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Abstract
Anisotropic flow coefficients beyond triangular flow receive important contributions from lower-order harmonics through
nonlinear coupling. We present a theoretical framework which allows one to quantify the contribution induced by such
nonlinear couplings to any flow harmonic of any order. We show the effectiveness of this formalism through an appli-
cation to hexagonal flow, V6. We study, in particular, the coupling of V6 to triangular flow, V3, in Pb+Pb collisions at
√

s = 2.76 TeV, using both Large Hadron Collider data and event-by-event hydrodynamic calculations.
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1. Introduction

Particles detected in the final states of relativistic nucleus-nucleus collisions present a spectacular degree
of azimuthal anisotropy, in the sense that if we perform a harmonic analysis of their azimuthal directions via
Fourier decomposition:

dN
ptdptdφ

=
dN

ptdpt

1
2π

∞∑
n=−∞

Vneinφ, V−n = V∗n , (1)

the coefficients Vn turn out to be nonzero. This observation has a natural explanation in a hydrodynamic
framework [1], according to which particles are emitted to the final state after the hydrodynamic expansion
of a fluidlike medium created in the collision zone. In this framework, Fourier anisotropy is of geometric
origin [2], as the two most prominent coefficients of the spectrum, V2 and V3, emerge as a response of the
fluid to the elliptic and triangular anisotropy, respectively, of its initial geometry [3].

The origin of harmonics with n > 3 is instead more complicated, as shown by the following argu-
ment [4]. Anisotropic flow in the medium yields a transverse field of velocity amenable to a an expansion
in harmonics:

ut(φu) = ut,0 + ut,2 cos(2φu) + ut,4 cos(4φu) + . . . + odd terms. (2)

At freeze-out, since the momentum density of emitted particles is close to an equilibrium distribution, dub-
bing φp the azimuthal orientation of transverse momentum, we can use Eq. (2) to write:
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Now, using the saddle-point approximation explained in Ref. [5], we set φu = φp inside the square brackets
on the right hand side of Eq. (3), and we obtain that the angular anisotropy of the velocity field contributes to
all orders in the harmonic spectrum of the final-state momenta. For instance, the term involving

(
cos(2φu)

)2

on the rhs generates a V2
2 in the spectrum of the lhs, which eventually contributes to the overall fourth

harmonic, V4. This feature is crucial in the context of heavy-ion collisions. Since the measured spectrum
is strongly ordered, i.e., V2 > V3 > V4 > . . . , one naturally expects harmonics of order n > 3 to originate
almost entirely from their coupling to V2 and V3. In the following, we present a theoretical formalism that
allows one to compute the contributions to a given flow coefficient, Vn, induced by harmonics of lower order.

2. A framework of nonlinear coupling of flow harmonics

The formalism was introduced in Ref. [6]. For a given Fourier harmonic, V , in a given class of impact
parameter (or centrality), we perform a decomposition of the kind:

V =

p∑
k=1

χkWk + U, (4)

where Wk are combinations of lower-order harmonics that contribute to V , and U is a complex quantity
which we define by requiring

〈W∗k U〉 = 0, ∀k, (5)

where 〈. . .〉 is an average over events. The quantities we are eventually interested in obtaining are the
coefficients, χk, the so-called nonlinear response coefficients, that allow us to quantify the coupling between
V and the lower-order harmonics, W. Using Eq. (5), we can write down the following identity

〈W∗j V〉 =

p∑
k=1

χk〈W∗j Wk〉, (6)

which corresponds to a linear system of p equations for p constants. Now, defining the following p × p
hermitian matrix

Σ jk ≡ 〈W∗j Wk〉, (7)

the previous system, Eq (6), can be rewritten in matrix form:

M = ΣX, (8)

where M is a p-vector with components 〈W∗j V〉, and X a vector containing the p coupling constants. There-
fore, if Σ and M are known, the coupling coefficients come from straightforward matrix inversion:

X = Σ−1M. (9)

Equation (9) is our main result. In the remainder of this paper, we perform an application of this formalism
to the extraction of the coupling coefficients characterizing hexagonal flow, V = V6.

3. Application to hexagonal flow

The nonlinear mode expansion of hexagonal flow reads1 [7].

V6 = χ62V3
2 + χ63V2

3 + χ624V2U4 + U6, (10)

1We always neglect contributions involving the first harmonic, V1, which is subleading.
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Fig. 1. Elements of Σ(6) from ALICE data [panel (a)], and from hydrodynamic calculations [panel (b)].

where U4 = V4 − χ42V2
2 , with 〈V2

2 U∗4〉 = 0. The matrix in Eq. (7) is therefore given by

Σ(6) ≡ Σ =

 〈v6
2〉 〈(V∗2 )3V2

3 〉 〈v2
2U4(V2

2 )∗〉
〈V3

2 (V∗3 )2〉 〈v4
3〉 〈(V2

3 )∗U4V2〉

〈v2
2U∗4V2

2 〉 〈V
2
3 U∗4V∗2〉 〈u2

4v2
2〉

 , (11)

whereas the vector M reads
M =

(
〈(V∗2 )3V6〉, 〈(V∗3 )2V6〉, 〈V∗2 U∗4V6〉

)
, (12)

with the notation vn = |Vn| and un = |Un|. We neglect effects of parity violation, and we take Σ(6) to be real.
We extract both Σ(6) and M from experimental data on Pb+Pb collisions at

√
s = 2.76 GeV. Almost all the

required moments can be obtained from ALICE data [8, 9], though one has to resort to ATLAS data [10] on
event-plane correlations for two- and three-plane correlators. We refer to Ref. [6] for a thorough description
of the extraction procedure. It is instructive to look at the centrality dependence of the elements of Σ(6),
displayed in Fig. 1(a). The matrix is to a good approximation diagonal, with only a tiny off-diagonal term
provided by the three-plane correlator 〈V2

3 U∗4V∗2〉. Application of Eq. (9) yields, eventually, the coupling
coefficients of V6 as function of centrality percentile. The resulting coefficients of V6 are reported in Ref. [6].

For reasons that will appear clear in a moment, here we focus solely on the coupling between V6 and V3,
χ63, which is displayed as full symbols in Fig. 2. Results are excellent, in the sense that the coefficient has a
mild dependence on the centrality percentile, as one expects from generic arguments [11]. Now, as pointed
out in Ref. [6], χ63 provides a clear example of the effectiveness of the matrix formalism outlined above.
Previous analyses of nonlinear flow modes [7, 9, 11, 12, 13] have been carried out neglecting the mutual
correlations between nonlinear terms in Eq. (10), or in our language, neglecting all off-diagonal terms of
Σ(6):

〈V3
2 (V2

3 )∗〉 = 0, 〈v2
2U∗4V2

2 〉 = 0, 〈V2
3 U∗4V∗2〉 = 0. (13)

With this approximation, experimental data on χ63 are given by the white symbols in Fig. 2, and turn out to
present a much stronger centrality dependence, which indicates a worse determination of the true value of
the coupling coefficient. Therefore, the nonzero off-diagonal element of Σ(6), though small, leaves a visible
signature in χ63. Such effect is fully taken into account in the matrix formalism, where no approximation is
made concerning the correlations that contribute to V6.

We go a little beyond the purely data-driven analysis of Ref. [6], and check whether the influence of
a nonzero 〈V2

3 U∗4V∗2〉 on the coefficient χ63 is an actual prediction of hydrodynamics. To this aim, we run
event-by-event (ebye) viscous hydrodynamic simulations of Pb+Pb collisions at

√
s = 2.76 TeV, using the

code v-USPHYDRO[14, 15], with the same parameter setup as in Ref. [16]. We first compute Σ(6), whose
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Fig. 2. Coefficient χ63 from experimental data (symbols) and hydrodynamic calculations (lines). Different symbol and line styles
indicate the inclusion/exclusion of the off-diagonal elements of Σ(6) in the calculation.

elements are shown in Fig. 1(b). Hydrodynamics captures the generic feature displayed by the experimental
data: The matrix is essentially diagonal, with one tiny off-diagonal element given by 〈V2

3 U∗4V∗2〉. Computing
M, and using Eq. (9), we eventually extract the coefficient χ63. Results are shown in Fig. 2, and are in
good agreement with the data. We compute the coefficient both including the full matrix Σ(6) (dashed line),
and neglecting off-diagonal terms (solid line). We note that the centrality dependence of χ63 becomes much
weaker if the full matrix is included, as observed for the experimental data. We conclude that hydrodynamics
correctly captures the effect of a nonzero off-diagonal element of Σ(6) on the determination of χ63.

4. Conclusive remarks and outlook

We expect high-statistics LHC2 data, combined with our theoretical formalism, to lead to a rich phe-
nomenology of nonlinear harmonic coupling in the near future. The coefficients χ appear to depend mildly
on centrality, initial conditions, and in general on medium properties during the hydrodynamic phase. They
probe, on the other hand, some generic feature of the late-time dynamics of the quark-gluon plasma. What
we are missing is precisely a solid understanding of what such physics is. Clarifying this issue in view of
upcoming measurements is an exciting prospect for future theoretical studies.

We thank Jacquelyn Noronha-Hostler for providing us with the results of v-USPHYDRO calculations.
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