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Lectures on compact Riemann surfaces.

B. Eynard1 2

Paris–Saclay’s IPHT doctoral school Lecture given in winter 2018.

This is an introduction to the geometry of compact Riemann surfaces. We largely

follow the books [8, 9, 10]. 1) Defining Riemann surfaces with atlases of charts, and

as locus of solutions of algebraic equations. 2) Space of meromorphic functions and

forms, we classify them with the Newton polygon. 3) Abel map, the Jacobian and

Theta functions. 4) The Riemann–Roch theorem that computes the dimension of

spaces of functions and forms with given orders of poles and zeros. 5) The moduli

space of Riemann surfaces, with its combinatorial representation as Strebel graphs,

and also with the uniformization theorem that maps Riemann surfaces to hyperbolic

surfaces. 6) An application of Riemann surfaces to integrable systems, more precisely

finding sections of an eigenvector bundle over a Riemann surface, which is known as

the ”algebraic reconstruction” method in integrable systems, and we mention how it

is related to Baker-Akhiezer functions and Tau functions.

1Institut de Physique Théorique de Saclay, F-91191 Gif-sur-Yvette Cedex, France.
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Notations

• D(x, r) is the open disc of center x and radius r in C, or the ball of center x and

radius r in Rn.

• C(x, r) = ∂D(x, r) is the circle (resp. the sphere) of center x and radius r in C
(resp. in Rn).

• Cx is a ”small” circle around x in C, or a small circle in a chart around x on a

surface, small meaning that it is a circle of radius sufficiently small to avoid all

other special points.

• Tτ = C/(Z+τZ) is the 2-torus of modulus τ , obtained by identifying z ≡ z+1 ≡
z + τ .

• CP 1 = C = C ∪ {∞} is the Riemann sphere.

• C+ is the upper complex half–plane = {z | =z > 0}, it is identified with the

Hyperbolic plane, with the metric 1
=z |dz|, of constant curvature −1, and whose

geodesics are the circles or lines orthogonal to the real axis.

• M1(Σ) the C vector space of meromorphic forms on Σ,

• O1(Σ) the C vector space of holomorphic forms on Σ.

• H1(Σ,Z) (resp. H1(Σ,C)) the Z–module (resp. C–vector space) generated by

homology cycles (equivalence classes of closed Jordan arcs, γ1 ≡ γ2 if there exists

a 2-cell A whose boundary is ∂A = γ1 − γ2, with addition of Jordan arcs by

concatenation) on Σ.

• π1(Σ) is the fundamental group of a surface (the set of homotopy classes of closed

curves on a Riemann surface with addition by concatenation).
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Poincaré metric, 95
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Chapter 1

Riemann surfaces

1 Manifolds, atlases, charts, surfaces

Definition 1.1 (Topological Manifold) A manifold M is a second countable (the

topology can be generated by a countable basis of open sets) topological separated space

(distinct points have disjoint neighborhoods, also called Haussdorf space), locally

Euclidian (each point has a neighborhood homeomorphic to an open subset of Rn for

some integer n).

Definition 1.2 (Charts and atlas) A chart on M is a pair (V, φV ), of a neighbor-

hood V , together with an homeomorphism φV : V → U ⊂ Rn, called the coordinate

or the local coordinate. For each intersecting pair V ∩ V ′ 6= ∅, the transition

function is the map: ψU→U ′ : φV (V ∩ V ′) → φV ′(V ∩ V ′), x 7→ φV ′ ◦ φ−1
V (x), it is a

homeomorphism of Euclidian subspaces, with inverse

ψ−1
U→U ′ = ψU ′→U . (1-1)

A countable set of charts that cover the manifold M is called an atlas of M . Two

atlases are said equivalent iff their union is an atlas.
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Definition 1.3 (Various types of manifold) M is a topological (resp. smooth,

resp. k-differentiable, resp. complex) manifold if it has an atlas for which all transi-

tion maps are continuous (resp. C∞, resp. Ck, resp. holomorphic).

An equivalence class of atlases with transition functions in the given class (smooth,

resp. k-differentiable, resp. complex) is called a smooth, resp. k-differentiable, resp.

complex structure on M .

The dimension n must be constant on each connected part of M . We shall most

often restrict ourselves to connected manifolds, thus having fixed dimension.

• A surface is a manifold of dimension n = 2.

• A surface is a Riemann surface if, identifying R2 = C, each transition map is

analytic with analytic inverse. An equivalence class of analytic atlases on M is

called a complex structure on M .

• A differentiable manifold is orientable if, all transition maps ψ : (x1, . . . , xn) 7→
(ψ1(x1, . . . , xn), . . . , ψn(x1, . . . , xn)), have positive Jacobian det(∂ψi/∂xj) > 0.

Thanks to Cauchy-Riemann equations, a Riemann surface is always orientable.

• A manifold is compact if it has an atlas made of a finite number of bounded (by

a ball in Rn) charts. Every sequence of points {pn}n∈N on M , admits at least one

adherence value, or also every Cauchy sequence on M is convergent.

Defining a manifold from an atlas

Definition 1.4 An abstract atlas is the data of

• a countable set I,

• a collection {Ui}i∈I of open subsets of Rn,

• a collection {Ui,j}i,j∈I×I of (possibly empty) open subsets of Rn such that Ui,j ⊂
Ui, and such that Ui,j is homeomorphic to Uj,i, i.e. –if not empty– there exists an

homeomorphism ψi,j : Ui,j → Uj,i and an homeomorphism ψj,i : Uj,i → Ui,j such

that ψi,j ◦ ψj,i = Id. Moreover we require that Ui,i = Ui and ψi,i = Id. Moreover

we require that Uj,i∩Uj,k = ψi,j(Ui,j ∩Ui,k) and that ψj,k = ψi,k ◦ψj,i on Uj,i∩Uj,k
(if not empty): {

ψi,j ◦ ψj,i = Id
ψj,k = ψi,k ◦ ψj,i

(1-2)

Depending on the type of manifold (topological, smooth, k-differentiable, complex), we

require all homeomorphisms to be in the corresponding class.
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From an abstract atlas we can define a manifold as a subset of Rn × I quotiented

by an equivalence relation:

Proposition 1.1

M =
{(z, i) ∈ Rn × I | z ∈ Ui}

(z, i) ≡ (z′, j) iff z ∈ Ui,j , z′ ∈ Uj,i , ψi,j(z) = z′
(1-3)

with the topology induced by that of Rn, is a manifold (resp. smooth, resp. complex,

depending on the class of homeomorphisms ψi,j).

proof: It is easy to see that this satisfies the definition of a manifold. Notice that

in order for M to be a well defined quotient, we need to prove that ≡ is a well defined

equivalence relation, and this is realized thanks to relations (1-2). Then we need to

show that the topology is well defined on M , this is easy and we leave it to the reader.

�

All manifolds can be obtained in this way.

1.1 Classification of surfaces

We shall admit the following classical theorem:

Theorem 1.1 (Classification of topological compact surfaces) Topological

compact connected surfaces are classified by:

• the orientability: orientable or non–orientable

• the Euler characteristics

13



This means that 2 surfaces having the same orientability and Euler characteristic are

isomorphic.

• An orientable surface Σ has an even Euler characteristic of the form

χ = 2− 2g (1-4)

where g ≥ 0 is called the genus, and is isomorphic to a surface with g holes. Its

fundamental group (non-contractible cycles) is generated by 2g cycles:

π1(Σ) ∼ Z2g. (1-5)

• A non-orientable surface Σ has an Euler characteristic

χ = 2− k (1-6)

with k ≥ 1, it is isomorphic to a sphere from which we have removed k disjoint

discs, and glued k Möbius strips at the k boundaries (this is called k crosscaps).

If χ = 1, it is isomorphic to the real projective plane RP 2.

If χ = 0, it is isomorphic to the Klein bottle.

2 Examples of Riemann surfaces

2.1 The Riemann sphere

• Consider the Euclidian unit sphere in R3, the set {(X, Y, Z) | X2 + Y 2 + Z2 = 1}.
Define the 2 charts:

V1 = {(X, Y, Z) | X2 + Y 2 + Z2 = 1, Z > −3

5
} , φ1 : (X, Y, Z) 7→ X + iY

1 + Z

14



V2 = {(X, Y, Z) | X2 + Y 2 + Z2 = 1, Z <
3

5
} , φ2 : (X, Y, Z) 7→ X − iY

1− Z
. (2-1)

U1 (resp. U2), the image of φ1 (resp. φ2), is the open disc D(0, 2) ⊂ C. The image by

φ1 (resp. φ2) of V1 ∩ V2 is the annulus 1
2
< |z| < 2 in U1 (resp. U2). On this annulus,

the transition map

φ2 ◦ φ−1
1 = ψ : z 7→ 1/z (2-2)

is analytic, bijective, and its inverse is analytic. This defines the Riemann sphere,

which is a compact (the 2 charts are bounded discs D(0, 2)), connected (obvious)

and simply connected Riemann surface (easy). The map φ1 (resp. φ2) is called the

stereographic projection from the south (resp. north) pole of the sphere to the Euclidian

plane Z = 0 in R3, identified with C.

• Another definition of the Riemann sphere is the complex projective plane

CP 1:

CP 1 =
{(z1, z2) ∈ C× C | (z1, z2) 6= (0, 0)}

(z1, z2) ≡ (λz1, λz2) , ∀ λ ∈ C∗
. (2-3)

It has also an atlas of 2 charts, V1 = {[(z1, z2)] | z2 6= 0}, φ1 : [(z1, z2)] 7→ z1/z2

and V2 = {[(z1, z2)] | z1 6= 0}, φ2 : [(z1, z2)] 7→ z2/z1, with transition map z 7→ 1/z

(everything is well defined on the quotient by ≡).

CP 1 is analytically isomorphic to the Riemann sphere previously defined.

• Another definition of the Riemann sphere is from an abstract atlas of 2 charts

U1 = D(0, R1) ⊂ C and U2 = D(0, R2) ⊂ C whose radius satisfy R1R2 > 1. The 2 discs

are glued by the analytic transition map ψ : z 7→ 1/z from the annulus 1
R2
< |z| < R1

in U1 to the annulus 1
R1
< |z| < R2 in U2.
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In other words, consider the following subset of C× {1, 2}

{(z, i) ∈ C× {1, 2} | z ∈ Ui}
≡

(2-4)

quotiented by the equivalence relation

(z, i) ≡ (z̃, j) iff i = j and z = z̃ or i+ j = 3 and zz̃ = 1. (2-5)

This Riemann surface is analytically isomorphic to the Riemann sphere previously

defined.

• Notice that one can choose R1 very large, and R2 very small, and even consider

a projective limit R1 →∞ and R2 → 0, in other words glue the whole U1 = C to the

single point U2 = {0}. Notice that the point z′ = 0 in U2 should correspond to the

point z = 1/z′ = ∞ in U1 = C. In this projective limit, by adding a single point to

C, we turn it into a compact Riemann surface C = C ∪ {∞}. The topology of C is

generated by the open sets of C, as well as all the sets VR = {∞} ∪ {z ∈ C | |z| > R}
for all R ≥ 0. These open sets form a basis of neighborhoods of∞. With this topology,

C is compact.

This justifies that the Riemann sphere is called a compactification of C:

CP 1 = C = C ∪ {∞}. (2-6)

2.2 The torus

Consider τ ∈ C with =τ > 0. Let

Tτ = C/(Z + τZ) (2-7)

in other words, we identify z ≡ z + 1 ≡ z + τ .

Each point has a neighborhood homeomorphic to a disc ⊂ C. Transition maps are

of the form z 7→ z + a + τb with a ∈ Z and b ∈ Z, they are translations, they are

analytic, invertible with analytic inverse.

The torus is a Riemann surface, compact, connected, but not simply connected.
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3 Compact Riemann surface from an algebraic

equation

The idea is to show that the locus of zeros (in C × C) of a polynomial equation

P (x, y) = 0 is a Riemann surface. This is morally true for all generic polynomials, but

there are some subttleties. Let us start by an example where it works directly, and

then see why this assertion has to be slightly adapted.

3.1 Example

We start with the polynomial

P (x, y) = y2 − x2 + 4. (3-1)

Consider

Σ̃ = {(x, y) | y2 − x2 + 4 = 0} ⊂ C× C (3-2)

which is a smooth submanifold of C× C.

17



We can cover it with an atlas of 6 charts as follows (we choose the square root such

that
√
R+ = R+, and with the cut on R−):

V+ = {(x,+
√
x2 − 4) | x ∈ U+ = C \ [−2, 2]} , φ+ : (x, y) 7→ x

V− = {(x,−
√
x2 − 4) | x ∈ U− = C \ [−2, 2]} , φ− : (x, y) 7→ x

V1 = {(2 + z2, z
√

4 + z2) | z ∈ U1 = D(0, 1)} , φ1 : (x, y) 7→
√
x− 2

V−1 = {(−2 + z2, i z
√

4− z2) | z ∈ U−1 = D(0, 1)} , φ−1 : (x, y) 7→
√
x+ 2

V+− = {(x, i
√

4− x2) | x ∈ U+− = [
−3

2
,
3

2
]× [
−1

2
,
1

2
]} , φ− : (x, y) 7→ x

V−+ = {(x,−i
√

4− x2) | x ∈ U−+ = [
−3

2
,
3

2
]× [
−1

2
,
1

2
]} , φ− : (x, y) 7→ x

(3-3)

We have V+ ∩ V− = ∅ and V1 ∩ V−1 = ∅. The transition maps on V+− ∩ V± (resp.

V−+ ∩ V±) are x 7→ x. The transition maps on V±1 ∩ V± are:

z 7→ ±2 + z2 (3-4)

with inverse

x 7→ ±
√
x∓ 2. (3-5)

All points of Σ̃ are covered by a chart, this defines a Riemann surface, it is connected,

but it is not simply connected (it has the topology of a cylinder). However, it is not

compact, because two of the charts (V+ and V−) are not bounded in C.

We shall define a compact Riemann surface Σ by adding two points, named

+(∞,∞) and −(∞,∞) to Σ̃, with two charts as their neighborhoods:

V±∞ = {(x,±
√
x2 − 4) | |x| > 4} ∪ {±(∞,∞)} , φ±∞ :

(x, y) 7→ 1/x
±(∞,∞) 7→ 0

. (3-6)

Their images U±∞ = D(0, 1
4
) are discs in C.

V+∞ (resp. V−∞) intersects V+ (resp. V−), and for both, the transition map is

x 7→ 1/x. (3-7)

The Riemann surface Σ is then compact, connected and simply connected. Therefore

topologically it is a sphere. Indeed there is a holomorphic bijection (with holomorphic

inverse) with the Riemann sphere:

CP 1 → Σ

z 7→ (z + 1/z, z − 1/z). (3-8)

In fact, there is the theorem (that we admit here, proved below as theorem 3.5):

Theorem 3.5 (Genus zero = Riemann sphere) Every simply connected (i.e. genus

zero) compact Riemann surface is isomorphic to the Riemann sphere.
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3.2 General case

For every polynomial P (x, y) ∈ C[x, y], let Σ̃ be the locus of its zeros in C× C:

Σ̃ = {(x, y) | P (x, y) = 0} ⊂ C× C. (3-9)

The idea is that we need to map every neighborhood in Σ̃ to a neighborhood in

C, and for most of the points of Σ̃, we can use x as a coordinate, provided that x is

locally invertible. This works almost everywhere on Σ̃ except at the point where x−1

is not locally analytic. Near those special points we can’t use x as a coordinate, and

we shall describe how to proceed.

• First let us consider the (finite) set of singular points

Σ̃sing = {(x, y) | P (x, y) = 0 and P ′y(x, y) = 0}, (3-10)

and the set of their x coordinates, to which we add the point ∞:

xsing = x(Σ̃sing) ∪ {∞} ⊂ CP 1. (3-11)

Remark that xsing − {∞} is the set of solutions of a polynomial equation

x ∈ xsing−{∞} ⇔ 0 = ∆(x) = Discriminant(P (x, .)) = Resultant(P (x, .), P ′y(x, .)),

(3-12)

which implies that it is a finite set of isolated points.

• Then choose a connected simply connected set of non–intersecting Jordan arcs in

CP 1, linking the points of xsing, i.e. a simply connected graph Γ ⊂ CP 1 (a tree) whose

vertices are the points of xsing. Define Σ0 = Σ̃ \ x−1(Γ) by removing the preimage of

Γ. Let d = degy P , we define d charts as d identical copies of C \ Γ as

U1 = U2 = · · · = Ud = {x|(x, y) ∈ Σ0} = C \ Γ. (3-13)

Each Ui is open, connected and simply connected. The Uis play the same role as U+

and U− in the previous example with d = 2. Let x0 be a generic interior point in

C \ Γ. The equation P (x0, y) = 0 has d distinct solutions, let us label them (arbi-

trarily) Y1(x0), . . . , Yd(x0). For each i = 1, . . . , d, Yi can be unambiguously analytically

extended to the whole Ui (because it is simply connected), and thus there is an analytic

map on Ui: x 7→ Yi(x), i = 1, . . . , d. We then define the charts Vi ⊂ Σ̃ by

Vi = {(x, Yi(x)) | x ∈ Ui} , φi :
Vi → Ui

(x, Yi(x)) 7→ x
. (3-14)

This generalizes the two charts V± in the previous example. Then we need to define

charts that cover the neighborhood of singular points, and the neighborhood of edges

of the graph Γ.
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• Consider the most generic sort of singular point (a, b), such that P ′y(a, b) = 0, but

P ′x(a, b) 6= 0 and P ′′yy(a, b) 6= 0. (a, b) is called a regular ramification point and a is

called a branch point.

In that case, there are 2 charts, let us say Vi, Vj with i 6= j, that have (a, b) at their

boundary. Due to our most–generic–assumption, the map Vi → C, (x, y) 7→
√
x− a

(resp. Vj → C, (x, y) 7→ −
√
x− a) is analytic in a neighborhood of (a, b) in Vi (resp.

Vj). We thus define a new chart for each singular point (a, b), as a neighborhood of

this point. It intersects Vi (resp. Vj) with transition map z 7→ (a+z2, Yi(a+z2)) (resp.

z 7→ (a+ z2, Yj(a+ z2))). In other words we choose
√
x− a as a local coordinate near

(a, b).

Also, this defines the ”deck transformation” at the singular point: the permuta-

tion (here a transposition) σa = (i, j).

• Consider an open edge e of Γ (open means excluding the vertices), its boundary

consists of the x-images a, a′ of 2 singular points, each with a permutation σa, σa′ . In the

generic case the 2 transpositions have to coincide, and we associate this transposition

σe = σa = σa′ to the edge e.

Now consider a tubular neighborhood Ue of e in C\xsing, and that contains no other

edges. Ue ∩ Ui is disconnected and consists of 2 pieces Ue,i,± ⊂ Ui. By pulling back to

Σ by x−1, we get Ve,i,± ⊂ Vi, and we define

Ve,i = Ve,i,+ ∪ Ve,σe(i),− ∪ {(x, Yi(x)) | x ∈ e}, φe,i : (x, y) 7→ x. (3-15)

the chart Ve,i is an open connected domain of Σ̃ and φe,i is analytic. The transition

maps x 7→ x are analytic with analytic inverse.

This is the generalization of the charts V+− and V−+ in the example above. It

consists of gluing neighborhoods of the 2 sides of an edge, to neighborhoods obtained

by the permutation σe.

• For generic polynomials P , all singular points are of that type, and we get a

Riemann surface, non-compact (this was the case for the example y2 − x2 + 4 = 0).

• We can make it compact by adding new points at ∞, as we did for the example

above, but many subttleties can occur at ∞.

This shows that algebraic curves are generically Riemann surfaces, that can be

compactified.

In fact we shall see below in section 3.4 that the converse is almost true: every

compact Riemann surface can be algebraically immersed into CP 2 (we have to replace

C2 by CP 2 to properly compactify at ∞). Generically this immersion is in fact an

embedding.
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3.3 Non–generic case: desingularization

Sometimes the singular points are not generic, this can also be the case near ∞. Like

we did in the example, where we added new points to Σ to make it compact in neigh-

borhoods of ∞, we can desingularize all singular points by adding new points, and

defining a new surface Σ = Σ̃ ∪ {new points}, which is a smooth compact Riemann

surface.

• Nodal points. A slightly less (than ramification points) generic type of sin-

gular points (a, b), is where both P ′y(a, b) and P ′x(a, b) vanish, to the lowest pos-

sible order, i.e. we assume that the second derivative Hessian matrix is invertible

det

(
P ′′xx(a, b) P ′′xy(a, b)
P ′′yx(a, b) P ′′yy(a, b)

)
6= 0. The intersection of Σ̃ with a small ball D((a, b), r) ⊂

C×C, is not homeomorphic to a Euclidian disc, instead it is homeomorphic to a union

of 2 discs, which have a common point (a, b). This implies that Σ̃ is in fact not a

manifold, it has points whose neighborhoods are not homeomorphic to Euclidian discs.

We say that the surface Σ̃ has a self intersection, this is called a nodal point.

Nodal points can be desingularized by first removing the point (a, b) from Σ̃, and

adding a 2 new points to Σ̃, called (a, b)+ and (a, b)−, and we define the neighborhoods

of (a, b)± by one of the 2 punctured discs of Σ̃∩D((a, b), r)∗, so that the neighborhoods

are now 2 Euclidian discs, as illustrated below:

• In a similar manner, by adding new points to Σ̃, all other types of singular points

(including neighborhoods of∞, and higher order singular points, at which the Hessian

can vanish) can be ”desingularized”, leading to a Riemann surface Σ, which is a smooth

compact Riemann surface.

• There is a holomorphic map:

Σ → Σ̃

p 7→ (x(p), y(p)), (3-16)

However this map is not always invertible (it is not invertible at nodal points, since a

nodal point is the image of 2 (or more) distinct points of Σ).

The map defines 2 holomorphic maps x : Σ → CP 1 and y : Σ → CP 1. Since they

can reach ∞ ∈ CP 1, we say that they are meromorphic, i.e. they can have poles.
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Eventually this implies that an algebraic equation P (x, y) = 0 defines a compact

Riemann surface, and we have the following theorem

Theorem 3.1 There exists a smooth compact Riemann surface Σ, and 2 meromorphic

maps x : Σ→ CP 1 and y : Σ→ CP 1, such that

Σ̃ = {(x, y) | P (x, y) = 0} = {(x(p), y(p)) | p ∈ Σ \ x−1(∞) ∪ y−1(∞)}. (3-17)

The map

Σ → Σ̃

p 7→ (x(p), y(p)), (3-18)

is meromorphic.

3.4 Projective algebraic curves

Consider a homogeneous polynomial P (x, y, z) ∈ C[x, y, z] of some degree d, write its

coefficients

P (x, y, z) =
∑

(i,j,k), i+j+k=d

Pi,j,k x
iyjzk. (3-19)

Now consider the subset of

CP 2 =
{(x, y, z) 6= (0, 0, 0)}

(x, y, z) ≡ (λx, λy, λz) ∀λ ∈ C∗
(3-20)

annihilated by P

Σ = {[(x, y, z)] ∈ CP 2 | P (x, y, z) = 0} (3-21)

(it is well defined on equivalence classes thanks to the homogeneity of P .) Locally

CP 2 ∼ C2, indeed in a neighborhood of a point where at least 1 of the 3 coordinates

is not 0 (assume z 6= 0), then (x, y, z) ≡ (x/z, y/z, 1). In other words, away from

neighborhoods of z = 0, we can choose z = 1 and write the equation as

P (x, y, 1) = 0. (3-22)

The points of Σ where one of the 3 coordinates x, y or z vanishes are called punctures.

Following the same procedure as above, we can find an atlas of Σ, by first removing

a graph containing all singular points and punctures, with local coordinate x, and

transition maps are x 7→ x. Except for charts around singular points, or charts around

punctures, where we have to find another local parameter, typically (x − a)1/da , and

possibly desingularize by adding new points to Σ.

We shall admit the following:
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Theorem 3.2 Every compact Riemann surface can be algebraically immersed into

CP 2, with at most simple nodal points.

Moreover, every compact Riemann surface can be algebraically embedded into CP 3

(embedding=bijective, no nodal points).

This is why algebraic is almost synonymous to compact for Riemann surfaces

Algebraic = compact
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Chapter 2

Functions and forms on Riemann
surfaces

1 Definitions

Definition 1.1 (Functions) An analytic function, f on an atlas of a Riemann sur-

face Σ, is the data of a holomorphic function fU : U → CP 1 in each chart, satisfying

for every transition:

fU = fU ′ ◦ ψU→U ′ . (1-1)

This allows to define unambiguously for every point of Σ:

f(φ−1
U (z)) = fU(z). (1-2)

A holomorphic function that takes values in CP 1 is called meromorphic if it reaches

the value ∞ (it has poles), and holomorphic otherwise. We shall denote

• M0(Σ) the vector space of meromorphic functions on Σ,

• O(Σ) (or sometimes O0(Σ)) the vector space of holomorphic functions on Σ.

Definition 1.2 (Forms) A meromorphic 1-form, ω on an atlas of a Riemann surface

Σ, is the data of a holomorphic function ωU : U → CP 1 in each chart, that satisfies

for every transition:

ωU(z) = ωU ′(ψU→U ′(z))
d

dz
ψU→U ′(z). (1-3)

This allows to define unambiguously

ω(φ−1
U (z)) = ωU(z)dz (1-4)

on every point of Σ. A 1-form such that ωU takes values in CP 1 is called meromorphic

if ωU reaches the value ∞ (it has poles), and holomorphic otherwise.
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A meromorphic 1-form ω is called exact iff there exists a meromorphic function f

such that ω = df , i.e. in each chart ωU(z) = dfU(z)/dz.

We shall denote

• M1(Σ) the vector space of meromorphic forms on Σ.

• O1(Σ) the vector space of holomorphic forms on Σ .

These are in fact special cases of

Definition 1.3 (Higher order forms) A kth order holomorphic (resp. meromor-

phic) form on an atlas of a Riemann surface Σ, is the data of a holomorphic function

fU : U → CP 1 in each chart, that satisfies for every transition:

fU(z) = fU ′(ψU→U ′(z))

(
d

dz
ψU→U ′(z)

)k
. (1-5)

This allows to define unambiguously

f(φ−1
U (z)) = fU(z) dzk (1-6)

on every point of Σ.

• If k = 0 this is called a holomorphic (resp. meromorphic) function.

• If k = 1 this is called a holomorphic (resp. meromorphic) 1-form.

• If k = 2 this is called a holomorphic (resp. meromorphic) quadratic differen-

tial.

• It can also be defined for for half–integer k ∈ 1
2
Z, and then only ±f is well defined

globally on Σ. This is called a spinor form.

We shall denote the vector space of holomorphic and meromorphic order k forms

on Σ as

Ok(Σ) ⊂Mk(Σ). (1-7)

1.1 Examples

• On the Riemann sphere, the function f(z) = z is meromorphic, it has a pole at

z = ∞. Also on the Riemann sphere, the 1-form ω(z) = dz is meromorphic, it

has a double pole at∞. Indeed in the chart which is the neighborhood of ∞, we

use the coordinate z′ = 1/z and we have

ω(z) = dz = d(1/z′) =
−1

z′2
dz′ (1-8)

it has a double pole at z′ = 0, i.e. a double pole at z =∞.
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• On the torus Tτ = C/Z + τZ, the 1-form

dz (1-9)

is a holomorphic 1-form. Indeed it satisfies the transition condition with ψ(z) =

z′ = z + a+ τb, we have dz = dz′. Moreover, it has no pole.

The following series

℘(z) =
1

z2
+

∑
n,m∈Z2−{(0,0)}

1

(z + n+ τm)2
− 1

(n+ τm)2
(1-10)

is absolutely convergent for all z /∈ Z+τZ, it is clearly bi-periodic ℘(z+1) = ℘(z+

τ) = ℘(z), so that it satisfies the transition conditions, it is thus a meromorphic

function on the torus. It has a unique pole at z = 0, of degee 2. It is called the

Weierstrass function.

Definition 1.4 (Order) The orderp f = k (resp. orderp ω = k) of a function f (resp.

a form) at a point p ∈ Σ is:

• the order of vanishing of fU if p is not a pole, i.e. in any chart U , with coordinate

z, fU(z) ∼ CU(z − φU(p))k. In this case k > 0.

• or minus the degree of the pole of fU if p is a pole, i.e. in any chart U , with

coordinate z, fU(z) ∼ CU(z − φU(p))−|k|. In this case k < 0.

• For generic points (neither poles nor zeros) we define orderp f = 0.

The order is independent of a choice of chart and coordinate. A holomorphic function

(resp. form) has non–negative orders at all points.

Definition 1.5 (Residue of a form) Let ω a meromorphic 1-form, and p one of its

poles. We define its residue in any chart U that contains p, where ω(φ−1
U (z)) =

fU(z)dz, as

Res
p

ω = c−1 where fU(z) =
∑

0>j≥− orderp ω

cjz
j + analytic (1-11)

It is independent of a choice of chart and coordinate.

Notice that only the coefficient c−1 is independent of a choice of chart and coordi-

nates, all other cj with j 6= −1 do depend on that choice. Similarly, for a kth order

meromorphic form, the residue is defined as the coefficient (independent of chart and

coordinate) c−k.
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Definition 1.6 (Jordan arcs) A Jordan arc γ on Σ, is a continuous map γ : [a, b]→
Σ, such that there exist a finite partition of [a, b] ⊂ R

[a, b] = [a1, a2]∪[a2, a3]∪· · ·∪[an−1, b] , a = a1 < a2 < a3 < · · · < an = b, (1-12)

such that each γ([ai, ai+1]) is included in a single chart Vi, and such that the map

γi : [ai, ai+1]→ Ui defined by γi(t) = φVi(γ(t)) is a Jordan arc in Ui ⊂ C.

There is a notion of homotopic deformations of Jordan arcs on Σ inherited from

that in C, and of concatenation of Jordan arcs.

A closed Jordan arc is called a Jordan curve, or a contour, it is such that γ(b) =

γ(a).

Definition 1.7 (Integral of a form) Let ω a meromorphic 1-form. Let γ a Jordan

arc on Σ, not containing any pole of ω, represented by a collection γ1, . . . , γn of Jordan

arcs in charts γi ⊂ Ui. We define∫
γ

ω =
∑
i

∫
γi

ωUi(z)dz (1-13)

It is independent of a choice of charts and local coordinates.

Moreover it is invariant under homotopic deformations of γ.

If γ is closed, we write
∮
γ

rather than
∫
γ
, which is then invariant under change of

initial point of the Jordan curve.

Definition 1.8 (Integral of a form on a chain or cycle) We define an integer

(resp. complex) chain γ̂ as a Z (resp. C) linear combination of homotopy classes

of Jordan arcs modulo boundaries of open surfaces. A chain is a cycle iff its boundary

vanishes.

Integration defines the Poincaré pairing between chains (resp. cycles) and 1-

forms

< γ, ω >=

∫
γ̂

ω. (1-14)

Theorem 1.1 (Cauchy) We have

Res
p

ω =
1

2πi

∮
Cp
ω (1-15)

with Cp a small anti-clockwise contour around p.

proof: It holds in every chart because it holds on C. �
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Definition 1.9 (Divisors) A divisor is a formal linear combination of points of the

surface. Let D =
∑

i αi.pi a divisor. We define its degree as:

degD =
∑
i

αi. (1-16)

We shall say that the divisor is an integer divisor if αi ∈ Z and complex if αi ∈ C.

If f is a meromorphic function, not identically vanishing, we denote the divisor

of f (it is an integer divisor):

(f) =
∑
p∈Σ

orderp f .p. (1-17)

Similarly, if ω is a meromorphic 1-form not indetically zero, we denote

(ω) =
∑
p∈Σ

orderp ω .p. (1-18)

If f = 0 (resp. ω = 0) we define

(0) = 0. (1-19)

We define similarly the divisors of any kth order forms.

1.2 Classification of 1-forms

1-forms have been customarily divided into the following classes

Definition 1.10 (Classification of 1-forms) A meromorphic 1-form ω is called

• 1st kind iff it is holomorphic (it has no poles),

• 3rd kind iff it has poles of degree at most 1,

• 2nd kind iff it has some poles of degree ≥ 2.

• exact iff there exists a meromorphic function f such that ω = df , i.e. in each

chart ωU(z) = dfU(z)/dz. In fact all exact forms must be 2nd kind.

2 Some theorems about forms and functions

Theorem 2.1 (finite number of poles) On a compact Riemann surface, each

meromorphic function (resp. form) has at most a finite number of poles. Also each

non-vanishing meromorphic function (resp. form) has only finitely many points with

non–vanishing order, so the divisor is a finite sum.
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proof: Compactness implies that any infinite sequence of points of Σ must have

accumulation points. If the number would be infinite there would be an accumulation

point of poles, and the function (resp. form) would not be analytic at the accumu-

lation point. If there is an accumulation of points of strictly positive orders, i.e. an

accumulation of zeros, then the analytic function (resp. form) has to vanish identically

in a neighborhood of this point, and thus vanishes identically on Σ. In all cases the

divisor is finite. �

Theorem 2.2 (exact forms) A 1-form ω is exact if and only if

∀ C = cycle

∮
C
ω = 0. (2-1)

proof:

Let o a generic point of Σ. The function

f(p) =

∫ p

o

ω (2-2)

seems to be ill defined on Σ as it seems to depend on a choice of Jordan arc from o

to p. However, thanks to (2-1), its value is independent of the choice of arc and thus

depends only on p, so it is a well defined function on Σ.

ω may have poles, its integral can have poles and logs, but the condition (2-1)

implies that the residues of ω at all poles vanish. This implies that f , can’t have

logartithmic terms, it is thus a meromorphic function on Σ, and safisfies

df = ω. (2-3)

The converse is obvious. �

Theorem 2.3 (vanishing total residue) For a meromorphic form ω on a compact

Riemann surface: ∑
p=poles

Res
p

ω = 0. (2-4)

proof: Let us admit here that Σ can be polygonized, i.e. that there is a graph Γ on

Σ, whose faces are polygons entirely contained in a chart, and such that the poles of ω

are not on on Γ. By homotopic deformation, the sum of residues inside each polygon

is the integral along edges. Each edge is spanned twice, in each direction, so the sum

of integral along edges is zero.

�
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Corollary 2.1 (More than 1 simple pole) There is no meromorphic 1-form with

only one simple pole. It has either several simple poles, or poles of higher orders, or

no pole at all.

Theorem 2.4 If g ≥ 1, there is no meromorphic function with only 1 simple pole.

proof: If f is a meromorphic function with 1 simple pole p. Then, consider a

holomorphic 1-form ω (it is possible if g > 0, we anticipate on the next section).

Assume that ω either doesn’t vanish at p (k = 0) or has a zero of order k at p. Then

fk+1ω is a meromorphic form, and has only 1 simple pole at p, which is impossible. �

Theorem 2.5 (Functions: #poles = #zeros) Let f a meromorphic function, not

identically vanishing, then the number of poles (with multiplicity) equals the number of

zeros:

#zeros−#poles = deg (f) = 0. (2-5)

proof: Use theorem 2.3 with ω = d log f = 1
f
df . �

Theorem 2.6 (Holomorphic function = constant) Any holomorphic function is

constant. This implies that

O(Σ) = C , dimO(Σ) = 1. (2-6)

proof: Let f a holomorphic function. Let p0 ∈ Σ a given generic point, define the

function g(p) = f(p)−f(p0). This function has no pole and has at least one zero. This

would contradict theorem 2.5, unless g is identically vanishing, i.e. f is constant. �

Theorem 2.7 (any 2 meromorphic functions are algebraically related) Let f

and g be two meromorphic functions on Σ. Then, there exists a bivariate polynomial

Q such that

Q(f, g) = 0. (2-7)

proof: The proof is nothing but the Lagrange interpolation polynomial.

Let us call d = deg f the total degree of f , i.e. the sum of degrees of all its poles.

Let x ∈ CP 1, then f−1(x) has generically a cardinal equal to d. Let us define Q0 = 1

and for k = 1, . . . , d:

Qk(x) =
∑

I⊂kf−1(x)

∏
p∈I

g(p), (2-8)
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where we sum over all subsets of f−1(x) of cardinal k, and we count preimages with

multiplicities when x is not generic. Qk is clearly a meromorphic function CP 1 → CP 1,

therefore it is a rational function Qk(x) ∈ C(x). We then define:

Q(x, y) =
d∑

k=0

(−1)kQk(x)yk ∈ C(x)[y]. (2-9)

It is also equal to

Q(x, y) =
∏

p∈f−1(x)

(y − g(p)). (2-10)

Therefore, for any p ∈ Σ we have

Q(f(p), g(p)) = 0. (2-11)

�

Theorem 2.8 (Riemann-Hurwitz) Let ω a meromorphic 1-form not identically

vanishing, then

deg (ω) = 2g− 2 (2-12)

where g is the genus of Σ. In other words

#zeros−#poles = 2g− 2. (2-13)

proof:

First remark that the ratio of 2 meromorphic 1-forms is a meromorphic function,

for which #zeros = #poles, therefore #zeros−#poles is the same for all 1-forms.

In particular, let us assume that there exist some non–constant meromorphic func-

tion f : Σ→ CP 1 (we anticipate on the next sections. In the case of an algebraic curve

P (x, y) = 0, one can choose f = x), then ω = df is an exact meromorphic 1-form.

Let R be the set of zeros of ω = df , and P the set of poles.

Choose an arbitrary cellular (all faces are homeomorphic to discs) graph Γ on CP 1,

whose vertices are the points of f(R) ∪ {∞}.
Let F the number of faces, E the number of edges and V the number of vertices.

Let d the degree of f , i.e. the sum of degrees of all its poles, which is also d = #f−1(x)

for x in a neighborhood of ∞, and thus is the number of preimages of generic x.

The Riemann sphere has Euler characteristic 2:

χ(CP 1) = 2 = F − E + V. (2-14)
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Now consider the graph Γ′ = f−1(Γ) on Σ. Since the faces of Γ contain no zero

of df , then the preimages of each face is homeomorphic to a disc too, so that Γ′ is a

cellular graph on Σ. Its Euler characteristic is

χ(Σ) = 2− 2g = F ′ − E ′ + V ′. (2-15)

The number of faces F ′ = dF and edges E ′ = dE because they are made of generic

points. The points of R and P are by definition not generic. For x ∈ f(R) we have

#f−1(x) = d−
∑

r∈f−1(x)

orderr df. (2-16)

Their sum is ∑
x∈f(R)

#f−1(x) = d(V − 1)− deg(df)+ (2-17)

where (df)+ is the divisor of zeros of df . Similarly for x =∞ we have

#f−1(∞) =
∑
p∈P

(−1− orderp df). (2-18)

This implies

V ′ = d(V − 1)− d− deg(df). (2-19)

Putting all together we get

deg(df) = 2g− 2. (2-20)

Since deg(ω) is the same for all 1-forms, it must be the same as for the exact form

df and the theorem is proved.

In fact all what remains to prove is the existence of at least one non–constant

meromorphic function. For Riemann surfaces coming from an algebraic equation

P (x, y) = 0, the function (x, y) 7→ x can play this role. More generally the exis-

tence of non–constant meromorphic functions will be established below (and won’t use

this theorem). �

3 Existence of meromorphic forms

Before going further, we need to make sure that meromorphic functions and forms do

actually exist. First let us define the Hodge star:

Definition 3.1 (Hodge star, harmonic forms) Let ω a C∞ 1-form (real or com-

plex) on Σ viewed as a smooth manifold of dimension 2 rather than a complex manifold.

In a local coordinate z = x+ iy it can be written

ω = pdx+ qdy =
p− iq

2
dz +

p+ iq

2
dz̄. (3-1)
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p and q can be viewed as real valued or complex valued C∞ functions on Σ, they are

not assumed to be analytic.

We define the Hodge star of a differential 1-form

∗ ω = −qdx+ pdy = −i p− iq
2

dz + i
p+ iq

2
dz̄. (3-2)

We have

ω ∧ ∗ω̄ = (|p|2 + |q|2) dx ∧ dy. (3-3)

The Hilbert space L2(Σ) of real (resp. L2(Σ,C) of complex) square integrable 1-

forms, is equipped with the norm (it is positive definite)

||ω||2 =

∫
Σ

ω ∧ ∗ω̄. (3-4)

A 1-form ω is called closed (resp. co–closed) iff dω = 0 (resp. d ∗ ω = 0).

A 1-form ω is called harmonic iff it is closed and co–closed. Let H the set of real

harmonic forms.

If f is a function, then its Laplacian is

∆f =
∂2f

∂x2
+
∂2f

∂y2
= d ∗ df = −2i ∂̄∂f. (3-5)

Let E (resp. E∗) the closure of the set of exact (resp. co-exact) 1-forms, i.e. the

set of differentials df (resp. ∗df) and limits (with respect to the topology induced by the

L2(Σ) norm) of sequences limn→∞ dfn (resp. limn→∞ ∗dfn).

There is the following theorem (that we shall not use in these lectures, in fact it

will be reproved case by case corresponding to our needs):

Theorem 3.1 (Hodge decomposition theorem) Every real square integrable 1-

form can be uniquely decomposed as a harmonic+exact+co-exact:

L2(Σ) = H⊕ E ⊕ E∗. (3-6)

proof: Admitted, and in fact not needed in these lectures. �

The following theorem is the key to existence of holomorphic and meromorphic

1-forms:

Theorem 3.2 (Harmonic forms) Let Σ a Riemann surface of genus g ≥ 1, and let

A1, . . . ,A2g a basis of H1(Σ,Z) (non–contractible cycles).

Given (ε1, . . . , ε2g) ∈ R2g, there exists a unique real harmonic form ν on Σ such that

∀ i = 1, . . . , 2g ,

∮
Ai
ν = εi. (3-7)

34



Moreover, H is a vector space over R of dimension

dimH = 2g. (3-8)

proof: Let us prove it for (ε1, . . . , ε2g) = (1, 0, . . . , 0), the general case will then hold

by linearity and relabelling.

The constraints (3-7) define an affine subspace V ⊂ L2(Σ). Let us first show that

this affine subspace is non–empty.

Let us choose some Jordan arcs representative of the Ais, and let B a closed Jordan

arc that intersects A1 once and no other Aj: Aj ∩ B = δ1,j. Choose a tubular neigh-

borhood U of B. Choose a real function θ, not continuous, but such that θ is C∞ on

Σ \ B, is constant equal to 1 in a left neighborhood of B, is constant equal to 0 in a

right neighborhood of B, and is identically zero outside U (left and right refer to the

orientation of the arc A1). Such a function exists in the annulus of R2, and is easy to

define with the help of the C∞(R) function x 7→ e−1/x if x > 0 and x 7→ 0 if x ≤ 0.

Then dθ is a C∞ 1-form on Σ, it belongs to L2(Σ), and it satisfies (3-7), so it belongs

to V .

In order to satisfy (3-7), one can only add exact forms (and their limits), and thus

V = dθ + E, (3-9)

which is a closed set since E is closed. The Hilbert projection theorem ensures that

there exists at least one element ν ∈ V whose norm ||ν|| is minimal.

This means that for any C∞ function f , one has ||ν+df ||2 ≥ ||ν||2, and this implies

that (ν, df) = 0, i.e.
∫

Σ
fd ∗ ν = 0. Since this has to hold for all f , this implies that

d ∗ ν = 0 and thus ν is a harmonic form ν ∈ V ∩H.

The space H is clearly a real vector space, and we have just seen that the morphism

H → R2g

ν 7→

(∮
A1

ν,

∮
A2

ν, . . . ,

∮
A2g

ν

)
(3-10)
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is surjective. It is also injective, because if ν is in the kernel, then all its cycle integrals

vanish, implying that it is an exact form, ν = df , and since d ∗ ν = 0, f must be a

harmonic function ∆f = 0. Stokes theorem implies

||ν||2 = −
∫

Σ

f∆f = 0, (3-11)

which implies ν = 0. This proves that there is an isomorphism H ∼ R2g.

�

In other words, for g ≥ 1, there exists harmonic forms. Notice that if ν is a real

harmonic form, then ω = ν + i ∗ ν is a holomorphic form on Σ.

Remark that we have obtained a harmonic form by an ”extremization” procedure,

this is often called ”Dirichlet Principle”.

This method can be generalized to get ”meromorphic forms” (and then this works

also for genus 0), with some adaptations, and we get

Theorem 3.3 (Harmonic forms with 2 simple poles) Given q+, q− distinct in

Σ, there exists a unique real harmonic form ν on Σ \ {q+, q−}, such that in a neigh-

borhood U+ (resp. U−) of q+ (resp. q−):

ν(p) ∼p→q± ±dArg|φU±(p)− φU±(q±)|+ harmonic at q± (3-12)

and such that all its cycle integrals vanish

∀ i = 1, . . . , 2g ,

∮
Ai
ν = 0 (3-13)

In other words it satisfies∮
C
ν =

{
±2π if C surrounds q±
0 otherwise

(3-14)

proof: We shall denote z (resp. z′) the coordinate of a point p in a neighborhood

chart U+ (resp. U−) of q+ (resp. q−):

z = φU+(p)− φU+(q+) , resp. z′ = φU−(p)− φU−(q−) , (3-15)

vanishing at p = q+ (resp p = q−).

Let us choose a Jordan arc γ with boundary ∂γ = q+ − q−, and let U a tubular

neighborhood of γ. Let us choose a function θ ∈ C∞(Σ \ γ), such that:

θ = Argz in U+

θ = 2π − Arg(−z′) in U−

θ = 0 in Uleft − U+ − U−
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θ = 2π in Uright − U+ − U−
(3-16)

dθ is then a C∞ 1-form on Σ− {q+} − {q−}.

However dθ /∈ L2(Σ) because it has poles at q+ and q−, so its norm is infinite. Let us

define the ”regularized norm” on dθ + E as

||dθ + df ||2 − ||dθ||2 def
= ||df ||2 − 2

∫
Σ\γ

θ∆f + 2π(f(q+)− f(q−)), (3-17)

which is a strictly convex functional on the closed space E. The Hilbert projection

theorem says that there is an element ν of dθ + E with minimal norm, i.e. for any

smooth f compactly supported on Σ− {q+} − {q−}, we have

||ν + df ||2 − ||ν||2 = −2

∫
Σ

fd ∗ ν + ||df ||2 ≥ 0. (3-18)

This having to be positive for all f implies that d ∗ ν = 0, and thus ν is harmonic

on Σ − {q+} − {q−}. Moreover, it has the correct behaviors near q+ and q−, and the

correct cycle integrals.

ν is unique because if there would exist another ν̃, then the difference ν − ν̃ would

be harmonic, with all cycle integrals vanishing, so it would be exact ν − ν̃ = df with f

a harmonic function, i.e. it would have to vanish. �

Corollary 3.1 (Green function) Given q+, q− distinct in Σ, there exists a real func-

tion Gq+,q− harmonic on Σ \ {q+, q−}, such that in a neighborhood U+ (resp. U−) of q+

(resp. q−):

Gq+,q−(p) ∼p→q± ± log |φU±(p)− φU±(q±)|+ harmonic. (3-19)

It is unique up to adding a constant.

Moreover it satisfies the Poisson equation

∆Gq+,q−(p) = 4π
(
δ(2)(p, q+)− δ(2)(p, q−)

)
. (3-20)
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proof: We choose Gq+,q− an integral of ∗ν, to which we add the unique linear com-

bination of harmonic forms that ensure that all its cycle integrals vanish. �

Corollary 3.2 (Third kind forms) Given any 2 distinct points q+, q− on Σ, there

exists a unique meromorphic 1-form ωq+,q− that has a simple pole at q+ and a simple

pole at q−, and such that

Res
q+

ωq+,q− = 1 = − Res
q−

ωq+,q− . (3-21)

and such that, for any non–contractible cycle C one has

<
∮
C
ωq+,q− = 0. (3-22)

proof: Choose ωq+,q− = iν −∗ν, and add the unique linear combination of holomor-

phic forms, that cancels the real parts of all cycle integrals. �

Corollary 3.3 (Higher order poles) Let U a chart, and let φ a coordinate in U .

Let q ∈ U and let k ≥ 1. There exists a unique meromorphic 1-form ωq,k that has a

pole of order k + 1 at q and no other pole, and that behaves near q like

ωq,k(z) ∼ dφ(z)

(φ(z)− φ(q))k+1
+ analytic at q, (3-23)

and such that, for any non–contractible cycle C one has

<
∮
C
ωq,k = 0. (3-24)

proof: Choose q′ 6= q generic in U , and choose ωq,k = 1
k!

dkωq,q′

dqk
. It is unique (and

in particular independent of q′), because the difference of 2 such forms would have no

pole and all real parts of its cycle integrals vanishing so it would vanish. �

Fundamental second kind form

However, the form ωq,k, and in particular ωq,1 depends on the choice of chart neighbor-

hood of q, and on the choice of coordinate in that chart. As we shall see now, ωq,1 in

fact transforms as a 1-form of q under chart transitions, i.e. BS(z, q) = ωq,1(z)dφ(q)

is a well defined 1-form (chart independent) of both variables z and q. We call it a

bilinear differential, the product is a tensor product, that we write

BS(z, q) = ωq,1(z)dφ(q) = ωq,1(z)⊗ dφ(q) = ωq,1(z) � dφ(q). (3-25)

The tensor product notation ⊗ just means that this is a linear combination of 1-forms

of z, whose coefficients are themselves 1-forms of q. The box tensor product notation
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� means that this is a differential form on the product Σ × Σ, which is a 1-form on

the first factor Σ of the product, tensored by a 1-form of the second factor Σ of the

product.

We have the following theorem:

Proposition 3.1 (Schiffer kernel) Define the following bi-differential of the Green

function

BS(p, q) = ∂p∂q Gq,q′(p) dp⊗ dq (3-26)

where, if z is a coordinate in a chart, ∂z = 1
2

(
∂
∂<z − i ∂

∂=z

)
, and dz = d<z + i d=z. It

is independent of a choice of chart and coordinate, and it has the following properties:

• it is a meromorphic bilinear differential (meromorphic 1-form of p, tensored by

a meromorphic 1-form of q),

• it is independent of q′,

• it has a double pole on the diagonal, such that in any chart and coordinate

BS(p, q) ∼
p→q

dφU(p) � dφU(q)

(φU(p)− φU(q))2
+ analytic at p = q, (3-27)

• for any pair of non–contractible cycles C, C ′, one has

<
∮
p∈C

∮
q∈C′

BS(p, q) = 0. (3-28)

Moreover we shall see later in section 5 of chap. 3 that BS is in fact symmetric

BS(p, q) = BS(q, p).

The Schiffer kernel is a special example of the following notion:

Definition 3.2 (Fundamental form of second kind) A fundamental form of sec-

ond kind B(z, z′) is a symmetric 1 � 1 form on Σ×Σ that has a double pole at z = z′

and no other pole, and such that in any chart

B(z, z′) ∼ dφU(z) dφU(z′)

(φU(z)− φU(z′))2
+ analytic at z = z′. (3-29)

If the genus is ≥ 1, a fundamental form of second kind is not unique since we can add

to it any symmetric bilinear combination of holomorphic 1-forms:

B(z, z′)→ B(z, z′) +

g∑
i,j=1

κi,j ωi(z)⊗ ωj(z′). (3-30)

Therefore, and due to the existence of at least one such form (the Schiffer kernel), we

have

Theorem 3.4 The space of fundamental second kind differentials is not empty, and is

an affine space, with linear space O1(Σ)
sym
⊗ O1(Σ).
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3.1 Uniqueness of Riemann surfaces of genus 0

As a corollary of corollary 3.3, we have

Theorem 3.5 (Genus 0 = Riemann sphere) Every compact simply connected

(genus zero) Riemann surface is isomorphic to the Riemann sphere.

proof: Let U a chart with its coordinate, and p 6= o two distinct points in U . The

1-form ωp,1 as defined in corollary 3.3 has a double pole at p and no other pole, so it

has vanishing residue. The function f(z) =
∫ z
o
ωp,1 is meromorphic on Σ, with a simple

pole at p and no other pole, and a zero at o (an no other zeros since #zeros=#poles).

The map f : Σ→ CP 1 is injective, indeed if there would exist q 6= q′ with f(q) = f(q′),

then the function z 7→ f(z) − f(q) would have 2 zeros q and q′, which is impossible.

f is continuous, and since Σ is open and compact, its image must be CP 1, it is thus

surjective. f is an isomorphism. �

4 Newton’s polygon

So far we have been building 1-forms by Dirichlet principle, which is not explicit and

not algebraic.

Newton’s polygon’s method allows to build and classify functions and forms on

algebraic Riemann surfaces, by combinatorial and algebraic methods.

Let P ∈ C[x, y] a bivariate polynomial, and

Σ̃ = {(x, y) | P (x, y) = 0} ⊂ C× C, (4-1)

and the compact Riemann surface Σ its desingularization.

Definition 4.1 (Newton’s polytope) Let N ⊂ Z×Z be the finite set of pairs (i, j)

such that Pi,j 6= 0:

P (x, y) =
∑

(i,j)∈N

Pi,j x
i yj. (4-2)

The set of integer points N ⊂ Z× Z, is called the Newton’s polytope of P .
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4.1 Meromorphic functions and forms

The maps (x, y)
x7→ x and (x, y)

y7→ y are meromorphic functions on Σ. In fact, they

provide an algebraic basis for all meromorphic functions:

Proposition 4.1 Any meromorphic function f on Σ is a rational function of x and

y, there exists R ∈ C(x, y) such that

f = R(x, y). (4-3)

More precisely, if d = degy P , there exists rational fractions Q0, Q1, . . . , Qd−1 ∈ C(x)

such that

f =
d−1∑
k=0

Qk(x) yk. (4-4)

proof:

This is Lagrange interpolating polynomial. Let us define

Q(x, y) =
∑

Y | P (x,Y )=0

f(x, Y )
P (x, y)

P ′y(x, Y ) (y − Y )
(4-5)

it clearly satisfies f(x, y) = Q(x, y) whenever P (x, y) = 0, i.e. on Σ. Moreover it is

clearly a polynomial of y of degree at most d− 1, it can be written

Q(x, y) =
d−1∑
k=0

Qk(x) yk. (4-6)

Its coefficients Qk(x) are analytic and meromorphic functions of x, defined on CP 1 →
CP 1. Therefore they are rational fractions: Qk(x) ∈ C(x).

�

Since dx is a 1-form, it immediately follows that
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Corollary 4.1 Any meromorphic 1-form ω on Σ can be written as

ω(x, y) = R(x, y)dx (4-7)

with R(x, y) ∈ C(x, y).

Up to changing R→ R/P ′y, it is more usual to write it in Poincaré form:

ω(x, y) = R(x, y)
dx

P ′y(x, y)
(4-8)

with R(x, y) ∈ C(x, y).

4.2 Poles and slopes of the convex envelope

The meromorphic functions x and y have poles and zeros. Let p a pole or zero of x

and/or y, and let z a coordinate in a chart containing p, and such that p has coordinate

z = 0.

If p is a pole or zero of x (resp. y) of order −α (resp. −β) we have

x(z) ∼ c z−α (resp. y(z) ∼ c̃ z−β ). (4-9)

We assume that (α, β) 6= (0, 0).

Let Dα,β,m the line of equation

Dα,β,m = {(i, j) | αi+ βj = m}. (4-10)

There exists mα,β ∈ Z such that

mα,β = max{m | Dα,β,m ∩N 6= ∅}. (4-11)

In other words, the line Dα,β,mα,β is the leftmost line parallel to the vector (β,−α) (left

with respect to the orientation of this vector), i.e. such that all the Newton’s polytope

lies to its right.

Theorem 4.1 (Poles and convex envelope) The line Dα,β,mα,β is tangent to the

convex envelope of the Newton’s polytope, i.e. it contains an edge of the convex envelope

of the polytope, or equivalently it contains at least 2 distinct vertices. There is a 1-1

correspondance between poles/zeros of x and/or y, and tangent segments to the convex

envelope.

proof: By definition, the line Dα,β,mα,β intersects the Newton’s polytope, and is such

that all points of the Newton’s polytope lie on the right side of that line. It remains

to prove that it intersects the Newton’s polytope in at least 2 points. Near p we have:

0 = P (x, y) =
∑

(i,j)∈N

Pi,j x
iyj
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=
∑
m

∑
(i,j)∈N∩Dα,β,m

Pi,j x
iyj

∼z→0

∑
m≤mα,β

z−m
∑

(i,j)∈N∩Dα,β,m

Pi,j c
ic̃j (1 +O(z))

∼z→0 z−mα,β
∑

(i,j)∈N∩Dα,β,mα,β

Pi,j c
ic̃j +O(z1−mα,β)

(4-12)

If Dα,β,mα,β ∩N = {(ip, jp)} would be a single point, we would have

0 ∼
z→0

z−mα,βPip,jp c
ip c̃jp(1 +O(z)) (4-13)

which can’t be zero, leading to a contradiction.

�

Definition 4.2 (Amoeba) The Amoeba, is the set A ⊂ R× R defined by:

A = {(log |x|, log |y|) | P (x, y) = 0}. (4-14)

The amoeba has asymptotic lines in directions where x and/or y have poles or zeros,

these lines have slope β
α

, and are orthogonal to the tangents to the convex envelope.

In fact, the amoeba looks like a thickening of a graph dual to a complete triangulation

(with triangles whose vertices are on Z2 and of area 1
2
) of the Newton’s polytope.

Example: for the equation P (x, y) = 1 + c xy + x2y + xy2, the amoeba looks like
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4.3 Holomorphic forms

Since x is a meromorphic function, then dx is a meromorphic 1-form. It has poles and

zeros. Near a generic branchpoint x = a, y = b, a local coordinate is z = y− b, and we

have

x ∼ a− 1

2

P ′′yy(a, b)

P ′x(a, b)
(y − b)2 +O(y − b)3, (4-15)

so that

dx ∼ −
P ′′yy(a, b)

P ′x(a, b)
(y − b)dy +O(y − b)2dy. (4-16)

And we have

P ′y(x, y) ∼ (y − b)P ′′yy(a, b) +O(y − b)2, (4-17)

therefore the 1-form
dx

P ′y(x, y)
= − dy

P ′x(x, y)
(4-18)

is analytic at generic branchpoints. Can it be a holomorphic 1-form ?

Proposition 4.2 (Holomorphic forms and Newton’s polytope) We denote
◦
N

the interior of the convex envelop of the Newton’s polytope, i.e. the set of all in-

teger points in Z× Z strictly inside the convex envelope of N .

Assume that the coefficients Pi,j are generic so that Σ̃ = {(x, y) | P (x, y) = 0} has

only generic branchpoints and no nodal points.

For every (k, l) ∈ Z× Z, let

ω(k,l) =
xk−1yl−1

P ′y(x, y)
dx (4-19)

Then

ω(k,l) ∈ O1(Σ) ⇔ (k, l) ∈
◦
N (4-20)

It follows that

g = dimO1(Σ) = #
◦
N . (4-21)
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Remark that if P is not generic, there can be nodal points, and thus some ze-

ros of the denominator P ′y(x, y) are not ramification points, and are not zeros of dx,

which means that ω(k,l) can have poles at nodal points. However, by taking linear

combinations
∑

k,l ck,lω(k,l), one can cancel the poles at nodal points, and thus O1(Σ)

is generated by a linear subspace of C
◦
N , of codimension equal to the number of nodal

points, i.e.:

dimO1(Σ) = #
◦
N −#nodal points. (4-22)

On the other hand, if P is not generic, nodal points can be seen as degeneracies of

cycles that have been pinched, therefore the genus has been decreased compared to the

generic case, in such a way that

g = #
◦
N −#nodal points. (4-23)

Eventually we always have

dimO1(Σ) = g. (4-24)

proof: Let ω a holomorphic 1-form on Σ. ω/dx is a function, it may have poles at

the zeros of dx. If we assume P generic, then dx has simple zeros, and thus ω/dx can

have at most simple poles at the zeros of dx. Moreover, the function P ′y(x, y) vanishes

at the ramification points, therefore P ′y(x, y)ω/dx is a meromorphic function on Σ with

no poles at ramification points. Its only poles can be at points where P ′y(x, y) = ∞,

i.e. at poles of x and/or y. It can thus be written (the sum of non–vanishing terms is

finite)

P ′y(x, y)
ω

dx
=

∑
(k,l)∈Z×Z

ck,lx
k−1yl−1. (4-25)

Let us see how it behaves at a pole p of x and/or y, corresponding to a tangent Dα,β,mα,β

of the convex envelope. We have

P ′y(x, y) ∼ zβ−mα,β
∑

(i,j)∈Dα,β,mα,β∩N

jPi,jc
ic̃j−1. (4-26)

We also have dx ∼ −αcz−α−1dz and therefore

ω ∼
∑
k,l

ck,l z
mα,β−kα−lβ−1dz

−1

α

∑
(i,j)∈Dα,β,mα,β∩N

jPi,jc
i−1c̃j−1

−1

. (4-27)

Since ω has no pole at p, i.e. at z = 0, we must have

kα + lβ ≤ mαβ − 1 < mα,β. (4-28)
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In other words, the point (k, l) must be strictly below the line Dα,β,mα,β . Since this

must be true for all poles, i.e. all tangents to the convex envelope, we deduce that

(k, l) ∈
◦
N . (4-29)

�

As an immediate corollary of the proof we have

Theorem 4.2 (classification) Let (k, l) ∈ Z2 two integers. The 1-form

ωk,l =
xk−1yl−1 dx

P ′y(x, y)
(4-30)

is

• 1st kind iff (k, l) is strictly interior,

• 3rd kind iff (k, l) belongs to the boundary, it is thus at the intersection of 2 tangent

segments, corresponding to 2 poles p1, p2. It is then a 3rd kind form with simple

poles only at p1 an p2.

• 2nd kind if (k, l) is strictly exterior. It has poles at all tangents that are to its

right (it is to the left of). The degree of the pole of ωk,l at a pole p = (α, β) of

corresponding tangent line Dα,β,mα,β is

− orderp ωk,l = αk + βl −mα,β + 1 ≥ 2. (4-31)

4.4 Fundamental second kind form

We defined fundamental second kind forms in def. 3.2. We recall that B(z, z′) is a

symmetric 1 ⊗ 1 form on Σ × Σ that has a double pole at z = z′ and no other pole,

and such that

B(z, z′) ∼ dz dz′

(z − z′)2
+ analytic at z = z′. (4-32)

If the genus is ≥ 1, it is not unique since we can add to it any symmetric bilinear

combination of holomorphic 1-forms:

B(z, z′)→ B(z, z′) +

g∑
i,j=1

κi,j ωi(z)⊗ ωj(z′). (4-33)

Remark that the 1⊗ 1 form

−
P (x′,y)P (x,y′)
(x−x′)2(y−y′)2

P ′y(x, y) P ′y(x
′, y′)

dx dx′ (4-34)
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is a symmetric 1 ⊗ 1 form, it has a double pole at (x, y) = (x′, y′), with the behavior
dxdx′

(x−x′)2 , and it has no pole if x = x′ and y 6= y′ nor if y = y′ but x 6= x′, so it is a good

candidate for B. However, it can have poles where P has poles, i.e. at x or x′ or y or

y′ =∞. Therefore the form

B̃((x, y), (x′, y′)) = B((x, y), (x′, y′)) +

P (x′,y)P (x,y′)
(x−x′)2(y−y′)2

P ′y(x, y) P ′y(x
′, y′)

dx dx′ (4-35)

must be a symmetric 1-form ⊗ 1-form, whose poles can be only at x, x′, y, y′ = ∞.

There must exist a polynomial

P ′y(x, y) P ′y(x
′, y′)

B̃((x, y), (x′, y′))

dxdx′
= Q(x, y;x′, y′) ∈ C[x, y;x′, y′]. (4-36)

At fixed (x′, y′), this polynomial must be such that(
P (x′, y)P (x, y′)

(x− x′)2(y − y′)2

)
+

−Q(x, y;x′, y′) (4-37)

has monomials xu−1yv−1 only inside the Newton’s polygon, i.e. only if (u, v) ∈
◦
N .

General case

Proposition 4.3 (Fundamental 2nd kind form) the following 1⊗ 1 form

B0((x, y); (x′, y′)) = −
P (x,y′)P (x′,y)
(x−x′)2(y−y′)2 −Q(x, y;x′, y′)

Py(x, y)Py(x′, y′)
dx dx′ (4-38)

where Q ∈ C[x, y, x′, y′] is a polynomial

Q(x, y;x′, y′) =
∑

(i,j)∈N

∑
(i′,j′)∈N

Pi,jPi′,j′
∑

(u,v)∈Z2∩ triangle (i,j),(i′,j′),(i,j′)

|u− i| |v − j′|(
δ

(u,v)/∈
◦
N∪[(i,j),(i′,j′)]

xu−1yv−1x′i+i
′−u−1y′j+j

′−v−1

+δ
(u,v)/∈

◦
N and (i+i′−u,j+j′−v)∈

◦
N

x′u−1y′v−1xi+i
′−u−1yj+j

′−v−1

+
1

2
δ(u,v)∈[(i,j),(i′,j′)] xu−1yv−1x′i+i

′−u−1y′j+j
′−v−1

)
. (4-39)

has a double pole at (x, y) = (x′, y′) with behaviour (4-32), it has no pole if x = x′ and

y 6= y′, it has no pole if y = y′ and x 6= x′, and it has no pole at the poles/zeros of x

and y.

Its only possible poles could be at zeros of P ′y(x, y) that are not zeros of dx, if these

exist, i.e. these are common zeros of P ′y(x, y) and P ′x(x, y), and these are nodal points.

Generically, there is no nodal point, and the expression above is the fundamental

second kind differential. If nodal points exist, one can add to Q a symmetric bilinear
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combination of monomials belonging to the interior of Newton’s polygon, that would

exactly cancel these unwanted poles.

proof: When x→ x′ and y → y′, we have P (x, y′) ∼ (y′− y)P ′y(x, y) and P (x′, y) ∼
(y − y′)P ′y(x′, y′), so that expression (4-38) has a pole of the type (4-32).

When y → y′ and x 6= x′, we have P (x, y′) ∼ (y′ − y)P ′y(x, y) and P (x′, y) ∼
(y − y′)P ′y(x′, y), so that expression (4-38) behaves as

−P ′y(x, y)P ′y(x
′, y)

(x− x′)2
(4-40)

which has no pole at x 6= x′. Same thing for x→ x′ with y 6= y′.

It remains to study the behaviors at poles/zeros of x and/or y. Let us consider a

point where both x and y have a pole (the other cases, can be obtained by changing

x → 1/x and/or y → 1/y, and remarking that expression (4-38) is unchanged under

these changes). At a pole x→∞ and y →∞, we have

P (x, y′)P (x′, y)

(x− x′)2(y − y′)2
∼

∑
(i,j)∈N

∑
(i′,j′)∈N

∑
k≥1

∑
l≥1

Pi,jPi′,j′ kl x
i−k−1y′j+l−1x′i

′+k−1yj
′−l−1

∼
∑

(u,v)∈Z2
+

xu−1yv−1
( ∑

(i,j)∈N

∑
(i′,j′)∈N

∑
k≥1

∑
l≥1

Pi,jPi′,j′ kl

δu,i−kδv,j′−lx
′i′+k−1y′j+l−1

)
(4-41)

where the last bracket contains in fact a finite sum. All the monomials such that

(u, v) /∈
◦
N and (u, v) is at the NE of the Newton’s polygon, would yield a pole, and

must be compensated by a term in Q.

Let us consider such an (u, v) monomial that enters in Q. Notice that (u, v) at the

NE of the Newton’s polygon implies that u = i − k ≥ i′ and v = j′ − l ≥ j, which

implies in particular that this can occur only if i > i′ and j′ > j. Moreover, since all

the line [(i, j), (i′, j′)] is contained in the Newton’s polygon, we see that (u, v) must

belong to the triangle ((i, j), (i′, j′), (i′, j)).

Consider the point (u′, v′) = (i′ + k, j + l) = (i + i′ − u, j + j′ − v), which is the

symmetric of (u, v) with respect to the middle of [(i, j), (i′, j′)].

Let us thus assume that > i′ and j′ > j and (u, v) belongs to the triangle

((i, j), (i′, j′), (i′, j)), and let us consider different cases:

• (u, v) /∈ [(i, j), (i′, j′)]. If (u, v) /∈
◦
N , then the monomial

Pi,jPi′,j′klx
u−1yv−1x′u

′−1y′v
′−1 should appear in Q and is indeed the first term in

(4-38). Notice that in that case the point (u′, v′) can’t be at the NE of Newton’s

polygon. There are then 2 sub-cases:

•• (u′, v′) ∈
◦
N , then we can add to Q a monomial proportional to xu

′−1yv
′−1 without

48



changing the pole property of B. In particular we can add

Pi,jPi′,j′ kl x
u′−1yv

′−1x′u−1y′v−1 (4-42)

which is the second term in (4-38). It allows to make Q symmetric under the exchange

(x, y)↔ (x′, y′).

•• (u′, v′) /∈
◦
N . Notice that since (u, v) /∈ [(i, j), (i′, j′)], we also have (u′, v′) /∈

[(i, j), (i′, j′)]. Moreover, if (u′, v′) /∈
◦
N , this implies that (u′, v′) is ae SW of Newton’s

polygon. This means that the monomial Pi,jPi′,j′klx
u′−1yv

′−1xu−1yv−1 will appear in Q

in the contribution with (i, j)↔ (i′, j′).

• (u, v) ∈ [(i, j), (i′, j′)]. This implies that (u′, v′) ∈ [(i, j), (i′, j′)] as well. Remark-

ing that if (u, v) ∈ [(i, j), (i′, j′)], we have kl = (i − u)(j′ − v) = (u − i′)(v − j), we

have

Pi,jPi′,j′(i− u)(j′ − v)xu−1yv−1x′u
′−1y′v

′−1 = Pi′,j′Pi,j(i
′ − u)(j − v)xu−1yv−1x′u

′−1y′v
′−1

(4-43)

i.e. this monomial appears twice in the sum (4-38) because it also appears in the term

(i, j)↔ (i′, j′), and this is why it has to be multiplied by 1
2
.

Also, if (u, v) ∈ [(i, j), (i′, j′)], we have kl = (i − u)(j′ − v) = (i − u′)(j′ − v′), the

monomial Pi,jPi′,j′klx
u′−1yv

′−1xu−1yv−1 also appears in (4-38).

Also, if (u, v) ∈
◦
N ∩[(i, j), (i′, j′)], this implies that (u′, v′) ∈

◦
N ∩[(i, j), (i′, j′)], and

thus this monomial and its symmetric under (x, y)↔ (x′, y′) are both inside Newton’s

polygon, so don’t contribute to poles of B.

Eventually we have shown that the polynomial of (4-38) is symmetric under (x, y)↔
(x′, y′), and up to monomials inside

◦
N , it compensates all the terms of P (x,y′)P (x′,y)

(x−x′)2(y−y′)2

that could possibly diverge.

This concludes the proof. �

Hyperelliptical case

Proposition 4.4 (Hyperellitical curves) Consider the case P (x, y) = y2 − Q(x),

with Q(x) ∈ C[x] a polynomial of even degree, whose zeros are all distinct. Let U(x) =

(
√
Q(x))+ be the polynmial part near∞ of its square-root, and let V (x) = Q(x)−U(x)2.

We then have

B((x, y); (x′, y′)) =
yy′ + U(x)U(x′) + 1

2
V (x) + 1

2
V (x′)

2yy′(x− x′)2
dx dx′. (4-44)

It is a 1-form of z = (x, y) ∈ Σ, with a double pole at (x, y) = (x′, y′), and no other

pole, in particular no pole at (x, y) = (x′,−y′).
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Chapter 3

Abel map, Jacobian and Theta
function

1 Holomorphic forms

We recall that we called O1(Σ) the vector space of holomorphic 1-forms (no poles) on

Σ. We also call H1(Σ,Z) the Z–module (resp. H1(Σ,C) the C–vector space) of cycles,

and for a surface of genus g we have

dimH1(Σ,Z) = dimH1(Σ,C) = 2g. (1-1)

1.1 Symplectic basis of cycles

We admit that, if g ≥ 1, it is always possible to choose a

Definition 1.1 (symplectic basis of cycles) of H1(Σ,Z):

Ai ∩ Bj = δi,j , Ai ∩ Aj = 0 , Bi ∩ Bj = 0 . (1-2)

A choice of symplectic basis of cycles, is called a marking or Torelli marking of Σ.

In this definition, the intersection numbers are counted algebraically (taking the

orientation into account):

γ ∩ γ′ =
∑
p∈γ∩γ′

±1 (1-3)

where at a crossing point p, ±1 is +1 if the oriented γ′ crosses γ from its right to

its left, and −1 otherwise. The intersection number is invariant under homotopic

deformations, is compatible with addition by concatenation, and thus descends to the

homology classes by linearity.

We insist that a choice of symplectic basis is not unique.
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1.2 Small genus

Theorem 1.1 (Riemann sphere) There is no non–identically–vanishing holomor-

phic 1-form on the Riemann sphere:

O1(CP 1) = {0} , dimO1(CP 1) = 0. (1-4)

proof: write ω(z) = f(z)dz = −z′−2f(1/z′)dz′ with z′ = 1/z. We want f(z) to have

no pole in the chart C, so f(z) could only be a polynomial, and we want z′−2f(1/z′) to

have no pole at z′ = 0, which implies the polynomial should be of degree ≤ −2 which

is not possible. �

In fact this applies to every genus zero curve (but as we shall see later, every genus

zero Riemann surface is isomorphic to the Riemann sphere):

Theorem 1.2 (Genus zero) There is no non–identically–vanishing holomorphic 1-

form on a curve Σ of genus 0:

O1(Σ) = {0} , dimO1(Σ) = 0. (1-5)

proof: Let ω a holomorphic 1-form on Σ. Choose a base point o ∈ Σ, and define the

function

f(p) =

∫ p

o

ω. (1-6)

The function f is well defined, in particular is independent of the integration path

choosen to go from o to p, since Σ is simply connected. The function f is then a

holomorphic function on Σ, and from theorem II-2.6, it must be constant, which implies

ω = df = 0. �

Theorem 1.3 (Torus) On the torus Tτ = C/(Z + τZ)

O1(Σ) ∼ C , dimO1(Σ) = 1. (1-7)

proof: We know that dz is a holomorphic 1-form. If ω(z) = f(z)dz is another

holomorphic 1-form, we must have f(z) = f(z+1) = f(z+τ), and f can have no pole,

from theorem II-2.6 it must be a constant, and thus O1(Σ) ∼ C. �
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1.3 Higher genus ≥ 1

Let A1, . . . ,A2g be a basis of H1(Σ,Z).

Theorem 1.4 The space of real harmonic 1-forms H(Σ) has real dimension:

dimRH(Σ) = 2g. (1-8)

The space of complex holomorphic 1-forms O1(Σ) has complex dimension:

dimCO1(Σ) = g. (1-9)

proof: We have already proved that the dimension of the space of real harmonic

forms is 2g. If ν is a real harmonic form, then ω = ν + i ∗ ν is a complex holomorphic

1-form, such that <ω = ν. Therefore the map

H(Σ) → O1(Σ)

ν 7→ ν + i ∗ ν
<ω ← ω (1-10)

is an invertible isomorphism of real vector spaces. This implies that dimRO1(Σ) = 2g.

Moreover, O1(Σ) is clearly a complex vector space, and thus its dimension over C is

half of its dimension over R, therefore it is g. �

1.4 Riemann bilinear identity

The Riemann bilinear identity is the key to many theorems, let us state it and

prove it here.

Let ω and ω̃ be 2 meromorphic forms.

Let Ai,Bi be Jordan arcs representative of a symplectic basis of cycles, chosen in

a way that they all intersect (transversally) at the same unique point. We admit that

it is always possible. Also up to homotopic deformations, we chose them to avoid all

singularities of ω and ω̃. Let

Σ0 = Σ \ ∪iAi ∪i Bi. (1-11)

By definition of a basis of non–contractible cycles, Σ0 is a simply connected domain of

Σ, called a fundamental domain, it is bounded by the cycles Ai,Bi, its boundary is

∂Σ0 =
∑
i

Ai left −Ai right +
∑
i

Bi left − Bi right. (1-12)
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Lemma 1.1 Let U a tubular neighborhood of ∂Σ0 in Σ0, that contains no pole of ω, and

let o ∈ U a generic point. Then f(p) =
∫ p
o
ω is independent of a choice of integration

path from o to p in U . f(p) is a holomorphic function on U , such that

df = ω on U. (1-13)

Moreover f can be analytically continued to the boundary of U .

proof: A priori the integral
∫ p
o
ω depends on the path from o to p in U . Topologically

Σ0 is a disc, its boundary is a circle and its tubular neighborhood U is an annulus.

There are 2 homotopically independent paths γ+, γ− from o to p in U . The difference

between the integrals along the 2 independent paths, is∫
γ+

ω −
∫
γ−

ω =

∮
γ+−γ−

ω

= 2πi
∑

q=poles of ω

Res
q

ω

= 0, (1-14)

thanks to theorem II-2.3. Therefore f(p) is independent of the path chosen, it defines

a function on U . It clearly satisfies df = ω and is thus holomorphic on U . �

Theorem 1.5 (Riemann bilinear identity) Let ω and ω̃ be 2 meromorphic forms

on Σ, and let f , f̃ be 2 functions, holomorphic on a tubular neighborhood of ∂Σ0 in

Σ0 − poles, such that

df = ω. , df̃ = ω̃. (1-15)

Then we have ∮
∂Σ0

fω̃ = −
∮
∂Σ0

f̃ω =

g∑
i=1

∮
Ai
ω

∮
Bi
ω̃ −

∮
Bi
ω

∮
Ai
ω̃. (1-16)
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Remark: Depending on our choice of ω and ω̃, the contour integral on the left hand

side can often be contracted to surround only singularities of f or of ω̃, and eventually

reduced to a sum of residues.

proof: Observe that ω̃ is continuous across any cycles, it takes the same value on

left and right, whereas f can have a discontinuity:

on Ai fleft − fright = −
∮
Bi
ω

on Bi fleft − fright =

∮
Ai
ω. (1-17)

Inserted into (1-12) this immediately yields the theorem. �

Corollary 1.1 If ω and ω̃ are both holomorphic, then the left hand side can be con-

tracted to 0, and ∑
i

∮
Ai
ω

∮
Bi
ω̃ −

∮
Bi
ω

∮
Ai
ω̃ = 0. (1-18)

Theorem 1.6 (Riemann bilinear inequality) If ω is a non–identically–vanishing

holomorphic 1-form we have

2i

(∑
i

∮
Ai
ω

∮
Bi
ω̄ −

∮
Bi
ω

∮
Ai
ω̄

)
> 0. (1-19)

proof: Observe that the L2(Σ) norm of ω is

||ω||2 = 2i

∫
Σ

ω ∧ ω̄ > 0. (1-20)

Use Stokes theorem on the fundamental domain Σ0:∫
Σ

ω ∧ ω̄ =

∫
Σ0

ω ∧ ω̄ = −
∫
∂Σ0

f̄ω (1-21)

with ω = df on Σ0. Using (1-12) and (1-17) gives∫
∂Σ0

f̄ω =
∑
i

∮
Bi
ω

∮
Ai
ω̄ −

∮
Ai
ω

∮
Bi
ω̄. (1-22)

�

2 Normalized basis

Theorem 2.1 (Normalized basis of holomorphic forms) Given a symplectic ba-

sis of cycles, there exists a unique basis ω1, . . . , ωg of O1(Σ) such that

∀ i = 1, . . . , g ,

∮
Ai
ωj = δi,j. (2-1)
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proof: Define the map

ε : O1(Σ) → Cg

ω 7→ εi =

∮
Ai
ω. (2-2)

We shall prove that it is an isomorphism. Since the dimension of the spaces on both

sides are the same, it suffices to prove that the kernel vanishes. Let us also denote

ε̃i =

∮
Bi
ω. (2-3)

The Riemann bilinear inequality of theorem 1.6 implies that if ω 6= 0 we have

=(

g∑
i=1

εi¯̃εi) < 0, (2-4)

and therefore the vector (ε1, . . . , εg) can’t vanish. This implies that Ker ε = 0, and thus

ε is invertible.

The normalized basis is:

ωi = ε−1({δi,j}j=1,...,g). (2-5)

�

Then we define

Definition 2.1 (Riemann matrix of periods) The g× g matrix

τi,j =

∮
Bi
ωj (2-6)

is called the Riemann matrix of periods.

We shall now prove that the matrix τ is a Siegel matrix: τ is symmetric and =τ
is positive definite. The proof relies on the Riemann bilinear identity.

Corollary 2.1 (Period =⇒ Siegel matrix) The g×g matrix of periods τi,j is sym-

metric and its imaginary part is positive definite.

Remark 2.1 The converse is not true, not all Siegel matrices are Riemann periods of Rie-
mann surfaces. The subset of Siegel matrices that are periods of Riemann surfaces is char-
acterized by the Krichever–Novikov conjecture, later proved by T. Shiota [11]. For genus
g = 1, every 1 × 1 Siegel matrix τ (i.e. a complex number whose imaginary part is > 0) is
a Riemann period, namely the Riemann period of the torus Tτ . This starts being wrong for
g > 2.
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proof: Indeed Choosing ω = ωi and ω̃ = ωj in (1-18) gives

τi,j − τj,i = 0 (2-7)

and thus τ is a symmetric matrix. Choosing ω = ωi in (1-19) gives

2i (τ̄i,i − τi,i) > 0. (2-8)

More generally, let c ∈ Rg − {0}, then choosing ω =
∑

i ciωi in (1-19) yields∑
i,j

ci =τi,j cj > 0 (2-9)

i.e.

=τ > 0. (2-10)

�

3 Abel map and Theta functions

Let Σuniv a universal cover of Σ, and Σ0 a fundamental domain.

Definition 3.1 We define the map

u : Σuniv → Cg

p 7→ u(p) = (u1(p), . . . , ug(p)) , ui(p) =

∫ p

o

ωi. (3-1)

We also denote, by the same name u, the quotient modulo Zg + τZg, which is then

defined on Σ rather than Σuniv

u : Σ → J = Cg/(Zg + τZg)

p 7→ u(p) = (u1(p), . . . , ug(p)) mod Zg + τZg. (3-2)

It is called the Abel map. The 2g-dimensional torus J = Cg/(Zg + τZg) is called the

Jacobian of Σ.

Definition 3.2 (Abel map for divisors) If D =
∑

i αi.pi is a divisor, we define by

linearity

u(D) =
∑
i

αiu(pi). (3-3)
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Definition 3.3 (Riemann Theta function) If τ belongs to the g-dimensional

Siegel space (symmetric complex matrices whose imaginary part is positive definite),

then the map

Θ : Cg → C
u 7→ Θ(u, τ)

def
=
∑
n∈Zg

e2πi (n,u) eπi (n,τn) (3-4)

is analytic on Cg (the sum is absolutely convergent for all u ∈ Cg).

Lemma 3.1 It satifies

Θ(−u) = Θ(u)

n ∈ Zg , Θ(u + n) = Θ(u)

n ∈ Zg , Θ(u + τn) = Θ(u) e−2πi (n,u) e−πi (n,τn)

a,b ∈ Zg × Zg , (a,b) ∈ 2Z + 1 =⇒ Θ(
1

2
a +

1

2
τb) = 0

(3-5)

proof: Easy computations. �

By composing the Abel map Σuniv → Cg together with the Theta function Cg → C,

we can build complex functions on Σuniv, and if we take ”good” combinations, they

can sometimes be defined on Σ rather than Σuniv.

Theta functions will serve as building blocks for any meromorphic functions.

As we shall see, Theta functions will be to meromorphic functions, what linear

functions are to rational fractions (ratios of products of linear functions) for genus 0.

We define

Definition 3.4 Let q a generic point of Σ, and ζ ∈ Cg. Define the map Σ0 → C:

p 7→ gζ,q(p) = Θ(u(p)− u(q) + ζ). (3-6)

Lemma 3.2 Let ζ a zero of the function Θ, i.e. Θ(ζ) = 0. If (Θ′1(ζ), . . . ,Θ′g(ζ)) = 0,

then ζ is called a singular zero.

If ζ is a singular zero, then the function gζ,q vanishes identically on Σ0 for any

q. If ζ is not singular, then the map Σ0 → C, p 7→ gζ,q(p) has g zeros on Σ0. One

of these zeros is q, and let P1, . . . , Pg−1 the other zeros. The Abel map of the divisor

P1 + · · ·+ Pg−1 is

u(P1) + · · ·+ u(Pg−1) = K − ζ (3-7)

where K is the Riemann’s constant:

Kk =
−τk,k

2
−
∑
i

∮
Ai
uiduk. (3-8)
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proof: It again uses Riemann bilinear identity. Let Σ0 a fundamental domain. If

gζ,a is not identically vanishing, we have

1

2πi

∫
∂Σ0

d log gζ,q(p) = #zeros of gζ,q(p). (3-9)

Then, as in the Riemann bilinear identity, we decompose the boundary as (1-12),

and use the fact that gζ,q(p) is continuous across the cycle Bi and log gζ,q(p) has a

discontinuity across the Ai boundary given by (3-5), thus equal to

log gζ,q(p)Ai left − log gζ,q(p)Ai right = 2πi (ui(p)− ui(q) + ζi +
1

2
τi,i) (3-10)

and thus taking the differential:

d log gζ,q(p)Ai left − d log gζ,q(p)Ai right = 2πi dui(p). (3-11)

It follows that

#zeros of gζ,q =

g∑
i=1

∮
Ai
dui = g. (3-12)

Clearly, since Θ(ζ) = 0 we have gζ,q(q) = 0. We call Pg = q and P1, . . . , Pg−1 the other

zeros.

Moreover, we have

1

2πi

∫
∂Σ0

uk(p)d log gζ,q(p) =

g∑
j=1

uk(Pj) = uk(q) + uk(

g−1∑
j=1

Pj). (3-13)

Integrating by parts

1

2πi

∫
∂Σ0

uk(p)d log gζ,q(p) = − 1

2πi

∫
∂Σ0

log gζ,q(p) duk(p) (3-14)

and using the discontinuity of log gζ,q across Ai, we have

uk(

g∑
j=1

Pj) = −
∑
i

∮
p∈Ai

duk(p)(ui(p)− ui(q) + ζi +
1

2
τi,i)

= uk(q)− ζk −
τk,k
2
−
∑
i

∮
p∈Ai

ui duk

= uk(q) +Kk − ζk (3-15)

where K is the Riemann’s constant. �

Lemma 3.3 (Theta divisor) The set (Θ) of zeros of Θ, called the Theta divisor

is a submanifold of Cg of dimension g−1. Let Wg−1 be the set of divisors sums of g−1

points. The map

Wg−1 → (Θ)
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D 7→ K − u(D) (3-16)

is an isomorphism. In other words, every zero ζ of Θ can be uniquely written (modulo

Zg+τZg) as (minus) the Abel map of a sum of g−1 points shifted by K, and vice-versa,

the Abel map of any sum of g− 1 points, shifted by K is a zero of Θ.

∀ ζ | Θ(ζ) = 0 ∃! D = P1 + · · ·+ Pg−1 | ζ = K − u(D). (3-17)

∀ D = P1 + · · ·+ Pg−1 ∈ Wg−1 , ζ = K − u(D) ∈ (Θ). (3-18)

proof: Choose q a generic point of Σ. Let ζ a non-singular zero of Θ. Since one of

the zeros of gζ,q is q, the others are P1, . . . , Pg−1, and we have

ζ = K −
g−1∑
i=1

u(Pi). (3-19)

A priori, the Pis are functions of ζ and q.

At fixed q, we thus have a map

(Θ) → Wg−1

ζ 7→ P1 + · · ·+ Pg−1 (3-20)

where Wg−1 is the set of divisors sums of g− 1 points. The inverse map is:

Wg−1 → (Θ)

D 7→ K − u(D) (3-21)

which is clearly independent of q. So the map is invertible, and independent of q. We

thus have

(Θ) = K − u(Wg−1). (3-22)

�

Theorem 3.1 (Divisors of meromorphic functions) If f 6= 0 is a meromorphic

function, with divisor (f) =
∑

i αi.pi, then

deg(f) = 0 , u((f)) = 0 (3-23)

and, for any non–singular choice of ζ ∈ (Θ), there exists C ∈ C∗, such that

f(p) = C
∏
i

gζ,pi(p)
αi . (3-24)

Reciprocally, if D =
∑

i αi.pi, is a divisor such that

degD = 0 , u(D) = 0 (3-25)

then D is the divisor of a meromorphic function.
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proof: If D is a divisor of degree 0 with u(D) = 0, then (3-24) clearly defines a

meromorphic function on Σ, proving the last part of the theorem.

Vice versa, let f a meromorphic function, let ζ a regular zero of Θ, and D = (f) =∑
i αi.pi. We already know that degD =

∑
i αi = 0. Define on Σ0:

g(p) = f(p)
∏
i

gζ,pi(p)
−αi . (3-26)

It has no pole nor zeros in Σ0, therefore log g is holomorphic on Σ0 and d log g is a

holomorphic 1-form on Σ0.

g has no monodromy around Ai, and around Bi it gets multiplied by a phase

independent of p:

g(p+Ai) = g(p) , g(p+ Bi) = g(p) e2πiui(D), (3-27)

which implies that d log g is analytic across the boundaries of Σ0, it thus defines a

holomorphic 1-form on Σ. Therefore there exists λ1, . . . , λg such that

d log g =

g∑
i=1

λidui (3-28)

and thus there exists C ∈ C∗ such that

g(p) = Ce
∑g
i=1 λiui(p). (3-29)

This last expression has monodromy eλi = 1 around Ai implying λi ∈ 2πiZ, and it has

monodromy e
∑
k τi,kλk = e2πiui(D) around Bi, implying

u(D) ∈ Zg + τZg ≡ 0 in J. (3-30)

This implies the theorem. �

Corollary 3.1 The Abel map Σ→ J is injective.

proof: If there would be p1, p2 distinct and such that u(p1) − u(p2) = 0 in J, this

would imply that D = p1− p2 would be a divisor of degree 0, and such that u(D) = 0,

and there would thus exist a meromorphic function f with only one simple pole at p2

and no other pole. First assume that there exists a holomorphic 1-form ω that doesn’t

vanish at p2, then fω would contradict corollary II-2.1. Therefore assume that every

holomorphic 1-form in O1(Σ) vanishes at p2. Let

k = min{orderp2 ω | ω ∈ H1(Σ)} ≥ 1. (3-31)

Then if ω ∈ O1(Σ) is a holomorphic 1-form that vanishes at order k at p2, then fω

would vanish at order k− 1, that would contradict the minimality of k. Therefore this

is impossible, proving the corollary. �
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Theorem 3.2 (Jacobi inversion theorem) There is a bijection

Wg → J
D 7→ u(D)−K (3-32)

where Wg is the set of divisors that are sums of g points. In other words any point

v ∈ J, can be uniquely written as

v = −K + u(P1) + · · ·+ u(Pg). (3-33)

proof: Let v ∈ Cg. By the same-as-usual Riemann bilinear identity argument, the

function p 7→ g(p) = Θ(u(p)− v) on Σ0, has g zeros in Σ0. Let us call them q1, . . . , qg.

By definition u(q1) − v = ζ is a zero of Θ, and therefore there exists a unique divisor

D′ = P1 + · · ·+ Pg−1 in Wg−1 such that

u(q1)− v = K − u(P1 + · · ·+ Pg−1) (3-34)

This implies, after defining D = q1 +D′ ∈ Wg that

v = −K + u(D). (3-35)

The map v 7→ D seems to depend on the choice q1 of zero of g, but we can see that

the map is invertible, with inverse map Wg → J, D 7→ −K + u(D) independent of this

choice. This ends the proof. �

Lemma 3.4 Let ζ ∈ (Θ). Since Θ is an even function then −ζ ∈ (Θ), and

ωζ =

g∑
i=1

Θ′i(ζ) ωi = −ω−ζ (3-36)

is a holomorphic 1-form with divisor

(ωζ) =

g∑
i=1

Pi +

g∑
i=1

P̃i (3-37)

where D = P1 + · · · + Pg−1 is the unique divisor such that u(D) = K − ζ, and D̃ =

P̃1 + · · ·+ P̃g−1 is the unique divisor such that u(D̃) = K + ζ.

proof: The function gζ,q(p) = Θ(u(p) − u(q) + ζ) has a zero at p = q, and at

P1, . . . , Pg−1. Near q = p it behaves, in a chart coordinate, as

gζ,q(p) ∼p→q (p− q) ωζ(q)
dq

. (3-38)
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We can choose q = Pi, and then gζ,Pi(p) has a zero of order at least 2 at Pi, implying

that ωζ(Pi) must vanish (in fact it must vanish at the same order as the multiplicity

of Pi in D). This also holds for ω−ζ(P̃i) = −ωζ(P̃i) by the same reason. Therefore ωζ

vanishes at D + D̃. Since a holomorphic 1-form has 2g − 2 zeros, these are the only

zeros, and thus

(ωζ) = D + D̃. (3-39)

�

Theorem 3.3 Let ω a meromorphic 1-form, and D = (ω) =
∑

i αi.pi its divisor, then:

degD = 2g− 2 , u(D) = 2K. (3-40)

proof: We have already proved (Riemann-Hurwitz theorem) that a meromorphic

1-form is such that degD = 2g − 2. Moreover, if ω1 and ω2 are meromorphic forms,

then ω1/ω2 is a meromorphic function, its divisor is (ω1)−(ω2) and it satisfies u((ω1)−
(ω2)) = 0, therefore u(D) is the same for all 1-forms.

The previous lemma shows that u((ωζ)) = 2K for ζ a zero of Θ. �

Theorem 3.4 Let ω a holomorphic 1-form, and D = (ω) =
∑

i αi.pi its divisor, then:

degD = 2g− 2 , u(D) = 2K. (3-41)

Vice–versa, if D is a positive divisor satifying (3-41), then there exists a unique (up to

scalar multiplication) holomorphic 1-form whose divisor is D.

proof: The first part of the theorem is already proved. Now let D a positive divisor

of degree 2g− 2 that satisfies (3-41):

D =

2g−2∑
i=1

Pi. (3-42)

Let D′ =
∑g−1

i=1 Pi, then ζ = K − u(D′) ∈ (Θ), which implies that ωζ is a holomorphic

1-form whose divisor is D′+ D̃′, where D̃′ is the unique positive divisor of degree g− 1

such that K −u(D̃′) = −ζ = −(K −u(D′)) = K −u(D−D′), i.e. D̃′ = D−D′. This

implies that (ωζ) = D.

To prove uniqueness (up to scalar multiplication), observe that if two holomorphic

forms have the same divisor of zeros, their ratio is a meromorphic function without

poles, therefore it is a constant. �
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3.1 Divisors, classes, Picard group

Definition 3.5 A divisor D is called principal, iff there exists a meromorphic function

f such that (f) = D. From theorem 3.1, principal divisors are those such that:

degD = 0 , u(D) = 0. (3-43)

The Z–module of divisors, quotiented by principal divisors is called the Picard group:

Pic(Σ) = Div(Σ)/Principal divisors(Σ). (3-44)

The degree and Abel maps are morphisms (they can be pushed to the quotient)

deg : Pic(Σ)→ Z, (3-45)

u : Pic(Σ)→ J(Σ). (3-46)

Definition 3.6 (Canonical divisor) The canonical divisor class K ∈ Pic(Σ) is the

divisor class (modulo principal divisors) of any meromorphic 1-form. (It is well defined

since the ratio of 2 meromorphic forms is a meromorphic function). We have

degK = 2g− 2 , u(K) = 2K. (3-47)

4 Prime form

Let us consider special zeros of Θ as follows: Let c = 1
2
a + 1

2
τb be an half–integer

characteristic, i.e. c = −c. We say it is odd iff the scalar product (a,b) is odd

c =
1

2
a +

1

2
τb odd ⇔ (a,b) =

g∑
i=1

aibi ∈ 2Z + 1, (4-1)

it is then a zero of Θ. Let us admit that there exists non–singular half-integer odd

characteristics.

Lemma 4.1 Let c a non–singular half-integer odd characteristics. The 1-form

hc =

g∑
i=1

Θ′i(c) ωi (4-2)

has g−1 double zeros, located at the unique positive integer divisor of degree g−1 such

that u(D) = K − c.

The square root
√
hc is well defined and analytic on a fundamental domain Σ0, it

is a 1
2

spinor form.
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proof: We have seen that the zeros of hc have divisor D + D̃, with D and D̃ the

unique divisors such that u(D) = K − c and u(D̃) = K + c, but since c = −c in J, we

have D = D̃, and thus all zeros are double zeros. �

Definition 4.1 (Prime form)

Ec(p, q) =
Θ(u(p)− u(q) + c)√

hc(p) hc(q)
(4-3)

It is a −1
2
⊗ −1

2
bi-spinor defined on a fundamental domain Σ0×Σ0, it vanishes at p = q

and nowhere else, it behaves near p = q, in any local coordinate φU , as

Ec(p, q) ∼
φU(p)− φU(q)√
dφU(p) dφU(q)

(1 +O(φU(p)− φU(q))). (4-4)

It has monodromies (up to a sign):

Ec(p+Ai, q) = ± Ec(p, q)

Ec(p+ Bi, q) = ± Ec(p, q) e
−2πi (ui(p−q)+ci+ 1

2
τi,i) (4-5)

Under a change of c, we have

Ec′(p, q) = ± Ec(p, q) e
πi (b−b′,u(p)−u(q)). (4-6)

proof: Notice that gc,q(p) has g zeros, one of them is q, and the others P1, . . . Pg−1

are such that u(
∑

i Pi) = K−D, therefore they are the same as the zeros of
√
hc. This

shows that as a function of p, Ec(p, q) vanishes only at p = q and nowhere else. The

other properties are rather obvious.

�

Theorem 4.1 (Green function) The Green function defined in cor II-3.1, is (up to

an additive constant C independent of p):

Gq+,q−(p) = C+log

∣∣∣∣Θ(u(p)− u(q+) + c)

Θ(u(p)− u(q−) + c)

∣∣∣∣−π =u(p)T (=τ)−1 =(u(q+)−u(q−)). (4-7)

This can also be written with the prime form

Gq+,q−(p) = C + log

∣∣∣∣Ec(p, q+)

Ec(p, q−)

ν(q+)

ν(q−)

∣∣∣∣− π g∑
i,j=1

=ui(p) ((=τ)−1)i,j =(uj(q+)− uj(q−)).

(4-8)

where ν is any meromorphic 1-form. Observe that changing the 1-form ν, or the odd

characteristic c, or the origin o for the definition of the Abel map, or the basis of

symplectic cycles, amount to changing G by an additive constant C independent of p.
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5 Fundamental form

The following object is probably the most useful form that can be defined on a Rie-

mann surface, it allows to reconstruct everything. Riemann already introduced it, it

then received several names, and we shall call it the Fundamental second kind

differential.

Although it differs from another object named Bergman kernel in operator theory,

it is sometimes called also Bergman kernel, because it was extensively studied by

Bergman and Schiffer [2], and this name was used in a series of Korotkin-Kokotov

seminal articles [5, 6]. It is also very close to other objects, called Schiffer kernel, or

Klein kernel, that were introduced, and that we shall see below.

Definition 5.1 (Fundamental second kind differential)

B(p, q) = dpdq (log Θ(u(p)− u(q) + c)) . (5-1)

It is independent of a choice of c. B is a meromorphic symmetric bilinear 1 � 1 form

on Σ × Σ, it has a double pole at p = q and no other pole, and near p → q it behaves

(in any choice of local coordinate φU) as

B(p, q) =
dφU(p) dφU(q)

(φU(p)− φU(q))2
+ analytic at q. (5-2)

It also satisfies

B(q, p) = B(p, q) (5-3)∮
q∈Ai

B(p, q) = 0 (5-4)∮
q∈Bi

B(p, q) = 2πi ωi(p). (5-5)

It is sometimes called Bergman kernel.

This definition contains assertions that need to be proved.

proof: It is clearly symmetric because Θ is even.

It has a double pole at p = q because it is the second derivative of the log of

something that vanishes linearly. There is no simple pole contribution at p = q because

of parity, or because of the same reason, it is the second derivative of a log.

It is globally meromorphic on Σ, because when we go around a cycle, Θ gets multi-

plied by a phase, log Θ receives an additive contribution which is linear in u(p)−u(q)+c,

and thus is killed by taking the second derivative dpdq.

Θ also has zeros at P1, . . . , Pg−1, but since those points are independent of p and q,

taking derivatives with respect to p and q kills these poles.
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The values of the A-cycle and B-cycle integrals are easy from the quasiperiodicity

properties of Θ, indeed integrating a derivative just gives the difference of values of

log Θ between the end and start of the integration path, i.e. the phase shift of log Θ.

The fact that it is independent of c follows from uniqueness. Indeed If B and B′ are

2 fundamental forms of the second kind, for instance corresponding to c and c′, their

difference has no pole at all, and has vanishing A-cycle integrals, so it is a vanishing

holomorphic 1-form, showing that B is unique. �

As a corollary we get

Definition 5.2 (Third kind forms) For any distinct points q1, q2 ∈ Σ0 × Σ0, the

following 1-form of p ∈ Σ

ωq1,q2(p) = dp

(
log

Θ(u(p)− u(q1) + c)

Θ(u(p)− u(q2) + c)

)
=

∫ q1

q2

B(p, .) (5-6)

is independent of a choice of c, it is meromorphic on Σ, it has a simple pole at p = q1

with residue +1 and a simple pole at p = q2 with residue −1 and no other pole, and it

is normalized on A–cycles ∮
p∈Ai

ωq1,q2(p) = 0

Res
q1

ωq1,q2 = 1

Res
q2

ωq1,q2 = −1. (5-7)

Other kernels

There exist other classical bilinear differentials, slightly different from B. First notice

that for every symmetric g× g matrix κ, then

Bκ(p, q) = B(p, q) + 2πi
∑
i,j

κi,j ωi(p)ωj(q) (5-8)

is also a meromorphic symmetric bilinear 1⊗ 1 form on Σ× Σ, with a double pole at

p = q and no other pole with behavior (5-2), the only difference is that it satisfies∮
q∈Ai

Bκ(p, q) = 2πi
∑
j

κi,jωj(p)∮
q∈Bi

Bκ(p, q) = 2πi

(
ωi(p) +

∑
j,l

τi,jκj,lωl(p)

)
. (5-9)

In particular we have special choices of κ as follows:
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Definition 5.3 (Klein kernel) Let ζ ∈ Cg, and define the Klein kernel

Bζ(p, q) = B 1
πi

log Θ′′(ζ)(p, q) = B(p, q) + 2
∑
i,j

(log Θ)′′(ζ)i,j ωi(p)ωj(q) (5-10)

where

(log Θ)′′(ζ)i,j =

(
∂2

∂ui ∂uj
log Θ(u)

)
u=ζ

. (5-11)

Definition 5.4 (Schiffer kernel) We have already defined the Schiffer kernel, it cor-

responds to the choice κ = i
2
=τ−1:

BS(p, q) = B i
2
=τ−1(p, q) (5-12)

5.1 Modular transformations

A choice of symplectic basis of cycles (marking) is not unique, and some notions, like

the normalized basis of holomorphic forms, the Riemann matrix of periods, and the

fundamental second kind differential depend on the marking. The group of changes

of symplectic basis, that keeps the intersection matrix constant, is the symplectic

group Sp2g(Z), of 2g× 2g matrices (written as 4 block matrices of size g× g)(
α β
γ δ

)
(5-13)

satisfying (
α β
γ δ

) (
0 Idg

−Idg 0

) (
α β
γ δ

)T
=

(
0 Idg

−Idg 0

)
. (5-14)

Now consider 2 markings, related by a Sp2g(Z) symplectic transformation:(
A
B

)
=

(
α β
γ δ

) (
Ã
B̃

)
. (5-15)

Theorem 5.1 (Modular transformations) Under a symplectic transformation, the

Riemann matrix of periods changes as

τ̃ = (δ − τβ)−1(τα− γ), (5-16)

and the normalized basis of holomorphic 1-forms as

ω̃i =
∑
j

Ji,jωj , J = (δ − τβ)−1 = αT + τ̃βT . (5-17)

The Klein kernel and the Schiffer kernel are Sp2g(Z) modular invariant.
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The kernel Bκ of def. 5.1 changes as

Bκ = B̃κ̃ , κ̃ = (α + τ̃β)−1κ(δ − τβ)− (α + τ̃β)−1β. (5-18)

In particular for κ̃ = 0:

B̃0 = Bβ(δ−τβ)−1 , (5-19)

i.e.

B̃0(p, q) = B0(p, q) + 2πi

g∑
i,j=1

(β(δ − τβ)−1)i,j ωi(p) ωj(q). (5-20)

Remark that if g = 1, the matrices α, β, γ, δ are scalar elements of Z, and we have

τ̃ =
ατ − γ
δ − βτ

. (5-21)

5.2 Meromorphic forms and generalized cycles

Theorem 5.2 (All meromorphic forms are generated by integrating B) A

basis of M1(Σ) can be constructed by integrating B as follows:

• 1st kind forms

ωi(p) =
1

2πi

∮
q∈Bi

B(p, q) (5-22)

It is the unique holomorphic 1-form normalized on A–cycles as∮
Aj
ωi = δi,j. (5-23)

We call Ai and Bi 1st kind cycles.

• 3rd kind forms

ωq1,q2(p) =

∫ q1

q=q2

B(p, q) (5-24)

where the integration chain from q2 to q1 is the unique one that doesn’t intersect

any Ai-cycles nor Bi-cycles. It is the unique 1-form normalized on A–cycles that

has a simple pole with residue 1 at q1 and a simple pole with residue −1 at q2 and

no other poles, such that

Res
q1

ωq1,q2 = 1

Res
q2

ωq1,q2 = −1∮
Ai
ωq1,q2 = 0. (5-25)

We call a chain q2 → q1 a 3rd kind cycle (we shall call it a generalized cycle

below).
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• 2nd kind forms. For q ∈ Σ, choose φU a local coordinate in a neighborhood

of q, and let f a function, meromorphic in the neighborhood U of q, and let

d = orderq f − f(q).

For k ∈ Z+, if d > 0, define

ωf,q,k(p) =
1

2πi

d

k

∮
q′∈Cq

(f(q′)− f(q))
−k
d B(p, q′). (5-26)

It is the unique 1-form normalized on A–cycles that has a pole of degree k+ 1 at

q, that behaves as

ωf,q,k(p) ∼
df(p)

(f(p)− f(q))1+ k
d

+ analytic at q ,

∮
Ai
ωf,q,k = 0. (5-27)

If d < 0, i.e. q is a pole of f , of degree −d we define

ωf,q,k(p) =
1

2πi

d

k

∮
q′∈Cq

f(q′)
−k
d B(p, q′). (5-28)

It is the unique 1-form normalized on A–cycles that has a pole of degree k+ 1 at

q, that behaves as

ωf,q,k(p) ∼
df(p)

(f(p))1+ k
d

+ analytic at q ,

∮
Ai
ωf,q,k = 0. (5-29)

We call a pair (Cq.f), that we denote Cq.f , made of a small cycle Cq around q,

together with a function f meromorphic in a neighborhood of Cq with poles only

at q, a 2nd kind cycle (we shall call it a generalized cycle below).

In this theorem, we have implicitely defined a notion of ”generalized cycles”. B

allows to define a form–cycle duality as follows:

through integration (Poincaré pairing), cycles can be viewed as acting linearly on

the space of forms, and are thus elements of the dual of the space of 1-forms:

< γ, ω >=

∮
γ

ω ∈ C. (5-30)

In other words

H1(Σ) ⊂M1(Σ)∗. (5-31)

However, the dual M1(Σ)∗ is much larger than H1(Σ), it may contain for instance

integrals on a cycle, together with multiplication by a function (as in (5-26)) or a

distribution, or integrals on open chains with boundaries as in (5-24), and also 2-

dimensional integrals, and many other things. Since B is a 1 � 1 form, acting on its

second variable by an element of the dual, yields a 1-form of the first variable, i.e.

a 1-form. However, if we chose an arbitrary element of M1(Σ)∗, this 1-form is not

necessarily meromorphic. Let us define:
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Definition 5.5 (Generalized cycles) We define the space of generalized cycles

M1(Σ), as the subspace of M1(Σ)∗, whose integral of B is a meromorphic 1-form.

B defines a map B̂ from generalized cycles to meromorphic 1-forms:

B̂ : M1(Σ) → M1(Σ)

γ 7→ B̂(γ) =< γ,B > , B̂(γ)(p) =

∮
q∈γ

B(p, q) (5-32)

From theorem 5.2, this map is surjective. It is not injective.

Definition 5.6 The intersection of generalized cycles is the symplectic form on

M1(Σ)×M1(Σ) defined by

γ1 ∩ γ2 = −γ2 ∩ γ1 =
1

2πi

(∮
γ1

∮
γ2

B −
∮
γ2

∮
γ1

B

)
(5-33)

One can check that on H1(Σ)×H1(Σ) this is indeed the usual intersection.

Notice that Ker B̂ is obviously a Lagrangian submanifold.

To go further

To learn more about generalized cycles, their sumplectic structure, their Lagrangian

submanifolds, and Hodge structures, see for instance [4].
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Chapter 4

Riemann-Roch

The question of interest is: given a set of points pi and orders αi ∈ Z (i.e. an integer

divisor D =
∑

i αi.pi), is it possible to find a meromorhic function (resp. 1-form) with

poles at pi of degree at most −αi if αi < 0, and zeros of order at least αi if αi > 0 ?

And how many linearly independent such functions (resp. 1-forms) is there ?

1 Spaces and dimensions

Definition 1.1 (Positive divisors) A divisor D =
∑

i αi.pi is said positive∑
i

αi.pi ≥ 0 iff ∀ i , αi ≥ 0. (1-1)

D > 0 iff D ≥ 0 and D 6= 0. (1-2)

This induces a (partial) order relation in the set of divisors:

D1 ≥ D2 iff D1 −D2 ≥ 0. (1-3)

D1 > D2 iff D1 −D2 > 0. (1-4)

Definition 1.2 Given a divisor D, we define the vector spaces (over C)

L(D) = {f ∈M0(Σ) | (f) ≥ D} , r(D) = dimL(D), (1-5)

Ω(D) = {ω ∈M1(Σ) | (ω) ≥ D}. , i(D) = dim Ω(D). (1-6)

Theorem 1.1 r(D) and i(D) depend only on the divisor class (modulo principal divi-

sors):

r(D) = r([D]) , i(D) = i([D]). (1-7)
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proof: If D2 −D1 = (f) is a principal divisor, then the maps

Ω(D1) → Ω(D2)

ω1 7→ fω1 (1-8)

L(D1) → L(D2)

f1 7→ ff1 (1-9)

are isomorphisms (they are obviously invertible: the inverse is dividing by f), therefore

i(D1) = i(D2) = i([D1]) and r(D1) = r(D2) = r([D1]). �

The Riemann-Roch theorem, that we shall prove in this chapter, is:

Theorem 1.2 (Riemann-Roch) For every divisor D we have

r(−D) = degD + 1− g + i(D). (1-10)

This theorem is extremely useful and powerful. One reason is that most often one

of the two indices r(−D) or i(D) is easy to compute and the other is more difficult, so

the theorem gives it without effort.

Also, using positivity i(D) ≥ 0 (resp. r(−D) ≥ 0) we easily get a lower bound for

r(−D) (resp. i(D)), and thus the Riemann-Roch theorem is often used to prove the

existence of functions or forms with given poles and degrees.

2 Special cases

Let us first prove it in special cases:

• If D = 0, then from theorem II-2.6 we have L(0) = O(Σ) = C and r(0) = 1. On

the other hand, Ω(0) = O1(Σ) and i(0) = g. The Riemann-Roch theorem is satisfied.

• If −D > 0, then L(−D) = {0} and r(−D) = 0, and degD < 0. We have (using

the basis of theorem III-5.2)

Ω(D) = {
∑
i

−αi∑
k=2

tpi,kωpi,k +
∑
i

tpi,1ωpi,o +

g∑
i=1

εiωi |
∑
i

tpi,1 = 0 } (2-1)

Therefore

i(D) =
∑
i

(−αi) + g− 1 = − degD + g− 1. (2-2)

The Riemann-Roch theorem is satisfied.

• g ≥ 2 and D > 0 and degD = g − 1. Ω(D) is then the set of holomorphic

forms ω with zeros at the g − 1 point of D. ζ = K − u(D) is a zero of Θ, and by
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parity, −ζ = u(D)−K is also a zero of Θ, therefore there is a unique positive divisor

D̃ > 0 of degree deg D̃ = g − 1 with Abel map u(D̃) = K + ζ = 2K − u(D). From

theorem III-3.4, there exists a unique (up to scalar multiplication) holomorphic one

form ω whose divisor of zeros is D + D̃, which implies that i(D) = 1. It also implies

that Ω(D) = Ω(D + D̃) = Ω(D̃).

For all f ∈ L(−D), the 1-form fω has no pole, and its divisor of zeros is ≥ D̃, so it

belongs to Ω(D̃). Reciprocally, if ω̃ ∈ Ω(D̃) = Ω(D+ D̃), then ω̃ must be proportional

to ω, and f = ω̃/ω is a constant, in particular it belongs to L(−D). Therefore the map

L(−D) → Ω(D̃)

f 7→ fω
ω̃

ω
← ω̃ (2-3)

is an isomorphism. This implies r(−D) = i(D̃) = 1. The Riemann-Roch theorem is

satisfied.

3 Genus 0

On the Riemann sphere we have

L(−D) =

{
C

P (z)∏
i(z − pi)αi

| P ∈ C[z] degP ≤ degD

}
(3-1)

=⇒ r(−D) = max(0, 1 + degD) (3-2)

Ω(D) =

{
C

P (z)∏
i(z − pi)−αi

dz | P ∈ C[z] degP ≤ −2− degD

}
(3-3)

=⇒ i(D) = max(0,−1− degD) (3-4)

We easily see that the Riemann-Roch theorem is satisfied for all divisors.

4 Genus 1

On a genus 1 curve, there is a unique –up to a scalar factor– holomorphic 1-form ω0

without poles nor zeros. Choosing a symplectic basis of cycles A∩B = 1, we choose ω0

normalized on A, so that
∮
A ω0 = 1, and we define τ =

∮
B ω0 and we define the Abel

map p 7→ u(p) such that du = ω0.

The map f 7→ ω = fω0 is an isomorphism

L(D)→ Ω(D), (4-1)
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and thus

r(D) = i(D). (4-2)

If f ∈ L(D), we have (f) = D + D̃ with D̃ ≥ 0, deg D̃ = − degD and u(D̃) =

−u(D). Let us denote

W (D) = {D̃ | D̃ ≥ 0 and deg D̃ = − degD and u(D̃) = −u(D)}. (4-3)

There is an isomorphism W (D)⊕ C→ L(D), given by

(D̃, C) 7→ f(p) = C
∏
i

Θ(u(p)−u(pi)+
1 + τ

2
)αi

∏
i

Θ(u(p)−u(p′i)+
1 + τ

2
)α
′
i , (4-4)

and thus

r(D) = dimW (D) = max(0,− degD). (4-5)

We have

r(−D)− r(D) = degD (4-6)

so that the Riemann-Roch theorem is satisfied.

Theorem 4.1 Every genus 1 Riemann surface is isomorphic to a torus C/Z + τZ.

proof: The map p 7→ u(p) is an isomorphism Σ → J(Σ) = C/Z + τZ. Indeed it is

injective, of maximal rank, and continuous, so it must be surjective. �

5 Higher genus ≥ 2

Let us first make some observations.

5.1 General remarks

Theorem 5.1

i([D]) = r([D]− K). (5-1)

proof: Let ω an arbitrary meromorphic 1-form. The map

Ω(D) → L(D − (ω))

ω′ 7→ ω′/ω (5-2)

is an isomorphism. �

Write D = D+ −D−, where D+ ≥ 0 and D− ≥ 0. We clearly have

Ω(D+) ⊂ Ω(D) ⊂ Ω(−D−) =⇒ 0 ≤ i(D+) ≤ i(D) ≤ i(−D−). (5-3)

L(−D−) ⊂ L(−D) ⊂ L(−D+) =⇒ 0 ≤ r(−D−) ≤ r(−D) ≤ r(−D+).

(5-4)
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5.2 Proof of the Riemann–Roch theorem

Negative divisors

Theorem 5.2 Let D a divisor. If there exists a negative divisor D̃ ≤ 0 whose divisor

class is [D̃] = [D] or if [D̃] = K− [D], then the Riemann–Roch theorem holds

proof: The case D̃ = 0, and D̃ < 0 were already done in section 2.

�

Other cases

The following proposition is very useful:

Proposition 5.1 (Riemann inequality) Let D > 0, we have

r(−D) ≥ degD − g + 1. (5-5)

proof: Writing D =
∑k

i=1 αipi, define D′ =
∑

i(αi + 1)pi.

The map

L(−D) → Ω(−D′)
f 7→ df (5-6)

is a morphism whose kernel consists of constant functions, i.e. whose kernel has di-

mension 1. Its image consists of exact forms, those for which all cycle integrals and

residues vanish. It is a space of codimension at most 2g + k − 1 (because there are at

most 2g + k independent non contractible cycles, and since the sum of all residues is

0, at most k − 1 of them are actually independent), therefore

r(−D)− 1 ≥ i(−D′)− 2g + 1− k. (5-7)

Moreover, we have already proved Riemann–Roch theorem for negative divisors, and

we have r(D′) = 0 and

i(−D′) = degD′ + g− 1 = degD + k + g− 1. (5-8)

Therefore:

r(−D)− 1 ≥ degD − g. (5-9)

�

Proposition 5.2 If r(−D) > 0, then there exists D̃ ≥ 0 such that [D̃] = [D].

proof: Choose 0 6= f ∈ L(−D), then D̃ = (f) +D ≥ 0 and [D̃] = [D]. �
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Proposition 5.3 If i(D) > 0, then there exists D̃ ≥ 0 such that [D̃] = K− [D].

proof: Use i([D]) = r(K− [D]). �

Theorem 5.3 If D is a divisor such that there exists no positive divisor D̃ ≥ 0 such

that [D] = [D̃] nor [D̃] = K− [D], then i(D) = r(−D) = 0 and

degD = g− 1. (5-10)

So that the Riemann-Roch theorem holds in this case too.

proof: Write D = D+ −D− with D+ > 0 and D− ≥ 0, with D+ and D− having no

points in common. We have from the Riemann inequality

r(−D+) ≥ degD+ − g + 1 = degD + degD− − g + 1 (5-11)

Assume that degD ≥ g, this implies that

r(−D+) ≥ degD− + 1. (5-12)

The subspace of {f | (f) ≥ D−−D+} ⊂ L(−D+), is of codimension degD−, and thus

it is non–vanishing, showing that there exists some f 6= 0 such that (f) +D ≥ 0. This

contradicts our hypothesis that D is not equivalent to a positive divisor. Therefore we

must have degD ≤ g− 1. By the same reasoning we have

g− 1 ≥ deg(K− [D]) = 2g− 2− degD (5-13)

which implies that g − 1 ≤ degD ≤ g − 1 and thus degD = g − 1. The fact that

i(D) = 0 and r(−D) = 0 follow from prop 5.2 and prop 5.3. The riemann–Roch

theorem thus holds. �
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Chapter 5

Moduli spaces

Throughough this section we shall denote

dg,n = 3g− 3 + n , χg,n = 2− 2g− n. (0-1)

Definition 0.1 Let (Σ, p1, . . . , pn) and (Σ′, p′1, . . . , p
′
n) be two compact Riemann sur-

faces of genus g, with n distinct and labeled marked points pi ∈ Σ, p′i ∈ Σ′. They are

called isomorphic iff there exists a holomorphic map φ : Σ→ Σ′, invertible and whose

inverse is holomorphic, such that φ(pi) = p′i for all i = 1, . . . , n.

Automorphisms of (Σ, p1, . . . , pn) form a group. We say that (Σ, p1, . . . , pn) is stable

iff its automorphism group is a finite group.

We define the moduli space

Mg,n = {(Σ, p1, . . . , pn) of genus g}/isomorphisms. (0-2)

1 Genus 0

From corollary II-3.5, every Riemann surface of genus 0 is isomorphic to the Riemann

sphere. Automorphisms of the Riemann sphere are Möbius transformations z 7→ az+b
cz+d

with ad− bc = 1.

Theorem 1.1

M0,0 = {(CP 1)} , Aut = PSL(2,C). (1-1)

M0,1 = {(CP 1,∞)} , Aut = {z 7→ az + b} ∼ C∗ × C. (1-2)

M0,2 = {(CP 1, 0,∞)} , Aut = {z 7→ az} ∼ C∗. (1-3)

M0,3 = {(CP 1, 0, 1,∞)} , Aut = {Id}. (1-4)

And if n ≥ 4

M0,n = {(CP 1, 0, 1,∞, p4, . . . , pn) | p4, . . . , pn distinct and 6= 0, 1,∞} , Aut = {Id},
(1-5)
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M0,n ∼ (CP 1 \ {0, 1,∞})n−3 \ {coinciding points}. (1-6)

M0,n is a smooth complex connected manifold of dimension

dimM0,n = max(0, n− 3). (1-7)

M0,n is stable iff n ≥ 3. If n ≥ 4, it is not compact.

1.1 M0,3

M0,3 is a single point, with trivial automorphism, this is the simplest possible manifold:

the point.

M0,3 = {(CP 1, 0, 1,∞)} , dimM0,3 = d0,3 = 0 , Aut = {Id}. (1-8)

There is a unique topology on it, and it is compact.

Its Euler characteristic is

χ(M0,3) = 1. (1-9)

1.2 M0,4

M0,4 is of dimension 1, it is a sphere with 3 points removed:

M0,4 = {(CP 1, 0, 1,∞, p) | p 6= 0, 1,∞} = CP 1−{0, 1,∞} , dimM0,4 = d0,4 = 1

Aut = {Id}. (1-10)

We put on it the induced topology from CP 1. It is not compact. We also put on it the

complex structure inherited from CP 1, it is thus a non compact Riemann surface.

Topologically it is sphere–less–3–points, its Euler characteristic is

χ(M0,4) = −1. (1-11)

Boundary

The boundary is reached when we consider a sequence in M0,4, or equivalently a

sequence of points p in CP 1 − {0, 1,∞}, which has no adherence value (and thus no

limit). This means a sequence that tends to 0 or 1 or ∞. In other words, a boundary

corresponds to 2 of the marked points colliding.

Consider the limit p4 = p→ 0 = p1, and p2 = 1, p3 =∞. The chart {z | |z| > 2|p|}
is a neighborhood that contains p2 and p3 but not p1 neither p4. In the limit p → 0,

this neighborhood becomes CP 1−{0}. In this chart, a whole basis of neighborhoods of

p1, p4 becomes contracted to the point {0}. By using a Möbius transformation and the
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coordinate z′ = z/p, the chart {z′ | |z′| < 2} is a neighborhood that contains p1 and

p4 but not p2 neither p3. In the limit p→ 0, this neighborhood becomes CP 1 − {∞},
and a whole basis of neighborhoods of p2, p3 becomes contracted to the point {∞}.

In other words, in the limit p → 0, we have 2 charts, entirely disconnected, that

touch each other only by one point.

This can be described by a notion of Nodal surface.

Definition 1.1 (Nodal Riemann surface) A nodal Riemann surface Σ, is a finite

union of compact surfaces Σi, together with a set of disjoint nodal points. A nodal point

is a pair of distinct points on the union. The nodal surface is

Σ = ∪iΣi/ ≡ (1-12)

with the quotient by the equivalence relation p ≡ q iff p = q or if (p, q) is a nodal

point. The topology of Σ is made of neighborhoods of non–nodal points in the Σis and

a neighborhood of a nodal point is the union of 2 neighborhoods of each of the 2 points.

With this topology, ∪iΣi (before taking the quotient) is not a separated space, and the

quotient Σ is separated but is not a manifold because there is no neighborhood of nodal

points homeomorphic to Euclidian discs.

Connectivity is well defined, nodal surfaces can be connected or not, also Jordan

arcs and their homotopy classes are well defined, and a nodal surface can be simply

connected or not.

The Euler characteristic is:

χ(Σ) =
∑
i

χ(Σi − {nodal points}). (1-13)

We see that the limit p → 0 in M0,4 is described by a nodal surface, with 2
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components, and one nodal point:

• The first component is a Riemann sphere containing p2 = 1 and p3 =∞ and one

side of the nodal point (the point z = 0). It is thus (CP 1, 1,∞, 0), which is an

element of M0,3.

• The second component is a Riemann sphere containing p1 = 0 and p4 = 1 (in the

coordinate z′ = z/p) and one side of the nodal point (the point z′ = ∞). It is

thus (CP 1, 0, 1,∞), which is an element of M0,3.

Notice that the Euler characteristic of a nodal surface with 2 sphere components having

each 3 points removed is:

χ(Σ1 ∪ Σ2 − {p1, p2, p3, p4, nodal points}) = χ(Σ1 − {p2, p3, nodal point})
+χ(Σ2 − {p1, p4, nodal point})

= −1− 1 = −2, (1-14)

and agrees with the Euler characteristic 2 − 2g − n = −2 of a surface of genus g = 0

with n = 4 points removed.

Eventually this boundary of M0,4 can be viewed as an element of M0,3 ×M0,3.

Notice that the boundary p4 → p1, is by a Möbius transform, the same as the

boundary p2 → p3.

There are 3 possibilities to choose a pair of colliding points among 4. Therefore

there are 3 boundaries, and we have

∂M0,4 ∼M0,3 ×M0,3 ∪ M0,3 ×M0,3 ∪ M0,3 ×M0,3 , (1-15)

Each of these boundaries is a point, and M0,4 is a sphere with 3 points missing. We

can compactify M0,4 by adding its boundary, and then we get the full sphere:

M0,4 =M0,4 ∪ ∂M0,4 ∼ CP 1. (1-16)

We equip it with the topology and complex structure of the Riemann sphere CP 1. It

is then a manifold, and in fact a complex manifold, a compact Riemann surface. We

have

χ(M0,4) = 2. (1-17)
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Deligne–Mumford compactification

The general case works similarly. Moduli spaces Mg,n are not compact, they have

boundaries whenever some marked points collapse, or whenever some cycles get

pinched. The limit can always be described by nodal surfaces.

We thus define:

Definition 1.2 (Deligne Mumford compactified moduli space) Let (g, n) such

that 2− 2g− n < 0.

The Deligne–Mumford compactified moduli spaceMg,n is defined as the set (modulo

isomorphisms) of connected nodal Riemann surfaces with n smooth labelled marked

points (smooth means they are distinct from nodal points and from each other), and

stable (the Euler characteristic of each component with all marked and nodal points

removed is < 0), and of total Euler characteristic χ = 2− 2g− n:

Mg,n = {(Σ, p1, . . . , pn) | χ = 2−2g−n =
∑
i

χi , ∀ i χi < 0}/isomorphisms. (1-18)

Isomorphisms are the holomorphic maps whose inverse is analytic, that conserve labeled

points and that conserve (up to possible permutations) the nodal points.

We shall not describe here the topology of this moduli space, but just mention that

with the appropriate topology it is indeed compact. Also it can be equipped with a

differentiable structure, and a complex structure, that we do not describe here. It shall

be explained in section 4 below, by providing an explicit atlas of charts and coordinates.

However, it is not a manifold (some neighborhoods are not homeomorphic to Eu-

clidian neighborhoods), it is an orbifold (a manifold quotiented by a group: each neigh-

borhood is homeomorphic to a Euclidian neighborhood quotiented by a group), and it

is a stack. As we shall see now it has a rather non–trivial topology, in particular, it

can have pieces of different dimensions.

Let us first study some simple examples.

• (g, n) = (0, 5)

We have

M0,5 = {(CP 1, 0, 1,∞, p, q) |p 6= 0, 1,∞, q 6= 0, 1,∞, p 6= q}. (1-19)

It has no non–trivial automorphisms, because there is a unique Möbius map that fixes

0, 1,∞.

Topologically, this is:

M0,5 = (sphere–less–3–points)× (sphere–less–3–points)− (sphere–less–3–points)

(1-20)
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where the last sphere–less–3–points is the diagonal of the product.

We have

dimM0,5 = 2. (1-21)

χ(M0,5) = (−1)× (−1)− (−1) = 2. (1-22)

Naively, one could think that to get a smooth differentiable (and complex) compact

manifold, one could add to it the missing pieces to complete the product into 2 full

spheres. We would need to add 7 missing sphere–less–3–points, and 9 missing points.

This is wrong, let us study the boundary. There are boundaries of codimension 1

when exactly 2 points collide, and boundaries of codimension 2, when 2 pairs collide.

The number of boundaries of codimension 1 is the numbers of pairs of 2 points

chosen among 5, i.e. (
5
2

)
= 10. (1-23)

Each such boundary is described by a nodal surface with 1 nodal point and 2 compo-

nents, one component carrying the 2 colliding points + nodal point, and one component

carrying the other 3 points and the nodal point, each component is a sphere. Therefore

∂codim 1 M0,5 = 10× (M0,3 ×M0,4). (1-24)

Topologically each boundary of codim 1, is a sphere–less–3–points (M0,4 times a point).

Similarly boundaries of codimension 2 are obtained by choosing 2 pairs of colliding

points among 5 points, i.e. choose the non colliding point (5 choices), then split the 4

remainings into 2 pairs (3 choices),

5× 3 = 15. (1-25)

Each such boundary is described by a nodal surface with 2 nodal points and 3 com-

ponents, two components carrying the 2 pairs of colliding points + 1 nodal point, and

one component carrying the 5th marked point and 2 nodal points, each component is

a sphere. Therefore

∂codim 2 M0,5 = 15× M0,3 ×M0,3 ×M0,3. (1-26)
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Topologically each boundary of codim 2, is a point.

Finally we have

M0,5 =M0,5 ∪ 10× M0,3 ×M0,4 ∪ 15× M0,3 ×M0,3 ×M0,3. (1-27)

Topologically, it is a product of 2 spheres, with 7 sphere–less–3–points removed, and

9 points removed, and with 10 sphere–less–3–points added and 15 points added. It is

definitely not a smooth manifold.

Some 7 among 10 of the sphere–less–3–points should be glued to the missing ones,

namely the colliding p → 0 should be glued to the missing p = 0 in the product, and

the same for p → 1, p → ∞, q → 0, q → 1, q → ∞, and the colliding p → q should

be glued to the diagonal p = q. The 3 remaining, namely 0 → 1, 0 → ∞ and 1 → ∞
should be glued to just a point respectively to p = q =∞, p = q = 1, p = q = 0.

9 among 15 of the codimension 2 boundaries, for example the boundary (p →
0, q → 1,∞) should be glued to the corresponding missing points in the product. The

6 remaining codimension 2 boundaries, for example (0→ 1, p, q →∞) should be glued

to the missing point in one of the 3 sphere–less–3–points, the one glued to the point

p = q =∞.

In the end we find a union of pieces of different dimensions. Many points have

neighborhoods that are not homeomorphic to Euclidian subspaces.

This is a stack.

1.3 n > 5

The same holds for higher n:

dimM0,n = n− 3 (1-28)

it is a product of n− 3 sphere–less–3–points, and to which we remove all submanifolds

of coinciding points. One can compute that

χ(M0,n) = (−1)n−1(n− 3)!. (1-29)
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Boundaries are nodal surfaces. For n ≥ 5 there are n(n − 1)/2 codimension 1

boundaries (choose 2 points among n). All boundaries can be described by a graph

whose vertices are the components of the nodal surface, and whose edges are nodal

points. Since the genus is 0, we must have

2− 2g − n = 2− n =
∑
i

(2− 2gi − ni − ki) (1-30)

where
∑

i ni is the number of marked points and 1
2

∑
i ki is the number of nodal points.

Observe that the connected components can’t exceed 1+ number of nodal points, oth-

erwise the surface would not be connected, which implies that∑
i

(ki − 2) ≥ −2. (1-31)

The relationship 2− n = −n+
∑

i(ki − 2)− 2
∑

i gi implies∑
i

gi = 1− 1

2

∑
i

(ki − 2) ≤ 0, (1-32)

therefore all connected components must have genus 0, and the number of nodal points

(edges in the dual graph) is equal to the number of connected components (vertices in

the dual graph)-1, i.e. the graph must be a tree.

2 Genus 1

By the Abel map, every Riemann surface of genus 1 is isomorphic to a standard torus

Tτ = C/Z + τZ for some τ with =τ > 0.

Theorem 2.1 Tτ and Tτ ′ are isomorphic iff

τ =
aτ ′ + b

cτ ′ + d
, (a, b, c, d) ∈ Z4 , ad− bc = 1. (2-1)

proof: Assume that there exists an isomorphism f : Tτ → Tτ ′ . It must satisfy, in

each charts:

f(z + n+ τm) = f(z) + n′ + τ ′m′ (2-2)

Its differential df must therefore satisfy

df(z + n+ τm) = df(z) (2-3)

showing that it is globally a holomorphic 1-form on Tτ , it must therefore be proportional

to dz, i.e.

df(z) = αdz. (2-4)
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This implies that f must be a chart-wise affine function:

f(z) = αz + β. (2-5)

A priori this function is defined on the fundamental domain. It must satisfy (2-2), in

particular we must have

α = f(1)− f(0) = cτ ′ + d , ατ = f(τ)− f(0) = aτ ′ + b, (2-6)

and therefore

τ =
aτ ′ + b

cτ ′ + d
. (2-7)

Saying that this transformation is invertible in the same form implies that ad− bc = 1.

Vice-versa, if τ and τ ′ are related by such a transformation, the map:

f : z 7→ (cτ ′ + d)z mod Z + τ ′Z (2-8)

is a holomorphic map Tτ → Tτ ′ since it satisfies the transition condition that f(z+n+

τm) ≡ f(z). �

Corollary 2.1 (Moduli space M1,0)

M1,0 = {Tτ | τ ∈ C+}/isomorphisms = C+/PSL(2,Z). (2-9)

However, each Tτ has an infinite group of automorphisms, indeed every translation

z 7→ z + β for β ∈ C is an automorphism.

M1,0 is unstable.

If we have a marked point p1, up to performing a translation, we choose it to be

the origin z = 0. Therefore:
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Theorem 2.2 (Moduli space M1,1)

M1,1 = {(Tτ , 0) | τ ∈ C+}/isomorphisms = C+/PSL(2,Z). (2-10)

Since the modular group PSL(2,Z) is generated by τ 7→ τ + 1 and τ 7→ −1/τ , a

fundamental domain is

M1,1 = {z | = z > 0,
−1

2
< < z < 1

2
, |z| > 1}

∪{z | < z =
1

2
, = z >

√
3

2
} ∪ {z | |z| = 1,

π

3
< Arg z <

π

2
}

∪{i } ∪ {e
2πi
3 }. (2-11)

M1,1 is an orbifold of dimension 1.

Automorphisms:

The map z 7→ −z is always an automorphism.

• For generic (Σ, p) ∈M1,1, i.e. generic τ we have Aut = Z2.

• For τ = i , the map z 7→ i z is an automorphism, and we have Aut = Z4.

• For τ = eiπ/3, the map z 7→ eiπ/3z is an automorphism, and we have Aut = Z6.

In all cases the number of automorphisms is finite, M1,n is stable iff n ≥ 1.

Euler characteristic of M1,1:

M1,1 is made of a 2-cell (with Z2 automorphism), two 1-cells (with Z2 automor-

phism), and 2 points with automorphisms Z4 and Z6. The Euler characteristics is

thus

χ(M1,1) =
1

2
− 2× 1

2
+

1

4
+

1

6
=
−1

12
. (2-12)

What is interesting, is to see that for an orbifold, the Euler characteristic is a

rational number rather than an integer.

2.1 Boundary of M1,1

The boundary is reached when a cycle gets pinched into a nodal point, and this cor-

responds to τ → ∞ (or in fact (aτ + b)/(cτ + d) → Q ∪ {∞} at the boundary of the

hyperbolic plane C+). We can identify a torus with a pinched cycle (a nodal point)

and a marked point, with a sphere with 3 marked points, 2 of the marked points when

glued together provide a nodal point (and they can be exchanged by a Z2 symmetry),

and the 3rd marked point is the initial marked point of the torus. In other words

∂M1,1 ∼M0,3/Z2. (2-13)
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We have

M1,1 =M1,1 ∪M0,3/Z2. (2-14)

The fundamental domain of M1,1 is a hyperbolic triangle in the upper complex plane

C+ equipped with the hyperbolic metric. In this metric, geodesics are lines or circles

orthogonal to the real axis, so that indeed the boundaries of the fundamental domain

are geodesics, it is an hyperbolic triangle. This triangle has 3 vertices: 2 of them (eiiπ/3

and e2iπ/3) have angle π/3 and one of them (∞) has angle 0.

In hyperbolic geometry, the area of a triangle is its deficit angle:

VolumeHyperbolic(M1,1) = π − π

3
− π

3
− 0 =

π

3
. (2-15)

3 Higher genus

For g ≥ 2, the Abel map embeds the curve into a submanifold of its Jacobian, which

is a compact torus of dimension 2g.

Given a symplectic basis of cycles, and an origin point to define the Abel map

p 7→ u(p), define

∀ i = 1, . . . , g , vi(p) =
∑
j

(=τ)−1
i,j =uj(p)

∀ i = 1, . . . , g , ṽi(p) = <ui(p)−
∑
j

(<τ)i,jvj(p) (3-1)

By definition we have

ui(p) = vi(p) +
∑
j

τi,j ṽj(p), (3-2)

which we write

u(p) = v(p) + τ ṽ(p). (3-3)

The following sets of points of Σ can be chosen as arcs representing the cycles Ai
or Bis:

{p | ṽi(p) = 0} ∼ Ai
{p | ṽi(p) = 1} ∼ Ai
{p | vi(p) = 0} ∼ Bi
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{p | vi(p) = 1} ∼ Bi (3-4)

If we remove them from Σ, we get the fundamental domain Σ0 ⊂ Σ. The map

Σ → ]0, 1[2g

p 7→ {vi(p), ṽi(p)} (3-5)

embedds the curve into a polygon with 4g sides in ]0, 1[2g. The surface Σ is obtained

by gluing corresponding sides together.

It is equipped with a Kähler metric corresponding to a symplectic form (which is

nothing but the restriction of the canonical symplectic form of [0, 1]2g ⊂ R2g to the

image of the curve)

g∑
i=1

dṽi ∧ dvi =
∑
i,j

(=τ)−1
i,j d<ui ∧ d=ui =

i

2

∑
i,j

(=τ)−1
i,j dui ∧ dūi. (3-6)

Notice that this metric is positive definite, and is modular invariant.

With this metric, the total area is (this is proved by Riemann bilinear identity)

Area(Σ) = g. (3-7)

Example: Torus. The torus is not only embedded in the Jacobian, it is isomorphic

to its Jacobian. Writing u = v + τ ṽ where v and ṽ are real, the lines v = 0, v = 1 are

the 2 sides of the cycle B, the lines ṽ = 0 and ṽ = 1 are the 2 sides of the cycle A, and

the fundamental domain comprised between them is the parallelogram with summits

0, 1, 1 + τ, τ . This is a parallelogram whose basis has length 1, and whose height is =τ ,

therefore with the metric
1

=τ
d<u ∧ d=u = dṽ ∧ dv, (3-8)

its area is 1, which is equal to the genus.

4 Coordinates in the moduli space

We shall find an explicit atlas of the moduli spaceMg,n. Charts will be homeomorphic

to R6g−6+2n
+ , and with gluing rules encoded by graphs.

4.1 Strebel graphs

Let (g, n) such that 2g− 2 + n > 0. Rather than consideringMg,n, let us consider the

product Mg,n × Rn
+, that we prefer to view as a trivial bundle over Mg,n whose fiber

is Rn
+:

M̃g,n =Mg,n × Rn
+ →Mg,n. (4-1)
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Let S = (Σ, p1, . . . , pn, L1, . . . , Ln) ∈ M̃g,n, where Σ is a smooth Riemann surface of

genus g, and p1, . . . , pn are n labeled distinct marked points on Σ, and L1, . . . , Ln are

positive real numbers.

Let us consider the set ΩS of quadratic differentials ω (see def. II-1.3), having

double poles at the marked points, and no other poles, and behaving (in some chart of

Σ with coordinate φ) near the marked point pi as:

ω(p) ∼
p→pi

−L2
i

(φ(p)− φ(pi))2
(1 +O(φ(p)− φ(pi))) dφ(p)2 . (4-2)

ΩS is an affine space, whose underlying linear space is the vector space of quadratic

differentials with at most simple poles at the pis.

• Example when (g, n) = (0, 3), and Σ = CP 1, we must have

ω(z) =
−L2

∞z
2 + (L2

∞ + L2
0 − L2

1)z − L2
0

z2(z − 1)2
dz2 (4-3)

and ΩS consists of a unique quadratic differential, dim ΩS = 0.

• Example when (g, n) = (0, 4), and S = (CP 1, 0, 1,∞, p, L0, L1, L∞, Lp), we have

ω(z) =
−dz2

z(z − 1)(z − p)

(
L2
∞z +

L2
0

z
+

L2
1

z − 1
+

L2
p

z − p
+ c

)
(4-4)

where c ∈ C can be any constant, in other words dim ΩS = 1.

• Example when g = 0 and n ≥ 4, and S = (CP 1, p1, . . . , pn;L∞, L1, . . . , Ln),

ω(z) =
−dz∏n

i=1(z − pi)

(
n∑
i=1

L2
i

∏
j 6=i(pi − pj)
z − pi

+
n−4∑
j=0

cjz
j

)
(4-5)

where c0, c1, . . . , cn−4 are arbitrary complex numbers, in other words ΩS ∼ Cn−3.

• Example when (g, n) = (1, 1), and S = (Tτ , 0, L0), we must have

ω(z) =
(
−L2

0 ℘(z; τ) + c
)
dz2 (4-6)

where ℘ is the Weierstrass function and c ∈ C, so that dim ΩS = 1.

Theorem 4.1

dim ΩS = dg,n = 3g− 3 + n. (4-7)

proof: • If g = 0, on the Riemann sphere, ΩS is the set of forms given in (4-5).

Indeed ω/dz2 must be a rational function with n double poles of given leading behavior,

and that behaves as O(1/z4) at ∞. Therefore f(z) = ω(z)
dz2

∏n
i=1(z − pi)

2 must be a
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polynomial, of degree at most 2n − 4, and such that f(pi) = −L2
i . The space of such

polynomials has dimension n− 3.

• Now assume g = 1, and Σ = C/Z + τZ. Then the following 1-form

ω̃(z) =
ω(z)

dz
+

n∑
i=1

L2
i℘(z − pi)dz (4-8)

must be a meromorphic 1-form with at most simple poles at the pis. Let ri = Res pi ω̃.

Then the 1-form (where σ is a primitive of ℘, i.e. dσ = ℘)

ω̃(z)−
n∑
i=1

riσ(z − pi)dz (4-9)

must be holomorphic, i.e. proportional to dz, therefore there must exist r1, . . . , rn,

such that
∑

i ri = 0, and C such that

ω(z) =

(
C −

n∑
i=1

L2
i℘(z − pi)− riσ(z − pi)

)
dz2. (4-10)

Vice versa, every such quadratic form is in ΩS , therefore

dim ΩS = n. (4-11)

• Now assume g ≥ 1. First, ΩS is not empty, indeed the quadratic form

ω(z) = −
n∑
i=1

L2
i B(z, pi)

ω1(z)

ω1(pi)
∈ ΩS . (4-12)

Any element of ΩS is of the form

ω + ω′ (4-13)

where ω′ is a quadratic form having at most simple poles at the pis, i.e. in the linear

underlying space of the affine space ΩS .

Let us choose once for all, a generic (having no zero at the pis) holomorphic 1-form

ν ∈ O1(Σ) (typically choose ν = ω1), and let o a zero of ν, and let

ri = Res
pi

ω′

ν
. (4-14)

The holomorphic quadratic form

ω̃(z) = ω′(z)−
n∑
i=1

ri ω
′
pi,o

(z) ν(z) (4-15)

has no poles (where ωp,q(z) is the 3rd kind form introduced in cor.II-3.2 or def. III-5.2).

Since the ratio of quadratic forms is a meromorphic function, and since meromorphic
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functions have the same number of poles and zeros, this implies that ω̃ must have the

same number of zeros as any quadratic form, in particular as ν2, and therefore ω̃ must

have 4g− 4 zeros.

Among these zeros, choose g − 1 of them, and choose the unique (up to scalar

multiplication) holomorphic 1-form µ that vanishes at those g− 1 points. Therefore ω̃
µ

is a meromorphic 1-form with 3g− 3 zeros and g− 1 poles (the other g− 1 zeros of µ)

that we name q1, . . . , qg−1. Let si = Res qi
ω̃
µ

, then

ω̃

µ
−

g−1∑
i=1

si ωqi,o (4-16)

must be a holomorphic 1-form, therefore a linear combination of ω1, . . . , ωg. In the end

we may write

ω′ = ν
n∑
i=1

ri ωpi,o + µ

(
g−1∑
i=1

si ωqi,o +

g∑
i=1

αi ωi

)
. (4-17)

The decomposition is not unique, as we could have chosen any g − 1 zeros of ω̃, but

this is a discrete ambiguity. Vice versa, for any choice of ri, si (subject to
∑

i si = 0),

µ, αi, we get an element of ΩS . The only redundency is that we can multiply µ by a

scalar and divide si and αis by the same scalar. This shows that

dim ΩS = (

ri∈Cn︷︸︸︷
n +

si∈Cg−2︷ ︸︸ ︷
g− 2 +

µ∈O1︷︸︸︷
g +

∑
i αiωi∈O1︷︸︸︷
g )−

scalar redundency︷︸︸︷
1 = 3g− 3 + n. (4-18)

�

Definition 4.1 Given ω ∈ ΩS , a horizontal trajectory is a maximal connected set

γ ⊂ (Σ− {p1, . . . , pn})universal cover, on which the map

p 7→ =
(∫ p√

ω(z)

)
(4-19)

is constant. This is independent of a choice of initial point of integration, and of a

choice of a sign of the square root.

Horizontal trajectories have the following properties:

• Locally, in a neighborhood of a point where ω has neither pole nor zero, horizontal

trajectories are C∞ Jordan arcs.

• In a neighborhood of a pole pi, we have√
ω(z) ∼ iLi

dz

z − pi
= iLi d log (z − pi) (4-20)
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so that horizontal trajectories are circles |z − pi| ∼constant.

• Horizontal trajectories can not cross except at zeros of ω.

• In a neighborhood of a zero a of ω, of order ka, we have

ω(z) ∼ ca (z − a)ka dz2 (4-21)

and thus the horizontal trajectories going through a are locally the rays

∼ a+ ei (−Arg ca+πj) 2
ka+2 R+ , j = 1, . . . , ka + 2 (4-22)

they form a star with ka + 2 branches. These are called ”critical trajectories”.

Generically, zeros are simple, ka = 1, so that critical trajectories have generically

trivalent vertices.

• a critical trajectory starting from a vertex (zero of ω) can either meet another

(or the same) vertex, it is then called a finite trajectory, or not, it is then called

an infinite trajectory.

A finite critical trajectory starting at a, is a Jordan arc γ : [0, l] → Σ such that
1

2π

∫ γ(t)

a
|
√
ω| = t.

An infinite critical trajectory starting at a, is a Jordan arc γ : [0,∞[→ Σ such

that 1
2π

∫ γ(t)

a
|
√
ω| = t.

• infinite trajectories have an adhrerence, which is also a horizontal trajectory.

Indeed, let γ : R+ → Σ an infinite trajectory, and let γ̄ = {p ∈ Σ | ∀ ε >
0, ∃q ∈ γ |d|√ω|(q, p) < ε}, where the distance is defined by the metric |

√
ω|.

This adherence is non empty, because if we take an infinite sequence t1, t2, . . . in

R+ tending to +∞, then the sequence γ(tn) must have a limit on Σ (because Σ

is compact), so γ̂ is not empty. Moreover, if γ(tn) converges to a point p ∈ γ̂,

then ω(γ(tn)) converges to ω(p), and thus γ̂ has a tangent vector, it must be

a compact C1 curve. Moreover, it must be a horizontal trajectory. We call it

a critical horizontal trajectory. It is compact and has finite length, but doesn’t

need to go through a vertex.
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There are at most 3 critical trajectories per vertex, thus the number of compact

critical trajectories is finite.

• The set of compact critical trajectories forms a graph Γ embedded in Σ. The

graph is not necessarily connected. Its vertices are zeros of ω.

• The connected components of Σ−Γ are called faces. For each i = 1, . . . , n, there

is a unique face containing pi, and it is topologically a disc.

• Faces that do not contain any pi, have the topology of cylinders.

proof: Choose a finite number ≥ 1 of marked points on each edge of the graph.

Consider the vertical trajectories emanating from them, and continue them until

they reach another edge or a point pi. Those trajectories can have finite or infinite

length. If a trajectory has infinite length, this means that |=
∫ √

ω| becomes

larger than the distance (measured with the metric |
√
ω|) between any 2 edges,

and thus an infinite vertical trajectory must necessarily enter one of the discs

around one pi. The vertical trajectories inside the faces not containing the pis

have finite length. Consider the graph Γ̃ of all these finite vertical trajectories.

Consider the connected components of Σ \ (Γ ∪ Γ̃). Every component f not

containing a pi has at least one marked point on its boundary, call it qf . The

map gf : f → C, p 7→
∫ p
qf

√
ω is bounded, i.e. <gf and =gf have a minimum and

maximum in f , defining a rectangle Rf in C. The map gf is analytic in f , and

thus the image of f is an open set of Rf , whose boundary can be made only of

horizontal and vertical lines, i.e. must be a rectangle in C.

This construction provides an atlas of Σ, whose charts are either discs centered

around the pis and a finite number of rectangles. The transition functions are

translations x 7→ ±x+ c, up to the choice of sign ± for the square root.

Consider a compact critical trajectory, and the set of all rectangles bordering

its left (reps. right) side. Since Σ is orientable, the choice of sign of the square

root can be chosen in such a way that all transition maps from a rectangle to its

neighbour, are c 7→ x+ c with c ∈ R. Moreover the other horizontal boundary of

the face, must be a horizontal trajectory, i.e. all rectangles must have the same

height. The gluing of all rectangles bordering the trajectory is then the gluing of

a finite number of rectangles of the same height along their parallel sides, it is a

cylinder.

�
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Theorem 4.2 (Strebel) There exists a unique element ω ∈ ΩS such that the graph

is cellular, i.e. all faces are discs (no cylinder). ω is called the Strebel differential,

and the graph of its critical horizontal trajectories is called the Strebel graph.

The Strebel graph map:

M̃g,n → ⊕Γ∈Gg,nR
{edges(Γ)}
+

S 7→
(
Γ, {`e}e∈edges(Γ)

)
, `e =

∣∣∣∣∫
e

√
ω

∣∣∣∣ (4-23)

is an isomorphism of orbifolds (it sends AutS → Aut Γ). Here Gg,n is the set of

trivalent cellular graphs of genus g, with n faces. `e is the length of edge e, measured

with the metric |
√
ω|.

proof: Given ω ∈ ΩS , for each pi and a given chart, we define the unique primitive

of
√
ω such that

dgpi(z) =
√
ω(z) , gpi(z) ∼z→pi iLi log (φ(z)− φ(pi)) +O((φ(z)− φ(pi)))

(4-24)

(in other words we have fixed the integration constant so that the is no term of order

0). Now, given some positive real numers r1, . . . , rn, we define:

A(ω) =

∫
Σ\∪i{=gpi (z)<log ri}

|
√
ω|2 + 2π

∑
i

Li log ri. (4-25)
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One easily checks (Stokes theorem) that A(ω) is actually independent of ri, provided

that ri is sufficiently small so that the discs =gpi(z) < log ri do not intersect Γ.

We have

A(ω) ≥ 2π
∑
i

Li logRi(ω) (4-26)

where Ri(ω) is the largest radius such that =gpi(z) < logRi does not intersect Γ, so

that

A(ω)− 2π
∑
i

Li logRi(ω) =

∫
∪ cylinders

|
√
ω|2. (4-27)

Moreover A is a convex functional of ω, with second derivative

A′′(δω, δ̃ω) =

∫
Σ

|
√
ω|2 =δω

ω
= δ̃ω
ω

(4-28)

which is a positive definite quadratic form. Therefore A possesses a minimum, at which

the gradient of A vanishes. The gradient is

A′(δω) =

∫
Σ

|
√
ω|2 =δω

ω
. (4-29)

δ logRi(ω) =
1

2
=
∫ a

pi

δω√
ω

(4-30)

Therefore the minimum is the Strebel differential.

�

Example

M̃0,3 =M0,3 × R3
+ is a sum of 4 graphs times R3

+.

In each graph there are 3 lengths corresponding to the 3 edges.

In the 2nd, 3rd, 4rth graph we have a triangular inequality respectively L∞ ≥
L0 + L1, L1 ≥ L0 + L∞, L0 ≥ L1 + L∞, whereas in the 1st graph no triangular

inequality is satisfied. This cuts R3
+ into 4 disjoint regions, each labelled by a graph
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In the 1st graph we have L0 = `1 + `2, L1 = `2 + `3 and L∞ = `3 + `1, whereas in

the second graph we have L0 = `1, L1 = `2 and L∞ = `1 + `2 + 2`3.

4.2 Topology of the moduli space

An atlas of M̃g,n is thus made of charts labelled by 3-valent graphs of genus g with n

faces.

The boundary between the domains correspond to one or several edge lengths van-

ishing. Shrinking an edge amounts to merge 2 trivalent vertices into a 4-valent vertex.

The gluing of charts amounts to glue together all graphs whose shrinking edges give

the same higher valence graph.

This atlas makes M̃g,n a smooth real manifold of dimension 6g − 6 + 3n (number

of edges), equipped with the topology inherited from R6g−6+3n
+ . It is connected.

Bounday and compactification

Not all vanishing edge lengths correspond to graphs embedded on a smooth surface,

some of them can be embedded only in nodal surfaces, and these correspond to the

boundary of M̃g,n.

Adding the ”nodal graphs” makes Mg,n a Deligne–Mumford compact space, but

not a manifold because there are pieces of different dimensions. It is connected.

Complex structure

Instead of the real lengths `e, we can parametrize the Strebel differential as a point in

ΩS , as in (4-18):

ΩS ∼ Cn+g−2 × (O1(Σ)×O1(Σ))/C ∼ C3g−3+n. (4-31)

The Strebel differential has complex coordinates in that space, and these complex

coordinates can be used as coordinates of Mg,n.

A basis of O1(Σ) can be defined locally in a chart where a symplectic basis of cycles

can be held fixed. Changing charts changes the symplectic basis, and the transition

functions to glue coordinates are obtained from the transition functions of the bundle

with fiber O1(Σ)→Mg,n, and they are analytic.

This provides a complex structure to Mg,n.

5 Uniformization theorem

Question: Poincaré metric
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Let (g, n) be such that 2−2g−n < 0. Let (Σ, p1, . . . , pn) ∈Mg,n a compact Riemann

surface of genus g with n marked points. Let α1, . . . , αn be n real numbers.

Does there exists a Riemannian metric of constant curvature −1, that vanishes at

order 2αi at marked point pi ? Is is unique ?

In a chart with coordinate z, the Poincaré metric (if it exists) can be written

e−φ(z,z̄) |dz| , e−φ(z,z̄) ∼
z→pi

Ci |z − pi|2αi (1 + o(1)) (5-1)

where φ is a real valued function which we write as a function of z and z̄ instead of

<z and =z in charts U ⊂ R2 identified with C. Under a holomorphic change of chart

and coordinates, i.e. under a holomorphic transition function z → z̃ = ψ(z), φ(z, z̄)

changes as

φ̃(ψ(z), ¯ψ(z)) = φ(z, z̄) + log |ψ′(z)| = φ(z, z̄) +
1

2
logψ′(z) +

1

2
logψ′(z). (5-2)

The curvature is

− 1 = R(z, z̄) = e2φ(z,z̄) ∆φ(z, z̄). (5-3)

Finding a metric with constant curvature = −1 thus amounts to solving Liouville’s

equation

∆φ(z, z̄) = 4∂∂̄φ(z, z̄) = −e−2φ(z,z̄). (5-4)

Stress energy tensor and projective connection

From (5-4) we have

∂̄(∂2φ+ (∂φ)2) = ∂̄∂2φ+ 2∂φ∂̄∂φ

= ∂(∂̄∂φ)− 1

2
e−2φ∂φ

=
−1

4

(
∂e−2φ + 2e−2φ∂φ

)
= 0, (5-5)

which we rewrite as

∂̄T (z) = 0 where T (z) = ∂2φ(z, z̄) + (∂φ(z, z̄))2. (5-6)

T (z) ∼
z→pi

−∆i

(z − pi)2
(1 + o(1)) , ∆i = αi(1− αi). (5-7)

T (z) is called the stress energy tensor, and we see that it must be analytic outside

of the marked points. We may drop the z̄ dependence because ∂̄T = 0.

Under a change of chart z → z̃ = ψ(z), T (z) changes (using (5-2)) as

T̃ (ψ(z)) =
1

ψ′(z)2

(
T (z) +

1

2
{ψ, z}

)
(5-8)
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where {ψ, z} is called the Schwartzian derivative of ψ:

{ψ, z} =
ψ′′′

ψ′
− 3

2

(
ψ′′

ψ

)2

(5-9)

A quadratic differential form

2T (z)dz2 (5-10)

with transitions given by (5-8) is called a projective connexion.

If B(z1, z2) is the Bergman kernel, the fundamental second kind differential on Σ

normalized on a chosen symplectic basis Ai,Bi of cycles, and f a meromorphic function

of Σ, then

Sf (z) = −6 df(z)2 lim
z′→z

(
B(z, z′)

df(z)df(z′)
− 1

(f(z)− f(z′))2

)
(5-11)

is a projective connection. It has poles at the zeros of df .

It follows that, for any choice of a given projective connection S independent of pis

and αis (for instance Sf as above), then

ω(z) = T (z)dz2 − 1

2
S(z) (5-12)

is a meromorphic quadratic differential on Σ.

It has poles at the poles of S, and it has double poles at the pis:

ω(z) ∼
z→pi

−∆i dz
2

(z − pi)2
(1 + o(1)) , ∆i = αi(1− αi). (5-13)

It belongs to an affine space, whose underlying linear space is the space of quadratic

differentials introduced in section 4.1, i.e.

ω ∈ ωS + Ω′(Σ,p1,...,pn;∆1,...,∆n). (5-14)

This is a space of real dimension 6g− 6 + 3n.

Oper

If T (z) would be known, we would recover f(z, z̄) = eφ(z,z̄) by solving the Schrödinger

equation in each chart:

∂2f(z, z̄) = −T (z) f(z, z̄). (5-15)

The operator:

dz2(∂2 + T (z)) (5-16)

is in fact independent of a choice of chart and coordinate (we leave to the reader to

verify that it transforms well under chart transitions), it is called an oper.

Notice that f(z, z̄) = eφ(z,z̄) is not a function, according to (5-2) it transforms as

a (−1
2
, −1

2
) spinor form, so the oper does not act in the space of functions but in the

space of spinors. It sends a −1
2

spinor to a 3
2

spinor.
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Monodromies

This ODE in z (at fixed z̄, since the oper is independent of z̄), is a second order ODE,

it has 2 linearly independent solutions, call a choice of basis f1(z), f2(z). Doing the

same thing for the z̄ dependence, since ∂̄2f(z, z̄) = −T̄ (z̄)f(z, z̄), we see that there

must exist 4 complex constants ci,j such that

f(z, z̄) = c1,1f1(z)f̄1(z̄) + c1,2f1(z)f̄2(z̄) + c2,1f2(z)f̄1(z̄) + c2,2f2(z)f̄2(z̄) (5-17)

They form a 2× 2 matrix

C =

(
c1,1 c1,2

c2,1 c2,2

)
. (5-18)

The choice of constants must be such that f(z, z̄) is a real monovalued function. f real

implies that the matrix C must be hermitian

C† = C. (5-19)

Up to a change of basis we may choose C to be diagonal and real, and in fact we can

choose C = Id.

Solutions of ODE usually have monodromies while going around a closed cycle γ:

the vector space of solutions remains unchanged, but solutions can be replaced by

linear combinations, so that the monodromy around a closed contour γ is encoded by

a matrix: (
f1(z + γ)
f2(z + γ)

)
= M(γ)

(
f1(z)
f2(z)

)
. (5-20)

The 2 × 2 monodromy matrix M(γ) is independent of z and actually depends only

on the homotopy class of γ. We have M(−γ) = M(γ)−1 and M(γ1 + γ2) =

M(γ2)M(γ1), so that monodromies provide a representation of the fundamental group

π1(Σ− {p1, . . . , pN}) into Sl2(C):

π1(Σ− {p1, . . . , pN}) → Sl2(C)

γ 7→ M(γ). (5-21)

M(γ) ∈ Sl2(C) rather than Gl2(C), i.e. detM(γ) = 1, thanks to the fact that the

Wronskian f ′1(z)f2(z) − f1(z)f ′2(z) is constant independent of z, and in particular re-

mains constant after going around a cycle.

Requiring that f(z, z̄) is monovalued, i.e. has no monodromy, implies that ∀ γ:

M(γ)†CM(γ) = C. (5-22)

The rank of π1(Σ−{p1, . . . , pn}) is 2g−2+n, and therefore (5-22) impose 3× (2g−
2 +n) = 6g− 6 + 3n real constraints on the choice of ω ∈ ωS + Ω′(Σ,p1,...,pn;∆1,∆n), which

is precisely of that dimension. We admit that this fixes a unique choice of ω, and thus

this determines uniquely the stress energy tensor T (z) and then the function φ(z, z̄).
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Mapping class group

Therefore, for every α1, . . . , αn ∈ Rn and every (Σ, p1, . . . , pn) ∈Mg,n, there is a unique

Riemannian metric on Σ of constant curvature −1, which has zeros (or poles) of order

αi at pi.

This implies that a universal cover of Σ− {p1, . . . , pn} is the hyperbolic plane, i.e.

the upper complex plane C+. We recover Σ by quotienting the universal cover, by the

fundamental group π1(Σ− {p1, . . . , pn}).
If we homotopically move a neighborhood U ∈ Σ − {p1, . . . , pn} around a closed

cycle γ, it should come back to itself in Σ, and to an isometric copy in the universal

cover. In other words, to each closed contour γ is associated an isometry in C+, and the

fundamental group has a representation into the group of isometries of the hyperbolic

plane.

The Fuchsian group K is the discrete subgroup of the hyperbolic isometries (called

PSL(2,R)) of C+, generated by π1(Σ− {p1, . . . , pn}). We have

Σ− {p1, . . . , pn} ∼ C+/K. (5-23)

We shall admit that it is possible to find a fundamental domain of C+, bounded by

geodesics, i.e. a polygon in the hyperbolic plane. The quotient by K then amounts to

glue together some sides of the polygon to recover the surface Σ − {p1, . . . , pn}. The

points p1, . . . , pn sit at the boundary of C+ (i.e. on R ∪ {∞}), and are corners of the

polygon, of angles 2παi, and all other angles are π/2.

It is possible to prove that the Fuchsian group is always a torsion free (no finite

order element) discrete subgroup of the group PSL(2,R) of hyperbolic isometries. And

vice–versa, every such group is the Fuchsian group of a Riemann surface.

Uniformization theorem

This leads to

Theorem 5.1 (Uniformization theorem) Every compact Riemann surface of

genus g = 0 is isomorphic to the Riemann sphere, every compact Riemann surface of

genus g = 1 is isomorphic to the standard torus Tτ (its Jacobian), and if 2g−2+n > 0:

For every α1, . . . , αn ∈ Rn and every (Σ, p1, . . . , pn) ∈ Mg,n, there is a unique

Riemannian metric on Σ of constant curvature −1, which has zeros (or poles) of order

2αi at pi.

This allows to identify Σ with a polygon in the hyperbolic plane C+, whose sides

are glued pairwise, i.e. to C+/K where K is a Fuchsian group, a discrete subgroup of

isometries of C+

Σ− {p1, . . . , pn} ∼ C+/K. (5-24)
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Remark 5.1 The actual uniformization theorem is slightly stronger than the one we have
written here, in particular it also considers surfaces with boundaries, and it characterizes
Fuchsian groups in deeper details.

Remark 5.2 An interesting fact is that the uniformization theorem strongly relies on the
Liouville equation and the stress energy tensor, in a way very similar to classical conformal
field theory.

Remark 5.3 The Stress energy tensor, or more precisely the projective connexion, or more
precisely the projective connexion shifted by a fixed projective connection, is found as a unique
element of the space of quadratic differentials Ω(Σ,p1,...,pn;∆1,∆n), like the Strebel differential.
It is similar but slightly different, indeed the Strebel differential was found by requiring that
closed cycle-integrals

∮
γ

√
ω had to be real, whereas the stress energy tensor is found by

requiring that the monodromy M(γ) had to be unitary. In a ”heavy limit”, where all αi
would be ”large”, the solutions of Schrödinger equation could be approximated by the WKB
approximation, and the monodromies in that approximation would have eigenvalues of the
form

eigenvalues of M(γ) ∼ e±i
∮
γ

√
ω (5-25)

and saying that the matrix be unitary implies that the integrals in the exponential are real.
In other words, in the heavy limit, the stress energy tensor tends to the Strebel quadratic
differential.

Remark 5.4 To each choice of (Σ, p1, . . . , pn, α1, . . . , αn) ∈Mg,n×Rn corresponds a SU(2)
representation (by the monodromies) of the fundamental group:

Mg,n × Rn → Betti (5-26)

where the Betti space is the set of representations of the fundamental group into SU(2)
(with monodromies of given eigenvalues e±2πiαi on the small cycles Cpi):

Betti = Hom(π1(Σ− {p1, . . . , pn}), SU(2)) / (sp(M(Cpi)) = (e2πiαi , e−2πiαi)). (5-27)

Remark 5.5 An infinitesimal change of point in the moduli spaceMg,n, i.e. an infinitesimal
change of complex structure, i.e. a cotangent vector toMg,n, corresponds to an infinitesimal
change in the uniformization. This can be seen as an infinitesimal change also in the Betti
space.

In other words, this shows that the cotangent space to the moduli space, as well as the
cotangent space to the Betti space, and the cotangent space to the space of opers, or also to
the space of flat SU(2) connections, are all isomorphic to the space of quadratic differentials
with double poles at pi. Their common real dimension is

2dg,n + n. (5-28)

where the addition of n actually corresponds to the trivial factor by Rn.
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6 Teichmüller space

Definition 6.1 (Teichmüller space) Let Sg a smooth orientable surface of genus

g. The Teichmüller space T (Sg) is the set of all complex structures on Sg, modulo

diffeomorphism isotopic to identity. An element of T (Sg), i.e. a surface with a class

of complex structures, is called a marked surface.

Due to the uniformization theorem, for g ≥ 2, T (Sg) is also the set of complete

hyperbolic (curvature R = −1) Riemannian metrics on Sg, modulo diffeomorphism

isotopic to identity (there is a similar statement for g = 1, with parabolic metric R = 0,

and for g = 0 with elliptic metric R = 1).

The mapping class group Γ(Sg) is the quotient of the group of all diffeomor-

phisms of Sg, by the subgroup of diffeomorphisms isotopic to identity. The moduli

space is the quotient

Mg,0 = T (Sg)/Γ(Sg). (6-1)

T (Sg) is a universal cover of the moduli space Mg,0.

There are many ways of putting a topology on T (Sg).

6.1 Fenchel–Nielsen coordinates

Consider

Definition 6.2 Mg,n(L1, . . . , Ln) be the moduli space of hyperbolic metrics on a con-

nected surface of genus g, with n labelled boundaries, such that the boundaries are

geodesic of respective lengths L1, . . . , Ln ∈ Rn
+.

We shall admit that it is always possible to find 3g− 3 + n non intersecting closed

geodesic curves, that cut Σ into 2g− 2 + n disjoint pairs of pants.

A pant decomposition is not unique.
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Lemma 6.1 (Pair of pants) The moduli spaceM0,3(L1, L2, L3) contains a single el-

ement. In other words, there is a unique (up to isometries) pair of pants, with 3 given

boundary lengths L1, L2, L3 (this can be extended if some boundary length is 0, to given

cusp angle rather than given length). It is built by gluing the unique hyperbolic right-

angles hexagon with 3 edge lengths L1/2, L2/2, L3/2 (the other intermediate 3 edge

lengths are then uniquely determined as functions of L1/2, L2/2, L3/2), and its mirror

image, along the 3 other edges (see figure).

Notice that each pair of pants carries marked points on its boundary (the points at

which geodesics orthogonal to 2 boundaries meet the boundary).

Hyperbolic surfaces can be built by gluing pairs of pants along their geodesic bound-

aries, provided that the glued boundaries have the same lengths, but then the bound-
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aries can be glued rotated by an arbitrary twisting angle (angle between marked points).

Every hyperbolic surfaces can be obtained in that way (not uniquely, because of the

many ways of cutting the same surface into pairs of pants, but this is a discrete ambi-

guity). This leads to introduce

Definition 6.3 (Fenchel-Nielsen coordinates) Every hyperbolic surface Σ ∈
Mg,n(L1, . . . , Ln), can be built by gluing 2g − 2 + n pairs of pants along 3g − 3 + n

non–intersecting geodesic closed curves. The 3g−3+n pairs (`i, θi) of geodesic lengths

and twisting angles at the cutting geodesics, are the Fenchel–Nielsen coordinates of Σ.

They are local coordinates in Mg,n(L1, . . . , Ln) (but not global because of the non–

uniqueness of the pant decomposition).

Therefore locally Mg,n(L1, . . . , Ln) ∼ R6g−6+2n, which defines a topology and metric

on Mg,n(L1, . . . , Ln).

It was proved by Weil and Petersson, that the transition maps from a pant decom-

position to another, are symplectic transformations in R6g−6+2n (equipped with the

canonical symplectic form), and this allows to define:

Definition 6.4 (Weil-Petersson form) The following 2-form on Mg,n(L1, . . . , Ln):

ω =

3g−3+n∑
i=1

d`i ∧ dθi (6-2)

is independent of the pair of pant decomposition, it is a globally defined 2-form on

Mg,n(L1, . . . , Ln). It is called the Weil-Petersson form.

Notice that ω3g−3+n is a top–dimensional form on Mg,n(L1, . . . , Ln), and we define

the Weil-Petersson volume of Mg,n(L1, . . . , Ln) as

Vg,n(L1, . . . , Ln) =
1

(3g− 3 + n)!

∫
Mg,n(L1,...,Ln)

ω3g−3+n. (6-3)

106



It can be proved that the volume is finite, and is a polynomial in the L2
i , moreover, the

coefficients of the polynomial, are powers of π2 times rational numbers, i.e.

Vg,n(L1, . . . , Ln) ∈ Q[L2
1, . . . , L

2
n, π

2] (6-4)

is a homogeneous polynomial of L2
1, L

2
2, . . . , L

2
n, π

2 with rational coefficients, of total

degree 3g− 3 + n. For example

V0,3(L1, L2, L3) = 1 , V1,1(L1) =
1

48

(
4π2 + L2

1

)
,

V0,4(L1, L2, L3, L4) = 2π2 +
1

2

4∑
i=1

L2
i . (6-5)

Mirzakhani’s recursion

Maryam Mirzakhani won the Fields medal in 2014 for having found a recursion relation

that computes all volumes (recursion on 2g− 2 + n).

Let us introduce the Laplace transforms of the volumes:

Wg,n(z1, . . . , zn) =

∫ ∞
0

. . .

∫ ∞
0

Vg,n(L1, . . . , Ln)
n∏
i=1

e−ziLiLidLi, (6-6)

for example

W0,3(z1, z2, z3) =
1

z2
1z

2
2z

2
3

, W1,1(z1) =
1

24z2
1

(
2π2 +

3

z2
1

)
,

W0,4(z1, z2, z3, z4) =
1∏4
i=1 z

2
i

(
2π2 +

4∑
i=1

3

z2
i

)
. (6-7)

Observe that these are polynomials of 1/z2
i .

Mirzakhani’s theorem, restated in Laplace transform is the following recursion

Theorem 6.1 (Mirzakhani’s recursion, Laplace transformed)

Wg,n+1(z1, . . . , zn, zn+1) = Res
z→0

dz

z2
n+1 − z2

π

sin 2πz

[
Wg,n−1(z,−z, z1, . . . , zn)

+
′∑

g1+g2=g

I1tI2={z1,...,zn}

Wg1,1+|I1|(z, I1)Wg2,1+|I2|(−z, I2)
]

(6-8)

where
∑′ means that we exclude the terms (g1, I1) = (0, ∅) and (g2, I2) = (0, ∅), and

where we defined (not the Laplace transform of an hyperbolic volume):

W0,2(z1, z2) =
1

(z1 − z2)2
. (6-9)
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This theorem efficiently computes all volumes recursively. In particular it easily

proves that the Laplace transforms are indeed polynomials of 1/z2
i , and therefore that

the volumes are polynomials of L2
i .
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Chapter 6

Eigenvector bundles and solutions
of Lax equations

A good introduction can be found in [1]. Many known integrable systems, can be put

in ”Lax form”, i.e. the Hamilton equations of motions, can be generated by a single

matrix equation, called Lax equation

∂

∂t
L(x, t) = [M(x, t), L(x, t)] (0-1)

where L(x, t) and M(x, t) depend rationally on an auxiliary parameter x, that generates

the equations, for instance the Taylor expansion in powers of x generates a sequence

of matrix equations for the Taylor coefficients.

We shall see now that such equations can be solved by algebraic geometry methods,

their solutions can be expressed in terms of Θ–functions.

Equation (0-1) implies that the eigenvalues of L(x, t) do not depend on t, they are

conserved, indeed

∂

∂t
log det(y − L(x, t)) =

∂

∂t
Tr log(y − L(x, t))

= −Tr [M(x, t), L(x, t)] (y − L(x, t))−1

= −Tr M(x, t) [L(x, t)], (y − L(x, t))−1]

= 0. (0-2)

The conserved quantities are the Taylor coefficients in the x expansion, of the eigen-

values, or of symmetric polynomials of the eigenvalues, in particular coefficients of the

characteristic polynomial:

det(y − L(x, t)) =
∑
k,l

xkyl Pk,l(t) =⇒ ∂

∂t
Pk,l = 0. (0-3)

The time dependence is thus only in the eigenvectors of L(x, t). As we shall see,

the fact that L(x, t) is a rational fraction of x, implies that the eigenvalues are alge-

braic functions of x, and the eigenvectors are also algebraic functions of x. Algebraic
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functions, can be thought of as meromorphic functions on an algebraic curve, i.e. on

a Riemann surface. Meromorphic functions are determined by their behavior at their

poles, and thus characterized by a small number of parameters, they can also be de-

composed on the basis of Θ-functions. This will allow to entirely characterize the

eigenvectors, and actually find an explicit formula for eigenvectors using Θ-functions.

This is called Baker-Akhiezer functions.

1 Eigenvalues and eigenvectors

Let us for the moment work at fixed time t. The question we want to solve is the

following: let L(x) an n× n matrix, rational function of x:

L(x) ∈Mn(C(x)). (1-1)

The eigenvalues and eigenvectors are functions of x, what can these functions be ?

1.1 The spectral curve

Let P (x, y) = det(y − L(x)) be the characteristic polynomial, and Σ̃ =

{(x, y) | P (x, y) = 0} ⊂ CP 1×CP 1. Let us call Σ its desingularisation, i.e. a compact

Riemann surface. Σ has a projection to Σ̃, and an immersion into CP 1 × CP 1, and

two projections x and y to CP 1:

Σ → Σ̃ ↪→ CP 1 × CP 1

x↘ ↘↓
CP 1

(1-2)

The eigenvalues of L(x) are thus points (x, y) ∈ Σ̃, and should be thought of as

points z ∈ Σ.

Locally, in some neighborhood, we may label the preimages of x:

z1(x), . . . , zn(x), (1-3)

and thus locally, we may label the eigenvalues Y1(x), . . . , Yn(x), with Yi(x) = y(zi(x))

and define the diagonal matrix

Y (x) = diag(Y1(x), . . . , Yn(x)). (1-4)

The eigenvalues are algebraic functions of x ∈ CP 1, and thus they are meromorphic

functions on Σ.
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Remark 1.1 The 1-form y(z)dx(z) is a meromorphic 1-form on Σ, it is called the Liouville
form. In fact the 1-form ydx is defined in the whole CP 1×CP 1, it is called the tautological
form, its differential is the 2-form dy∧dx the canonical symplectic 2-form in CP 1×CP 1. The
Liouville form is thus the restriction of the tautological form to the locus of the immersion
of the spectral curve. The immersion of the spectral curve is a Lagrangian with respect to
the symplectic form dy ∧ dx of CP 1 × CP 1.

1.2 Eigenvectors and principal bundle

Let Yj(x) be an eigenvalue of L(x), and Vj(x) = {Vi,j(x)}i=1,...,n be a non–vanishing

eigenvector for that eigenvalue. With j = 1, . . . , n we define a complete set of eigen-

vectors, and define a matrix V (x) = {Vi,j(x)} ∈ GLn, with

detV (x) 6= 0. (1-5)

We then have

L(x) = V (x)Y (x)V (x)−1. (1-6)

However, eigenvectors are not uniquely defined, we may rescale them arbitrarily, and

in particular rescale them by a non-vanishing x–dependent factor. This is equivalent to

say that we may right–multiply V (x) by an arbitrary x–dependent invertible diagonal

matrix.

We say that the eigenvector matrix V (x) is a section of a bundle over CP 1, whose

fiber over each point x is the group GLn. Moreover, when we represent V (x) as a

matrix, we assume a choice of basis, and we could change our choice of basis, i.e.

conjugate L(x) by an arbitrary matrix, L(x) → UL(x)U−1, equivalent to V (x) →
UV (x). In other words we are interested in GLn only modulo left-multiplication, this

is called modulo gauge transformation. Somehow we may fix the identity matrix in

Gln to our will, this is called an affine group. A bundle whose fiber is an affine Lie

group, is called a principal bundle.

Remark 1.2 [Other Lie groups]
So far we have not assumed that L(x, t) had any particular symmetry, we could also

require some symmetries conserved under time evolution. This would imply that eigenvectors
matrices would belong to a subgroup of Gln. We can obtain any Lie group in this way. It is
thus possible to consider any principal bundle.

The spectral curve also gets extra symmetries, not all coefficients of the characteristic
polynomial are independent. The set of independent coefficients is called the Hitchin base.
The good notion to describe a spectral curve with those extra symmetries, is the notion of
cameral curve, beyond the scope of these lectures.

1.3 Monodromies

The labelling of eigenvalues can only be local, in a small neighborhood, and when we

move x around a closed cycle γ (which may surround branchpoints), the eigenvalues
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get permuted by a permutation σγ (we shall identify the permutation group Sn with

its representation as matrices in Gln), and the eigenvectors get right multiplied:

Y (x+ γ) = σ−1
γ Y (x)σγ,

V (x+ γ) = V (x)σγ. (1-7)

In other words, the eigenvector bundle has monodromies, and these monodromies are

permutations, they are precisely the deck transformations of the spectral curve.

Remark 1.3 In case the group is a Lie subgroup G of Gln, the monodromies form a sub-
group of Sn, in fact they are in the Weyl group of G.

1.4 Algebraic eigenvectors

Let us first show that it is possible to choose V (x) as an algebraic function of x.

More precisely, let y an eigenvalue, i.e. (x, y) = (x(z), y(z)) a point of Σ̃ for z ∈ Σ,

and V (z) = (V1(z), . . . , Vn(z)) a corresponding eigenvector. Since V (z) 6= 0, there must

exist at least one i such that Vi(z) 6= 0, and let us assume here that, up to relabelling,

i = n. In a neighborhood, we may choose the normalization Vn(z) = 1.

The equation L(x(z))V (z) = y(z)V (z) can then be written as an (n− 1)× (n− 1)

linear system

∀ i = 1, . . . , n−1 ,
n−1∑
k=1

Li,k(x(z))Vk(z)−y(z)Vi(z) = −Li,n(x(z))Vn(z) = −Li,n(x(z)).

(1-8)

This linear system is solved by Kramers formula

Vi(z) = (−1)n−i
Mi,n(L(x(z))− y(z)Id)

Mn,n(L(x(z))− y(z)Id)
(1-9)

where Mu,v(A) is the minor of the matrix A obtained by removing the uth line and vth

column and taking the determinant. This expression is a rational function of x(z) and

y(z), it is thus a meromorphic function of z. Therefore we see that there exists some

meromorphic functions ψ̃i such that

Vi(z) = ψ̃i(z) ∈M1(Σ). (1-10)

Remark: this formula automatically has the monodromies (1-7) because mon-

odromies are the deck transformations of Σ.

Instead of having to look for an everywhere invertible n × n matrix of algebraic

functions Vi,j(x) for x ∈ C, we have to look for a everywhere non–vanishing vector of

meromorphic functions ψ̃i(z) on Σ.
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This is called the ”Abelianization procedure”: we have transformed the problem

of finding an algebraic section of a principal bundle of a non-Abelian group over the

Riemann sphere CP 1, into the problem of finding a meromorphic section of a projective

vector bundle whose fiber is a projective vector space (CP n), over a compact Riemann

surface Σ covering CP 1. Instead of matrices (thus in a non-Abelian space), we have

vectors of functions, the problem has somehow become Abelian. The price to pay is

to have replaced the Riemann sphere by a higher genus Riemann surface Σ that is a

covering of CP 1.

The next idea is that meromorphic functions are entirely determined by their be-

havior at their poles and zeros, and their periods. The Riemann–Roch theorem says

what is the dimension (the number of parameters to choose) to characterize all such

functions. The main difficulty is the invertibility of the matrix, or the non-vanishing

of the vector. The full solution was explicitely found by Russian mathematicians (see

[7, 3, 1]), and we shall now present the final solution, starting from the end. We shall

”reconstruct” the integrable system, the Lax matrix L(x, t) from the spectral curve.

1.5 Geometric reconstruction method

Let us now start from a spectral curve Σ̃ = {(x, y) | P (x, y) = 0} ⊂ CP 1 × CP 1, with

Σ its desingularisation. Σ has a projection to Σ̃, and an immersion into CP 1 × CP 1,

and a projection to CP 1 by x:

Σ → Σ̃ ↪→ CP 1 × CP 1

x↘ ↘↓
CP 1

(1-11)

Let us assume that Σ has a genus g > 0, and choose a symplectic basis of cycles,

Ai,Bj, and define the Abel map z 7→ u(z). Let c a non–singular odd half characteristic

(and thus a zero of Θ), and E the corresponding prime form. Let Ω be a meromorphic

1-form on Σ, of the second kind, having no residues at its poles. Let ζ(Ω) ∈ Cg be the

vector with coordinates

ζi(Ω) =

∮
Bi

Ω−
∑
j

τi,j

∮
Aj

Ω, (1-12)

which for short we denote

ζ(Ω) =

∮
B−τA

Ω. (1-13)

Let us define:

Definition 1.1 We define the Szegö kernel, for z and z′ two distinct points of Σ

ψ(Ω; z′, z) =
e
∫ z
z′ Ω

E(z, z′)

Θ(u(z)− u(z′) + ζ(Ω) + c)

Θ(ζ(Ω) + c)
. (1-14)
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It is a 1
2
⊗ 1

2
bi-spinor form on Σ× Σ.

Definition 1.2 For x and x′ two distinct points of CP 1, let us define the n×n matrix

in a neighborhood where is defined an ordering of preimages of x and x′

Ψ(Ω;x′, x)i,j = ψ(Ω; zi(x
′), zj(x)). (1-15)

It is a matrix–valued 1
2
⊗ 1

2
bi-spinor form on CP 1 × CP 1.

Proposition 1.1 It satisfies

Ψ(Ω;x1, x)Ψ(Ω;x, x2) =
(x1 − x2) dx

(x− x1)(x− x2)
Ψ(Ω;x1, x2) (1-16)

In particular taking the limit x1 → x2 = x′ this gives

Ψ(Ω;x′, x)Ψ(Ω;x, x′) =
dx dx′

(x− x′)2
Id (1-17)

which shows that for x 6= x′, Ψ(Ω;x′, x) is invertible.

Proposition 1.2 The matrix

L(Ω;x′, x) = Ψ(Ω; x1, x)Y (x)Ψ(Ω;x1, x)−1 (1-18)

is a n× n matrix rational in x. It is algebraic in x′, and it depends on Ω.

Remark that changing the choice of x′ amounts to a conjugation by an x–

independent matrix:

L(Ω;x′′, x) = Ψ(Ω; x′′, x′)L(Ω;x′, x)Ψ(Ω;x′′, x′)−1, (1-19)

in other words x′ plays the role of a choice of gauge, i.e. a choice of basis for GLn.

Proposition 1.3 Let us choose a basis {Ωi} (or an independent family) of meromor-

phic 1-forms of the second kind, and let

Ωt =
∑
i

tiΩi (1-20)

where t = {ti} is called the ”time” or more precisely the ”times”.

Let us define

L(x′;x, t) = Ψ(Ωt;x1, x)Y (x)Ψ(Ωt;x1, x)−1 (1-21)

and

Mi(x
′;x, t) =

(
∂

∂ti
Ψ(Ωt;x

′, x)

)
Ψ(Ωt;x

′, x)−1. (1-22)

Mi(x
′;x, t) is a rational function of x (its poles are the x–projections of points where

Ωi has poles, and of at most the same degrees), and we have the Lax equations

∂

∂ti
L(x′;x, t) = [Mi(x

′;x, t), L(x′;x, t)]. (1-23)
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In fact every (finite dimension n) solution of Lax equation, can be obtained in this

way. What we see, is that the time dependence, is encoded in the choice of Ωt ∈M1(Σ),

i.e. times are some linear coordinates in the affine space of meromorphic 1-forms. This

means that, under this parametrization the motion, in the space M1(Σ) is linear at

constant velocity.

The g–dimensional vector ζ(Ωt) is called the angle variables. It follows a linear

motion at constant velocity in Cg. The velocity is:

νi =
∂

∂ti
ζ(Ωt) =

∮
B−τA

Ωi. (1-24)

The action variables parametrize the spectral curve, and it is usual to choose the

g dimensional vector of A–cycles periods of the Liouville 1-form ydx:

εi =
1

2iπ

∮
Ai
ydx. (1-25)

This g dimensional vector parametrizes the spectral curve, i.e. the polynomial

P (x, y) = 0, or more precisely it parametrizes all the coefficients of P that are in-

terior of the convex envelope of the Newton’s polygon. The coefficients that are at the

boundary of the convex envelope, are called Casimirs of our integrable system. We

have

ydx = 2πi

g∑
i=1

εi ωi +
∑

(k,l)∈∂N (P )

ck,l ω(k−1,l−1). (1-26)

1.6 Genus 0 case

The previous section assumed that P (x, y) was generic, with the genus of Σ equal to

the number of points inside the Newton’s polygon, i.e. no cycle pinched to a nodal

point.

When some cycles are pinched into nodal points, Θ functions of genus g degenerate

and become polynomial combinations of Θ functions of lower genus.

The extreme case is when all non–contractible cycles of Σ have been pinched into

nodal points of Σ̃, the genus of Σ is then 0.

Let (pi,+, pi,−)i=1,...,N be the N nodal points (N = #
◦
N is the genus of the unpinched

curve) i.e. all the pairs of distinct points of Σ that have the same projection to Σ̃:

x(pi,+) = x(pi,−) and y(pi,+) = y(pi,−). (1-27)

The theta functions of a pinched curve degenerate into determinants of rational

functions, and the Szegö kernel degenerates into

ψ(Ω; z′, z) =
det0≤i,j≤N

e

∫ pi,+
pj,− Ω

pi,+−pi,−

det1≤i,j≤N
e

∫ pi,+
pj,− Ω

pi,+−pi,−

(1-28)
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where we defined p0,+ = z and p0,− = z′.

1.7 Tau function, Sato and Hirota relation

Let us come back to the non–degenerate case where there is no pinched cycle.

Definition 1.3 (Tau function)

T (Ω) = e
1
2

∑
i,j Qi,jtitj Θ(ζ(Ω) + c) (1-29)

where, introducing the generalized cycle Ω∗i ∈ M1(Σ) that generates Ωi =
∮

Ω∗i
B in

theorem III-5.2 (using the meromorphic function f = x in theorem III-5.2), we define

the quadratic form as the integral (i.e. the Poincaré pairing):

Qi,j =

∮
Ω∗i

Ωj =< Ω∗i ,Ωj > . (1-30)

We thus have∑
i,j

Qi,jtitj =
∑
i

ti

∮
Ω∗i

Ω =

∮
∑
i tiΩ

∗
i

Ω =

∮
Ω∗

Ω =

∮
Ω∗

∮
Ω∗
B. (1-31)

Notice that

ζ(Ω) =

∮
B−τA

Ω =

∮
B−τA

∮
Ω∗
B = 2πi (B − τA) ∩ Ω∗. (1-32)

so that

T (Ω) = e
1
2

∮
Ω∗

∮
Ω∗ B Θ(c+ 2πi (B − τA) ∩ Ω∗) (1-33)

Remark 1.4 We see that in fact, using the form–cycle duality, it seems easier and more
natural to define the Tau function in the space of cycles Ω∗ rather than the space of 1-forms Ω.
What is hidden here, is that the map B̂ : Ω∗ 7→ Ω =

∮
Ω∗ B is not invertible, it has a kernel (a

huge kernel). The map Ω 7→ Ω∗ is ill-defined, it can be defined only by choosing representents
of equivalence classes modulo Ker B̂, i.e. as in theorem III-5.2 make an explicit choice of basis
of M1(Σ). We could change this basis by shifting with elements of Ker B̂. Doing so would
change the quadratic form, and would change the Tau function by multplication by a phase.
The choice of basis is in fact a choice of a Lagrangian polarization in M1(Σ), and thus
the Tau function is not unique, it depends on a choice of Lagrangian polarization. Under a
–time independent– change of Lagrangian polarization, T gets multiplied by eS where S is
the generating function of the Lagrangian change of polarization.

Theorem 1.1 (Sato) The Baker Akhiezer function is a ratio of the Tau function

shifted by a 3rd kind form

ψ(Ω; z′, z) =
T (Ω + ωz′,z)

T (Ω)
. (1-34)
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proof: It is obvious by explicit computation. �

Notice that the ratio of T -functions is independent of a ”choice of polarization”.

Theorem 1.2 (Fay identities and Plücker relations)

T (Ω + ωz1,z2 + ωz3,z4)

T (Ω)
=
T (Ω + ωz1,z2)

T (Ω)

T (Ω + ωz3,z4)

T (Ω)
− T (Ω + ωz1,z4)

T (Ω)

T (Ω + ωz3,z2)

T (Ω)
.

(1-35)

More generally

T (Ω +
∑n

i=1 ωzi,z′i)

T (Ω)
= det

1≤i,j≤n

(
T (Ω + ωzi,z′j)

T (Ω)

)
. (1-36)

proof: These are Fay identities for Theta functions [9]. This can be proved by

showing that the ratio of the right and left side, is a well defined meromorphic function

on Σ (in particular there is no phase when some zi goes around a cycle), and has no

pole, therefore it must be a constant. The constant is seen to be 1 in a limit zi → zj.

�

Definition 1.4 (Hirota derivative) For a function f on M1(Σ), and for any z ∈ Σ,

choosing a chart and local coordinate φ in a neighborhood of z, we defined (in theorem

III-5.2 using φ) the 1-form ωφ,z,1 that has a double pole at z. We define

∆zf(Ω) = dφ(z) lim
ε→0

1

ε
(f(Ω + ε ωφ,z,1)− f(Ω)) (1-37)

It is a meromorphic 1-form of z on Σ, it is independent of the choice of chart and

coordinate.

Proposition 1.4 Let p ∈ Σ in a chart U , and a coordinate φ in U . For z in a

neighborhood of p we define the KP times as the negative part coefficients of the Taylor–

Laurent expansion

Ω ∼
− orderp ydx∑

k=0

tp,k
dφ(z)

(φ(z)− φ(p))k+1
+ analytic at p. (1-38)

Then the Hirota derivative can be locally written as the following series of times deriva-

tives

∆z ∼ dφ(z)
∞∑
k=1

k (φ(z)− φ(p))k−1 ∂

∂tp,k
(1-39)

(1-39) is the usual way of writing the Hirota operator for KP hierachies, but as we

see here, this is just an asymptotic Taylor expansion in a neighborhood of p, whereas
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the Hirota operator is globally defined on Σ. In other words, for z in a neighborhood

of p

∆z − dφ(z)
n∑
k=1

k (φ(z)− φ(p))k−1 ∂

∂tp,k
= O((φ(z)− φ(p))n)dφ(z). (1-40)

proof: In a local coordinate φ, if |φ(z)− φ(p)| < |φ(q)− φ(p)| we have

ωφ,z,1(q) ∼
∞∑
k=1

k
(φ(z)− φ(p))k−1

(φ(q)− φ(p))k+1
dφ(q)

∼
∞∑
k=1

k (φ(z)− φ(p))k−1 ωp,k(q). (1-41)

from which we see that the Hirota derivative acts as (1-39).

�

Theorem 1.3 (Hirota equations)

∆z
T (Ω + ωz1,z2)

T (Ω)
= − T (Ω + ωz1,z)

T (Ω)

T (Ω + ωz,z2)

T (Ω)
, (1-42)

this can also be written

∆zψ(Ω; z1, z2) = −ψ(Ω; z1, z) ψ(Ω; z1, z). (1-43)

proof: This is the limit z3 → z4 = z of the Fay identities. �

Proposition 1.5 (Sato formula as a shift of times) Let p ∈ Σ in a chart U , and

a coordinate φ in U . For z in a neighborhood of p the Sato formula can be written as

the Taylor expansion

T (Ω + ωz,z′) ∼ T (Ω + ωp,z′ +
∞∑
k=1

(φ(z)− φ(p))k ωp,k) (1-44)

in other words, writing Ω =
∑

k tp,kωp,k + analytic at p, the Sato shift is equivalent to

tp,k → tp,k + (φ(z)− φ(p))k. (1-45)

Similarly, if z′ is in a neighborhood of p the Sato formula can be written as the Taylor

expansion

T (Ω + ωz,z′) ∼ T (Ω− ωp,z −
∞∑
k=1

(φ(z′)− φ(p))k ωp,k) (1-46)

in other words, the Sato shift is equivalent to

tp,k → tp,k − (φ(z′)− φ(p))k. (1-47)
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And if both z and z′ are in a neighborhood of p the Sato formula can be written as the

Taylor expansion

T (Ω + ωz,z′) ∼ T (Ω +
∞∑
k=1

(φ(z)− φ(p))k ωp,k −
∞∑
k=1

(φ(z′)− φ(p))k ωp,k) (1-48)

in other words, the Sato shift is equivalent to

tp,k → tp,k + (φ(z)− φ(p))k − (φ(z′)− φ(p))k. (1-49)

proof: In a local coordinate φ, if |φ(z)− φ(p)| < |φ(q)− φ(p)| we have

ωz,z′(q) ∼
∞∑
k=0

(φ(z)− φ(p))k

(φ(q)− φ(p))k+1
dφ(q)

∼ ωp,z′(q) +
∞∑
k=1

(φ(z)− φ(p))k ωp,k(q). (1-50)

�

To go further

Readers interested in learning more about this way of presenting the algebraic recon-

struction method, and in particular in the space of cycles M1(Σ) can see [4].
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