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We construct an effective field theory approach to the equation of state (EoS) for nuclear and
compact star matter entirely in terms of “effective” hadron degrees of freedom. The putative smooth
transition at n ∼ (2 − 4)n0 (where n0 is the normal nuclear matter density) from hadron degrees
of freedom to strongly-coupled quark degrees of freedom, presumably required for a soft-to-hard
changeover in the EoS to account for the massive stars observed, is effectuated by the change at
n1/2 ∼> 2n0 from skyrmions to half-skyrmions in a topological description of baryons. The mechanism
exploits possible emergence of hidden scale and local symmetries of QCD at high density, leading to
a precocious “pseudo-conformal” sound velocity v2s = 1/3 (in unit of c = 1). It offers an appealing
possibility that the topology change density n1/2, accessible up to date neither by theory nor by
terrestrial experiments, could be determined by the tidal deformability in gravity waves coming from
coalescing neutron stars in LIGO/Virgo-type observations.

Introduction— There is a growing indication [1, 2]
that certain symmetries, either absent or hidden in QCD,
can influence what takes place at low density, say, near
the equilibrium nuclear matter density n0 ' 0.16 fm−3

and “emerge” or get “unhidden” and become crucial in
the dynamics at high density in compact-star matter. Al-
though QCD proper has, apparently, neither scale sym-
metry because it is broken explicitly by the trace anomaly
nor local flavor symmetry broken with the non-negligible
masses of (light-quark) vector mesons, those symmetries
treated as induced by strong correlations in nuclear inter-
actions can play a pivotal role involving a scalar Nambu-
Goldstone boson (dilaton) field σ and a hidden local field
ρ in the properties of the normal nuclear matter [3] and
more importantly in highly dense compact star matter
including the ∼ 2M� stars observed.

Notable at low density [2], near n0, are the simple ex-
planation why the gA, effective in nuclear Gamow-Teller
transitions, is seemingly “quenched” to what appears to
be the “universal” value geff

A ∼ 1 and an effective field
theory derivation of the Migdal formula [4] for, and a
highly successful calculation [5] of, the anomalous or-
bital gyromagnetic ratio for the proton in heavy nuclei
δgpl ' 0.23. What’s perhaps more intriguing and striking
is that at high compact-star matter density n ∼> 2n0, the
theory predicts [1] the emergence of parity doubling in
conjunction with scale symmetry, giving rise to a preco-
cious conformal sound velocity v2

s = 1/3 and offers the
possibility to confront in a unique way the tidal deforma-
bility in gravity waves coming from coalescing neutron
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stars as recently observed by the LIGO/Virgo observa-
tion GW170817 [6].

In this Letter, we reformulate the rather involved Vlowk
renormalization-group (RG) approach to baryonic matter
developed in [1, 2] in a drastically simplified framework
that fully captures the essential premises of the nuclear
effective field theory obtained and expose novel aspects
of high density properties of compact-star matter.

Among the key ingredients that figure in giving the re-
sults of [1, 2] is the observation that when baryonic mat-
ter is described in terms of skyrmions, there is a topology
change at a density n1/2 ∼> 2.0n0 involving skyrmions
fractionzing into half-skyrmions. We suggest this as hav-
ing the strong-coupling quark degrees of freedom as ex-
ploited in, say, [7] in the density range ∼ (2−4)n0 traded
in for topology as a Cheshire-Cat phenomenon in analogy
to the trading-in of the MIT quark bag for a skyrmion [8].

The topology change brings out several important ef-
fects which can be summarized in two main observa-
tions [1]:

• A: The first observation, the most crucial of all, is
the cusp at n1/2 in the symmetry energy Esym in the
EoS of compact-star matter that arises in the rotational
quantization of the skyrmion matter [9]. It is of lead-
ing order in Nc and robust. This cusp can be incorpo-
rated (or translated) into the effective Lagrangian con-
structed with scale symmetry and hidden local symme-
try, dubbed sHLS, incorporated into baryonic chiral La-
grangian, called bsHLS in [1]. This is done by matching
the “bare” parameters of bsHLS to QCD at a certain
matching scale. Embedded in medium, the Lagrangian
is rendered sliding with “intrinsic density dependence
(IDD)” encoded in QCD condensates. The cusp exposes
the intricate structure of the nuclear tensor force – with
the sliding vacuum effect – which decreases as density
goes toward n1/2 and then increases past n1/2. Here the
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vector manifestation (VM) of the ρ meson [10] plays an
important role in producing the cusp [9]. The dropping
behavior of the tensor force near n0 is confirmed beau-
tifully in the long life-time of the C14 beta decay [11].
What will turn out to be noteworthy is that this cusp
could play an important role in the tidal deformability in
gravity waves.

• B: Another equally important observation is that
the topology change induces the parity doubling in the
nucleon structure, with the effective in-medium nucleon
mass m∗N going as the dilaton condensate 〈χ〉∗ ∝ m0

where χ = fσe
σ/fσ and m0 is the chirally invariant mass

figuring in the parity-doubled linear sigma model [12].1

As a consequence, the trace of the energy momentum
tensor θµµ of the dense system in n ∼> n1/2, given in the
description entirely as a function of 〈χ〉∗, flattens at in-
creasing density and leads to the sound velocity of the
star v2

s = 1/3, usually associated with the conformal
sound velocity in the chiral limit. The appearance of
v2
s = 1/3 at non-asymptotic density is arguably thought

to be impossible unless there appear non-hadronic de-
grees of freedom [14]. We are led to attribute to the topol-
ogy change the mechanism responsible for the requisite
change of degrees of freedom. We shall call the resulting
object “pseudo-conformal sound velocity” because the
trace of the energy momentum tensor is nonzero in the
region n ∼> n1/2 [2]. This pseudo-conformal structure
was found to emerge in the skyrmion crystal simulation
as a signal for scale symmetry hidden in QCD [15] in the
half-skyrmion phase. This can be seen in Fig. 11 of [1].

The pseudo-conformal model— Our objective here
is to rephrase the two basic observations A and B listed
above in a form that encapsulates them in a surprisingly
simple EoS. We base our reasoning on the bsHLS La-
grangian defined in [1, 2], constructed to suitably en-
code the QCD vacuum structure sliding with baryonic
matter density. This approach can be considered as be-
longing to the class of what is referred to as “Energy
Density Functional” popular in nuclear theory commu-
nity, in particular in the form of relativistic mean field
theory. The potential power of the bsHLS approach over
other energy density functional approaches is in the IDD
inherited from QCD .

We start with the master formula2 for the behavior of
hadron masses in dense medium formulated in [1] that we
assume holds up to the central density of massive stars,

1 This chiral invariant mass has been associated with the origin
of the proton mass, a hitherto unanswered issue of fundamental
physics. See [13] where the matter is discussed from the nuclear
physics point of view.

2 In a general scale-chiral effective field theory approach [16],

the density-scaling m∗σ/mσ should be Φβ
′/2+1 where β′ is the

anomalous dimension of tr(Gµν)2 with Gµν being the field ten-
sor for the gluon field. We will ignore the β′ dependence without
losing the predictive power [16].

i.e., ncen ≈ (5− 7)n0,

m∗N
mN

≈ m∗σ
mσ
≈ gV
g∗V

m∗V
mV
≈ f∗π
fπ
≈ 〈χ〉

∗

〈χ〉
≡ Φ (1)

where V = (ρ, ω) and the asterisk stands for intrinsic
density dependence. We denote the two regions delin-
eated at n1/2 as R(egion)-I for n < n1/2 and R(egion-II
for n ≥ n1/2. Since the property of nuclear matter at
n0 is fairly well studied and understood by various ways,
phenomenological as well as in effective quantum field
theory along the line of Weinberg’s Folk Theorem [17],
we simply take what’s given in [1] for n0 and extrapo-
late it to n1/2. In R-I, this involves the master formula
(1) with g∗V /gV = 1. There are no unknown parameters
once the value f∗π/fπ is extracted from deeply bound pio-
nic nuclear systems. The outcome of the bulk properties
from [1] at n0 is generally as good as any good standard
model available in the literature but with a lot less num-
ber of parameters. We therefore adopt the results of [1]
as the input for the R-I region.

We turn to the region R-II.
Here we encapsulate the observations A and B de-

scribed above in a concise form that encompasses the
full Vlowk calculation. In [1, 2], the emergence of parity-
doubling and scale symmetry was a consequence of intri-
cate interplay of Φ and g∗V /gV . The latter involved the
VM property of the gauge coupling gρ which tends to zero
at a density n ∼> 20n0 and of gω with Φ giving rise to the
cusp structure in the nuclear symmetry energy predicted
by the topology change, and the pseudo-conformal sound
velocity. What we wish to do then is to capture this com-
plex structure of R-II embodied in A & B in a concise
EoS for n > n1/2 that renders the trace of the energy
momentum tensor non-zero and density-independent up
to the central density of star, ncent ≈ (6 − 7)n0. This
strategy has been verified to work accurately for the case
where n1/2 was taken at 2.0n0 [1].

To proceed we pick the n1/2 such that the topology
change takes place at a higher density than the den-
sity at which the tidal deformability has reportedly been
measured in the LIGO/Virgo observation GW170817 [6].
This is because the dimensionless tidal deformability Λ
– as defined by [6] – calculated in the VlowkRG [1] with
n1/2 ' 2.0n0 is found to be ∼ 790, close to the reported
upper bound 800 for ∼ 1.4M� [6]. There is some am-
biguity in the result of Vlowk [1] that since the central
density ncent of the 1.4 M� star turns out to be coinci-
dent with the crossover density n1/2 in this model, the
precise value of the tidal deformability may be subject
to the delicate issue of how R-I and R-II are matched.
However since Λ is very sensitive to the symmetry en-
ergy and with the cusp structure entailing the softening
in R-I of the symmetry energy going toward n1/2 from
below, it is suggestive that the topology change density
n1/2 be increased to above 2.0n0 so as to lower Λ to
a value below the given bound. This is clearly feasible
since the global properties of massive stars given within
the model are found to differ very little between 1.5n0
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and 2.0n0 [18]. Thus we expect it to be feasible to bring
n1/2 up to ∼ 3n0 without disturbing the good global star
properties obtained for n1/2 = 2n0 in [1].

As a first trial, we pick n1/2 = 2.6n0 and explore what
transpires with this value.

Now the key idea is to write the EoS in R-II that gives
〈θµµ〉 which is nonzero and density-independent so that it

gives v2
s = 1/3. The energy per particle of the system

that gives such an EoS in R-II, found in [1] for n1/2 =
2.0n0, can be written in the form

E

A
= AαII

(
n

n0

)1/3

+BαII

(
n

n0

)−1

− 939 MeV (2)

with the coefficients AαII and BαII for α = (N −Z)/(N +
Z) = (0, 1) given by the Vlowk. It is easy to verify that
v2
s = 1/3 for any values of the coefficients A and B.
We apply the expression (2) to the system given by

n1/2 = 2.6n0. The coefficients are to be determined by
the continuity at n = n1/2 between R-I given by [1] and
R-II given by (2) for the chemical potential µ and the
pressure P (à la “Israel junction” condition)

µI = µII , PI = PII . (3)

The pseudo-conformal EoS is the sum of EoSs from R-I
given by the Vlowk RG of [1] and R-II with (2).

Massive star properties— The energy per particle
E/A and the symmetry energy Esym given by the pseudo-
conformal model (PCM for short) for n1/2 = 2.6n0 are
plotted in Fig. 1. The corresponding sound velocity in the
PCM is shown in Fig. 2. The anomalous behavior of the
sound velocity at ∼ n1/2 must be an artifact of the sharp
matching between R-I and R-II, and hence cannot be
taken seriously. The overall results of the EoS, which are
found to be fairly consistent with the currently available
heavy-ion experimental bounds, are very close to those of
Vlowk RG of [1]. In particular, the crossover from soft to
hard in Esym – which mimics the cusp in the skyrmion
description– resembles closely that of the full Vlowk RG
result [1].

FIG. 1. E/A (left) and Esym (right) vs density n.

We have here a compelling hint that the change-over
at n1/2 from the Fermi-liquid structure of normal nu-

clear matter at n0 [2] to a pseudo-conformal structure,
signaling scale symmetry above n1/2, captures the topol-
ogy change from skyrmions to half-skyrmions (seem-
ingly analogous to “pseudo-gaps” in BCS-BEC transi-
tions [19]) that figures in the Vlowk RG treatment of [1].

FIG. 2. The sound velocity vs. density.

Now what does the PCM so constructed predict for
standard star properties?

In Fig. 3 are given M vs. R and the central density
of the compact star. The maximum mass comes out at
Mmax = 2.02M� with radius at R = 11.86 km. The
central density is found to be ncent = 5.6n0. They are to
be compared with the Vlowk RG results of [1] (for n1/2 =
2n0): Mmax = 2.05M�, R = 12.19 km, and ncent =
5.1n0. Note that there is practically no difference – even
if no fine-tuning is done – from the case of n1/2 = 2.0n0

(and also that of n1/2 = 1.5n0 [18]).

FIG. 3. The mass vs. radius of the neutron star (left panel)
in beta equilibrium and the mass vs. the central density of
the neutron star (right panel).

Tidal deformability— So far all the standard star
properties of the PCM are found to come out more or
less the same as the full Vlowk approach of [1], both of
which are compatible with observations. Although both
are equivalent to the Fermi-liquid approach that belongs
to the paradigm of energy density functional, it is some-
what surprising that even though n1/2 is put at 2.6n0,
the symmetry energy is nearly the same including the
smoothed cusp structure as that found in Vlowk RG [1]
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with n1/2 = 2.0n0. This reinforces relative insensitivity
of the standard star properties to the location of n1/2

found in [18].

n1�2=2.0n0

n1�2=2.6n0

1.2 1.4 1.6 1.8 2.00

500

1000

1500

2000

M@M�D
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FIG. 4. Dimensionless tidal deformabilities Λ vs. M for
n1/2 = 2.0n0 and 2.6n0.

In a stark contrast, however, the location of the topol-
ogy change density is found, in the PCM, to have a strong
impact on the tidal deformability.3 This can be seen in
Fig. 4.

The results for the Λ given by the PCM for n1/2 =
2.6n0 are summarized – and compared with the Vlowk RG
results for n1/2 = 2.0n0 [1] – in Fig. 4 for the range of star
masses involved. Given the effective cusp structure as
predicted – with the softening symmetry energy toward
n1/2 – we expected Λ to decrease, when n1/2 is increased
to 2.6n0, from ∼ 790 that was found for n1/2 = 2.0n0.
One indeed obtains a significant drop in Λ. For 1.4M�,
we find Λ ∼ 600 with a central density ncent ' 2.3n0 and
a radius R ' 12.8 km.

It is significant that unlike in the case of [1], ncent in R-I
is well separated from the crossover density n1/2 = 2.6n0,
free from the crossover to R-II at n1/2.

What is particularly noteworthy for the topology
mechanism in question is two-fold. First, Λ changes by a
large amount for small variation of M near 1.4M�. Thus
to identify Λ for a given M , it would require precisely pin-
ning down the value of the M involved. Second, while
the tidal deformability decreases by a large amount, say,
more than 20% in going from n1/2 = 2n0 to 2.6n0, the
radius gets modified by less than 1.5%. This suggests
that in our formulation it probably makes little sense to
correlate Λ with R.4

3 This contrasts with other energy density functional models in
which Λ could be made to vary arbitrarily by fine-tuning certain
parameters available without affecting the global structure of
EoS.

4 It is of course likely that the radius for the low-mass star involved
will depend on other details of the star structure – such as the
crust etc. – not taken into account in this paper.

Remarks— It is striking that the simple E/A, Eq. (2),
efficiently captures the complex structure of A & B of
Vlowk RG in R-II and that the appearance of the pseudo-
conformal sound velocity v2

s ' 1/3 at n ∼> n1/2 as
found in the Vlowk RG calculation and confirmed by the
pseudo-conformal model is fully compatible with the ob-
served properties of massive compact stars. If, as sug-
gested in [14], converging to v2

s = 1/3 is impossible at
non-asymptotic density unless there is a change of de-
grees of freedom, then it must be the half-skyrmions
that play the role of non-hadronic degrees of freedom
in the range of density in which strongly-coupled quarks,
such as quarkyonic phase, are considered to figure [7].
This invites us to conjecture that the pseudo-conformal
sound velocity is a signal in dense matter both for the
emergence of scale symmetry and local flavor symmetry
hidden in QCD [15, 20] and somewhat intriguingly, for
the manifestation of a Cheshire Cat phenomenon. This
adds one more to the growing evidence of Cheshire Cat
phenomenon in dense hadronic matter, along with the
superqualitons [21], vortices [22] etc. in the color-flavor-
locked phase.

When the value of Λ is pinned down, it will provide
theoretically crucial information on the topology change
density n1/2, signaling, via Cheshire Cat, for the possi-
ble intervention of quark/gluon degrees of freedom. At
present there are no known clues, experimental or the-
oretical, as to how to locate it precisely. Our approach
gives Λ ∼ 600 at n1/2 ∼> 2.6n0. It is likely that the
bound will be tightened to a lower value in the future
measurements. The PCM has the potential to provide a
simple means to probe a range of n1/2 with forthcoming
tightened bounds, both lower and upper. Should the fu-
ture tightened Λ go down to near the lower bound, the
currently available value of which is ∼ 400 [23], then it
would require the crossover density n1/2 to be raised to
even higher. Whether this will not pose a challenge to
the PCM in keeping other established star properties un-
scathed remains to be seen.

Finally, perhaps more fundamental is the possible role
of the tidal deformability in elucidating how scale sym-
metry figures in dense matter [3]. The approach so far
employed is anchored on what was referred to as LOSS
(“leading order scale symmetry”) in [2, 16]. While the
LOSS approximation is fairly consistent with nature at
low density [2], it is however an open issue at high den-
sity. It may be that a precisely determined Λ could pro-
vide valuable information on the validity of, or devia-
tion from, LOSS at higher density relevant to compact
stars. It would be interesting to see if it gives a clue
to the basic infrared structure of the scalar dilaton [3],
presently a highly controversial issue in QCD-like gauge
theories, both in the Standard Model [15, 20] and for
beyond the Standard Model [15, 20, 24]. Specifically, a
precise determination of the tidal deformability Λ could
lead to information on the anomalous dimension β′ –
mentioned in the footnote 2 and also in [2] in connection
with the puzzling “quenched gA” in nuclei – which has re-
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mained, up to date, totally unknown in QCD. This could
be manifested in deviation from the pseudo-conformal
sound speed v2

s ' 1/3 at densities n > n1/2.
We are very grateful to Tom Kuo for suggesting the
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