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Abstract

We present a new and efficient method for deriving finite-size effects in statistical

physics models solvable by Bethe Ansatz. It is based on the study of the functional

that maps a function to the sum of its evaluations over the Bethe roots. A simple and

powerful constraint is derived when applying this functional to infinitely derivable test

functions with compact support, that generalizes then to more general test functions.

The method is presented in the context of the simple spin-1/2 XXZ chain for which

we derive the finite-size corrections to leading eigenvalues of the Hamiltonian for any

configuration of Bethe numbers with real Bethe roots. The expected results for the

central charge and conformal dimensions are recovered.

1 Introduction

The use of field theory to study long-distance properties of lattice models near criticality
is one of the best established tools of statistical physics. It is possible to inverse the logic,
i.e. to gain understanding of some field theories by studying well-chosen lattice models for
which analytical computations are possible. This was illustrated, for instance, in a recent
work where the black-hole sigma model of string theory was tackled using a special kind
of spin-chain [1]. A good deal of the current work on logarithmic conformal field theory
(LCFT) stems from this idea.
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The relationship between the lattice models and the field theory limit is particularly
transparent in two (1+1) dimensions when conformal invariance is present. In this case, for
large but finite size, crucial information about the underlying CFT - like the central charge
or the conformal dimensions [2] - appears in the asymptotic expansion of certain physical
quantities such as the (logarithms of) transfer matrix eigenvalues [3]. For models solvable
by Bethe Ansatz [4] these asymptotic expansions can be sometimes carried out analytically
and thus reveal the structure of the field theory. Although thermodynamic properties are
efficiently computed with Bethe root densities, the calculation of finite-size effects remains
a demanding and subtle task. This hampers progress on the understanding, for instance, of
models having a non-compact continuum limit [5].

Two main methods have been developed so far.

The first (from a historical point of view) is the so-called “Wiener-Hopf method”, devel-
oped in [6, 7, 8, 9]. This method involves Bethe root densities, Euler-MacLaurin formula
and integral Wiener-Hopf equations. Its main drawback is that it cannot be applied to cases
where the Bethe roots are not real but arranged into complex conjugate pairs denoted as
“strings”, like for example in the spin S > 1

2
Heisenberg model [10]. Moreover, as noticed in

[8], some terms which were originally neglected in the method turned out to be non-negligible
after all, affecting some of the intermediate results (such as the relation between the largest
Bethe root and the density at this point, according to [8]), although they do not appear to
have consequences on the final result.

The second method is the “Non-Linear Integral Equation method” (NLIE), developed in
[11, 12, 13, 14]. Here, one exploits the analyticity properties of the eigenvalues of the trans-
fer matrix in terms of the spectral parameter to derive an NLIE for the counting function.
Besides the efficient numerical algorithms based on this method, it has been successfully ap-
plied to some higher-rank systems [15] and some cases involving strings, such as the spin-S
Heisenberg model [13, 16]. However there is no general recipe to derive NLIE equations for
a new model, and, to our knowledge, very little is known on how to adapt the method to
cases with isolated Bethe roots, or to the computation of higher-order corrections.

We present in this paper a new method for computing finite-size effects, that seems more
direct and more efficient. Our approach is crucially based on the study of the functional that
maps a function to the sum of its evaluation over the Bethe roots, seen as a distribution. It
involves moreover two crucial points. The first is the observation that a simple and power-
ful constraint on this distribution can be derived by applying it to infinitely differentiable
functions with compact support (and then to more general functions): it is the sum, with
coefficients to be determined, of the Fourier transform of the functions at very particular
values that depend on the Bethe Ansatz equations. The second point is to observe that this
distribution evaluates very simply on the counting function itself, leading to an equation for
these coefficients.
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The method can also be applied to any system of Bethe equations with real Bethe roots,
which appears in several situations [20, 15]. Moreover further adaptations (to be discussed
elsewhere) make the method applicable to the case of complex roots. It is our hope that
this new method will eventually make possible analytical calculations e.g. of non-compact
spectra and densities of states in models such as the one studied in [5].

For pedagogical reasons, we discuss all the relevant details in the case of the spin-1/2 XXZ
spin chain with periodic or twisted boundary conditions, deriving the well-known central
charge and conformal dimensions.

2 Problem setting

We consider the spin-1/2 XXZ spin chain on L sites with twisted boundary conditions, and
Hamiltonian

H = − 1

2 sin γ

L∑

k=1

(
σx
kσ

x
k+1 + σy

kσ
y
k+1 +∆(σz

kσ
z
k+1 − 1)

)
, (1)

where the σi
k are the Pauli matrices and ∆ = − cos γ an anisotropy parameter. The boundary

conditions are
σx
L+1 ± iσy

L+1 = e−2iπϕ(σx
1 ± iσy

1) , σz
L+1 = σz

1 . (2)

This model is solvable by Bethe Ansatz [4, 17]: an eigenvalue EL of H can be written as
EL = LeL with

eL = −2π

L

M∑

i=1

s′(λi) , (3)

where the function s′ will be given below, and the Bethe roots λi are the M solutions of the
Bethe equations:

(
sinh(λi + iγ/2)

sinh(λi − iγ/2)

)L

= e−2iπϕ

M∏

j=1,j 6=i

sinh(λi − λj + iγ)

sinh(λi − λj − iγ)
. (4)

Note that both M and the λi’s implicitly depend on L. Taking the log of these equations
transforms the products into sums, and leads to the accumulation of a multiple of 2πi because
of log(zz′) = log z + log z′ + 2inπ with n ∈ {−1, 0, 1}. Thus the Bethe equations can be
written as

zL(λi) =
Ii
L

, i = 1, . . . ,M

where: zL(λ) = s(λ)− 1

L

M∑

i=1

r(λ− λi) +
ϕ

L
.

(5)

Ii are integers if M is odd, half-integers if M is even (because of the −1 in the definition
of r below), and are called Bethe numbers. zL will be called the counting function. The
functions s and r are
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s(λ) = − 1

2iπ
log

(
−sinh(λ+ iγ/2)

sinh(λ− iγ/2)

)
=

1

π
arctan

(
tanhλ

tan γ/2

)
,

r(λ) = − 1

2iπ
log

(
−sinh(λ+ iγ)

sinh(λ− iγ)

)
=

1

π
arctan

(
tanhλ

tan γ

)
.

(6)

The branch cut of the logarithm is taken such that log eiθ = iθ for −π < θ ≤ π. Observe
that if we add 1/2 to the twist ϕ in zL when M is odd then the Bethe numbers Ik are
half-integers. For this reason in the following we will always assume that the Bethe numbers
are half-integers.

The relevant physical information about the CFT that describes the chain in the con-
tinuum limit is the term in L−2 in the asymptotic expansion of eL. To study this term, we
define the following functional for a test function φ

SL(φ) =
1

L

M∑

i=1

φ(λi) , (7)

Noting that eL = −2πSL(s
′), our objective is thus to determine the asymptotic expansion of

SL at large L. We will focus on the ground state and the first excited states, thus on states
for which M = L/2− n with finite n.

Notations

We give here a few notations.
The Fourier transform f̂ of a function f is defined as

f̂(ω) =

∫ ∞

−∞

f(x)eiωxdx . (8)

Note that with this convention we have f̂ ′(ω) = −iωf̂(ω). The convolution f ⋆ g of two
functions is

(f ⋆ g)(x) =

∫ ∞

−∞

f(y)g(x− y)dy . (9)

For y ∈ R, we denote by f(y− ·) the y-dependent function of x given by x → f(y− x). The
convolution of a distribution T and a function f is thus given by (T ⋆ f)(y) = T (f(y − ·)).
The Dirac distribution at zero is denoted δ0. It satisfies δ0(φ) = φ(0) for a test function φ.
For a ∈ R, the indicator function 1>a is defined by

1>a(x) =

{
1 if x > a ,

0 if x ≤ a .
(10)

Finally for a function φ we introduce the notation

φ±∞ = lim
x→±∞

φ(x) for a function φ , (11)

with the shorthand φ∞ = φ+∞ when the function φ is odd (this should not be confused with
z∞ and S∞ introduced in the following).
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3 Leading-order term

Define S∞(φ) by:
S∞(φ) = lim

L→∞
SL(φ) . (12)

The computation of S∞(φ) is carried out upon the assumption that zL converges to a function
z∞ as L → ∞, as is done to determine e∞ = limL→∞ eL [18, 19]. Then λi ∼ z−1

∞ (Ii/L), so
that:

SL(φ) ∼
L→∞

1

L

M∑

i=1

φ(z−1
∞ (Ii/L)) . (13)

This is a Riemann sum that converges to
∫
φ ◦ z−1

∞ , the integration limits being the limit

of I1/L and IM/L as L → ∞. A change of variable λ = z−1
∞ (x) gives

∫ Q+

Q
−

φz′∞ with

Q− = z−1
∞ (I1/L), Q+ = z−1

∞ (IM/L), which motivates the definition of the density of roots:

σ∞ = z′∞. (14)

Moreover for the ground state and first excited states we have Q± → ±∞ [18], giving:

S∞(φ) =

∫ ∞

−∞

φσ∞ . (15)

To compute σ∞, we use formula (15) in equation (5) for L → ∞. This leads to:

σ∞ = s′ − σ∞ ⋆ r′ , (16)

which can be solved by Fourier transform:

σ̂∞ =
ŝ′

1 + r̂′
. (17)

In this model a simple expression can be found:

σ∞(x) =
1

2γ cosh(πx/γ)
. (18)

For notational convenience we introduce

± α = lim
x→±∞

z∞(x) , (19)

and vF > 0 (the “Fermi” or “sound” velocity, as will be explained further) the constant such
that

σ∞(x) ∝ e−vF |x| as x → ±∞ . (20)

According to (18), we have then vF = π/γ. For the spin-1/2 XXZ model we have α = 1/4.
We now would like to compute the next-to-leading-order term in SL(φ). To that end

we need to know the finite-size corrections of a Riemann sum
∑

k f(k/L). Before going any
further, we recall some results on this question.
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4 Reminders about Riemann sums

Euler-Maclaurin formula

For f a function defined on [0, 1] and t ∈ [0, 1], we define the t-shifted Riemann sum

Rt
L(f) =

1

L

L−1∑

k=0

f

(
k + t

L

)
. (21)

If f is Cn on [0, 1], then the Euler-MacLaurin formula reads as follows [21]

Rt
L(f) = EM t

L(f) + o(L−n) , (22)

with

EM t
L(f) =

∫ 1

0

f +
n∑

k=1

Bk(t)
f (k−1)(1)− f (k−1)(0)

k!Lk
, (23)

where Bk(t) are the Bernoulli polynomials with exponential generating function

∞∑

k=0

Bk(t)
xk

n!
=

xext

ex − 1
. (24)

For example, up to order O(L−2) it reads:

Rt
L(f) =

∫ 1

0

f +
t− 1/2

L
(f(1)− f(0)) +

t2/2− t/2 + 1/12

L2
(f ′(1)− f ′(0)) + o(L−2) . (25)

Dependence on L

In the previous formula f is a function that does not depend on L, unlike in our problem.
Assume now that we have the following expansion for a sequence of functions fL

fL(x) = g0(x) + g1(x)L
−1 + · · ·+ gn(x)L

−n + o(L−n) , (26)

with gi being Cn−i functions that do not depend on L. Assume that the convergence of this
expansion is uniform, meaning that the remainder ǫL

ǫL(x) = fL(x)−
n∑

p=0

gp(x)L
−p , (27)

is o(L−n) and that Ln|ǫL(x)| can be bounded by a sequence aL → 0 uniformly in x (otherwise
it only implies that it goes to zero for a fixed x). Then Rt

L(ǫL) = o(L−n). It follows that

Rt
L(fL) = EM t

L(g0) + EM t
L(g1)L

−1 + · · ·+ EM t
L(gn)L

−n + o(L−n) , (28)

or in a more compact form

Rt
L(fL) = EM t

L(fL) + o(L−n) , (29)

meaning that uniform convergence allows us to use the Euler-MacLaurin formula for L-
dependent functions.
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Uniform convergence

Unfortunately we do not have uniform convergence in Bethe equations. Indeed we observe
numerically that for fixed x we have

zL(x) = z∞(x) +
g(x)

Lβ
+ o(L−β) , (30)

with β > 1 and some function g, whereas maxx |zL(x)− z∞(x)| decreases more slowly than
L−β. The consequence for the Bethe roots is that, although most of them are separated by
O(L−1), this is not the case for the extremal ones: a numerical computation of the Bethe
roots shows that their separation is greater than L−1.

But Dini’s theorem saves us partly [22]: a sequence of continuous and increasing functions
that converges simply to a continuous function on a segment [a, b] also converges uniformly.
Since zL converges to an increasing function z∞, on a fixed segment [a, b] it is increasing for
L large enough and thus zL converges uniformly on any segment. This means that Euler-
MacLaurin formula could be applied if we were to sum only over Bethe roots smaller in
absolute value than some fixed λ. This suggests to first look at SL(φ) for φ having compact
support on R. Since the functions to which we want to apply SL do not have this property
of compactness, we will have to extend the result to more general functions in several steps:
first to test functions with possible discontinuities, second to functions without compact
support but that decrease exponentially fast at infinity, third to functions that converge to
a non-zero value exponentially fast at infinity.

5 Constraint on the next-to-leading-order

5.1 C∞ test functions with compact support

Define wL(φ), the distribution to be studied, as:

wL(φ) = SL(φ)− S∞(φ) . (31)

Let φ be a C∞ function with compact support. Summing over all λi’s is the same as summing
over the λi’s in the support of φ. But zL is invertible on this segment, so that we can write
λi = z−1

L (Ii/L). Then using eq. (29)

SL(φ) = EM
1/2
L (φ ◦ z−1

L ) + o(L−n) , (32)

for every n, since φ and zL are C∞ functions. And since φ has compact support we have

SL(φ) =

∫ α

−α

φ ◦ z−1
L , (33)

which becomes, after a change of variables,

SL(φ) =

∫ +∞

−∞

φz′L . (34)
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But z′L can be obtained through eq. (5):

z′L(λ) = σ∞(λ)− wL(r
′(λ− ·)) . (35)

This gives the equation valid for all φ C∞ with compact support

(wL + wL ⋆ r′)(φ) = 0 . (36)

For the Fourier transform, this implies that, as a distribution,

ŵL(1 + r̂′) = 0 , (37)

so that:
ŵL =

∑

ω∈Ω

Aωδω , (38)

where
Ω = {ω ∈ C, 1 + r̂′(ω) = 0} , (39)

and δω is the Dirac distribution at ω. The Aω denotes a set of “constants” to be determined.
They are constants in the sense that they do not depend on the function φ to which wL is
applied, but they clearly have to depend on L. In the XXZ model Ω can be computed to be

Ω =

{
2ni

1− γ/π
, n ∈ Z

}
∪
{
π

γ
(2m+ 1)i,m ∈ Z

}
. (40)

It is assumed in eq. (38) for notational convenience that 1 + r̂′ has only simple poles—
otherwise derivatives of δ would be present—which is true as soon as γ/π is irrational (the
case with derivatives is treated at the end of section 6). Eq. (38) is true up to an ‘exponen-
tially small’ correction that is negligible compared to any power L−n. Explicitly, eq. (38)
means that for C∞ functions with compact support

SL(φ) = S∞(φ) +
∑

ω∈Ω

Aωφ̂(ω) . (41)

5.2 Discontinuous test functions with compact support

To compute the Aω we need some ‘boundary condition’: by this we mean a function f for
which we know wL(f). It is almost the case of zL, since zL(λ

L
i ) = Ii/L exactly (note: this

is not an approximation in L). But in order to gain more information we would like to sum
only over Bethe roots with positive or negative Bethe numbers. And this leads to applying
the distribution wL to discontinuous functions (at a finite number of points), which is outside
the standard theory of distributions.

The standard theory of distributions indeed applies to C∞ test functions. Whenever
discontinuities occur, some distributions such as the Dirac delta become ill-defined, and ad-
ditional terms come from integration by parts. We use here partly the work of [23]. Without
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loss of generality, we assume—like in [23]—that the test functions have a discontinuity at
0 (otherwise one just has to shift the function). The two main differences with the usual
distributions are the Dirac distribution, which is now defined as:

δ0(φ) =
φ(0+) + φ(0−)

2
, (42)

where φ(0±) is the right or left limit of φ at 0, and the distribution β defined as:

β(φ) = φ(0+)− φ(0−) . (43)

It satisfies β = 1′, the derivative of the constant distribution. The Fourier transform of β
will be needed. It is defined as usual by β̂(φ) = β(φ̂). Thus β̂(φ) is proportional to the
coefficient in front of 1/x in the expansion of φ(x) when x → ∞, as can be seen from the
fact that the Fourier transform of the Heaviside function is −(iω)−1.

Let now φ be a function with compact support and a discontinuity at zero. Let us look
at the value of the Bethe roots close to zero. We have thus λi = z−1

L (Ii/L) with Ii/L → 0,
which allows for a Taylor expansion. Using zL(z

−1
L (0)) = 0 we get

λi = z−1
L (Ii/L) =

Ii/L− zL(0)

σ∞(0)
+ o(L−1) . (44)

We see here that zL(0) acts like a shift for the Bethe numbers, and thus deserves a specific
notation. Define ϕ0 through

zL(0) =
ϕ0

L
+ o(L−1) , (45)

where ϕ0 can take the value 0 if zL(0) decreases faster than L−1. Recall now that the Bethe
numbers are assumed to be half-integers. Thus the sum over the Bethe roots around zero is
a t-shifted Riemann sum with t = 1/2 − ϕ0. Applying eq. (29) with such t on [K−, 0] and
on [0, K+], where the support of φ is [K−, K+], gives at order o(L

−2)

SL(φ) =

∫
φz′L − B1(t)

φ(0+)− φ(0−)

L
− B2(t)

φ′(0+)− φ′(0−)

2σ∞(0)L2
+ o(L−2) . (46)

This implies that (36) has the leading finite-size correction

(wL + wL ⋆ r′)(φ) = −B1(t)β(φ)

L
− B2(t)β(φ

′)

2σ∞(0)L2
+ o(L−2) . (47)

Upon Fourier transforming, since 1 + r̂′(ω) → 1 when ω → ∞, we have β̂(1 + r̂′)−1 = β̂,
yielding:

wL(φ) =
∑

ω∈Ω

Aωφ̂(ω)−
B1(t)β(φ)

L
− B2(t)β(φ

′)

2σ∞(0)L2
+ o(L−2) . (48)

In the following we will encounter functions φ with discontinuity at t0/L with t0 real. We
recover case (48) by applying it to φ(·−t0/L), which amounts to setting t = 1/2−ϕ0−t0σ∞(0).
In particular if the discontinuity is at z−1

L (0) = −zL(0)/σ∞(0)+o(zL(0)) then we have t = 1/2.
This case will be particularly useful and we get

wL(φ) =
∑

ω∈Ω

Aωφ̂(ω) +
β(φ′)

24σ∞(0)L2
+ o(L−2) . (49)
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5.3 Test functions with exponential decay

We would like now to extend the application of wL to C∞ functions φ without compact
support that behave as φ(x) ∼ ce−a|x| with c and a > 0 some constants, as x → ±∞.

Let us assume in a first step that the function φ is C∞ without compact support, but
such that it satisfies φ(x) = o(e−a|x|) for all a > 0, meaning that it decreases faster than
any exponential at infinity. Notice that φ̂ is defined in the complex plane without sin-
gularities in this case, and that conversely if φ̂ is defined in the complex plane without
singularities then φ has to decay faster than any exponential. For every K > 0 define a
test function φK C∞ with compact support such that φK(x) = φ(x) for the reals |x| < K
and φK(x) = 0 for |x| > K + ǫ, where ǫ is a small parameter. For a real a we have
φ̂K(ia) =

∫
e−axφK(x)dx →

∫
e−axφ(x)dx = φ̂(ia) when K → ∞, because φ decreases faster

than any exponential (otherwise these integrals would diverge for a large enough and ana-
lytic continuation has to be done). Then formula (38) applied to φK gives a more and more
accurate approximation of wL(φ) as K → ∞, and converges to the same formula applied to
φ. Thus eq.(38) is still valid for functions decreasing faster than any exponential.

Now consider a function φ with exponential decay: φ(x) ∼ ∑
n cne

−xvn with cn and vn > 0
some constants, when x → ∞. Then by adding and subtracting functions e−ax

1x≥0, whose

Fourier transform is (−iω + a)−1, we see that φ̂ is a function in the complex plane having
poles at −ivn with residues cn. Let now f be an even function such that f̂ is analytic and
f̂(−ivn) = 0. The function φ ⋆ f decays faster than any exponential at infinity whenever φ
has the previous decay properties, since its Fourier transform has no poles in the complex
plane. We can then apply formula (34) to it:

SL(φ ⋆ f) =

∫
(φ ⋆ f)z′L . (50)

Using the same arguments as previously, and wL(φ ⋆ f) = (wL ⋆ f)(φ), we get:

ŵLf̂(1 + r̂′) = 0 , (51)

implying that the distribution ŵL has its support in the set of zeros of f̂(1+ r̂′). Since φ̂ has
a pole at the zeros of f̂ , we have

wL(φ) =
∑

ω∈Ω

Aωφ̂(ω) +
∑

ω∈Ωφ

AωResω(φ̂) , (52)

with Ω the set of zeros of 1 + r̂′, and Ωφ the set of poles of φ̂(1 + r̂′)−1 without the set of

zeros of (1 + r̂′). Resω(φ̂) is the residu of φ̂ at ω.
Notice than whenever φ̂ has the same poles as 1 + r̂′ (which is the case for ŝ′ and r̂′, see

eq. (6)) there is no additional terms compared to (38). It is also assumed for simplicity of
notation that there are no multiple poles, otherwise additional derivatives of Dirac deltas
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must be considered.

In the event of discontinuities, the function φ can be decomposed as φ = φr + φc with φr

without discontinuities (but without compact support) and φc with compact support (but
with discontinuities), enabling one to combine equations (52) and (49).

Let us now derive an important bound on the Aω. Indeed remark that since z′L(λ) =
σ∞(λ) − wL(r

′(λ − ·)) we can express z′L in terms of the Aω. Since r̂′ has the same poles
as 1 + r̂′, the poles of r̂′/(1 + r̂′) are the zeros of 1 + r̂′. Since by definition r̂′(ω) = −1 for
ω ∈ Ω, we get

zL(λ) = z∞(λ) +
∑

ω∈Ω

eiωλ

iω
Aω . (53)

Observe now that for ΛL the largest root we have at leading order z∞(ΛL) ∼ IM/L. This
implies

ΛL =
logL

vF
+ o(logL) . (54)

Since zL(ΛL) = IM/L we deduce that zL(ΛL) − z∞(ΛL) is of order O(L−1) and that for all
ω ∈ Ω we should have the bound |Aωe

iωΛL | = O(L−1). With a similar analysis for the largest
(in absolute value) negative root, and using eq. (54) we get then the important bound

Aω = O(L−1−|ω|/vF ) . (55)

Notice that to have the behaviour (20), ±ivF have to be elements of Ω, and from eq. (17)
they even satisfy (with ℑ denoting the imaginary part):

vF = min{ℑω, with ω ∈ Ω ,ℑω > 0 , ŝ′(ω) 6= 0} . (56)

5.4 Non-zero test functions at infinity

The last but important extension of the formula (52) concerns functions φ that converge
exponentially fast to non-zero values φ±∞ at ±∞. In this case even the Fourier transform
of φ becomes ill-defined. There is a non-sophisticated way to get around the problem here.
First note that since zL is increasing, a Bethe root λi has a positive Bethe number Ii if and
only if λi > z−1

L (0). Let us now write φ as

φ = φ0 + φ+∞1>z−1

L
(0) + φ−∞1<z−1

L
(0) , (57)

so that φ0 decays to zero at infinity, but has an additional discontinuity of φ−∞ − φ+∞ at
z−1
L (0). Then wL(φ0) is well-defined, and we only have to make sense of wL(1>z−1

L
(0)) and

similarly of wL(1<z−1

L
(0)). By definition:

wL(1>z−1

L
(0)) = SL(1>z−1

L
(0))− S∞(1>z−1

L
(0)) . (58)

11



Here S∞(1>z−1

L
(0)) = α−z∞(z−1

L (0)) and SL(1>z−1

L
(0)) =

1
L
card{k, Ik > 0}, i.e., the number of

positive Bethe numbers, divided by L. Moreover using zL(z
−1
L (0)) = 0 we have the expansion

z−1
L (0) = − zL(0)

σ∞(0)
+ o(zL(0)) . (59)

Let us introduce n±, the number of vacancies in positive or negative Bethe numbers, that is

card{Ik > 0} = Lα− n+

card{Ik < 0} = Lα− n− .
(60)

We get:

wL(1>z−1

L
(0)) = −

(n+

L
+ zL(0)

)
+ o(zL(0))

wL(1<z−1

L
(0)) = −

(n−

L
− zL(0)

)
+ o(zL(0)) .

(61)

But from eq. (5) we have:

zL(0) = wL(r) +
ϕ

L
, (62)

which gives, decomposing r as in eq.(57), and applying eq. (61),

zL(0) = wL(r0)− r∞

(n+

L
+ zL(0)

)
+ r∞

(n−

L
− zL(0)

)
+

ϕ

L
. (63)

Since the discontinuity of r0 is at z−1
L (0), from eq. (49) and the bound (55), we get that

wL(r0) is o(L
−1). It follows that at leading order L−1 zL(0) can be deduced as

zL(0) =
ϕ− r∞(n+ − n−)

1 + 2r∞

1

L
. (64)

Now apply the same procedure to a general function φ: decompose it as in eq. (57) and use
eq. (61) to obtain

wL(φ) = wL(φ0)− φ+∞

(n+

L
+ zL(0)

)
− φ−∞

(n−

L
− zL(0)

)
, (65)

where zL(0) is explicitly given by eq. (64).

6 Computing the constants A±ivF

We have now the tools to compute the main constants Aω needed in eq. (38). The idea is to
compute SL(zL1>z−1

L
(0)) in two different ways: the first one uses zL(λi) = Ii/L exactly, while

the second one uses zL(λ) = s(λ)− SL(r(λ− ·)) + ϕ/L.

12



First way

The quantity SL(zL1>z−1

L
(0)) is simply the sum of positive Bethe numbers divided by L2.

Using the following summation formula

m−1∑

k=0

(
k +

1

2

)
=

m2

2
, (66)

we get

SL(zL1>z−1

L
(0)) =

α2

2
+

n2
+

2L2
− αn+

L
+

∆+I

L2
, (67)

with
∆+I =

∑

Ik≥0

Ik −
∑

Jk≥0

Jk , (68)

where Jk are the Bethe numbers when all the vacancies are at the outmost positions (equiv-
alently: there is no vacancy between two Bethe numbers; or

∑
Jk≥0 Jk is minimal for a fixed

number of Bethe roots). ∆+I is also the number of times each vacancy has been moved one
step away from the Fermi surface. For example ∆+I = 0 for the ground state.

Second way

Here we use zL(λ) = z∞(λ)− wL(r(λ− ·)) + ϕ/L and SL = S∞ + wL to decompose:

SL(zL1>z−1

L
(0)) =S∞(z∞1>z−1

L
(0))

− S∞(wL ⋆ r1>z−1

L
(0)) + wL(z∞1>z−1

L
(0))

− wL(wL ⋆ r1>z−1

L
(0))

+ SL(ϕ1>z−1

L
(0))L

−1 .

(69)

The first term in this equation can be directly computed

S∞(z∞1>z−1

L
(0)) =

α2

2
− zL(0)

2

2
. (70)

As for the second term in eq. (69), we do the following interchange of order of summation
(recall that wL can be expressed as finite sums and integral over σ∞)

S∞((wL ⋆ r)1>z−1

L
(0)) = −wL((σ∞1>z−1

L
(0)) ⋆ r) , (71)
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where the minus sign comes from the oddness of r. To be clear and get used to the notations,
let us detail eq. (71):

S∞((wL ⋆ r)1>z−1

L
(0)) =

∫ ∞

−∞

σ∞(x)(wL ⋆ r)(x)1>z−1

L
(0)(x)dx

=

∫ ∞

−∞

σ∞(x)wL(r(x− ·))1>z−1

L
(0)(x)dx

= wL

(∫ ∞

−∞

σ∞(x)1>z−1

L
(0)(x)r(x− ·)dx

)

= −wL

(∫ ∞

−∞

σ∞(x)1>z−1

L
(0)(x)r(· − x)dx

)

= −wL((σ∞1>z−1

L
(0)) ⋆ r) .

(72)

An integration by part also gives

(σ∞1>z−1

L
(0)) ⋆ r = (α + zL(0))r(· − z−1

L (0)) + ((z∞ − α)1>z−1

L
(0)) ⋆ r

′ . (73)

Using eq. (61), the third term in eq. (69) is expressed as

wL(z∞1>z−1

L
(0)) = wL((z∞ − α)1>z−1

L
(0))− α

(n+

L
+ zL(0)

)
. (74)

The fifth term of eq. (69) is computed with the definition of n± in eq.(60)

SL(ϕ1>z−1

L
(0))L

−1 =
(α
L
− n+

L2

)
ϕ . (75)

Gathering everything, and using wL(r) = zL(0)− ϕ/L we get

SL(zL1>z−1

L
(0)) =

α2

2
+

zL(0)
2

2
− αn+

L
− ϕ

L

(n+

L
+ zL(0)

)
+ wL

[
(δ0 + r′) ⋆ ((z∞ − α)1>z−1

L
(0))

]

− wL((wL ⋆ r)1>z−1

L
(0)) .

(76)
We now just have to compute the Fourier transform of f defined by

f = (δ0 + r′) ⋆ ((z∞ − α)1>z−1

L
(0)) . (77)

It has a discontinuity of −α at z−1
L (0), and a discontinuity of the derivative of σ∞(0). More-

over the Fourier transform of its derivative is:

f̂ ′(ω) = (1 + r̂′)( ̂σ∞1>z−1

L
(0))(ω) . (78)

Recall from eq. (39) that, by definition, the ω ∈ Ω satisfy 1 + r̂′(ω) = 0. Thus in wL(f) we

recover the residues of the poles of ̂σ∞1>z−1

L
(0). But the poles of this function are the poles

in the negative half-plane of σ̂∞ = ŝ′(1 + r̂′)−1. Thus:

wL

[
(δ0 + r′) ⋆ ((z∞ − α)1>z−1

L
(0))

]
=

1

24L2
−

∑

ω∈Ω
−

ŝ′(ω)

iω
Aω , (79)

14



where we used the following notation

Ω− = {ω ∈ C, 1 + r̂′(ω) = 0 and ℑω < 0} . (80)

As for the term wL((wL ⋆ r)1>z−1

L
(0)) in eq. (69), the oddness of r allows us to rewrite it as:

wL((wL ⋆ r)1>z−1

L
(0)) = wL

[
wL(r(· − ·)1<z−1

L
(0))1>z−1

L
(0)

]
, (81)

where the first wL applies on the first dot ·. It means that the wL on the left applies on the
function x → wL(r(x−·)1<z−1

L
(0))1x>z−1

L
(0). Since it involves two wL, the only non-zero term

at order O(L−2) is given by the L−1 term in (65). Equation (65) gives:

wL(r(x− ·)1<z−1

L
(0))) = −r∞

(n−

L
− zL(0)

)
, (82)

and then the second application of wL gives:

wL((wL ⋆ r)1>z−1

L
(0)) = r∞

(n−

L
− zL(0)

)(n+

L
+ zL(0)

)
. (83)

Gathering everything we obtain

SL(zL1>z−1

L
(0)) =

α2

2
+

zL(0)
2

2
− αn+

L
+

1

24L2
− ϕ

L

(n+

L
+ zL(0)

)

−
∑

ω∈Ω
−

ŝ′(ω)

iω
Aω − r∞

(n−

L
− zL(0)

)(n+

L
+ zL(0)

)
.

(84)

Conclusion

Equating expressions (67) and (84) gives an equation for the Aω. Note that by definition
of vF , we have ŝ′(ω) = 0 if |ω| < vF . Moreover the bound (55) ensures that the Aω with
|ω| > vF do not appear in the expansion of the energy eL at order L−2. Thus A−ivF can be
readily deduced

ŝ′(−ivF )A−ivF

−vF
=− 1

24L2
+

n2
+

2L2
+

ϕ

L

(n+

L
+ zL(0)

)

+ r∞

(n−

L
− zL(0)

)(n+

L
+ zL(0)

)
− 1

2
zL(0)

2 +
∆+I

L2
,

(85)

while a similar computation for SL(zL1<z−1

L
(0)) gives

ŝ′(ivF )AivF

−vF
=− 1

24L2
+

n2
−

2L2
− ϕ

L

(n−

L
− zL(0)

)

+ r∞

(n−

L
− zL(0)

)(n+

L
+ zL(0)

)
− 1

2
zL(0)

2 +
∆−I

L2
.

(86)
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The final result is best captured into the combinations AivF +A−ivF (appearing for even
functions φ) and AivF −A−ivF (for odd functions). Using the expression for zL(0) in eq.(64)
we get

AivF + A−ivF =
−vF
12L2

1

ŝ′(ivF )

(
−1 + 3(n+ + n−)

2(1 + 2r∞) + 3
(n+ − n− + 2ϕ)2

1 + 2r∞
+ 12(∆+I +∆−I)

)

AivF − A−ivF =
−vF
L2

1

ŝ′(ivF )

(
−1

2
(n+ + n−)(n+ − n− + 2ϕ) + ∆−I −∆+I

)
,

(87)
at order L−2, with n± given in eq. (60) and ∆±I in eq. (68).

Double zero case

We saw that if 1+ r̂′ has a double zero at ω ∈ Ω (meaning that moreover (r̂′)′(ω) = 0), then
ŵL can also include derivatives of the Dirac distribution and eq. (38) is modified. For the
XXZ model this happens as soon as γ/π is rational. But for most values of γ, the ω that
are concerned are very large, and thus only the highest corrections in L to the energy are
modified. However for γ = π/n with n integer, the value ±ivF is a double zero of 1 + r̂′ and
small changes have to be taken into account in the previous derivation. In this case we have

ŵL = BivF δ
′
ivF

+B−ivF δ
′
−ivF

+
∑

ω∈Ω

Aωδω , (88)

with Aω and B±ivF some constants. Since the Bethe root density (18) still has a simple pole
at ±ivF , we need to have ŝ′(±ivF ) = 0 and (ŝ′)′(±ivF ) 6= 0. Then in the expression of the
energy eL = −2πSL(s

′) only the constants B±ivF appear, not A±ivF . Back in eq. (78), the
Fourier transform of f applied to ω ∈ Ω selects the double poles in the negative half-plane
of σ̂∞ for A±ivF , and the simples poles in the negative half-plane of σ̂∞ for B±ivF . Thus we
get

wL

[
(δ0 + r′) ⋆ ((z∞ − α)1>z−1

L
(0))

]
=

1

24L2
− (ŝ′)′(−ivF )

vF
B−ivF −

∑

ω∈Ω
−

ŝ′(ω)

iω
Aω , (89)

the sum over the Aω being negligible at order L−2 because of ŝ′(−ivF ) = 0. Thus for
eq. (87) we get the same expression, but with A±ivF replaced by B±ivF and ŝ′(ivF ) replaced
by (ŝ′)′(±ivF ). Then the formula for eL hereafter (90) is exactly the same.

7 Corrections to observables

The previous computations of Aω can be used to determine the corrections to the energy,
the momentum and the eigenvalue of the transfer matrix.
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Energy

In the XXZ spin chain the formula (87) can be applied to compute the energy eL with
φ = −2πs′. We get:

eL = e∞ − πvF
6L2

(
c− 12(h+ h̄)

)
+ o(L−2) , (90)

with
c = 1− 12ϕ2g−1

h+ h̄ =
1

4

(
(n+ + n−)

2g + (n+ − n− + 4ϕ)(n+ − n−)g
−1
)
+∆+I +∆−I

g = 1 + 2r∞

(91)

where we identify the central charge c and the coupling constant g = 2(1 − γ/π). n± are
defined through eq.(60).

The ∆±I terms deserve some comments. While the exponent with ∆±I 6= 0 naturally
corresponds to descendants under the action of the Virasoro generators, eq. (68) should not
conceal the fact that one does not get, in this way, all descendants in the corresponding
Verma module. Indeed, taking the limits λ → ±∞ in the counting function in eq. (5) for
ϕ = 0 shows that there is a bound on the possible Bethe numbers I

|I| ≤ L

4
+ (n+ + n−)

(
1

2
− γ

π

)
. (92)

To see the consequences of this bound on the degeneracies of the descendants, let us discuss a
simple example. Consider the case of an excited state corresponding to a primary field with
L/2 − 2 Bethe roots, with n+ = n− = 1 for γ = π/5. There are two vacancies for positive
Bethe roots and two for negative ones. Let us focus on the positive Bethe roots and denote
by • a Bethe root, and by + a vacancy. The right of the diagram corresponds to the highest
Bethe number, and the left to the sea of Bethe roots. Then we have some descendants

• • • • • • • + + primary φ

• • • • • • + • + descendant L−1φ

• • • • • • + + • descendant L−2φ

• • • • • + • • + descendant L2
−1φ

• • • • • + • + • descendant L−2L−1φ

• • • • • + + • • descendant L2
−2φ

• • • • + • + • • descendant L2
−2L−1φ

(93)

To identify the Bethe root configurations with Virasoro descendants we have used the fol-
lowing bijection: The string of L−n operators, read from left to right, corresponds to the set
of excited Bethe roots, read from right to left, with n being the number of vacancies seen
to the left of a given Bethe root. In this example no L−m with m ≥ 3 can be used, since
there is no infinite sea (more precisely a number growing with L) of vacancies at the right.
This constraint comes from the bound (92). Thus the number of different configurations of
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Bethe roots such that ∆±I = k for a fixed k depends on the number of positive vacancies
m and is pm(k) the number of ways (up to commutations) of writing k as a sum of integers
≤ m. This integer m is directly linked to the bound (92). For positive roots it is given by
the integer part of (n+ + n−)(1/2− γ/π) + n+ + 1/2.

In the Virasoro algebra the number of descendants is independent of the sector, and is
given by p(k) the number of ways (up to commutations) of writing k as a sum of positive
integers. If there were an infinite sea of vacancies we would indeed recover the degeneracies
of the Virasoro algebra. But here, the “partial” character χm(q) (partial because there may
be other ways to get descendants) of the descendants that we can obtain with real Bethe
roots for the sector with m vacancies is then

χm(q) =
∞∑

k=0

pm(k)q
k =

m∏

k=1

1

1− qk
. (94)

In particular the ground state has no descendants with real Bethe roots, since in this case
there is no vacancy at all. Notice as well that this partial character depends on γ through
m. We also stress that the fact that one does not recover the degeneracies of the Virasoro
algebra with real Bethe roots has nothing to do with being in finite size L instead of being
in the thermodynamic limit: even in this limit the bound (92) remains valid. This is thus
a priori not related to the finitized characters [24] which deal with the conformal spectrum
seen in finite size.

Some descendants that involves non-real Bethe roots have roots with imaginary part
iπ/2, and counting them is necessary to get the full degeneracies. But deriving the finite-
size effetcs for such structures demands adaptations to the method that we do not treat in
this paper.

Momentum

We can apply the method to the momentum defined by pL = SL(2iπs) as well. We get:

pL = −2iπ

L
α(n+ − n− + 2ϕ) +

iπ

L2
(n+ + n−)(n+ − n− + 2ϕ) +

2iπ

L2
(∆+I −∆−I) , (95)

that corresponds to

pL = −2iπ

L
α(n+ − n− + 2ϕ) +

2iπ

L2

(
h− h̄

)
, (96)

with

h, h̄ =
1

8

(
(n+ + n−)

√
g ± n+ − n− + 2ϕ√

g

)2

+∆±I . (97)

Note that this allows us to identify the parameter vF with the Fermi velocity, since it appears
as the proportionality factor in e ∝ p.
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Eigenvalues

The eigenvalue at spectral parameter µ of the transfer matrix for the corresponding six-vertex
model is given by

Λ(µ, {λj}) = sinh(µ+ iγ)L
M∏

j=1

sinh(µ− λj − iγ/2)

sinh(µ− λj + iγ/2)
+ sinh(µ)L

M∏

j=1

sinh(µ− λj + i3γ/2)

sinh(µ− λj + iγ/2)
.

(98)
Set µ = iλ. For −γ/2 < λ < 0 the second term is exponentially smaller than the first
term for the ground state and first excitations. Then the log of the absolute value of the
eigenvalue is equal to the log of the first term up to exponentially small corrections. Denoting
fL(λ) = log(|Λ(iλ)|)/L, we thus have

fL(λ) = log sin(λ+ γ) + SL(Fλ) , (99)

with

Fλ(µ) = log

∣∣∣∣
sinh(iλ− µ− iγ/2)

sinh(iλ− µ+ iγ/2)

∣∣∣∣ . (100)

The Fourier transform of this function can be evaluated [25]

F̂λ(ω) = −sinh(λω)

ω
2πŝ′(ω) . (101)

Then we have at order L−2

fL(λ)− f∞(λ) =
sin λvF
vF

(eL − e∞) + o(L−2) . (102)

The spectral parameter plays the role of an anisotropy, and in the thermodynamic limit it
amounts to rescaling one of the axes.

8 Concluding remarks

As a conclusion we give here an overview of the differences between our approach and the
Wiener-Hopf and NLIE methods mentioned in the introduction.

8.1 Wiener-Hopf

The starting point of this method is to use Euler-MacLaurin formula to express the sum
of a function over the Bethe roots (which is SL(φ) in our notations) [6, 7, 9]. As already
said, this operation is a Riemann sum of φ ◦ z−1

L , and the Euler-MacLaurin formula we
stated applies to functions that do not depend on L. There actually exists another version
of Euler-MacLaurin with a remainder term that can be applied to L-dependent functions,
which reads (with ΛL the largest Bethe root)

SL(φ) =

∫ ΛL

−ΛL

φz′L +
φ(ΛL) + φ(−ΛL)

2L
+

φ′(ΛL)− φ′(−ΛL)

12L2σ∞(ΛL)
+ ǫL(φ) . (103)
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In general there is no guarantee that the remainder term ǫL(φ) is negligible compared to the
other ones, and actually this is precisely not the case in Bethe equations: for r′ or s′ the
remainder term would be of order O(L−2) as well. To go over this difficulty the following
trick is used [7]: one adds r̂′ ⋆ z′L to the equation defining z′L and then solve it for z′L. This
process creates the so-called ’dressed’ functions φdr given by

φ̂dr =
φ̂

1 + r̂′
. (104)

The Euler-MacLaurin fomula is then applied with these dressed functions. Although it was
thought at the beginning that the remainder term is negligible after the dressing, it is actually
still not the case, as pointed out by Karowski [8]. Nevertheless carrying out the computations
without taking care of these terms still used to work, and Karowski gave some arguments to
justify it. But according to [8] the intermediate steps are not numerically completely exact.
Using the method of dressing an equation is obtained, involving ΛL and z′L(ΛL) which are
unknowns. To determine them a Wiener-Hopf equation is derived on χ(λ) = z′L(λ+ ΛL)

χ(λ) +

∫ +∞

0

χ(s)k(λ− s)ds = f(λ) , (105)

with k and f some functions (that depend on ΛL and z′L(ΛL)). This is a very non-trivial
equation to solve and demands complex analysis theorems [26]. But solving it then leads to
the result for the central charge after some work.

8.2 NLIE

Originally the NLIE were derived in [11, 12, 13] from analyticity properties of Bethe equa-
tions. A shortcut was then found [14] by expressing SL(φ) as a contour integral thanks to
the residue theorem

SL(φ) =
1

2iπL

∮

C

φ(x)
d

dx
log

(
1 + e2iπLzL(x)

)
dx , (106)

where C is a contour that encircles the Bethe roots. The integrand indeed has a pole at each
Bethe root, since by definition e2iπLzL(x) evaluates to −1 at them (when Bethe numbers are
half-integers). Then by expressing SL(r(λ− ·)) this way, a non-linear integral equation can
be found for zL.

The energy is then expressed in a similar way. As in the Wiener-Hopf case, a manipulation
is made so that to involve the dressed functions φdr. The result (in particular the central
charge c = 1) is then obtained through dilogarithm identities.

8.3 Differences

We expand here the comment made in the introduction on the differences between these
methods and the one we present.
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Our method mainly uses the tools of distribution theory. No Wiener-Hopf equations, no
dilogarithms and very little complex analysis are used. As it is common with this technol-
ogy, we start by studying the functional SL when applied on C∞ functions with compact
support. A powerful constraint given by equation (38) is derived. Then it is extended to
more general functions with possible discontinuities and without compact support. This ob-
servation is at the heart of our approach and is totally absent from the two previous methods.

To compute the main constants A±ivF that appear in (38), we sum the counting functions
over positive or negative Bethe roots. No equivalent operation can be found in the previous
methods as well, which both focus on the properties of the tail of the counting function.
Note that beside getting the central charge and conformal dimensions in an efficient way
this operation permits us to get the finite-size effects for the descendants very simply.

Possible directions for applications or extensions of the method include treating the case
of complex roots (strings), treating configurations with isolated Bethe roots, or comput-
ing next-order corrections, including logarithmic ones. Extensions to higher-rank Bethe
equations can also be considered. Complex roots demand a suitable adaptation of the Euler-
MacLaurin formula, which is no longer applicable in this case. Configurations with isolated
Bethe roots are relevant in particular for the analysis of Verma modules, since they are
necessary to describe descendants in the XXZ model. Finally it can be seen that some of
the next-order corrections are quadratic in the Aω’s, and in case of a non-invertible kernel
1 + 2r∞ the fact that 0 ∈ Ω in eq.(39) together with the bound (55) leaves room for loga-
rithmic corrections. Progress on these various directions will be discussed in subsequent work.
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