar field gradients with the rise of
the matter density. For instance, in a static spherically
symmetric overdensity, Eq.(1) gives after one integration
an equation of the form K ′dφ/dx ∝ M(< x)/x2, where
M(< x) is the mass inside the radius x, so that the scalar
field gradient is suppressed by a factor 1/K ′. This gives
rise to the K-mouflage screening mechanism and allows
the fifth force to become negligible as compared with the
Newtonian gravity in small and high-density regions.
If we assume that such a local picture fully describes

the behavior of the scalar field in small-scale high-density
regions, we could expect that in a similar fashion the
large value of K ′ should suppress all derivatives of φ, the
time derivative as well as spatial derivatives. This is for
instance the behavior that is obtained by multiplying K ′

in Eq.(1) by a large constant factor. Then, the scalar
field at the center of a high matter overdensity should
decouple from the cosmological background and no longer
evolve inside a static matter halo. It turns out that this
picture is not correct.
In this paper, we investigate in more details this is-

sue, using simple power-law density profiles, for which
we can derive explicit analytical results. We find that
although spatial gradients are well predicted by the qua-
sistatic approximation on subhorizon scales, the scalar
field itself does not truly decouple from the cosmological
background. Its time derivative remains greater than the
spatial gradients down to scales much below the size of
the matter overdensity, and its value at the center closely
follows the drift of the cosmological background.

B. Rescaled variables

Neglecting the metric fluctuations from the
Friedmann-Lemâıtre-Robertson-Walker (FLRW) back-
ground, with scale factor a, the nonlinear Klein-Gordon
equation (1) reads

− a−4∂τ (a
2K ′∂τφ) + a−2∇(K ′∇φ) =

βρ

MPl
, (2)

where τ is the conformal time and ∇ = ∂x the gradient
with respect to the comoving coordinate x. For simplic-
ity, we consider an Einstein-de Sitter universe, i.e. matter
dominated, with

a =

(

t

t0

)2/3

=

(

τ

τ0

)2

, t0 =
2

3H0
, τ0 =

2

H0
, ρ̄ =

ρ̄0
a3

,

(3)
where t0 is the age of the universe at redshift z = 0 and
τ0 the conformal time today. It is convenient to introduce
the dimensionless coordinates

τ̃ =
τ

τ0
, x̃ =

x

τ0
, φ̃ =

φ

MPl
. (4)

Then, the Klein-Gordon equation (2) reads

− ∂τ̃ (K
′∂τ̃ φ̃)−

4

τ̃
K ′∂τ̃ φ̃+ ∇̃(K ′∇̃φ̃) = 12β

ρ

ρ̄τ̃2
(5)

and the argument of the kinetic function K

χ =
1

2τ̃4

[

(∂τ̃ φ̃)
2 − (∇̃φ̃)2

]

, (6)

with the choice of normalization

M4 =
M2

PlH
2
0

4
. (7)

In the following we will omit the tildes and only work
with these rescaled quantities. In this paper we focus on
the response of the scalar field to the cosmological back-
ground and matter overdensities. Therefore, we discard
the backreaction of the scalar field onto the cosmological
expansion history and the formation of matter overdensi-
ties. This also corresponds to a small coupling constant
β ≪ 1. This is actually the case of interest as obser-
vations show that the fifth force must remain subdomi-
nant as compared with Newtonian gravity and we must
recover the standard cosmological expansion up to an ac-
curacy of a few percents at low redshifts. We will study
the evolution of the scalar field for a given cosmological
background, defined by the Einstein-de Sitter solution
(3), and for given matter overdensities.

III. STANDARD KINETIC TERM

A. Cosmological background

For the homogeneous cosmological background where
ρ = ρ̄ we have for φ̄(τ) that Eq.(5) can be integrated
once to give

K̄ ′
dφ̄

dτ
= −4β

τ
. (8)

In this paper, we are not interested in the screening of
the cosmological background at high redshifts. There-
fore, we can take K̄ ′ to be constant for the cosmological
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background and choose the normalization K̄ ′ = 1. This
corresponds to kinetic functions with K ′ = 1 for χ ≥ 0,
or to the standard kinetic term K(χ) = χ. This gives
the cosmological background solution

K̄ ′ = 1 :
dφ̄

dτ
= −4β

τ
, φ̄ = −4β ln τ. (9)

B. General linear solution

In this section, we consider the case of the standard
kinetic function, where K ′ = 1 for all positive and neg-
ative χ. Then, the Klein-Gordon equation (5) is linear
and reads as

− ∂2
τφ− 4

τ
∂τφ+∇2φ = 12β

ρ

ρ̄τ2
. (10)

To work with functions that vanish at infinity, we sub-
tract the cosmological background by defining

φ = φ̄+ ϕ, ρ = ρ̄(1 + δ), (11)

where ϕ and δ are not necessarily small but vanish at
large distances. Indeed, in this paper we are interested
in the formation of nonlinear structures, with a finite
size, amidst the cosmological background. Then, the de-
viation ϕ obeys the linear equation

O · ϕ = 12β
δ

τ2
, (12)

where we have introduced the linear operator O defined
by

O = −∂2
τ − 4

τ
∂τ +∇2. (13)

Using the associated retarded Green function

O · G(x, τ ;x′, τ ′) = δD(x− x
′)δD(τ − τ ′), (14)

we can solve the linear equation (12) as

ϕ(x, τ) = 12β

∫

dx′dτ ′G(x, τ ;x′, τ ′)
δ(x′, τ ′)

τ ′2
. (15)

Solving Eq.(14) by using its Fourier transform, we obtain

G(x, τ ;x′, τ ′) = θ(τ − τ ′)

∫

dk

(2π)3
eik·(x−x

′) kτ
′3

τ

×[n1(kτ
′)j1(kτ)− j1(kτ

′)n1(kτ)], (16)

where θ is the Heaviside function, j1 and n1 are the spher-
ical Bessel functions of the first and second kind. Sub-
stituting the explicit expressions of j1 and n1 in terms of
cosines and sines, we can easily check that in the limit of
small lengths and timescales, |x − x

′| → 0, τ − τ ′ → 0,
k → ∞, we recover the usual Green function of the 3D
wave equation [11],

G → −θ(τ − τ ′)δD(|x− x
′| − (τ − τ ′))

4π|x− x′| . (17)

This corresponds to the limit where the Hubble friction
term in Eq.(14) is negligible.

C. Self-similar matter density profiles

We now investigate how the scalar field reacts to the
formation of an overdense region. We consider a class
of simple cases where we can obtain explicit expressions,
the self-similar spherical power-law density profiles

δ(x, τ) =

(

x

xs(τ)

)−γ

, xs(τ) = x⋆τ
α, x⋆ ≪ 1. (18)

In the rescaled coordinates (4), the time τ runs over
0 ≤ τ ≤ 1, and the condition x⋆ ≪ 1 ensures that the
overdensity always remains far inside the Hubble radius.
The profile (18) corresponds to a halo of inner den-

sity slope γ and size xs(τ), which grows with time in a
self-similar fashion. Such a solution can be achieved for
instance by the collapse of a polytropic gas with a power-
law initial linear density contrast profile [12]. Then, the
pressure built in the high-density core of the halo bal-
ances the gravitational pull and one obtains a static pro-
file in physical coordinates r = ax ∝ τ2x. This implies
the following relation between the exponents α and γ

α =
6

γ
− 2, 1 < γ < 3, hence 0 < α < 4. (19)

The lower bound γ > 1 corresponds to the fact that for
shallower slopes the core does not converge to a static
profile. The mass that keeps collapsing at large radii
at later times is too large and cannot be stabilized, so
it continuously redistributes matter down to the center
and the density at a given physical radius keeps grow-
ing with time. The upper bound γ < 3 corresponds to
the limit of a finite collapsed mass with negligible or no
matter at outer radii; then, α = 0 and no more comov-
ing shells turn around, i.e. decouple from the background
cosmological flow and start collapsing, falling towards the
central overdensity.
One can derive exact self-similar solutions of the New-

tonian gravitational collapse, for both collisional and col-
lisionless matter [12–14]. The self-similarity means that
the nonlinear density, velocity, and pressure profiles at
different times are identical up to a rescaling of the ra-
dial coordinates and of the characteristic density, velocity
and pressure. This symmetry allows one to transform the
2D problem, which involves partial differential equations
over time and radius, into a 1D problem, which involves
ordinary differential equations over a radial coordinate.
This enables detailed analytical studies. The profile (18)
is a simple approximation to such solutions, where we
extend to all radii the power-law behavior of the den-
sity contrast that is only reached in the nonlinear core
of the exact solutions. In all cases for x ≫ xs we sim-
ply recover the background density ρ̄ for the density ρ.
Finally as we are not interested in the formation of the
matter overdensity itself, we could extend the range of γ
to 0 < γ < 3.
The profile (18) is sufficient for our purposes, since we

are not interested in building an exact solution to the
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gravitational collapse of matter overdensities. Instead,
we only wish to study how the scalar field reacts to the
formation of matter overdensities. The power-law form
(18) allows us to derive explicit analytical results for a
realistic range of density profiles, parametrized by the

exponent γ.

Thanks to the simple form of the profile (18), we can
perform the integrations in Eq.(15) and we obtain for
0 < x < τ

ϕ(x, τ) =
12βxγ

⋆

(γ − 2)(γ − 3)
ταγ−2x2−γ +

6βxγ
⋆

Γ(γ − 1)

{

−(αγ + 1)Γ(γ − 5)ταγ−4x4−γ
[

(γ − 5)
τ

x

(

2F1(1, 1− αγ; 5− γ;−x

τ
)

−2F1(1, 1− αγ; 5− γ;
x

τ
)
)

+ 2F1(1, 1− αγ; 6− γ;−x

τ
) + 2F1(1, 1− αγ; 6− γ;

x

τ
)
]

+
πΓ(αγ)(αγ + 1)

Γ(αγ + 4− γ) sin(γπ)
ταγ−γ+1

×x−1
[

(1 +
x

τ
)αγ+3−γ − (1 − x

τ
)αγ+3−γ − (αγ + 5− γ)

(

(1 +
x

τ
)αγ+4−γ − (1− x

τ
)αγ+4−γ

)]}

. (20)

The solution is not analytic at x = τ . The solution for
x > τ can also be expressed in terms of hypergeomet-
ric functions but we do not give its expression here as
we focus on subhorizon scales. This explicitly shows the
critical role played by the horizon, x = τ , which is ex-
pected on general grounds. Indeed, we typically expect
the scalar field to relax inside the horizon, where informa-
tion has time to propagate, but not beyond the horizon.
Expanding Eq.(20) in x/τ , we obtain the solution

ϕ(x, τ) = ϕs(x, τ)

[

1 +
(x

τ

)2

+ ...

]

+ϕs(x = τ, τ)

[

1 +
(x

τ

)2

+ ...

]

, (21)

where the dots stand for higher orders in (x/τ)2, and we
omitted numerical factors except for the first term. We
introduced the leading term ϕs, given by the first term
in Eq.(20),

ϕs(x, τ) =
12βxγ

⋆

(γ − 2)(γ − 3)
ταγ−2x2−γ

=
12β

(γ − 2)(γ − 3)

x2

τ2
δ(x, τ), (22)

and

ϕs(x = τ, τ) ∼ βδ(τ, τ) = β

(

xs(τ)

τ

)γ

≪ 1. (23)

The term ϕs(x, τ) actually corresponds to the quasistatic
approximation, where we only keep the spatial deriva-
tives in the Klein-Gordon equation (12). Indeed, we can
check that it obeys

∇2ϕs = 12β
δ

τ2
. (24)

We can check that the spatial gradients of the exact so-
lution (21) are governed by the quasistatic solution at
small radii because γ > 0,

x ≪ τ : ∇ϕ ≃ ∇ϕs + ϕs(τ, τ)
x

τ2
≃ ∇ϕs ∝ x1−γ . (25)

However, the Poisson equation (24) only defines ϕs up to
a constant, if we do not add boundary conditions at large
radii. The explicit solution (20) shows that such a term
is indeed generated and can be explicitly calculated. It
becomes time dependent, following the slowly evolving
matter overdensity, and its magnitude is of order ϕs(x =
τ, τ), as may be expected (since there are no other scales
in the problem).
Indeed, as we noticed above, the scalar field cannot

have the time to relax on scales greater than the hori-
zon, x > τ . Therefore, the quasistatic solution (22),
which corresponds to a fully relaxed solution (only ex-
actly reached if we freeze the Hubble expansion and the
growth of the matter overdensity, while waiting an infi-
nite time for the scalar field to settle down), can only
apply up to the horizon, x . τ . Then, we can expect it
to break down at x ≃ τ . This indeed happens, through
both the higher-order corrections in the first bracket in
(21) and the additional term associated with the second
bracket. The magnitude of these terms is set by the con-
dition that they become of the same order as the relaxed
quasistatic approximation at x ≃ τ .
The time derivative is

x ≪ τ : ∂τϕ ≃ ∂τϕs +
d

dτ
ϕs(x = τ, τ)

∼ ταγ−3x2−γ + ταγ−1−γ . (26)

For small radii, x ≪ τ , for γ < 2 it is dominated by the
second term and converges to a nonzero value, whereas
for γ > 2 it is governed by the first term and goes to
infinity. Comparing with Eq.(25), we can see that spatial
gradients dominate over time derivatives at small radii if
γ > 1,

γ > 1 : |∇ϕ| ≫ |∂τϕ| for x ≪ τ. (27)

For shallower density profiles, γ < 1, the time derivative
associated with the second term in Eq.(21) dominates.
This means that there is no true quasistatic regime in
this case, in the sense that the kinetic term χ is always
dominated by time derivatives.



5

For general modified-gravity scenarios involving an ad-
ditional scalar field, the quasistatic approximation is
usually understood as |∇ϕ| ≫ |∂τϕ|, that is, the spa-
tial gradient of the scalar field perturbation is greater
than its time derivative. Assuming ∇ϕ ∼ ϕ/x and
∂τϕ ∼ Hϕ ∼ ϕ/τ , one naturally expects this quasistatic
regime to hold on subhorizon scales, x ≪ τ . Of course,
this also requires that the sound horizon of the scalar
field is of the order of the Hubble radius [15], i.e. its
propagation speed is of order unity, so that the scalar
field has the time to relax on scales x ≪ τ . The validity
of this quasistatic regime on subhorizon scales has been
checked for various modified-gravity scenarios, from an-
alytical studies and numerical simulations, at both the
linear [16] and nonlinear [17–19] levels.
The condition γ > 1 in (27) shows that for cosmolog-

ical structures that grow too fast this quasistatic regime
may not be reached, even though the gradients of the
scalar field are already well described by the quasistatic
approximation. In practice, such regimes of fast growth
may only occur in transient events, such as mergings of
collapsed halos. On the other hand, in Cold Dark Mat-
ter cosmologies, the variance of the linear matter density
fluctuations behaves as σ2(x, z) ∝ a2x−(n+3), where n
runs from 1 to −3 from large to small scales, and n ≃ −2
on galaxy scales. This gives for the scale xNL(τ) that
enters the nonlinear regime

xNL(τ) ∝ τ4/(n+3), hence α =
4

n+ 3
. (28)

In the stable-clustering ansatz [20], this gives a slope in
the nonlinear regime for the two-point correlation func-
tion

x ≪ xNL : ξ(x) ∝ x−3(n+3)/(n+5), hence γ =
3(n+ 3)

n+ 5
.

(29)
These exponents α and γ satisfy the relationship (19).
The stable-clustering ansatz (29) is not very accurate
[21], and in practice it has been replaced by halo models
[22], or numerical simulations. However, it suggests that
for n ≤ −2 and for redshifts z & 2 the quasistatic con-
dition |∇ϕ| ≫ |∂τϕ| may not be always fulfilled as the
cosmic web shows a fast build-up. On the other hand, as
the fifth force (i.e. the scalar field gradients) remains well
predicted by the quasistatic approximation and the im-
pact of dark energy typically becomes negligible at high
redshifts, these deviations from the usual quasistatic con-
dition are unlikely to have important effects.
The full solution to the Klein-Gordon equation (10) is

φ = φ̄ + ϕ. The background term φ̄ does not contribute
to the spatial gradients but it contributes to the time
derivative. In particular, for γ < 2 and τ ∼ 1 it domi-
nates over the time derivative ∂τϕ at small radii, and for
all γ it dominates for x ∼ τ . This means that the spatial
gradients ∇φ dominate over the time derivative ∂τφ over
a smaller range than in (27). Comparing Eqs.(9) and
(25) we obtain

γ > 1 : |∇φ| ≫ |∂τφ| for x ≪ xqs(τ), (30)

with

xqs(τ) = xs(τ)

(

xs(τ)

τ

)1/(γ−1)

≪ xs(τ), (31)

where xs(τ) is the size of the overdensity, defined in
Eq.(18). As the overdense region must always remain
far inside the Hubble radius, xs(τ) ≪ τ , we find that
xqs ≪ xs. Thus, the fully quasistatic regime, defined
as |∇φ| ≫ |∂τφ|, only applies far inside the overdense
region. This is consistent with the fact that clusters of
galaxies are not screened, as found in [23].
In the outer parts, xqs ≪ x ≪ xs, where the density

contrast is already much greater than unity and the den-
sity profile has converged to its static limit in physical
coordinates, the scalar field φ has not yet converged to
a full quasistatic regime in the sense that |∇φ| ≪ |∂τφ|.
However, its spatial gradients have already converged to
the quasistatic prediction, in fact as soon as x ≪ τ , that
is, far beyond the size of the overdensity. For γ < 2, the
value at the center of the scalar field is dominated by the
background,

γ < 2 : φ(0) = ϕ(0) + φ̄ ≃ φ̄ = −4β ln τ, (32)

whereas for γ > 2 it is dominated by the quasistatic
solution ϕs, which goes to infinity. In realistic cases, the
matter density and the scalar field remain finite inside
collapsed structures and the central value of the scalar
field follows the cosmological drift.
The two conditions |∇ϕ| ≫ |∂τϕ| and |∇φ| ≫ |∂τφ|

define two different quasistatic regimes. The first condi-
tion, which has a greater range of validity, is often used
to study linear perturbations. However, once we take
into account nonlinearities and screening mechanisms,
the second condition is more adequate, as it is a nec-
essary condition for local screening of the fifth force and
for a local analysis, where the computation of the fifth
force does not depend on the cosmological background
and the history of the scalar field evolution.
Thus, even in the simple case where the kinetic term

K ′ is constant and the Klein-Gordon equation is linear,
the quasistatic limit is not so simple. As expected, spa-
tial gradients converge to the quasistatic prediction as
soon as x ≪ τ , i.e. inside the horizon. Indeed, as the
scalar field propagation speed is unity, it has time to re-
lax and follow the slow cosmological evolution of the den-
sity field on subhorizon scales. The same convergence to
the quasistatic limit was found in studies of modified-
gravity models that display the Vainshtein mechanism,
which also involves a wave equation and a similar deriva-
tive screening [19].
However, time derivatives remain dominant down to

the much smaller radius xqs, far inside the nonlinear over-
dense region, where they are dominated by the cosmolog-
ical background. If γ < 2 and the quasistatic solution is
finite at the center, which is the case in realistic mat-
ter overdensities, the value of the scalar field at the cen-
ter remains governed by the cosmological background.
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This shows that the quasistatic approximation predicts
the spatial gradients, hence the fifth force, with great ac-
curacy on all subhorizon scales. However, the scalar field
does not decouple from the cosmological background, ex-
cept at the very center for steep density profiles in the
particular case where it becomes infinite. This also shows
that both the nonlinear transition and the quasistatic
regime of the scalar field differ from their counterparts
for the matter density field.

D. Static compact object

The power-law profiles (18) allowed us to study the
evolution of the scalar field for a variety of matter density
profile exponents and for cosmological structures that
keep growing with time. It is also interesting to con-
sider small-scale structures that no longer grow, with a
constant matter density. This corresponds to compact
objects such as stars, the Solar System, or an isolated
galaxy. Thus, we consider the top-hat density profiles

τ > τ∗ : δ(x, τ) = θ(
r∗
τ2

− x)
τ6

τ6∗
with r∗ ≪ τ3∗ , (33)

and δ = 0 for τ < τ∗. This corresponds to matter over-
densities that form at time τ∗, with a fixed physical radius
r∗ and density ρ∗ ∼ ρ̄(τ∗), so that δ grows as a3 at later
times. The condition r∗ ≪ τ3∗ means that the structure
is far inside the Hubble radius at formation time. From
Eq.(15) we obtain the solution as

ϕ(x, τ) =
24β

πττ6∗

∫ τ

τ∗

dτ ′τ ′7
∫ ∞

0

dk
sin(kx)

kx

×[sin(k
r∗
τ ′2

)− k
r∗
τ ′2

cos(k
r∗
τ ′2

)]

×[n1(kτ
′)j1(kτ) − j1(kτ

′)n1(kτ)]. (34)

We could not derive a simple explicit expression for the
profile of the scalar field, but we can obtain the value at
the center, which at leading order over r∗ reads as

ϕ(0, τ) ≃ −6β
r2∗
τ6∗

. (35)

Thus, as for the self-similar profiles in Eq.(32), we find
that the scalar field closely follows the cosmological drift
with φ(0) ≃ φ̄.
We can now check that |ϕ(0)| ∼ |ϕs(x = τ, τ)|, in

agreement with the expansion (21) that we explicitly de-
rived for the power-law profiles. For the top-hat profile
(33), the quasistatic solution that corresponds to Eq.(22),
normalized to zero at the center, reads as

0 < x <
r∗
τ2

: ϕs(x) =
2βτ4x2

τ6∗
,

x >
r∗
τ2

: ϕs(x) =
6βr2∗
τ6∗

− 4βr3∗
τ2τ6∗x

. (36)

This gives ϕs(x = τ, τ) ≃ 6βr2∗/τ
6
∗ , which is of the same

order of magnitude as (35). This confirms the general
behaviors found in section III C for the power-law pro-
files.

IV. NONLINEAR KINETIC TERM

A. Screening radius and quasistatic solution

We will now consider the impact of the nonlinear K-
mouflage screening mechanism. As recalled in the in-
troduction, the effects of the nonlinearity of the kinetic
functionK on the cosmological background and on small-
scale astrophysical structures are independent as they
are related to the two separate regimes χ → +∞ and
χ → −∞. The nonlinear impact on the cosmological
background is simple to analyze [10, 23], and follows from
the nonlinear ordinary differential equation (8). In this
paper, we are interested in the nonlinearities that oc-
cur in small-scale high-density environments, associated
with large negative χ, that also screen the fifth force in
the Solar System. Therefore, we keep K ′ = 1 for positive
χ and focus on the nonlinear screening associated with
large spatial gradients of the scalar field. More precisely,
we consider the case where the kinetic function K ′ re-
mains constant and equal to unity over all χ > χsc, with
−χsc ≫ 1,

χ > χsc : K ′(χ) = 1, χ < χsc : K ′(χ) ≫ 1. (37)

The threshold χsc determines the boundary xsc(τ) of the
screened region, where K ′ ≫ 1 and the fifth force is
damped by the K-mouflage screening mechanism,

χ = χsc at x = xsc(τ). (38)

In any case, for non-constant K ′ the Klein-Gordon
equation (5) becomes nonlinear and we must analyse the
full equation, which can be written as

−∂2
τφ− 4

τ
∂τφ+∇2φ =

12β

K ′

1 + δ

τ2
+ ∂τ (lnK

′)∂τφ

−∇(lnK ′) · ∇φ. (39)

For a constant K ′, we recover the linear equation (10).
For a nonstandard kinetic term, new source terms appear
on the right-hand side, which involve derivatives of K ′,
while the left-hand side is identical to the linear equation
(10) with the same linear operator O defined in (13). We
will solve this nonlinear equation of motion in a two-step
procedure. We will first consider the right-hand side as
an external source and obtain φ from the same Green
function (16) as in the linear case. Then, we will imple-
ment the self-consistency condition that states that the
source term is given in terms of φ by the right-hand side
of Eq.(39).
However, it is useful to first consider the quasistatic

solution. Indeed, as for the linear case studied in sec-
tion III, we can anticipate that at small radii the radial
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profile of the scalar field will be determined by the qua-
sistatic solution. Thus, we define the quasistatic solution
ϕs by

∇(K ′∇ϕs) = 12β
δ

τ2
. (40)

This generalizes to the nonlinear case the previous equa-
tion (24). As in the linear case, we separate the source
δ associated with the matter overdensity from the unit
factor of the term (1 + δ), which is related to the mean
cosmological background, and we only keep the spatial
derivatives in Eq.(39). For a spherically symmetric over-
density, integrating this nonlinear Poisson equation once,
we obtain

K ′
dϕs

dx
=

12β

x2τ2

∫ x

0

dxx2δ (41)

with

χs = − 1

2τ4

(

dϕs

dx

)2

. (42)

At large radii x > xsc, where χ > χsc, we have K ′ = 1
and we obtain the explicit expression

x > xsc :
dϕs

dx
=

12β

x2τ2

∫ x

0

dxx2δ, (43)

independently of the nonlinear behavior at smaller radii.
For the self-similar density profile (18) this gives

dϕs

dx
=

12β

3− γ
xγ
⋆τ

αγ−2x1−γ ∼ β
x

τ2
δ (44)

and

χs = −1

2

(

12β

3− γ

)2

x2γ
⋆ τ2αγ−8x2−2γ ∼ −β2x

2

τ8
δ2, (45)

which coincide with the results obtained from (22) in the
case of the standard kinetic term.
In this paper, we investigate whether the nonlinearity

of the kinetic function can decouple small-scale struc-
tures from the cosmological background. Therefore, we
consider the case γ > 1, where the gradient dϕs/dx and
the magnitude of the argument χs of the kinetic function
grow at smaller radii, so that the core of the overdensity
enters the nonlinear screening regime. The threshold χsc

is reached by χ at the radius xsc(τ), given by

xsc(τ) = xqs(τ)

(

12β

(3− γ)
√−2χscτ3

)1/(γ−1)

. (46)

Since −χsc ≫ 1, at late times τ ∼ 1 the screening radius
xsc is far inside the quasistatic region xqs. However, at
early times this is not the case anymore as xsc/xqs grows
and becomes of order unity at the time τsc given by

τsc =

(

12β

(3− γ)
√−2χsc

)1/3

, (47)

which is independent of x⋆. This provides a small-time
cutoff, as for earlier times the quasistatic approximation
no longer holds up to xsc given by Eq.(46). Using the
relationship (19), we can see from the expression (46)
that xsc ∝ τ−2, that is,

τ > τsc : xsc(τ) =
rsc
τ2

=
rsc
a
, (48)

where rsc is constant. This means that in physical coor-
dinates the screening radius rsc does not depend on time.
This is a direct consequence of the fact that the density
profile (18) converges to a static profile in physical coor-
dinates, in the nonlinear region δ ≫ 1. There, dϕs/dr
and χs also converge to a static profile in physical coordi-
nates, so that the threshold χsc corresponds to a constant
physical radius rsc.

B. Decomposition of the nonlinear solution

Because K ′ = 1 at large radii and the universe has
only a finite lifetime τ ≤ 1, beyond a finite radius we
must recover the solution obtained in section III. Indeed,
no information from the nonlinear region has had time to
reach these large radii yet. In particular, this implies that
the scalar field converges to the cosmological background
φ̄ at large radii. Therefore, we again split the solution as
in (11),

φ = φ̄+ ϕ, (49)

and the nonlinear Klein-Gordon equation (39) reads

O · ϕ = S(x, τ) (50)

with the new source term

S(x, τ) = ∂τ (lnK
′)

[

∂τϕ− 4β

τ

]

−∇(lnK ′) · ∇ϕ

+
12β

τ2

(

1 + δ

K ′
− 1

)

. (51)

For K ′ = 1 we recover the linear equation (12) obtained
for the standard kinetic term. We further split the solu-
tion of Eq.(50) as

ϕ = ϕδ + ϕK′ + ϕτ , (52)

where ϕ∗ is associated with the source term S∗ byO·ϕ∗ =
S∗, with

Sδ =
12β

τ2
δ

K ′
−∇(lnK ′) · ∇ϕ, (53)

SK′ =
12β

τ2

(

1

K ′
− 1

)

, (54)

and

Sτ = ∂τ (lnK
′)

[

∂τϕ− 4β

τ

]

. (55)
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Then, after solving each linear equation with the Green
function (16), the solution ϕ of the nonlinear equation
(50) is defined by the self-consistency condition that
writes the source terms as functions of ϕ. This two-step
procedure allows us to analyze the nonlinear solution ϕ.

C. Quasistatic component ϕδ

Let us first consider the part ϕδ. This gives the same
equation (12) as in the analysis of section III for the
case of the standard kinetic term, except that the den-
sity contrast in the right-hand side is replaced by the
field-dependent effective density contrast δeff = δ/K ′ −
∇(lnK ′)·∇ϕ. Because we consider kinetic functions with
K ′ = 1 for χ > χsc and K ′ > 1 for χ < χsc, this effec-
tive density contrast δeff is equal to δ at large radii and
reduced at small radii in the screening region. Then,
treating in a first step δeff as an external source, we can
apply to this equation the general lessons learnt in sec-
tion III, which do not depend on the detailed profile of δ.
Thus, we infer that the scalar field ϕδ quickly converges
to the linear quasistatic solution ϕs associated with Sδ,
below the horizon, x . τ , with a boundary value at x = τ
of the order of ϕs(x = τ, τ). This offset is negligible as
compared with the cosmological background φ̄ and can
be discarded for our purposes.
In the screening region, where K ′ differs from unity

and δeff deviates from δ, we are far inside the horizon and
by definition χ < χsc ≪ −1, so that χ is set by spatial
gradients. Then, we can anticipate that the latter are
dominated by the gradients of the quasistatic solution,
at these small radii. This means that ϕδ converges to
the fully nonlinear quasistatic solution ϕs of Eq.(40). In
other words, the argument of K ′ and the spatial gradient
∇ϕ in the source Sδ can be written in terms of ϕδ itself,
because the sources terms SK′ and Sτ do not grow at
small radii with δ as Sδ. Then, the quasistatic limit of
O · ϕδ = Sδ becomes identical to the system (41)-(42),
and we can write

x . τ : ϕδ ≃ ϕs. (56)

Thus, by choosing a kinetic function K ′ that is constant
for all χ > χsc, with χsc ≪ −1, we ensure that both the
slow time dependence that may arise from the coupling to
the cosmological background and the complex behavior
at large non-relaxed radii do not affect ϕδ, because they
only become relevant at large radii where χ ≥ 0 and
K ′ = 1 is a constant, which no longer depends on its
argument. Then, ϕδ is simply given by the nonlinear
quasistatic solution ϕs of the system (41)-(42), and it
decouples from ϕK′ and ϕτ .

D. Coupling to the cosmological background

We have seen that ϕδ and Sδ are not coupled to the
cosmological background φ̄. However, the cosmological

background, which was explicitly introduced in the split-
ting (49) that led to Eq.(50), also appeared in the equa-
tion of motion through the terms −4β/τ and −1 in the
full source term S of Eq.(51). Let us now consider the
term ϕK′ . We will find that it indeed encapsulates a
coupling to the cosmological background and that, once
combined with φ̄, it determines whether the full solution
φ follows the cosmological drift or not.
To simplify the analysis, we consider the case of a two-

value kinetic function K ′, with

x < xsc(τ) : K ′ = K ′

sc ≫ 1, x > xsc(τ) : K ′ = 1.
(57)

This is an approximation to the more realistic case where
K ′ smoothly interpolates between two constant values
for χ ≪ χsc and χ ≫ χsc. In particular, the nonlinear
equation (41) implies that K ′ as a function of the radial
coordinate remains smooth, with the interpolation tak-
ing place over a finite radial interval ∆x, even if K ′ is a
discontinuous function of χ. However, since we are not
interested in the details of the profile around the tran-
sition the simple approximation (57) is sufficient for our
purposes. Then, ϕK′ and SK′ do not depend on the de-
tailed density profile at small and large radii, but only on
the radius xsc(τ) that marks the screening region and the
associated value K ′

sc of the kinetic function. Indeed, in
this approximation the source term SK′ takes the simple
form

SK′(x, τ) =
12β

τ2

(

1

K ′
sc

− 1

)

θ(
rsc
τ2

− x). (58)

Because the expression (58) is fully explicit (it does not
involve ϕ), the equation of motion for ϕK′ becomes linear
and it is solved in one step as

ϕK′(x, τ) =

∫

dx′dτ ′ G(x, τ ;x′, τ ′)SK′(x′, τ ′), (59)

without the need to add a self-consistency condition in
a second step. Thanks to the explicit expressions of the
Green function and of the source term, we can perform
most of the integrations and we can derive explicit results
at the center, x = 0. Integrating over k and x′, we obtain

ϕK′(0, τ) = 4β

(

1− 1

K ′
sc

)
∫ τ

τsc

dτ ′
{

θ(τ − τ ′ <
rsc
τ ′2

)

×τ−3[τ ′−1(τ − τ ′)3 + 3τ(τ − τ ′)] + θ(τ − τ ′ >
rsc
τ ′2

)

×r3scτ
−3τ ′−7

}

. (60)

For large values of rsc, such that τ − τ ′ < rsc/τ
′2 at

all times (e.g., if rsc > τ3), only the first Heaviside factor
contributes and we obtain

rsc > τ3 : ϕK′(0, τ) = 4β

(

1− 1

K ′
sc

)[

ln
τ

τsc
− 1

3
+

τ3sc
τ3

]

.

(61)
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Combining with φ̄ this yields

φ̄+ ϕK′(0, τ) = − 4β

K ′
sc

ln τ + 4β

(

1− 1

K ′
sc

)

×
[

− ln τsc −
1

3
+

τ3sc
τ3

]

. (62)

In this case, we find that the scalar field at the center de-
couples from the cosmological background and its mag-
nitude can be much smaller there. Mathematically, the
artificial cosmological drift that was introduced by the
splitting (49) is fully absorbed by the component ϕK′ so
that the full solution φ decouples from the cosmological
drift.
For small values of rsc, such as rsc ≪ τ3sc, the first

Heaviside factor only contributes for τ ′ very close to τ .
Then, we obtain at leading order over rsc, with τsc ≪ τ ,

rsc ≪ τ3 : ϕK′(0, τ) =
2β

3

(

1− 1

K ′
sc

)

r2sc
τ3τ6sc

(

rsc + 9
τ6sc
τ3

)

.

(63)
Thus, ϕK′(0, τ) is much smaller than φ̄ and vanishes for
rsc → 0. Then, the scalar field remains strongly coupled
to the cosmological background down to the center of the
overdensity, as the sum φ̄+ϕK′ closely follows φ̄. This is
the case of interest for realistic matter density structures.
In particular, rsc ≪ τ3sc corresponds to xsc(τsc) ≪ τsc,
that is, the structure is much below the horizon at the
early time τsc.
We now check that the third contribution ϕτ does not

invalidate these conclusions. In the same approximation
(57) of a two-value kinetic function, the source term Sτ

reads as

Sτ (x, τ) = sτ (τ)δD(x− rsc
τ2

), (64)

with

sτ (τ) = (lnK ′
sc)2

rsc
τ3

(

4β

τ
− ∂τϕ

)

x=rsc/τ2

. (65)

As in (59), we can again express ϕτ in terms of Sτ

through the Green function. Integrating over k and x′

we obtain

ϕτ (0, τ) = −r2scτ
−3

∫ τ

τsc

dτ ′sτ (τ
′)τ ′−3θ(τ − τ ′ >

rsc
τ ′2

)

−r1/2sc τ−2

∫ τ

τsc

dτ ′sτ (τ
′)τ ′

√
τ − τ ′δ(τ − τ ′ − rsc

τ ′2
). (66)

For large values of rsc, such that τ − τ ′ < rsc/τ
′2 at all

times, we obtain at once ϕτ (0, τ) = 0, hence

rsc > τ3 : ϕτ (0, τ) = 0. (67)

Then, the full solution reads as φ(0, τ) = φ̄ + ϕδ + ϕK′ ,
which decouples from the cosmological background as
seen above from Eq.(62).

For small values of rsc, such as rsc ≪ τ3sc, we obtain

rsc ≪ τ3sc : ϕτ (0, τ) = −r2scτ
−3

∫ τ

τsc

dτ ′sτ (τ
′)τ ′−3

−rscτ
−2sτ (τ). (68)

For such small-scale matter overdensities, we have al-
ready seen from Eqs.(56) and (63) that the components
ϕδ and ϕK′ are small and give a time dependence that
is negligible as compared with the cosmological drift. In
particular, they vanish if rsc → 0. We can see that this
will also be the case of the component ϕτ , because of the
prefactors rsc. Therefore, we can neglect the factor ∂τϕ
as compared with the background time derivative 4β/τ
in the source (65). This gives at leading order over rsc
and τsc,

rsc ≪ τ3sc : ϕτ (0, τ) = −4β

3
(lnK ′

sc)
r2sc
τ3τ6sc

(

rsc + 6
τ6sc
τ3

)

.

(69)
The comparison with Eq.(63) shows that ϕτ (0, τ) ∼
−(lnK ′

sc)ϕK′(0, τ). Therefore, we also find that ϕτ (0, τ)
is much smaller than φ̄ and vanishes for rsc → 0. This
confirms that the scalar field remains strongly coupled to
the cosmological background for such small-scale matter
overdensities.
Thus, we find that the naive local analysis of the equa-

tion of motion (1), which could suggest that in screened
regions where K ′ is very large the scalar field φ no longer
evolves and remains constant in space and time, is not
correct. In fact, the only size that can be considered local
is the Hubble radius, independently of the variations and
nonlinearities of K ′. This could be expected from the
fact that the propagation speed remains of order unity,
even in nonlinear domains, and that there is no damping
of the amplitude of the scalar field as the equation of mo-
tion only involves its derivatives. Indeed, in small-scale
nonlinear environments the propagation speed reads [3]

c2φ =
K ′ + 2χK ′′

K ′
∼ 1, (70)

as for power-law kinetic functions we have χK ′′ ∼ K ′

whereas χK ′′ ≪ K ′ in regimes where K ′ is almost con-
stant.

V. CONCLUSION

The value of the scalar field deep inside a collapsed
region of the Universe is highly relevant as it determines
the value of Newton’s constant, which is proportional to
A2(φ) where A(φ) ∼ eβφ/MPl is the coupling function to
matter and β = O(1) the coupling to matter. In screened
regions where the K-mouflage mechanism is at play, the
spatial gradients of the scalar field are large, much larger
than the time derivatives, and the fifth force induced by
the scalar is largely depleted. On the other hand, it is
well known that a linear time drift H0t still allows for
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static solutions around a time-independent astrophysical
object and can provide an approximate matching with
the large-scale cosmological evolution of the scalar field.
This induces then a cosmological time drift of Newton’s
constant, jeopardizing the viability of many models of
the K-mouflage type.
In this paper, we have investigated the influence of

the background cosmology on the short-distance physics
within a collapsed structure of the Universe. We have
taken it to be described by a self-similar power-law den-
sity profile, which allows us to provide an almost ex-
act treatment. We find that inside the structure there
is a critical radius xqs within which the quasistatic ap-
proximation holds, in the sense that spatial derivatives
are greater than time derivatives. This radius is much
smaller than the size xs of the matter overdensity, where
the matter density contrast becomes of order unity. How-
ever, spatial gradients are well described by the qua-
sistatic approximation up to the horizon, hence up to
much larger scales, as found for other modified-gravity
scenarios in previous studies. We also find that for struc-
tures that grow fast with time, which could apply to tran-
sient mergings but also to the fast building of the cosmic
web at redshifts z & 2, the time derivative of the scalar
field perturbations remains greater than its spatial gra-
dient.
Screening of the fifth force takes place only well-inside

the quasistatic radius, where ∇φ ≫ ∂τφ. However, in-
side the screening radius xsc and down to the center of the
overdensity, the values of the scalar field remain strongly
dependent on the background cosmological evolution: no
screening of the time drift of Newton’s constant takes
place. We have explicitly shown that the scalar field only
decouples from the cosmological background if the matter
structure extends up to the horizon, which is not the case
for realistic astrophysical and cosmological structures. Of
course, this result does not invalidate K-mouflage models
and simply implies that the strong constraints deduced in
[9] must be taken seriously. Thus, the K-mouflage screen-
ing mechanism only damps the spatial gradients of the
scalar field, reducing the fifth force in small-scale high-
density environments, while following the large-scale drift
of the cosmological background. We can expect that this
behavior extends to other derivative screening mecha-
nisms, such as Vainshtein screening.
Thus, we have shown that the dynamics of screening

in K-mouflage models are more complex than can be de-
duced by a fully quasistatic approximation. In partic-
ular, the appearance of two radii: the quasistatic and
screening radii is a new feature. It would be extremely
interesting to see if N-body simulations of K-mouflage
models could reveal other new dynamical characteristics
of K-mouflage, for instance around fast-growing struc-
tures. This is left for future work.
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