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Abstract

We consider generalized linear models where an unknown n-dimensional signal vector is observed through the successive
application of a random matrix and a non-linear (possibly probabilistic) componentwise function. We consider the models in the
high-dimensional limit, where the observation consists of m points, and m/n → α where α stays finite in the limit m,n → ∞.
This situation is ubiquitous in applications ranging from supervised machine learning to signal processing. A substantial amount
of work suggests that both the inference and learning tasks in these problems have sharp intrinsic limitations when the available
data become too scarce or too noisy. Here, we provide rigorous asymptotic predictions for these thresholds through the proof
of a simple expression for the mutual information between the observations and the signal. Thanks to this expression we also
obtain as a consequence the optimal value of the generalization error in many statistical learning models of interest, such as the
teacher-student binary perceptron, and introduce several new models with remarquable properties. We compute these thresholds (or
“phase transitions”) using ideas from statistical physics that are turned into rigorous methods thanks to a new powerful smart-path
interpolation technique called the stochastic interpolation method, which has recently been introduced by two of the authors.
Moreover we show that a polynomial-time algorithm refered to as generalized approximate message-passing reaches the optimal
generalization performance for a large set of parameters in these problems. Our results clarify the difficulties and challenges one
has to face when solving complex high-dimensional statistical problems.
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I. INTRODUCTION

As datasets grow larger and more complex, modern statistical analysis and signal processing now requires solving very

high-dimensional estimation problems with a very large number of parameters. This problematic arises in problems as diverse

as deep learning [1] and regression problems [2] or compressed sensing in signal processing [3], [4]. Developing algorithms

up to the task, and understanding their limitations, has become a major challenge in computer science, machine learning and

statistics.

In many instances, it has been empirically observed that both the inference and learning tasks appear to have intrinsic

limitations when the available data becomes too scarce or too noisy. In some cases these apparent thresholds are related to

information theoretic phenomena: There is just not enough information in the dataset. This is the case, as famously discussed

by Shannon in his seminal paper on communication theory [5], for the task of reconstructing a noisy signal when the noise is

beyond the so-called Shannon capacity of the communication channel. In many situations, including communications, there also

seem to exist jumps in the computational hardness, beyond which the most sophisticated known algorithms take exponential

time to solve the task: In this case the problem has become too complicated to solve explicitly. A substantial amount of work

suggests that one can understand and locate these fundamental barriers in many statistical models by thinking of them as phase

transitions in the sense of physics. In fact, over the last three decades or so, a large body of interdisciplinary works in the

statistical physics community has been applied to such problems [6]–[14] considering random instances, generated by given

statistical models, and then locating these phase transitions. Such models are in fact being widely used in fields as diverse as

(without any pretention at exhaustivity) statistical learning [15]–[19], compressed sensing and signal processing [14], [20]–[28],

communication theory [29]–[33], community detection in networks [34]–[37], combinatorial optimization problems [13], [38],

[39] or to model the behavior of neurons or neural nets [7], [8], [40], [41].

Many of these works, especially in the context of compressed sensing and machine learning, relied however on non-rigorous

methods, using instead powerful heuristics like the replica and cavity approaches [6]. In the present contribution we leverage on

these pioneering works and provide instead rigorous asymptotic predictions for several of these computational and information

theoretic thresholds in the case of generalized linear estimation models [42]. This includes many popular statistical models of
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interests in many scientific fields such as random linear estimation in statistics, the teacher-student single perceptron problem,

probit classification or quantized compressed sensing. For all these important estimation and learning problems our results

completely vindicate the physics results —closing in some cases conjectures opened since almost three decades [43]–[45]—

and considerably extend them in full generality. Additionally, we provide the value of the generalization error after an optimal

learning, which gives a bound on how accurately any algorithm is able to predict outcome values for previously unseen data.

We also compare these optimal results with the algorithmic ones provided by message-passing algorihms [14], [21], [22] and

observe that, while optimal performances are often thought to be intractable, they can actually be obtained using a polynomial-

time scheme for a large set of parameters. There exists, however, an interesting region of parameters where all algorithms

known to the authors fail to provide a satisfactory answer to the estimation and learning problems, while it is nevertheless

information theoretically possible to do so. In this case there is a significant gap between what currently known polynomial

algorithms can do and what should be expected from the information theoretic point of view.

Finally, our proof technique has an interest on its own. It exploits a powerful new technique called the stochastic interpolation

method. It has been recently developed by two of the authors in [46] and is applicable to many other open problems in statistical

estimation. Below we informally summarize our main contributions here:

• We consider generalized linear estimation models were, given an unknown signal vector X∗, one is given the measurement

vector Y = ϕ
(

1√
n
[ΦX∗]

)
, with Φ a known random matrix with i.i.d N (0, 1) entries, and where ϕ acts componentwise.

• Our first main result is the rigorous determination of the expression of the (conditional) entropy H(Y|Φ) of the observation

variable, a quantity often called “the averaged free energy” in the statistical physics litterature, and this in the asymptotic

limit where the number of variable is growing. As we shall see, many statistical quantities of interest, such as the mutual

information between the observation and the unknown signal or the Bayes optimal generalization error, can be computed

from this expression. We provide the proof of this expression —which is our main techniqueal contribution— in the last

section. Only the simple linear case was known rigorously so far [47]–[49]. In fact, our results cover a large number of

cases discussed in the litterature, often anticipated by statistical physics techniques, and allow to rigorously prove many

predictions obtained by the heuristic replica method. The expression for the entropy was first famously conjectured in

1989 in [43] for the particular case of ϕ(x) = sgn(x), a work that is at the basis of many significant developments. The

generic formula was also recently conjectured on the same heuristic basis [14]. Our proof yields a spectacular confirmation

of the cavity and replica methods [6], [13].

• We compute the Bayes-optimal generalization error in the context of a supervised learning task of the rule used by the

model (the so-called teacher-student problem). This estimator is optimal in the sense that it minimizes the label (the value

of the ouput of ϕ) mean-square-error among all possible student estimators. Again, this formula can be anticipated with

the heuristic cavity and replica methods, and was proposed, for the restricted case ϕ(x) = sgn(x) (the so-called perceptron

problem), in pionnering works in the statistical physics community [7], [44], [50].

• We also compute (under some techniqueal hypotheses) the minimum mean-square-error (MMSE) for the reconstruction

of the unknown signal in the generalized linear estimation model.

• While these results are information theoretic, we also consider the performance of a popular algorithm to solve random

instances of generalized linear estimation problems, called generalized approximate message-passing (GAMP [14], [21],

[22]). This algorithm, who also originated from statistical physics [40], [51]–[53], is expected to be particularly powerful

on these random instances, as proven for instance in compressed sensing [21], [54], [55]. Indeed we show that, for a

large set of problems and a large region of parameters, GAMP yields optimal generalization error. It exists, however,

a region where GAMP does not reach the optimal results. In this case, we conjecture that the algorithmic problem is

computationally hard.

• Finally, we study in depth the situation for many given choices of the function ϕ, and identify sharp phase transitions

and novel phase transitions. By locating these transitions we clarify the difficulties and challenges in solving complex

non-linear high-dimensional statistical problems in many concrete situations, and characterize these problems in terms of

optimal information theoretical reconstruction.

II. SETTING AND MAIN RESULTS

A. Generalized linear estimation: Problem statement

We now a generic description of the observation model. Note that we describe here an estimation (or inference) problem. In

the title of the paper, we refer to generalized linear models. This is because the setting that we describe now is very generic

and will allow us to also consider supervised learning problems (see Sec. III). Precise hypotheses are given below in Sec. II-C.

Let n,m ∈ N
∗. Let P0 be a probability distribution over R and let X∗

1 , . . . , X
∗
n

iid∼ P0 be the components of a signal vector

X∗ (this is also denoted X∗ iid∼ P0). We fix a function ϕ : R×R
kA → R and consider (Aµ)

m
µ=1

iid∼ PA, where PA is a probability

distribution over RkA (kA ∈ N). We acquire m measurements through

Yµ = ϕ
( 1√

n
[ΦX∗]µ, Aµ

)
+
√
∆Zµ , 1 ≤ µ ≤ m, (1)
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where Zµ
iid∼ N (0, 1) is an additive Gaussian noise, ∆ > 0, and Φ is a m× n measurement matrix with i.i.d Φµi ∼ N (0, 1)

entries. The estimation problem is to recover X∗ from the knowledge of Y = (Yµ)
m
µ=1, ϕ, Φ, ∆, P0 and PA (the realization

of the random stream A itself, if present in the model, is unknown). We use the notation [ΦX∗]µ =
∑n

i=1 ΦµiX
∗
i . When

ϕ(x,A) = x we have a random linear estimation problem, whereas if, say, ϕ(x,A) = sgn(x) we have a noisy single layer

perceptron. Sec. III discusses various examples related to non-linear estimation and supervised learning.

It also fruitful to think of the measurements as the outputs of a “channel”,

Yµ ∼ Pout

(
·
∣∣∣ 1√
n
[ΦX∗]µ

)
(2)

where the transition density (with respect to Lebesgue’s measure) is

Pout

(
yµ

∣∣∣ 1√
n
[ΦX∗]µ

)
=

1√
2π∆

∫
dPA(aµ)e

− 1
2∆

(
yµ−ϕ( 1√

n
[ΦX∗]µ,aµ)

)2
. (3)

Our hypotheses ensure that this is a well defined density. In fact (3) is sometimes called a “random function representation”

of a transition kernel. Our analysis uses both representations (1) and (2).

Throughout this paper we often adopt the language of statistical mechanics. In particular the random variables Y (and also

Φ, X∗, A, Z) are called quenched variables because once the measurements are acquired they have a “fixed realization.” An

expectation taken with respect to all quenched r.v appearing in an expression will simply be denoted by E without subscript.

Subscripts are only used when the expectation carries over a subset of r.v appearing in an expression or when some confusion

could arise.

A fundamental role is played by the joint posterior distribution of (the signal) x and of (the random stream) a given

the quenched measurements Y (recall that both X∗ and A are unknown). The prior over the signal is denoted dP0(x) =∏n
i=1 dP0(xi), and similarly dPA(a) =

∏m
µ=1 dPA(aµ). According to the Bayes formula this joint posterior is given by

dP (x = X∗, a = A|Y,Φ) =
1

Z(Y,Φ)
dP0(x)dPA(a)

m∏

µ=1

1√
2π∆

e
− 1

2∆

(
Yµ−ϕ( 1√

n
[Φx]µ,aµ)

)2
, (4)

where the partition function (the normalization factor) is defined as

Z(Y,Φ) :=

∫
dP0(x)dPA(a)

m∏

µ=1

1√
2π∆

e
− 1

2∆

(
Yµ−ϕ( 1√

n
[Φx]µ,aµ)

)2
. (5)

Marginalizing (4) w.r.t a leads the posterior of x, namely

dP (x = X∗|Y,Φ) =
1

Z(Y,Φ)
dP0(x)e

−H(x;Y,Φ) , (6)

Z(Y,Φ) =

∫
dP0(x)e

−H(x;Y,Φ) . (7)

where the Hamiltonian is defined as

H(x;Y,Φ) := −
m∑

µ=1

lnPout

(
Yµ

∣∣∣ 1√
n
[Φx]µ

)
. (8)

From the point of view of statistical mechanics (6) is a Gibbs distribution and the integration over dP0(x) in the partition

function is best thought as a “sum over annealed or fluctuating degrees of freedom” (note that in the representation (5), (aµ)
m
µ=1

also play the role of annealed variables). Let us introduce a standard statistical mechanics notation for the expectation w.r.t the

join posterior (4), the so called Gibbs bracket 〈−〉 defined as

〈g(x, a)〉 :=
∫
dP (x = X∗, a = A|Y,Φ)g(x, a) (9)

for any function g such that this expectation exists.

The main quantity of interest here is the associated free entropy (or minus the free energy)

fn :=
1

n
E lnZ(Y,Φ) . (10)

It is perhaps useful to stress that Z(Y,Φ) is nothing else than the density of Y conditioned on Φ so we have the explicit

representation (used later on)

fn =
1

n
EΦ

∫
dYZ(Y,Φ) lnZ(Y,Φ) =

1

n
EΦ

∫
dYdP0(X

∗)e−H(X∗;Y,Φ) ln

∫
dP0(x) e

−H(x;Y,Φ) , (11)

where dY =
∏m

µ=1 dYµ. Thus fn is minus the conditional entropy −H(Y|Φ)/n of the measurements. One of the main

contributions of this paper is the derivation, thanks to the stochastic interpolation method, of the thermodynamic limit

limn→∞ fn in the “high-dimensional” regime, namely when n,m → ∞ while m/n → α > 0 (α is sometimes refered

to as the “measurement rate” in compressed sensing terminology).
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B. Two scalar inference channels

An important role in our proof of the asymptotic expression of the free entropy is played by simple scalar inference channels.

As we will see, the free entropy is expressed in terms of the free entropy of these channels. This “decoupling property” stands

at the root of the mean-field approach in statistical physics, used through in replica method to perform a formal calculation of

the free entropy of the model [6], [13]. Let us now introduce these two scalar denoising models.

The first one is an additive Gaussian channel. Let r ≥ 0, which play the role of a signal-to-noise ratio (snr). Suppose that

X0 ∼ P0 and that we observe

Y0 =
√
rX0 + Z0 , (12)

where Z0 ∼ N (0, 1) independently of X0. Consider the inference problem consisting of retrieving X0 from the observations

Y0. The associated posterior distribution is

dP (x = X0|Y0) =
dP0(x)e

√
r Y0x−rx2/2

∫
dP0(x)e

√
r Y0x−rx2/2

. (13)

In this expression all the x-independent terms have been simplified between the numerator and the normalization. The free

entropy associated with this channel is just the expectation of the logarithm of the normalization factor

ψP0(r) := E ln

∫
dP0(x)e

√
r Y0x−rx2/2 . (14)

The second scalar channel that appears naturally in the problem is linked to the kernel Pout through the following inference

model. Suppose that V,W ∗ iid∼ N (0, 1) where V is known while the inference problem is to recover the unknown W ∗ from

the following observation

Ỹ0 ∼ Pout

(
· |√q V +

√
ρ− qW ∗) , (15)

where ρ > 0 and q ∈ [0, ρ]. The free entropy for this model, again related to the normalization factor of the posterior

dP (w =W ∗|Ỹ0, V ), is

ΨPout(q; ρ) = ΨPout(q) := E ln

∫
dw

e−
w2

2√
2π

Pout

(
Ỹ0|

√
q V +

√
ρ− q w

)
. (16)

We prove in Appendix B that this function is twice differentiable and convex with respect to (w.r.t) its first argument.

C. Replica-symmetric formula, mutual information and optimal output error

Let us now introduce our first main result, namely a complete proof of the single-letter replica-symmetric formula for the

asymptotic free entropy of model (1), (2). The proof is performed under the following rather general hypotheses.

(h1) The prior distribution P0 admits a finite second moment.

(h2) For some γ > 0 the moment of order 2 + γ of |ϕ( 1√
n
[ΦX∗]1, A1)| is bounded uniformly in n.

For concreteness the reader can keep in mind the class of polynomially bounded measurement models such that ϕ(z, a) ≤
c1 + c2|z|p for some constants c1 > 0, c2 > 0, p ≥ 1. In Appendix C we verify that (h2) is satisfied for such measurements

as long as P0 has finite p(2 + γ)-th moments. Notice that no continuity or differentiability assumption on ϕ is required.

Let us define the replica-symmetric potential (or just potential). Call ρ := E[(X∗)2] where X∗ ∼ P0. Then the potential is

fRS(q, r; ρ) = fRS(q, r) := ψP0(r) + αΨPout(q; ρ)−
rq

2
. (17)

From now on denote ψ′
P0
(r) and Ψ′

Pout
(q) = Ψ′

Pout
(q; ρ) the derivatives of ψP0(r) and ΨPout(q; ρ) w.r.t their first argument.

The main theorem of this paper is

Theorem 2.1 (Replica-symmetric formula): For the generalized estimation model (1), (2) and under the hypotheses (h1),

(h2) the thermodynamic limit of the free entropy (10) verifies

f∞ := lim
n→∞

fn = sup
q∈[0,ρ]

inf
r≥0

fRS(q, r) = sup
(q,r)∈Γ

fRS(q, r) , (18)

where the elements of Γ are called “fixed points of the state evolution”, and are defined by:

Γ :=

{
(q, r) ∈ [0, ρ]× R+

∣∣∣∣
q = 2ψ′

P0
(r)

r = 2αΨ′
Pout

(q; ρ)

}
. (19)

Moreover, the “sup inf” and the supremum over Γ in (18) are achieved over the same couples.
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The theorem will first be proved under the simpler assumptions of P0 with bounded support and ϕ bounded, twice

differentiable with respect to its first argument, with bounded first and second derivative. In Appendix F we give approximation

arguments to cover models satisfying (h1) and (h2).

An imediate corollary of Theorem 2.1 is the limiting expression of the mutual information between the observations and

the hidden variables.

Corollary 2.2 (Single-letter formula for the mutual information): The thermodynamic limit of the mutual information for

model(1), (2) between the observations and the hidden variables verifies

in :=
1

n
I(X∗,A;Y|Φ) −−−−→

n→∞
i∞ := −f∞ − α

2
(1 + ln(2π∆)) . (20)

Proof: This follows from a simple calculation:

1

n
I(X∗,A;Y|Φ) = E ln

P (Y,X∗,A|Φ)

P (Y|Φ)P (X∗,A|Φ)
= − 1

n
E lnP (Y|Φ) +

1

n
E lnP (Y|X∗,A,Φ) (21)

= −fn − 1

2n∆
E

m∑

µ=1

(Yµ − ϕ([ΦX∗]µ, Aµ))
2 − m

2n
ln(2π∆) (22)

= −fn − m

2n
− m

2n
ln(2π∆) . (23)

Another corollary is the following expression for the “measurement (or output) minimum-mean-square error”. Let us define

a Gibbs bracket for the scalar channel at fixed V :

〈g(w, a)〉sc =
∫
dỸ0DwdPA(a)

e−
1

2∆

(
Ỹ0−ϕ(

√
q V+

√
ρ−q w,a)

)2

∫
DwdPA(a)e

− 1
2∆

(
Ỹ0−ϕ(

√
q V+

√
ρ−q w,a)

)2 g(w, a) , (24)

where Dw = dw(2π)−1/2e−w2/2 is a standard Gaussian measure.

Corollary 2.3 (Single-letter formula for the output minimum-mean-square error): For almost every ∆ > 0, for any optimal

couple (q∗, r∗) of (18) we have

1

2
lim
n→∞

1

m
E

〈∥∥∥ϕ
( 1√

n
ΦX∗,A

)
− ϕ

( 1√
n
Φx, a

)∥∥∥
2〉

= lim
n→∞

1

m
E

[∥∥∥ϕ
( 1√

n
ΦX∗,A

)
−
〈
ϕ
( 1√

n
Φx, a

)〉∥∥∥
2]

=
1

2
E
〈(
ϕ(

√
q∗ V +

√
ρ− q∗W ∗, A)− ϕ(

√
q∗ V +

√
ρ− q∗ w, a)

)2〉
sc

=E
[
ϕ(

√
ρ V,A)2

]
− E

[〈
ϕ(

√
q∗ V +

√
ρ− q∗ w, a)〉2sc

]
, (25)

where the Gibbs brackets are defined by (9) and (24) and V,W ∗ iid∼ N (0, 1), A ∼ PA.

Proof: The first equality is a direct consequence of the Nishimori identity (a fundamental identity that follows directly

from Bayes formula and that will play a major role in our proofs, see Appendix A). This precise sub-identity, as well as its

proof, can be found in Appendix B of [48] for the linear case. This sub-identity also allows to prove the equality between the

third and last terms of (25).

The proof of the equality between the first and third terms of (25) works as follows. One can verify easily that in is a

concave differentiable function of ∆−1 (see [48] for such a proof). Thus its limit i∞ is also a concave function of ∆−1.

Therefore, a standard analysis lemma gives that the derivative of in w.r.t ∆−1 converges to the derivative of i∞ at every point

at which i∞ is differentiable (i.e. almost every points, by concavity). Let us now compute these two derivatives. First, using

Gaussian integration by parts (using the elementary formula EZ [Zg(Z)]=EZ [∂xg(x)|x=Z ] for Z∼N (0, 1)) and the Nishimori

identity, one can verify the following (generalized) I-MMSE relation (see Appendix A in [48] for a similar proof)

∂in
∂∆−1

=
1

4n

m∑

µ=1

E

〈(
ϕ
( 1√

n
[ΦX∗]µ, Aµ

)
− ϕ

( 1√
n
[Φx]µ, aµ

))2〉
. (26)

Second, define

h(q,∆) =
α

2
(1 + ln(2π∆)) + αΨPout(q) + inf

r≥0

{
ψP0(r) −

qr

2

}
. (27)
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Then i∞ = − supq∈[0,ρ] h(q,∆). Compute (again, using Gaussian integration by parts and the Nishimori identity) for ∆ > 0
and q ∈ [0, ρ]:

∂h

∂∆−1
(q,∆) = α

∂ΨPout

∂∆−1
(q,∆)− α∆ = −α

4
E
〈(
ϕ(

√
q V +

√
ρ− qW ∗, A)− ϕ(

√
q V +

√
ρ− q w, a)

)2〉
sc
. (28)

Theorem 1 from [56] gives that at every ∆−1 at which i∞ is differentiable

∂i∞
∂∆−1

= − ∂

∂∆−1
sup

q∈[0,ρ]

h(q,∆) =
α

4
E
〈(
ϕ(

√
q∗ V +

√
ρ− q∗W ∗, A)− ϕ(

√
q∗ V +

√
ρ− q∗ w, a)

)2〉
sc
. (29)

As explained above, ∂in/∂∆
−1 converges to ∂i∞/∂∆−1 at every ∆−1 at which i∞ is differentiable, which concludes the

proof.

As it will become clear in Sec. III this output error is related to the optimal learning (or training) error and optimal

generalization error in a supervised learning setting, and thus plays a fundamental role.

D. Optimality of the generalized approximate message-passing algorithm

Another main result of the paper is a simple expression for the Bayes-optimal generalization errror. We refer to Sec. III for

a precise definition of this error and the associated formula.

While the main results presented until now are information theoretic, our last one concerns the performance of a popular

algorithm to solve random instances of generalized linear problems, called generalized ppproximate message-passing (GAMP).

We shall not re-derive its properties here, and instead refer to the original papers for details. This approach has a long history,

especially in statistical physics [40], [51]–[53], error correcting codes [57], and graphical models [58]. For a modern derivation

in the context of linear models, see [21], [54], [55]. The case of generalized linear models was discussed by Rangan in [22],

and has been used for classifcation purpose in [59].

Define the so-called threshold function η(Σ, R) as the expectation of the variable x sampled from the following distribution

C P0(x) exp{−(R − x)2/(2Σ)} (C = C(Σ, R) is the normalization). Moreover we need to define the so-called output

function gout(ω, Y, V ) = ∂ω ln
∫
dzPout(Y |z) exp{−(z − ω)2/(2V )}/

√
2πV . This function acts componentwise when applied

to vectors. Given initial estimates a0, v0 for the means and variances of the elements of the signal vector X∗, GAMP takes

as input the observation vector Y and then iterates the following equations with initialization g0µ = 0 for all µ = 1, . . . ,m (we

denote by u the average over all the components of the vector u and Φ⊺ is the transpose of the matrix Φ): From t = 1 until

convergence,




V t = vt

ω
t = Φat−1/

√
n− V tgt−1

gtµ = gout(ω
t
µ, Yµ, V

t) ∀ µ = 1, . . .m

Σt =
(
α g2out(ω

t,Y, V t)
)−1

Rt = at−1 +Φ⊺gt/(Σt
√
n)

ati = η(Σt, Rt
i) ∀ i = 1, . . . n

vti = Σt ∂Rη(Σ
t, R)|R=Rt

i
∀ i = 1, . . . n

(30)

One of the strongest asset of GAMP is that its performance can be tracked rigorously in the limit n,m→ ∞ via a procedure

known as state evolution (SE), see [60], [61] for the linear case, and [22], [62] for the generalized one. In our notations, state

evolution tracks the asymptotic value of the overlap between the true hidden value X∗ and its estimate by GAMP at defined as

mt = limn→∞ X∗ ·at/n (that is related to the asymptotic mean-square error Et between X∗ and its estimate at by Et = ρ−mt,

where recall that ρ = E[(X∗)2] with X∗ ∼ P0) via:

mt+1 = ψ′
P0
(m̂t)/2 , (31)

m̂t = αΨ′
Pout

(mt; ρ)/2 . (32)

From Theorem 2.1 we realize that the fixed points of these equations correspond to the critical point of the asymptotic

conditional entropy in (18) where (q, r) are the equivalent of (m, m̂). In fact, in the replica heuristic, the extremizer q∗ is

conjectured to give the optimal value of the overlap, a fact that was proven rigorously for the linear channel [47]. If the

minimizer of (18) is unique, or is attractive whithin the GAMP dynamics, then mt converges to q∗ at long time.

Perhaps more surprisingly, one can use GAMP in the teacher-student scenario (that we precisely describe in Sec. III-A) in

order to provide an estimation of a new output Cnew = ϕ(Φnew · X∗/
√
n,Anew), where Φnew is a new row of the matrix

and Anew ∼ PA a new random number. Let x be drawn according to the true posterior (6). As at is the GAMP estimate of

the expectation of x, with estimated variance V t, the natural heuristic is to consider for the posterior probability distribution
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of the random variable w := Φnew · x/
√
n a Gaussian with mean Φnew · at/√n and variance V t. This allows to estimate the

posterior mean of the output, which leads the GAMP prediction (recall the channel Pout definition (3)):

ĈGAMP,t =

∫
dy dw y Pout(y|w)

1√
2πV t

e
− 1

2V t

(
1√
n
Φnew ·at−w

)2
. (33)

A straightforward application of the state evolution analysis in [62] then indicates that this rigorously leads to a GAMP

generalization error given by

EGAMP,t
gen := lim

n→∞
E
[(
Cnew − ĈGAMP,t

)2]
= EV,a

[
ϕ(

√
ρ V, a)2

]
− EV

[
Ew,a

[
ϕ(

√
mt V +

√
ρ−mt w, a)

]2]
, (34)

where V,w iid∼ N (0, 1) and a ∼ PA (do not get confused between V which is a dummy r.v and V t the variance of the GAMP

estimate, and between the dummy r.v a and the GAMP estimate at).

We will see in Sec. III-B that this formula matches the one for the Bayes-optimal generalization error, see (38), up to the

fact that instead of q∗ (a maximizer obtained from the replica formula (18)) appearing in the optimal error formula, here it

appears mt. Thus clearly, when mt converges to q∗ (we shall see that this is the case in many situations in the examples

of Sec. IV) this yields a very interesting and non trivial result: GAMP achieves the Bayes-optimal generalization error in a

plethora of models (a task again often believed to be intractable) and this for large sets of parameters.

III. OPTIMAL GENERALIZATION ERROR IN SUPERVISED LEARNING

In this section we show how Theorem 2.1 allows to compute the optimal generalization and learning (or training) errors.

We will then apply our findings to specific examples in Sec. IV.

The goal here is to develop a conceptual framework for deriving both error expressions but, as we will see, the final

expressions correspond simply to the single letter formula of the output MMSE (the last expression in Corollary 2.3) but

considered in two different regimes: For obtaining the learning error we need to consider a finite noise ∆, which corresponds

to the noise in the data used during the learning stage, and q∗ a maximizer of the replica formula (18) (evaluated at this finite

noise ∆). Instead, considering the large ∆ → ∞ expansion of the output MMSE (25) (this is done in Appendix J-B) and

plugging inside it the same q∗ as for the learning error we obtain the generalization error. The q∗ used for computing the

generalization error is the same as for the learning error because, informally speaking, this takes into account the information

gained from the learning stage that allows to learn the model and thus to estimate new outputs.

Let us start by explaining how the inference problem (1) can be re-interpreted as a supervised learning problem.

A. Teacher-student scenario

Consider the following teacher-student scenario (also called planted model). We voluntarily employ terms coming from

machine learning, instead of the signal processing terminology used in the previous sections.

First the teacher randomly generates a classifier X∗ ∈ R
n (the signal in the estimation problem) with X∗ iid∼ P0, an ensemble

of m = αn patterns (row-vectors) Φµ ∈ R
n for µ = 1, . . . ,m and such that Φµ

iid∼ N (0, 1), and a stream A = (Aµ)
m
µ=1 with

A iid∼ PA. The teacher chooses a model ϕ(x,A). For deterministic models A is simply absent. Finally the teacher associates to

each pattern a label Cµ ∈ R selected by the classifier, namely Cµ = ϕ(Φµ ·X∗/
√
n,Aµ) for µ = 1, . . . ,m. Stacking the rows

{Φµ}mµ=1 in a m×n matrix Φ and denoting the vector of labels C = (Cµ)
m
µ=1, then the labels, patterns, source of randomness

and classifier verify

C = ϕ
( 1√

n
ΦX∗,A

)
, (35)

where it is understood that ϕ acts in componentwise fashion on vectors. The student is given the distributions P0, PA and the

function ϕ and his task is to learn the classifier X∗ from a subset of the pattern-label pairs.

More precisely we consider the following scenario. The set of rows of Φ and labels are divided into two sets by the teacher:

The training set Str of size βm, β ∈ [0, 1], that will be used by the student in order to learn the classifier, and the test set

Ste of size (1− β)m that will be used by the teacher in order to evaluate the performance of the student. For the training set

both the patterns and associated noisy labels are given to the student, namely Str = {(Yµ = Cµ + Zµ

√
∆tr;Φµ)}βmµ=1 where

Zµ ∼ N (0, 1). Here ∆tr is strictly positive (but typically small) and known by the student who can thus optimally tune its

“confidence” in the training labels during the training/learning stage. For the test set, the previously unseen patterns to classify

are given to the student but the labels are not, namely Ste = {(Yµ = Cµ + Zµ

√
∆te;Φµ)}mµ=βm+1 where ∆te → ∞ (for

the derivation of the errors, we first consider a finite ∆te and we will then let it diverge to obtain the final expression of the

generalization error).

Define ∆µ = ∆tr if µ ≤ βm, ∆µ = ∆te else. Then the inference of the classifier X∗ from the noisy labels Yµ =
Cµ + Zµ

√
∆µ is a slight extension of model (1): This inference problem is nothing else than a supervised learning of the

classifier by the student.
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B. Optimal generalization error

An important quantity is the generalization error which measures the performance of the student. Define Cte = (Cu)
m
µ=βm+1

and Φte = {Φµ}mµ=βm+1 as the m(1−β)-dimensional vector of labels and the m(1−β)×n matrix, respectively, both restricted

to the test set and similarly for Ate = (Aµ)
m
µ=βm+1. Then we define the generalization error at finite ∆te as

Egen :=
1

(1− β)m
E

[∥∥∥Cte −
〈
ϕ
( 1√

n
Φtex, ate

)〉∥∥∥
2]

=
1

(1− β)m
E

[∥∥∥ϕ
( 1√

n
ΦteX∗,Ate

)
−
〈
ϕ
( 1√

n
Φtex, ate

)〉∥∥∥
2]
. (36)

Here the Gibbs bracket 〈−〉 is associated to the joint posterior (4) but with ∆ replaced by ∆µ in order to take into account

that the noise varies in the training and test sets. Moreover ate is the restriction of a to its components belonging to the test

set, namely ate = (aµ)
m
µ=βm+1. As all test samples are statistically equivalent, (36) can also be written as

Egen = E

[(
Cnew −

〈
ϕ
( 1√

n
Φnew · x, a

)〉)2]
(37)

where (Φnew, Cnew = ϕ(Φnew · X∗/
√
n,Anew)) is a new, previously unobserved by the student, couple of pattern-label used

by the teacher to test the student.

The generalization error quantifies the expected squared error between the labels of the test set and the Bayes-optimal

estimator 〈ϕ(Φtex, ate)〉. This estimator is optimal in the sense that it minimizes the label mean-square-error among all

possible student estimators. Note that in the general case where ϕ(x,A) is stochastic in the sense that it depends on the

random stream A (in contrast for example with the case of the binary perceptron ϕ(x) = sgn(x) that we will consider in the

next section), the student has to learn both the A and X∗ generated by the teacher in order to then be able to generalize.

We define the optimal generalization error as the limit lim∆te→∞ Egen. Our second main analytical result is its thermodynamic

limit. We show in the next section that it is given by the following elegant formula (see Corollary 2.3 or (147) in Appendix J

for the formula at finite ∆te)

lim
∆te→∞

lim
n→∞

Egen = EV,a

[
ϕ(

√
ρV, a)2

]
− EV

[
Ew,a

[
ϕ(

√
q∗ V +

√
ρ− q∗ w, a)

]2]
, (38)

where V,w iid∼ N (0, 1) and a ∼ PA. In this expression q∗ is a maximizer of the replica formula (18) evaluated at ∆tr (again,

this takes into account that information about the model has been gained by the student during the learning). Note that as it

should when ∆te → ∞, the optimal generalization error does not depend on the size of the test set.

The optimal generalization error should be independent of the random function representation as long as both ϕ and PA are

given to the student as it is the case in the present setting. The identity EX

∫
dY Y kP tr

out(Y |X) = EX,a

∫
dY Y k exp{−(Y −

ϕ(X, a))2/(2∆tr)}/
√
2π∆tr implies that the error (38) can be re-expressed equivalently as a function of the two first moments

of the transition probability P tr
out, that is

lim
∆te→∞

lim
n→∞

Egen = −∆tr + EV

∫
dY Y 2P tr

out(Y |√ρ V )− EV

[
Ew

[ ∫
dY Y P tr

out(Y |√q∗ V +
√
ρ− q∗ w)

]2]
. (39)

Before showing how to compute the optimal generalization error, let us briefly discuss its “algorithmic” meaning. We assume

that the student has access to unlimited computational power and can thus properly sample the posterior (4). Thus, as a proper

Bayesian statistician, he samples a large amount K ≫ 1 of pairs {(xi, a
te
i )}Ki=1 drawn according to the posterior (4) (e.g.,

by Monte Carlo sampling). Then for each such pair he computes the associated estimated vector of labels ϕ(Φtexi, a
te
i )

and performs the (componentwise) empirical average K−1
∑K

i=1 ϕ(Φ
texi, a

te
i ). This average converges to 〈ϕ(Φtex, ate)〉 as

K → ∞ which is the optimal student estimate of the labels of the test set.

We provide explicit formulas of the optimal generalization error for concrete applications in Sec. IV.

C. Computing the optimal generalization error

By a straightforward extension of the interpolation method presented in Sec. V one can generalize Theorem 2.1 to take into

account that the noise variance ∆µ differs in the training and test sets. This leads to an asymptotic free entropy rigorously

given by

f∞ = sup
q∈[0,ρ]

inf
r≥0

f ts
RS(q, r) = sup

q∈[0,ρ]

inf
r≥0

{
ψP0(r) + αβΨP tr

out
(q; ρ) + α(1 − β)ΨP te

out
(q; ρ)− rq

2

}
. (40)

Here ΨP tr
out

and ΨP te
out

are obtained from (16) using

Pout

(
Yµ

∣∣∣ 1√
n
[ΦX∗]µ

)
=

1√
2π∆

∫
dPA(aµ)e

− 1
2∆

(
Yµ−ϕ( 1√

n
[ΦX∗]µ,aµ)

)2
, (41)

We may also call this the “information theoretical generalization error” or “Bayes-optimal generalization error”.
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with ∆ = ∆tr and ∆ = ∆te respectively. Note that in the limit ∆te → ∞ (which means that the student has no access to

the test set labels), f ts
RS (inside the brackets in (40)) collapses on fRS given by (17) up to a trivial additive constant which

corresponds to ΨP te
out

in the high ∆te limit and a rescaling of the measurement rate α′ = αβ. This happens equivalently by

taking β = 1 in f ts
RS, which again means no information given to the student about the test set labels.

In order for our theorem to apply we consider the patterns Φµ to be made of i.i.d N (0, 1) entries but we believe that the

phenomenology that we present in this section applies to other models.

Let us now explain how to access the generalization error from the mutual information using I-MMSE relations. Denote the

transition kernel before marginalization over aµ

P te
out

(
Yµ

∣∣∣ 1√
n
[ΦX∗]µ, aµ

)
=

1√
2π∆te

e
− 1

2∆te

(
Yµ−ϕ( 1√

n
[ΦX∗]µ,aµ)

)2
. (42)

and similarly for P tr
out where ∆te is replaced by ∆tr. The free entropy fn is nothing else than minus the Shannon (conditional)

entropy density −H(Y|Φ)/n of the distribution of the noisy labels. Thus it is related to the mutual information I(X∗,A;Y|Φ) =
H(Y|Φ)−H(Y|X∗,A,Φ) between the noisy labels and the classifer and stream A through

in :=
1

n
I(X∗,A;Y|Φ)

= −fn − 1

n
H(Y|X∗,A,Φ)

= −fn + αβ E

∫
dY1P

tr
out

(
Y1

∣∣∣ 1√
n
[ΦX∗]1, A1

)
lnP tr

out

(
Y1

∣∣∣ 1√
n
[ΦX∗]1, A1

)

+ α(1− β)E

∫
dYmP

te
out

(
Ym

∣∣∣ 1√
n
[ΦX∗]m, Am

)
lnP te

out

(
Ym

∣∣∣ 1√
n
[ΦX∗]m, Am

)

= −fn − αβhout(∆
tr)− α(1− β)hout(∆

te) , (43)

where

hout(∆) := −E

∫
dY Pout(Y |Z√ρ,A) lnPout(Y |Z√ρ,A) = 1

2
(1 + ln(2π∆)) (44)

is the Shannon entropy of (42), that is of a Gaussian channel (here A ∼ PA, Z ∼ N (0, 1) and ρ = E[(X∗)2]). For the second

equality in (43) we used that, conditionned on Φ and X∗, the {Yµ}βmµ=1 are i.i.d as well as the {Yµ}mµ=βm+1. For the third

equality we used that conditionally on X∗, {[ΦX∗]µ/
√
n}mµ=1 are equal in distribution to i.i.d N (0, ρ) random variables.

Now in order to access the generalization error we employ the classical I-MMSE relation [63] for Gaussian noise but

restricted to the test set. It takes the following form in the present setting (see Appendix A in [48] for a proof)

din
d(∆te)−1

=
(1− β)m

2n
Egen . (45)

Here the arguments are the same as for the proof of Corollary 2.3, but we repeat them for the reader. Again we use that in
is a sequence of concave functions in (∆te)−1 (see [48] for example) and thus its limit (which exists by Theorem 2.1) is

concave too. Standard properties of convex sequences imply that din/d(∆
te)−1 converges to d limn→∞ in/d(∆

te)−1 at every

(∆te)−1 at which limn→∞ in is differentiable (which corresponds, by concavity, to R
∗
+ minus a countable subset). Therefore

from (43), (44), (45) we find

lim
n→∞

Egen = ∆te − 2

α(1 − β)

d

d(∆te)−1
sup

q∈[0,ρ]

inf
r≥0

f ts
RS(q, r) . (46)

It remains to evaluate this derivative using (40) to finally assess the asymptotic generalization error. A computation that we

defer to Appendix J leads from (46) the formula (38) in the limit ∆te → ∞.

Let us mention that following the very same steps, one can also access the learning error defined as

Elea :=
1

βm
E

[∥∥∥Ctr −
〈
ϕ
( 1√

n
Φtrx, atr

)〉∥∥∥
2]

=
1

βm
E

[∥∥∥ϕ
( 1√

n
ΦtrX∗,Atr

)
−
〈
ϕ
( 1√

n
Φtrx, atr

)〉∥∥∥
2]

(47)

where the labels C, the patterns Φ and the stream A are now restricted to the training set. Note that this error vanishes in the

limit ∆tr → 0 and this wathever the size of the training set. We also remark that a low training error does not imply a low

generalization error. When the training set is small (α ≪ 1) the problem is underconstrained which prevents the student to

reach a decent generalization error. The learning error can be obtained from the mutual information through

d

d(∆tr)−1
lim
n→∞

in =
αβ

2
lim
n→∞

Elea , (48)
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Fig. 1. Different phase diagrams showing the region where a perfect recovery is possible (these are noiseless problems). Left: The phase diagram for the
absolute value problem with ϕ(x) = |x| with a Gauss-bernoulli signal P0(x) = ρ exp(−x2/2)/

√
2π + (1 − ρ)δ(x), as a function of α = m/n and the

fraction of non-zero components ρ. We find that a perfect recovery is impossible for α < ρ. Perfect recovery becomes possible starting from α > ρ, as in
compressed sensing, but the problem seems numerically much harder. GAMP is not able to perform better than a random guess as long as α < 0.5: We
denote this region HARD, RG, for “not better than random guess”. For larger values, the inference using GAMP leads better results than a purely random
guess but cannot reach perfect recovery, so the problem remains HARD. GAMP can perfectly identify the hidden signal only for values of α larger than the
so-called spinodal (or algorithmic threshold), when the problem becomes EASY. Middle: Phase diagram for the door function problem, with ϕ(x) = 1 if
−K < x < K and −1 else, for Rademacher signal P0(x) = (δ(x − 1) + δ(x + 1))/2 as a function of α and K . The same regions and phenomenology
are observed. Right: Phase diagram for the ReLU problem, with ϕ(x) = max(0, x), again with the EASY and HARD regions. Here it is always possible to
perform better than chance using GAMP. The naive spinodal shows the algorithmic performance when using information only about the non-zero observations.

and is thus related to the potential (40) by

lim
n→∞

Elea = ∆tr − 2

αβ

d

d(∆tr)−1
sup

q∈[0,ρ]

inf
r≥0

f ts
RS(q, r) . (49)

The same computations as in Appendix J show that the final formula is given by the output error of Corollary 2.3 or, equivalently,

the right hand side of (147) but with ∆tr replacing ∆te and evaluated at q∗, a maximizer of (18) (which we recall is the same

value used in order to obtain the optimal generalization error).

IV. APPLICATION TO CONCRETE SITUATIONS

In this section, we show how our results can be applied to many models of interest in fields ranging from machine learning

to signal processing.

A. Optimal generalization error for some applications

Let us now give the explicit expression of the optimal generalization error for few relevant examples.

1) Sign channel, or perceptron: For the sign channal, the deterministic output (or “activation”) function is ϕ(x) = sgn(x).
This allows to model the so-called teacher-student perceptron problem in machine learning [43], or equivalently, the one-bit

compressed sensing in signal processing [23]. Both situations have been discussed in details within the replica formalism (see

for instance [45], [50], [53], [64]) and we confirm all these heuristic computations within our approach. Let V ∼ N (0, 1). The

formula (38) for the generalization error then reduces to

lim
∆te→∞

lim
n→∞

Egen = 1−
∫
dV

e−
V 2

2√
2π

{ 2√
π

∫ V
√

q∗

2(ρ−q∗)

0

dt e−t2
}2

= 1− E

[
erf
(
V

√
q∗

2(ρ− q∗)

)2]
. (50)

2) Linear regression: The additive white Gaussian noise (AWGN), or linear regression, is defined by ϕ(x,A) = x+σA with

A ∼ N (0, 1). This models the (noisy) linear regression problem, as well as a noisy random linear estimation and compressed

sening. In this case (38) leads

lim
∆te→∞

lim
n→∞

Egen = ρ− q∗ + σ2 . (51)

This result agrees with [7] in the limit σ → 0.

3) Rectified linear unit (ReLU): Another example of deterministic output function is the ReLU where ϕ(x) = max(0, x).
This channel models the behavior of a single neuron with the celebrated rectified linear unit activation [1] ubiquitous in

multilayer neural networks. In this case (38) becomes after simple algebra and Gaussian integrations (again V ∼ N (0, 1)),

lim
∆te→∞

lim
n→∞

Egen =
ρ

2
− q∗

4

(
1 + EV

[{
V erf

(
V

√
q∗

2(ρ− q∗)

)}2])
− (ρ− q∗)3/2√

ρ+ q∗

( 1

2π
+
q∗

ρπ

√
ρ+ q∗

ρ− q∗

)
. (52)
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Fig. 2. Generalization error in three classification problems versus α, the size of the training set being αn. The red line is the Bayes-optimal generalization
error ((50) for the perceptron or (56) for the symmetric door) while the green one shows the (asymptotic) performances of GAMP as predicted by the state
evolution (SE) [62], when different. For comparison, we also show the result of GAMP (black dots) and, in blue, the performance of a standars out-of-the-box
solver. Left: Perceptron, with ϕ(x) = sgn(x) and a Rademacher signal. While a perfect generalization is information theoretically possible starting from
α = 1.249(1), the state evolution predicts that GAMP will allow such perfect prediction only from α = 1.493(1). The results of a logistic regression with
fine-tuned ridge penalty with the software scikit-learn [65] are shown for comparison. Middle: Perceptron with Gauss-Bernoulli coefficients for the signal. No
phase transition is observed in this case, but a smooth decrease of the error with α. The results of a logistic regression with fine-tuned ℓ1 sparsity-enhancing
penalty (again with [65]) are very close to optimal. Right: The symmetric door activation rule with parameter K chosen in order to observe the same number
of occurence of the two classes. In this case there is a sharp phase transition at α = 1 from a situation where it is impossible to learn the rule, so that the
generalization is not better than a random guess, to a situation where the generalization error drops to zero. However, GAMP identifies the rule correctly only
starting from α = 1.5. Interestingly, this non linear rule seems very hard to learn. Using Keras [66], a neural network with 2 hidden layers was able to learn
approximately the rule, but only for much larger training set sizes.

4) Sigmoid, or logistic regression: Let us also consider a stochastic output function. After having generated the classifier, the

teacher randomly associates the label +1 to the pattern Φµ with probability fλ(Φµ ·X∗), where fλ(x) = (1+exp(−λx))−1 ∈
[0, 1] is the sigmoid of parameter λ > 0, and the label −1 with probability 1 − fλ(Φµ · X∗). One of the (many) possible

ways for the teacher to do so is by selecting ϕ(x,A) = I(A ≤ fλ(x)) − I(A > fλ(x)), where I(E) is the indicator function

of the event E. He then generates a stream of uniform random numbers A iid∼ U[0,1] and obtain the labels through (35). Let

V,w iid∼ N (0, 1). In this setting the error (38) becomes

lim
∆te→∞

lim
n→∞

Egen = 2− 4EV

[{
Ewfλ(

√
q∗ V +

√
ρ− q∗ w)

}2]
. (53)

This fomula reduces to (50) when λ→ ∞ as it should.

5) Absolute value: A further example of a purely deterministic output function is the absolute value where ϕ(x) = |x|.
This models a situation similar to compressed sensing, except that the sign of the output has been lost. It could be seen as a

simple version of the phase retrival problem. In this case (38) becomes

lim
∆te→∞

lim
n→∞

Egen = ρ− EV

[
b(V

√
q∗, ρ− q∗)2

]
, (54)

where

b(x, y) =

√
2y

π
e−

x2

2y +
x

2
erfc
(
− x√

2y

)
− x

2

{
1 + erf

(
− x√

2y

)}
. (55)

6) Symmetric Door: A final example of deterministic output function is the symmetric door where ϕ(x) = 1 if −K < x < K
and −1 otherwise. In this case (38) becomes

lim
∆te→∞

lim
n→∞

Egen = 1− EV

[{
erf
(K −√

q V√
2(ρ− q)

)
− erf

(−K −√
q V√

2(ρ− q)

)
− 1
}2]

. (56)

Again, many other situations can be directly considered, including stochastic ones, for instance the probit and logit regressions.

B. Phase diagrams: Easy, hard and impossible estimation and learning phases

First, we shall consider three deterministic channels and ask (we consider noiseless problems): How many measurements

are needed in order to perfectly recover the signal? In the case of the linear channel, this question has been adressed in great

details for the compressed sensing case [24], [54], and we find a simular phenomenology here, albeit with some subtelties.

1) The Relu channel: Let us start by discussing the case of the ReLU channel, with a signal coming from a Gauss-Bernoulli

distribution with a fraction ρ of non-zero (Gaussian) values. In this case, our analysis shows that a perfect generalization (and

thus a perfect reconstruction of the signal as well) is possible whenever α > 2ρ, and impossible when α < 2ρ. This is very

intuitive, since half of the measurements (those non-zero) are giving as much information as in the linear case, thus the factor

2. How hard is it to actually solve the problem in practice? The answer is given by applying the state evolution analysis to

GAMP, which tells us that only for even larger values of α, beyond the so-called spinodal transition, does GAMP reach a

perfect recovery. Notice, however, that this spinodal transition occurs at a significantly lower measurement rate α than one
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Fig. 3. Same as Fig. 2 but for regression problems. The generalization error is plotted as a function of α, the size of the training set being αn. The red line is
again the Bayes-optimal generalization error ((51) for AWGN, (52) for the ReLU and (54) for the absolute value) while the green one shows the (asymptotic)
performances of GAMP as predicted by the state evolution (SE) [62], when different. Again, we also show the result of GAMP on a particular instance
(black dots) and, in blue, the performance of an out-of-the-box solver. Left: The first example is with an additive white Gaussian noise and a Gauss-Bernoulli
signal. For this choice of noise, there is no sharp transition (as opposed to what happens at smaller noises). The results of a LASSO with fine-tuned ℓ1
sparsity-enhancing penalty (with [65]) are very close to optimal. Middle: Here we used a ReLU-type function ϕ(x) = max(0, x), still with a Gauss-Bernoulli
signal. Now there is a phase transition at α = 2ρ = 0.4, but GAMP requires more samples to reach perfect recovery. We show for comparison the result
of a maximum likelihood estimation performed with Keras [66]. Right: The last example shows the result for the absolute value function ϕ(x) = |x|. The
perfect recovery starts at α = ρ = 0.5, but the problem is again harder algorithmically for GAMP.

would reach just keeping the non-zero measurements. This shows that, actually, these zero measurements contains a useful

information for the algorithm. The situation is shown in the right side of Fig. 1.

What we have discussed here is the appearance of a very generic scenario, namely the presence of two different transitions

when trying to solve the Bayesian optimal problem: For α < 2ρ, it is information theoretically impossible to identify perfectly

the signal. We refer to this situation as the IMPOSSIBLE phase. For α > 2ρ, reconstruction is theoretically possible, however,

we do not know any polynomial-time algorithm that would succeed unless α > αspinodal, where GAMP provably finds the

hidden assignment. So we further divide the POSSIBLE phase into the EASY and HARD regions.

2) The absolute value channel: We know move to the absolute value channel. We observe again a similar EASY, HARD

and IMPOSSIBLE phases scenario. Here, the analysis of the mutual information shows that a perfect reconstruction is possible

as soon as α > ρ: In other words, the problem is –information theoretically– as easy, or as hard as the compressed sensing

one. This is maybe less surprising when one think of the following algorithm: Try all 2m choices of the possible signs for the

m outputs, and solve a compressed sensing problem for each of them. Clearly, this should yields a perfect solution only in

the case of the actual signal.

Algorithmically, however, the problem is much harder than before. As shown in the left side of Fig. 1, one requires a much

larger fraction α of measurements in order for GAMP to actually solve the problem. Besides, another interesting phenomenon

occurs (which is in fact a characteristic of symmetric ϕ(x) functions): There is always an extremum of the mutual information

with an overlap value q = 0. For this problem, this extremum is actually “stable” (meaning that it is actually a minimum

in q) for all α < 0.5. This has the two following implications: i) In the IMPOSSIBLE phase, when α < 0.5 and ρ > α,

the minimum at q = 0 is actually the global one. In this case, the MMSE and the generalization error are the ones given

by using 0 as a guess for each element of X∗; in other words, there is no useful information that one can exploit and no

algorithmic approach can be better than a random guess! ii) In the POSSIBLE but HARD phase when α < 0.5, GAMP

initialised at random, infinitely close to the q = 0 fixed point, will remain there. This suggests that in this region, even if a

perfect reconstruction is possible, it will anyway be very hard to beat a random guess in practice. We thus further divide the

HARD phase into the HARD and HARD, RG phase (where RG stands for random guess).

3) The symmetric door channel: We finally discuss a last situation that is the symmetric door channel, for a Rademacher

signal X∗ where each element is chosen at random between +1 and −1. In this case we find again, as in the absolute value

problem, the EASY, HARD, HARD RG and IMPOSSIBLE phases.

C. Generalization in classification problems

We now discuss these results in the context of supervised classification (that is, a ±1 output) in the teacher-student scenario.

Again, we select three particular cases and illustrate our results in Fig. 2. For the purpose of the discussion, we consider two

deterministic problems: The sign output (perceptron) and the symmetric door one. Within these examples, perhaps the most

interesting one is the latter, where we use the symmetric door with κ = 0.674489..., a value chosen such that the output

produces as many +1 than −1.

D. Generalization in regression problems

We finally discuss these results in the context of supervised regression problems (that is, problems where the output is real

valued), in the teacher-student scenario. We select three particular cases, and illustrate our results in Fig. 3. We choose to

consider one output function with randomness and two deterministic ones.
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V. PROOF OF THE REPLICA FORMULA BY THE STOCHASTIC INTERPOLATION METHOD

We now prove Theorem 2.1. Our main tool will be an interpolation method recently introduced in [46] and called “stochastic

interpolation method” (for reasons that will not be discussed here). Here we formulate the method as a direct evolution of

the Guerra and Toninelli interpolation method developed in the context of spin glasses [67]. In constrast with the discrete and

more pedestrian version of the stochastic interpolation method presented in [46], here we employ a continuous approach which

is more straightforward (see [46] for the links between the discrete and continuous versions of the method).

We will prove Theorem 2.1 under the following hypotheses:

(H1) The prior distribution P0 has a bounded support.

(H2) ϕ is a bounded C2 function with bounded first and second derivatives w.r.t its first argument.

These assumptions will then be relaxed in Appendix F to the assumptions (h1) and (h2). Since the observations (1) are

equivalent to the rescaled observations

Ỹµ := ∆−1/2 Yµ = ∆−1/2 ϕ
( 1√

n
[ΦX∗]µ, Aµ

)
+ Zµ , 1 ≤ µ ≤ m, (57)

the variance ∆ of the Gaussian noise can be “incorporated” inside the function ϕ. Thus, it suffices to prove Theorem 2.1 for

∆ = 1 and we will now suppose, for the rest of the proof, to be in this equivalent case.

A. Interpolating estimation problem

We introduce an “interpolating estimation problem” that interpolates between the orginal problem (2) at t = 0, t ∈ [0, 1]
being the interpolation parameter, and the two scalar problems described in Sec. II-B at t = 1 which are anaytically tractable.

For t ∈]0, 1[ the interpolating estimation problems is a mixture of the original and scalar problems. This interpolation scheme

is inspired from the interpolation paths used by Talagrand to study the perceptron, see [68]. But thanks to a novel ingredient

specific to the stochastic interpolation method, it allows to obtain much stronger results, namely a complete proof of the replica

formula instead of the bounds that are generally obtained by more classical interpolation methods.

Let q : [0, 1] → [0, ρ] be a continuous “interpolation function” and r ≥ 0. Define

St,µ :=

√
1− t

n
[ΦX∗]µ +

√∫ t

0

q(v)dv Vµ +

√∫ t

0

(ρ− q(v))dvW ∗
µ (58)

where Vµ,W
∗
µ

iid∼ N (0, 1). Consider the following observation channels, with two types of observations obtained through
{
Yt,µ ∼ Pout( · |St,µ) , for 1 ≤ µ ≤ m,

Y ′
t,i =

√
r tX∗

i + Z ′
i , for 1 ≤ i ≤ n,

(59)

where Z ′
i

iid∼ N (0, 1). We assume that V = (Vµ)
m
µ=1 is known and that the inference problem is to recover both W∗ = (W ∗

µ )
m
µ=1

and X∗ = (X∗
i )

n
i=1 from the “time-dependent” observations Yt = (Yt,µ)

m
µ=1 and Y′

t = (Y ′
t,i)

n
i=1.

We now understand that rt appearing in the second set of measurements in (59), and the terms 1 − t,
∫ t

0
q(v)dv and∫ t

0
(ρ − q(v))dv appearing in the first set all play the role of signal-to-noise ratios in the interpolating model, with t giving

more and more “power” (or weight) to the scalar inference channels when increasing. Here is the first crucial and novel

ingredient of our interpolation scheme. In the classical interpolation method, these snr would all take a trivial form (i.e would

be linear in t) but here, the non-trivial (integral) dependency in t of the two latter snr through the use of the interpolation

function q allows for much more flexibility when choosing the interpolation path. This will allow us to actually choose the

“optimal interpolation path” (this will become clear soon).

Define uy(x) := lnPout(y|x) and, with a slight abuse of notations,

st,µ = st,µ(x, wµ) :=

√
1− t

n
[Φx]µ +

√∫ t

0

q(v)dv Vµ +

√∫ t

0

(ρ− q(v))dv wµ . (60)

We introduce the interpolating Hamiltonian

Ht(x,w;Yt,Y
′
t,Φ) := −

m∑

µ=1

lnPout(Yt,µ|st,µ) +
1

2

n∑

i=1

(
Y ′
t,i −

√
t r xi

)2
(61)

= −
m∑

µ=1

uYt,µ
(st,µ) +

1

2

n∑

i=1

(√
t r (X∗

i − xi) + Z ′
i

)2
, (62)

and the corresponding Gibbs bracket 〈−〉t which is the expectation operator w.r.t the t-dependent posterior distribution of

(x,w) given the observations (Yt,Y
′
t). It is defined as

〈g(x,w)〉t :=
1

Zt(Yt,Y
′
t,Φ)

∫
dP0(x)Dw g(x,w) e−Ht(x,w;Yt,Y

′
t,Φ) , (63)
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for every continuous bounded function g on R
n × R

m. In (63) Dw = (2π)−m/2
∏m

µ=1 dwµe
−w2

µ/2 is the m-dimensional

standard Gaussian and Zt(Yt,Y
′
t,Φ) is the appropriate normalization:

Zt(Y,Y
′,Φ) :=

∫
dP0(x)Dw e−Ht(x,w;Y,Y′) . (64)

Finally the interpolating free entropy is

fn(t) :=
1

n
E lnZt(Y,Y

′,Φ) = EΦ

∫
dYdY′Zt(Y,Y

′,Φ) lnZt(Y,Y
′,Φ) . (65)

One verifies easily that {
fn(0) = fn − 1/2 ,

fn(1) = ψP0(r) − 1+rρ
2 + m

n ΨPout(
∫ 1

0
q(t)dt; ρ) .

(66)

Here is really another crucial property of the interpolating model that we emphasize: It is such that at t = 0 we recover the

original model and thus fn(0) = fn − 1/2 (the trivial constant comes from the purely noisy measurements of the second

channel in (59)), while at t = 1 we have the two scalar inference channels and thus the associated terms ψP0 and ΨPout appear

in fn(1). These are precisely the terms appearing in the potential (17). This is the reason for the introduction of these scalar

channels.

B. Free entropy variation along the interpolation path

From the understanding of the previous section, it is at this stage very natual to evaluate the variation of free entropy along

the interpolation path, which allows to “compare” the original and purely scalar models thanks to the identity

fn = fn(0) +
1

2
= fn(1)−

∫ 1

0

dfn(t)

dt
+

1

2
, (67)

where the first equality follows from (66). As discussed above, part of the potential (17) appears in fn(1). If the interpolation is

properly done, the missing terms required to obtain the potential on the r.h.s of (67) should naturally appear. Then by choosing

the optimal interpolation path thanks to the non-trivial snr dependencies in t (i.e by selecting the proper interpolating function

q), we will be able to show the equality between the replica formula and the true entropy fn.

We thus now compute the t-derivative of the free entropy along the interpolation path (see Appendix D for the proof).

Proposition 5.1 (Free entropy variation): For model (2), the t-derivative of the free entropy (65) verifies

dfn(t)

dt
= −1

2
E

〈( 1
n

m∑

µ=1

u′Yt,µ
(St,µ)u

′
Yt,µ

(st,µ)− r
)(
Q− q(t)

)〉
t
+
rq(t)

2
− rρ

2
+ On(1), (68)

where On(1) is a quantity that goes to 0 in the n,m→ ∞ limit, uniformly in t ∈ [0, 1] and the overlap is

Q :=
1

n

n∑

i=1

X∗
i xi . (69)

C. Overlap concentration

The next lemma plays a key role in our proof. Essentially it states that the overlap concentrates arounds its mean, a behavior

called “replica symmetric” in statistical physics. Similar results have been obtained in the context of the analysis of spin glasses

[68]. Here we use a formulation taylored to Bayesian inference problems as developed in the context of LDPC codes, random

linear estimation [48] and Nishimori symmetric spin glasses [69]–[71].

We introduce a “small” perturbation of the interpolating estimation problem by adding to the Hamiltonian (62) a term

n∑

i=1

(
ǫ
x2i
2

− ǫxiX
∗
i −√

ǫxiẐi

)
(70)

where (Ẑi)
n
i=1

iid∼ N (0, 1). This term can be interpreted as having a set of extra observations coming from a Gaussian side-

channel Ŷi =
√
ǫX∗

i + Ẑi and preserves the Nishimori identity (see Appendix A). The new Hamiltonian Ht,ǫ(x,w;Y,Y′,Φ)
defines a new Gibbs bracket 〈−〉n,t,ǫ and free entropy fn,ǫ(t), and all the set up of Sec. V-A and Proposition 5.1 trivially

extend. This perturbation induces only a small change in the free entropy, namely of the order of ǫ:

Lemma 5.2 (Small free entropy variation under perturbation): Let C0 > 0 such that the support of P0 is included in

[−C0, C0]. For all ǫ > 0 and all t ∈ [0, 1],

|fn,ǫ(t)− fn(t)| ≤ ǫ
C2

0

2
(71)
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Proof: A simple computation gives

∣∣∣∂fn,ǫ(t)
∂ǫ

∣∣∣ = 1

2

∣∣E〈Q〉n,t,ǫ
∣∣ ≤ C2

0

2
, (72)

which proves the lemma.

Moreover, this small perturbation forces the overlap to concentrates around their mean:

Lemma 5.3 (Overlap concentration): For any 0 < a < b < 1,

lim
n→∞

∫ b

a

dǫ

∫ 1

0

dtE
〈(
Q − E〈Q〉n,t,ǫ

)2〉
n,t,ǫ

= 0 . (73)

In Appendix I we briefly sketch the main steps of the proof for the convenience of the reader and refer to [46] for more

details where the method has been streamlined.

Lemma 5.3 implies that there exists a sequence (ǫn)n≥1 ∈ (0, 1)N
∗

that converges to 0 such that

lim
n→∞

∫ 1

0

dtE
〈(
Q− E〈Q〉n,t,ǫn

)2〉
n,t,ǫn

= 0 . (74)

(ǫn)n≥1 converges to 0, so Lemma 5.2 gives that fn,ǫn(t) and fn(t) have the same limit (provided it exists). In the rest of the

section, in order to alleviate the notations, we abusively remove the perturbation subscript ǫn since it makes no difference for

the computation of the limit of the free entropy.

D. Cancelling the remainder

Note from (66) and (17) that the second and third terms appearing in (68) are precisely the missing ones that are required

in order to obtain the expression of the potential on the r.h.s of (67). Thus in order to prove Theorem 2.1 we would like to

“cancel” the Gibbs bracket in (68), which is the so called remainder (once integrated over t). This is made possible thanks to

the new ingredients specific to the stochastic interpolation method. To do so, we would like to choose q(t) = E 〈Q〉t, which

is approximately equal to Q because it concentrates, see Lemma 5.3. However, E 〈Q〉t depends on
∫ t

0
q(v)dv. The equation

q(t) = E 〈Q〉t is therefore an order 1 differential equation over q, written in integral form.

Proposition 5.4 (Existence of the optimal interpolation function): For all r ≥ 0 the differential equation

q(t) = E 〈Q〉t (75)

admits a unique solution q
(r)
n on [0, ρ] and the mapping

r ≥ 0 7→
∫ 1

0

q(r)n (v)dv (76)

is continuous.

Proof: One verify easily that E 〈Q〉t is a bounded C1 function of (
∫ t

0 q(v)dv, r). The proposition follows then from an

application of the parametric Cauchy-Lipschitz theorem.

Using this optimal choice for the interpolating function allows then to relate the potential and free entropy.

Proposition 5.5 (Linking free entropy and potential): Let (rn)n≥1 ∈ R
N
+ be a bounded sequence. For n ∈ N, let q

(rn)
n be

the solution of (75). Then

fn = fRS

(∫ 1

0

q(rn)n (v)dv, rn

)
+ On(1) . (77)

Proof: q
(rn)
n satisfies (75). Therefore by the Cauchy-Schwarz inequality

∣∣∣
∫ 1

0

dtE
〈( 1

n

m∑

µ=1

u′Yt,µ
(St,µ)u

′
Yt,µ

(st,µ)− rn

)(
Q− q(rn)n (t)

)〉
t

∣∣∣

≤
(∫ 1

0

dtE
〈( 1

n

m∑

µ=1

u′Yt,µ
(St,µ)u

′
Yt,µ

(st,µ)− rn

)2〉
t

)1/2( ∫ 1

0

dtE
〈(
Q− q(rn)n (t)

)2〉
t

)1/2
= On(1) . (78)
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The last equality uses that the first factor is bounded (independently of t) because we supposed that Pout is generated by (57)

with assumptions (H1) and (H2) (see Appendix E for proof details) and the second factor goes to 0 when n,m→ ∞ by (74),

(75). Therefore from (68)
∫ 1

0

dfn(t)

dt
dt =

rn
2

∫ 1

0

q(rn)n (t)dt− rnρ

2
+ On(1) . (79)

When plugging this identity in (67) and combining this with (66) we reach

fn = ψP0(rn) +
m

n
ΨPout

( ∫ 1

0

q(rn)n (t)dt; ρ
)
− rn

2

∫ 1

0

q(rn)n (t)dt+ On(1) . (80)

Recalling that m/n→ α as m,n→ ∞ allows to recognize from (17) the claimed identity (77).

E. Lower and upper matching bounds

We now possess all the necessary tools to prove Theorem 2.1 in two steps. i) We start by proving that limn→∞ fn =
supr≥0 infq∈[0,ρ] fRS(q, r). Recall that for the moment we assume the stronger hypotheses (H1) and (H2). ii) Once this

is done we can prove that moreover limn→∞ fn = supq∈[0,ρ] infr≥0 fRS(q, r) using the following arguments. iia) Un-

der hypotheses (H1), (H2) the Corollary G.2 of Appendix G applies and allows to assert supr≥0 infq∈[0,ρ] fRS(q, r) =
supq∈[0,ρ] infr≥0 fRS(q, r). iib) This combined with limn→∞ fn = supr≥0 infq∈[0,ρ] fRS(q, r) proven in step i) leads that

limn→∞ fn = supq∈[0,ρ] infr≥0 fRS(q, r) under (H1), (H2). iic) Finally, the approximation arguments given in Appendix F

permit to relax (H1), (H2) to the weaker hypotheses (h1), (h2) and thus to obtain the second (from step ii)) equality of

Theorem 2.1.

We defer to Appendix G the proof of the last equality, namely that this “sup inf” is attained at the supremum of the state

evolution fixed points, see Lemma G.4.

We now tackle step i). Let us start by the lower bound.

Proposition 5.6 (Lower bound): The free entropy (10) verifies

lim inf
n→∞

fn ≥ sup
r≥0

inf
q∈[0,ρ]

fRS(q, r) . (81)

Proof: By Proposition 5.5 we have that for any r ≥ 0,

fn ≥ fRS

(∫ 1

0

q(r)n (t)dt, r
)
+ On(1) ≥ inf

q∈[0,ρ]
fRS(q, r) + On(1) (82)

and thus

lim inf
n→∞

fn ≥ inf
q∈[0,ρ]

fRS(q, r) . (83)

This is true for all r ≥ 0 thus we obtain Proposition 5.6.

We now turn our attention to the converse bound.

Proposition 5.7 (Upper bound): The free entropy (10) verifies

lim sup
n→∞

fn ≤ sup
r≥0

inf
q∈[0,ρ]

fRS(q, r) . (84)

Proof: Let K = 2αΨ′
Pout

(ρ; ρ). The mapping from equation (76) is continuous, consequently the application

[0,K] → [0,K]

r 7→ 2αΨ′
Pout

( ∫ 1

0
q
(r)
n (t)dt; ρ

) (85)

is continuous (recall that Ψ′
Pout

denotes the derivative of ΨPout w.r.t its first argument, and is shown to be continuous and

bounded in Appendix B). It admits therefore a fixed point r∗n = 2αΨ′
Pout

(
∫ 1

0
q
(r∗n)
n (t)dt; ρ). Proposition 5.5 gives then

fn = fRS

(∫ 1

0

q
(r∗n)
n (t)dt, r∗n

)
+ On(1) . (86)

We now remark that

fRS

( ∫ 1

0

q
(r∗n)
n (t)dt, r∗n

)
= inf

q∈[0,ρ]
fRS(q, r

∗
n) . (87)
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Indeed, the function gr∗n : q ∈ [0, ρ] 7→ fRS(q, r
∗
n) is convex (because of Lemma B.1) and its derivative is

g′r∗n(q) = αΨ′
Pout

(q)− r∗n
2
. (88)

Since g′r∗n(
∫ 1

0
q
(r∗n)
n (t)dt) = 0 by definition of r∗n, the minimum of gr∗n is necessarily achieved at

∫ 1

0
q
(r∗n)
n (t)dt. Combining

(86) with (87) we reach

fn = inf
q∈[0,ρ]

fRS(q, r
∗
n) + On(1) ≤ sup

r≥0
inf

q∈[0,ρ]
fRS(q, r) + On(1) (89)

which allows to deduce Proposition 5.7.

From the arguments given at the beginning of the section, this ends the proof of Theorem 2.1.

APPENDIX A

THE NISHIMORI IDENTITY

Proposition A.1 (Nishimori identity): Let (X,Y) ∈ R
n1 × R

n2 be a couple of random variables. Let k ≥ 1 and let

X(1), . . . ,X(k) be k i.i.d. samples (given Y) from the conditional distribution P (X = · |Y), independently of every other

random variables. Let us denote 〈−〉 the expectation operator w.r.t P (X = · |Y) and E the expectation w.r.t (X,Y). Then, for

all continuous bounded function f we have

E〈f(Y,X(1), . . . ,X(k))〉 = E〈f(Y,X(1), . . . ,X(k−1),X)〉 . (90)

Proof: This is a simple consequence of Bayes formula. It is equivalent to sample the couple (X,Y) according to its

joint distribution or to sample first Y according to its marginal distribution and then to sample X conditionally to Y from its

conditional distribution P (X = · |Y). Thus the (k+1)-tuple (Y,X(1), . . . ,X(k)) is equal in law to (Y,X(1), . . . ,X(k−1),X).

APPENDIX B

SOME PROPERTIES OF THE SCALAR CHANNEL

We prove here some properties of the free entropy of the second scalar channel (15). In this section, we will keep the

dependence in ρ of ΨPout(q, ρ) implicit, and write simply ΨPout(q). The derivatives of this function are taken w.r.t q.

Let
Pout : R

2 → R+

(x, y) 7→ Pout(y|x) (91)

be a transition density (i.e. Pout is a measurable function such that for all x ∈ R,
∫
R
Pout(y|x)dy = 1). Recall the free

entropy expression (16) of the scalar channel (15). Let 〈−〉 denotes the expectation operator w.r.t the posterior distribution of

P (w =W ∗|Y, V ) and let w be drawn from this posterior.

Lemma B.1: ΨPout is a convex, non-decreasing function on [0, ρ]. For all 0 < q < ρ,

Ψ′
Pout

(q) =
1

2(ρ− q)
E〈wW ∗〉 = 1

2(ρ− q)
E[〈w〉2] , (92)

Ψ′′
Pout

(q) =
1

2(ρ− q)2
E
[(
〈w2〉 − 〈w〉2 − 1

)2]
. (93)

Proof: Let us define X =
√
q V +

√
ρ− qW ∗. Then

ΨPout(q) = E

∫
dX

1√
2π(ρ− q)

e−
(X−

√
q V )2

2(ρ−q)

∫
dY Pout(Y |X) ln

∫
dx

1√
2π(ρ− q)

e−
(x−

√
q V )2

2(ρ−q) Pout(Y |x) . (94)

Using this expression, one can verify that ΨPout is indeed continuous on [0, ρ]. It remains to show that the second derivative

of ΨPout is non-negative on (0, ρ). Let us compute the derivatives of ΨPout for 0 < q < ρ:

Ψ′
Pout

(q) = E

[( 1

2(ρ− q)
− (X −√

q V )2

2(ρ− q)2
+
V (X −√

q V )

2
√
q(ρ− q)

)
ln

∫
dx

1√
2π(ρ− q)

e−
(x−

√
q V )2

2(ρ−q) Pout(Y |x)
]

+ E

〈 1

2(ρ− q)
− (x−√

q V )2

2(ρ− q)2
+
V (x−√

q V )

2
√
q(ρ− q)

〉

= E

〈 (X −√
q V )

2(ρ− q)

(x −√
q V )

ρ− q

〉
+ E

[ 1

2(ρ− q)
− (X −√

q V )2

2(ρ− q)2
+
V (X −√

q V )

2
√
q(ρ− q)

]

=
1

2(ρ− q)
E〈wW ∗〉

=
1

2(ρ− q)
E[〈w〉2] , (95)
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where we used the Nishimori property (Proposition A.1) and Gaussian integrations by parts w.r.t V . Let now compute the

second derivative.

2Ψ′′
Pout

(q) =
∂

∂q

[ 1

(ρ− q)2
E
〈
(X −√

q V )(x −√
q V )

〉]

=
2

(ρ− q)3
E
〈
(X −√

q V )(x −√
q V )

〉
− 1

(ρ− q)2
√
q
E[V (X −√

q V )]

+
2

(ρ− q)2
E

[( 1

2(ρ− q)
− (X −√

q V )2

2(ρ− q)2
+
V (X −√

q V )

2
√
q(ρ− q)

)〈
(X −√

q V )(x −√
q V )

〉]

− 1

(ρ− q)2
E

[〈 1

2(ρ− q)
− (x−√

q V )2

2(ρ− q)2
+
V (x−√

q V )

2
√
q(ρ− q)

〉〈
(X −√

q V )(x−√
q V )

〉]

=
2

(ρ− q)2
E〈wW ∗〉 − 1

(ρ− q)3/2
√
q
E[V W ∗]

+
1

(ρ− q)4
E
[〈
(X −√

q V )2(x−√
q V )2

〉]
− 1

(ρ− q)4
E
[〈
(X −√

q V )2(x−√
q V )

〉〈
(x−√

q V )
〉]

− 1

(ρ− q)3
E
[〈
(X −√

q V )(x−√
q V )

〉]
− 1

(ρ− q)3
E[(X −√

q V )2]

− 1

(ρ− q)2
E

[〈 1

2(ρ− q)
− (x−√

q V )2

2(ρ− q)2
+
V (x−√

q V )

2
√
q(ρ− q)

〉〈
(X −√

q V )(x−√
q V )

〉]

=
1

(ρ− q)2
E[〈w〉]2 + 1

(ρ− q)2
E[〈w2〉2]− 1

(ρ− q)2
E[〈w2〉〈w〉2]− 1

(ρ− q)2
E[(W ∗)2]

− 1

(ρ− q)2
E

[〈 1

2(ρ− q)
− (x−√

q V )2

2(ρ− q)2
+
V (x−√

q V )

2
√
q(ρ− q)

〉〈
(X −√

q V )(x−√
q V )

〉]
. (96)

Let us now compute the last term:

E

[〈 1

2(ρ− q)
− (x −√

q V )2

2(ρ− q)2
+
V (x −√

q V )

2
√
q(ρ− q)

〉〈
(X −√

q V )(x−√
q V )

〉]

= −E

[〈x−√
q V

2(ρ− q)

〉〈x−√
q V

ρ− q

〉〈
(X −√

q V )(x−√
q V )

〉]
− 2E

[〈x−√
q V

2(ρ− q)

〉
〈x−√

q V 〉
]

+ 2E
[〈x−√

q V

2(ρ− q)2

〉〈
(X −√

q V )2(x−√
q V )

〉]
− E

[〈x−√
q V

2(ρ− q)2

〉〈
(X −√

q V )(x −√
q V )

〉
〈x−√

q V 〉
]

= −E[〈w〉4]− E[〈w〉2] + 2E[〈w2〉〈w〉2] . (97)

Putting all together:

Ψ′′
Pout

(q) =
1

2(ρ− q)2
(
E[〈w〉2] + E[〈w2〉2]− E[〈w2〉〈w〉2]− E[(W ∗)2] + E[〈w〉4] + E[〈w〉2]− 2E[〈w2〉〈w〉2]

)

=
1

2(ρ− q)2
(
E[〈w〉2] + E[(〈w2〉 − 〈w〉2)2]− E[〈w2〉 − 〈w〉2]

)

=
1

2(ρ− q)2
(
E[(〈w2〉 − 〈w〉2)2]− 2E[〈w2〉 − 〈w〉2] + 1

)

=
1

2(ρ− q)2
E
[(
〈w2〉 − 〈w〉2 − 1

)2] ≥ 0 . (98)

Suppose now that Pout corresponds to the channel (57). Under hypothesis (H2) one can differentiate ΨPout in order to obtain

(using the Nishimori identity for the second equality):

Lemma B.2: Suppose that hypotheses (h1) and (H2) hold. Then for all q ∈ [0, ρ],

Ψ′
Pout

(q) =
1

2
E
〈
u′Y (

√
q V +

√
ρ− qw)u′Y (

√
q V +

√
ρ− qW ∗)

〉

=
1

2
E
[〈
u′Y (

√
q Z +

√
1− q w)

〉2] ≥ 0 , (99)

where we used the notation uy(x) = logPout(y|x). In particular, Ψ′
Pout

is bounded.
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APPENDIX C

A GENERAL CLASS OF MODELS SATISFYING THE HYPOTHESIS

Suppose that for all (z, a) ∈ R× R
kA , |ϕ(z, a)| ≤ c1 + c2|z|p for some constants p ≥ 1 and c1, c2 ≥ 0. Then, by Jensen’s

inequality:

E

[
ϕ
( 1√

n
[ΦX∗]1, A1

)2+γ]
≤ 21+γc2+γ

1 + 21+γc2+γ
2 E

[∣∣∣ [ΦX∗]1√
n

∣∣∣
p(2+γ)]

. (100)

Notice that [ΦX∗]1 is equal in law to ‖X∗‖Z , where Z ∼ N (0, 1) is indepent of X∗. Then, by Jensen’s inequality:

E

[∣∣∣ [ΦX∗]1√
n

∣∣∣
p(2+γ)]

= E
[
|Zp(2+γ)|

]
E

[( 1
n

n∑

i=1

(X∗
i )

2
)p(1+γ/2)]

≤ E
[
|Zp(2+γ)|

]
E
[
(X∗

1 )
p(2+γ)

]
. (101)

Thus (h2) is satisfied as soon as E
[
(X∗

1 )
p(2+γ)

]
<∞.

APPENDIX D

PROOF OF PROPOSITION 5.1

We will first prove the following lemma:

Lemma D.1:

f ′
t =− 1

2
E

〈(
1

n

m∑

µ=1

u′Yµ
(St,µ)u

′
yµ
(st,µ)− r

)(
1

n

n∑

i=1

X∗
i xi − q(t)

)〉

t

+
1

2
rq(t) − ρr

2

− 1

2
E

[
1√
n

m∑

µ=1

P ′′(Yµ|St,µ)

P (Yµ|St,µ)

(
1√
n

n∑

i=1

(X∗
i )

2 − ρ

)
1

n
log (Zt)

]
(102)

Proof: We start by differentiating the Hamiltonian:

H′
t(y, y

′, x,w) = −
n∑

µ=1

s′t,µu
′
yµ

(st,µ)−
√
r

2
√
t

n∑

i=1

xi(y
′
i −

√
trxi)

By definition

ft =
1

n
EΦ

∫
dYdY′dP0(X

∗)DW∗e−Ht(Y,Y′,X∗,W∗) log

(∫
dP0(x)Dw e−Ht(Y,Y′,x,w)

)

so that the derivative of the interpolating free entropy reads, for 0 < t < 1,

f ′
t =

1

n
E
[
H′

t(Y,Y
′,X∗,W∗) log (Zt)

]

︸ ︷︷ ︸
A

+
1

n
E

〈
H′

t(Y,Y
′, x,w)

〉
t︸ ︷︷ ︸

B

Let us compute A. Let 1 ≤ µ ≤ m.

E

[
S′
t,µu

′
Yµ
(St,µ) log (Zt)

]
= E




− [ΦX∗]µ

2
√
n(1 − t)

+
q(t)

2
√∫ s

0
q(s)ds

Vµ +
ρ− q(t)

2
√∫ s

0
(ρ− q(s))ds

W ∗
µ


 u′Yµ

(St,µ) log (Zt)




Compute

E

[
[ΦX∗]µ

2
√
n(1− t)

u′Yµ
(St,µ) log (Zt)

]
=

1

2
√
n(1− t)

n∑

i=1

E

[
X∗

i Φµ,iu
′
Yµ

(St,µ) log (Zt)
]

By Gaussian integration by parts with respect to the Φµ,i we obtain

E

[
[ΦX∗]µ√
n(1− t)

u′Yµ
(St,µ) log (Zt)

]
=

1

n

n∑

i=1

(
E

[
(X∗

i )
2
(
u′′Yµ

(St,µ) + u′Yµ
(St,µ)

2
)
log (Zt)

]
+ E

〈
X∗

i xiu
′
Yµ

(St,µ)u
′
yµ

(st,µ)
〉
t

)

= E

[
1

n

n∑

i=1

(X∗
i )

2P
′′
out(Yµ|St,µ)

Pout(Yµ|St,µ)
log (Zt)

]
+ E

〈 1
n

n∑

i=1

X∗
i xiu

′
Yµ

(St,µ)u
′
yµ

(st,µ)
〉
t

(103)
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Because u′′Yµ
(x) + u′Yµ

(x)
2
=
P ′′
out(Yµ|x)
Pout(Yµ|x)

. Using again Gaussian integration by part and the previous formula, we obtain

E




 q(t)√∫ t

0
q(s)ds

Vµ +
ρ− q(t)√∫ t

0
(ρ− q(s))ds

W ∗
µ


u′Yµ

(Sµ,t) log (Zt)


 = E

[
ρ
P ′′
out(Yµ|Sµ,t)

Pout(Yµ|Sµ,t)
log (Zt)

]
+E

〈
q(t)u′Yµ

(Sµ,t)u
′
Yµ
(sµ,t)

〉
t

(104)

Putting equations (103) and (104) together, we have

E

[
S′
t,µu

′
Yµ
(St,µ) log (Zt)

]

= −1

2
E

[
P ′′
out(Yµ|Sµ,t)

Pout(Yµ|Sµ,t)

(
1

n

n∑

i=1

(X∗
i )

2 − ρ

)
log (Zt)

]
− 1

2
E

〈(
1

n

n∑

i=1

X∗
i xi − q(t)

)
u′Yµ

(St,µ) u
′
yµ

(st,µ)

〉

t

It remain to compute, using again the Gaussian integration by parts,

E

[ √
r

2
√
t

n∑

i=1

X∗
i (Y

′
i −

√
trX∗

i ) log (Zt)

]
= E

[ √
r

2
√
t

n∑

i=1

X∗
i Z

′
i log (Zt)

]

= E

[
r

2

n∑

i=1

X∗
i

〈
(xi −X∗

i − Z ′
i)
〉
t

]

=
r

2
E

〈 n∑

i=1

Xixi

〉
t
− n

ρr

2

Therefore

A = −1

2
E

[
1√
n

m∑

µ=1

P ′′
out(Yµ|Sµ,t)

Pout(Yµ|Sµ,t)

(
1√
n

n∑

i=1

(X∗
i )

2 − ρ

)
1

n
log (Zt)

]
+

1

2
rq(t) − rρ

2

− 1

2
E

〈(
1

n

n∑

i=1

X∗
i xi − q(t)

)(
1

n

m∑

µ=1

u′Yµ
(St,µ)u

′
yµ

(st,µ)− r

)〉

t

To obtain the Lemma, it remain to show that B = 0. This is a consequence of the Nishimori identity (see Appendix A):

B =
1

n
E

〈
H′

t(Y,Y
′, x,w)

〉
t
=

1

n
E

[
H′

t(Y,Y
′,X∗,W∗)

]
= 0

Lemma D.2: Under conditions (H1) and (H2)

E

[
1√
m

m∑

µ=1

P ′′
out(Yµ|St,µ)

Pout(Yµ|St,µ)

(
1√
n

n∑

i=1

(X∗
i )

2 − ρ

)
1

n
log (Zt)

]
−−−−→
n→∞

0 (105)

uniformly in t ∈ [0, 1].
Proof: By the Cauchy-Schwarz inequality,
∣∣∣∣∣E
[

1√
n

m∑

µ=1

P ′′
out(Yµ|St,µ)

Pout(Yµ|St,µ)

(
1√
n

n∑

i=1

(X∗
i )

2 − ρ

)
1

n
log (Zt)

]
− E

[
1√
n

m∑

µ=1

P ′′
out(Yµ|St,µ)

Pout(Yµ|St,µ)

(
1√
n

n∑

i=1

(X∗
i )

2 − ρ

)
ft

]∣∣∣∣∣

≤


E



(

1√
n

m∑

µ=1

P ′′
out(Yµ|St,µ)

Pout(Yµ|St,µ)

)2(
1√
n

n∑

i=1

(X∗
i )

2 − ρ

)2

E

[(
1

n
log(Zt)− ft

)2
]


1/2

Conditionnaly to X , the Yµ are independent, identically distributed and centered. Therefore

E



(

1√
n

m∑

µ=1

P ′′
out(Yµ|St,µ)

Pout(Yµ|St,µ)

)2(
1√
n

n∑

i=1

(X∗
i )

2 − ρ

)2

 = E


E



(

1√
n

m∑

µ=1

P ′′
out(Yµ|St,µ)

Pout(Yµ|St,µ)

)2
∣∣∣∣∣∣
X



(

1√
n

n∑

i=1

(X∗
i )

2 − ρ

)2



=
m

n
E


E
[(

P ′′
out(Y1|St,1)

Pout(Y1|St,1)

)2
∣∣∣∣∣X
](

1√
n

n∑

i=1

(X∗
i )

2 − ρ

)2



Under condition (H2), there exists a constant C > 0 such that

E

[(
P ′′
out(Y1|St,1)

Pout(Y1|St,1)

)2
∣∣∣∣∣X
]
≤ C
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Consequently, E



(

1√
n

m∑
µ=1

P ′′
out(Yµ|St,µ)

Pout(Yµ|St,µ)

)2 (
1√
n

n∑
i=1

(X∗
i )

2 − ρ

)2

 is upper bounded by a constant. By Theorem H.1 we have

E
[
( 1n log(Zt)− ft)

2
]
−−−−→
n→∞

0, uniformly in t ∈ [0, 1]. The lemma follows.

APPENDIX E

BOUNDEDNESS OF AN OVERLAP FLUCTUATION

In this appendix we show that the "overlap fluctuation"

E

〈( 1
n

m∑

µ=1

u′Yt,µ
(St,µ)u

′
Yt,µ

(st,µ)− rn

)2〉
t
≤ 2r2n + 2E

〈( 1
n

m∑

µ=1

u′Yt,µ
(St,µ)u

′
Yt,µ

(st,µ)
)2〉

t
(106)

is bounded uniformly in t under hypothesis (H2) on ϕ. From the representation (3)

uYt,µ
(s) = lnPout(Yt,µ|s)

= ln

∫
dPA(aµ)(2π)

−1/2e−
1
2 (Yt,µ−ϕ(s,aµ))

2

so

u′Yt,µ
(s) =

∫
dPA(aµ)(Yt,µ − ϕ(s, aµ))ϕ

′(s, aµ)e−
1
2 (Yt,µ−ϕ(s,aµ))

2

∫
dPA(aµ)e−

1
2 (Yt,µ−ϕ(s,aµ))2

where ϕ′ is the derivative w.r.t the first argument. From (1) we get |Yt,µ| ≤ sup |ϕ|+ |Zµ| we immediately obtain for all s ∈ R

|u′Yt,µ
(s)| ≤ (2 sup |ϕ|+ |Zµ|) sup |ϕ′| (107)

where the supremum is taken over both arguments of ϕ. From (107) and 106 we see that it suffices to check that

E

[( 1
n

m∑

µ=1

(2 sup |ϕ|+ Zµ)
2
)2]

≤ C(ϕ)

where C(ϕ) is a constant depending only on ϕ. This is easily seen by expanding all squares and using that m/n is bounded.

APPENDIX F

APPROXIMATION

In this section, we suppose that Theorem 2.1 holds for channels of the form (1) under the hypotheses (H1) and (H2).

We show in this section that this imply that Theorem 2.1 holds under the hypotheses (h1) and (h2). We start by relaxing

the hypothesis (H1).

Proposition F.1: Suppose that (h1) and (H2) hold. Then Theorem 2.1 holds.

Proof: The ideas are basically the same that in [26]. We omit the details here for the sake of brevity.

Proposition F.2: Suppose that (h1) and (h2) hold. Then, Theorem 2.1 holds for the output channel (1).

To prove Proposition F.2 we will approximate the function ϕ with a function ϕ̂ which is C∞ with compact support. In the

following, G is a standard Gaussian random variable, independent of everything else.

Proposition F.3: Suppose that
(
ϕ( 1√

n
[ΦX∗]1, A1)

)
n≥1

is bounded in L2+γ for some γ > 0. Then, for all ǫ > 0, there exist

ϕ̂ ∈ C∞(R× R
kA) with compact support, such that

E
[
(ϕ(

√
ρG,A)− ϕ̂(

√
ρG,A))2

]
≤ ǫ

and for n large enough, we have

E

[(
ϕ

(
1√
n
[ΦX∗]1, A1

)
− ϕ̂

(
1√
n
[ΦX∗]1, A1

))2
]
≤ ǫ

Proof: Notice that [ΦX∗]1 = ‖X∗‖G in law. Thus, if |X∗
1 | is a constant random variable, then ϕ is in L2(R×R

kA) with

the measure induced by (
√
ρG,A1). The result follows by density of the C∞ functions with compact support in L2.

We consider now the case where |X∗
1 | is not constant. We start with a useful lemma.

Lemma F.4: Let f : R → R+ be a measurable function. Let G ∼ N (0, 1) and 0 < a ≤ b. Then

E[f(
√
aG)] ≤

√
b

a
E[f(

√
bG)].
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In particular, if f(
√
bG) is integrable then f(

√
aG) is also integrable.

Proof: For x ∈ {a, b}, a change of variables gives:
√
xE[f(

√
xG)] = (2π)−1/2

∫
e−g2/(2x)f(g)dg which is clearly

non-decreasing in x.

|X∗
1 | is not constant and ρ = E[(X∗

1 )
2], therefore there exists ρ < r < r′ such that P(r ≤ (X∗

1 )
2 ≤ r′) > 0. Consequently,

using Lemma F.4,

P(r ≤ (X∗
1 )

2 ≤ r′)E[ϕ(
√
rG,A1)

2] = E[1r≤(X∗
1 )

2≤r′ϕ(
√
rG,A1)

2]

≤ E[1r≤(X∗
1 )

2≤r′
|X∗

1 |√
r
ϕ(|X∗

1 |G,A1)
2] ≤

√
r′

r
E[ϕ(|X∗

1 |G,A1)
2] <∞

Therefore E[ϕ(
√
rG,A1)

2] <∞.

Let ǫ > 0. We have just proved that ϕ ∈ L2(R×R
kA) with the measure induced by (

√
rG,A1). There exists a C∞ function

with compact support ϕ̂ such that E
[
(ϕ(

√
rG,A)− ϕ̂(

√
rG,A))2

]
≤ ǫ. Thus by Lemma F.4

E
[
(ϕ(

√
ρZ,A)− ϕ̂(

√
ρZ,A))2

]
≤
√
r

ρ
E
[
(ϕ(

√
rZ,A)− ϕ̂(

√
rZ,A))2

]
≤
√
r

ρ
ǫ

It remains to bound E

[(
ϕ
(

1√
n
‖X‖G,A1

)
− ϕ̂

(
1√
n
‖X‖G,A1

))2]
. By the law of large numbers, 1

n‖X‖2 P−−−−→
n→∞

ρ. Thus

P( 1n‖X‖2 /∈ [ρ/2, r]) −−−−→
n→∞

0. We now apply Hölder’s inequality:

E

[
1‖X‖2/n/∈[ρ/2,r]

(
ϕ

(
1√
n
‖X‖G,A1

)
− ϕ̂

(
1√
n
‖X‖G,A1

))2
]

≤ P(‖X‖2/n /∈ [ρ/2, r])
γ

2+γ E

[(
ϕ

(
1√
n
‖X‖G,A1

)
− ϕ̂

(
1√
n
‖X‖G,A1

))2+γ
] 2

2+γ

≤ Cǫ
γ

2+γ

for some constant C > 0 and for n large enough. It remain to bound

E

[
1‖X‖2/n∈[ρ/2,r]

(
ϕ

(
1√
n
‖X‖G,A1

)
− ϕ̂

(
1√
n
‖X‖G,A1

))2]

≤ E

[
1‖X‖2/n∈[ρ/2,r]

√
nr

‖X‖2
(
ϕ
(√
rG,A1

)
− ϕ̂

(√
rG,A1

))2
]

≤
√

2r

ρ
E

[(
ϕ
(√
rG,A1

)
− ϕ̂

(√
rG,A1

))2]

≤
√

2r

ρ
ǫ

In the remaining of this section, we prove Proposition F.2. Let ǫ > 0. Let ϕ and ϕ̂ as in Proposition F.2. Let fn be the free

entropy associated to ϕ and f̂n the free entropy corresponding to ϕ̂.

Lemma F.5: There exists a constant C > 0 such that for n large enough

|fn − f̂n| ≤ C
√
ǫ

Proof: Consider the observation channel given by




Yt,µ =
√
tϕ
(

1√
n
[ΦX∗]µ, Aµ

)
+ Zµ

Ŷt,µ =
√
1− tϕ̂

(
1√
n
[ΦX∗]µ, Aµ

)
+ Ẑµ

for 1 ≤ µ ≤ m. Let fn(t) denote the interpolating free energy:

fn(t) =
1

n
E log

∫

x,a

dPA(a)dP0(x) exp

(
−1

2

m∑

µ=1

(
Yt,µ −

√
tϕ
( 1√

n
[Φx]µ, aµ

))2

+

(
Ŷt,µ −

√
1− tϕ̂

( 1√
n
[Φx]µ, aµ

))2
)
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In order to shorten the notations, we will now write ϕ
(x,a)
µ and ϕ̂

(x,a)
µ for ϕ

(
1√
n
[Φx]µ, aµ

)
and ϕ̂

(
1√
n
[Φx]µ, aµ

)
. We compute,

for 0 < t < 1:

f ′
n(t) =

m

2n
E

[
(ϕ̂

(X∗,A)
1 )2 − (ϕ

(X∗,A)
1 )2

]
+

1

2n

m∑

µ=1

E

〈
ϕ(x,a)
µ ϕ(X∗,A)

µ − ϕ̂(x,a)
µ ϕ̂(X∗,A)

µ

〉
t

=
m

2n
E

[
(ϕ̂

(X∗,A)
1 )2 − (ϕ

(X∗,A)
1 )2

]
+
m

2n
E

〈
ϕ
(x,a)
1 (ϕ

(X∗,A)
1 − ϕ̂

(X∗,A)
1 ) + (ϕ

(x,a)
1 − ϕ̂

(x,a)
1 )ϕ̂

(X∗,A)
1

〉
t

We start by controlling the first term:

∣∣∣E
[
(ϕ̂

(X∗,A)
1 )2 − (ϕ

(X∗,A)
1 )2

]∣∣∣ ≤
(
E

[(
ϕ̂
(X∗,A)
1 + ϕ

(X∗,A)
1

)2]
E

[(
ϕ̂
(X∗,A)
1 − ϕ

(X∗,A)
1

)2])1/2

≤ C0

√
ǫ

by Proposition F.3, for some constant C0 and n large enough. The two other terms can be bounded the same way:

∣∣∣E
〈
ϕ
(x,a)
1 (ϕ

(X∗,A)
1 − ϕ̂

(X∗,A)
1 )

〉
t

∣∣∣ ≤
(
E

[(
ϕ
(X∗,A)
1

)2]
E

[(
ϕ̂
(X∗,A)
1 − ϕ

(X∗,A)
1

)2])1/2

≤ C0

√
ǫ

by Proposition F.3, for n large enough. Consequently, there exists a constant C > 0 such that for n large enough and for

all 0 < t < 1, |f ′
n(t)| ≤ C

√
ǫ. Notice that t 7→ fn(t) is continuous over [0, 1], fn(0) = f̂n and fn(1) = fn, hence

|fn − f̂n| ≤
∫ 1

0
|f ′

n(t)|dt ≤ C
√
ǫ.

Let Pout denote the transition kernel associated to ϕ and P̂out the one associated to ϕ̂. Analogously to the previous Lemma,

one can show:

Lemma F.6: There exists a constant C′ > 0 such that for all q ∈ [0, ρ]

|ΨPout(q)−ΨP̂out
(q)| ≤ C′√ǫ

From there we obtain that
∣∣∣∣sup
r≥0

inf
q∈[0,ρ]

fRS(q, r) − sup
r≥0

inf
q∈[0,ρ]

f̂RS(q, r)

∣∣∣∣ ≤ C′√ǫ and

∣∣∣∣∣ supq∈[0,ρ]

inf
r≥0

fRS(q, r) − sup
q∈[0,ρ]

inf
r≥0

f̂RS(q, r)

∣∣∣∣∣ ≤ C′√ǫ (108)

Applying Theorem 2.1 for Pout, we obtain that for n large enough |fn − supr≥0 infq∈[0,ρ] fRS(q, r)| ≤ ǫ. We now combine

this with (108) and Lemma F.5 we obtain that for n large enough
∣∣∣∣∣f̂n − sup

q∈[0,ρ]

inf
r≥0

f̂RS(q, r)

∣∣∣∣∣ =
∣∣∣∣f̂n − sup

r≥0
inf

q∈[0,ρ]
f̂RS(q, r)

∣∣∣∣ ≤ (C + C′)
√
ǫ+ ǫ

which concludes the proof of Proposition F.2.

APPENDIX G

A SUP-INF FORMULA

We first need to indroduce some notations about convex functions. Let f be a convex function on some interval I ⊂ R.

For t ∈ I we will denote respectlively by f ′(t−) and f ′(t+) the left and right hand derivatives of f at t. We also define the

subgradient of f at t as ∂f(t) = [f ′(t−), f ′(t+)]. If t is the right (resp. left) border of I , then we define ∂f(t) = {f ′(t−)}
(resp. ∂f(t) = {f ′(t+)}).

Lemma G.1: Let f and g be two convex, Lipschitz, non-decreasing functions on R+. For q1, q2 ∈ R+ we define ψ(q1, q2) =
f(q1) + g(q2)− q1q2. Then

sup
q1≥0

inf
q2≥0

ψ(q1, q2) = sup
q1∈∂g(q2)

q2=f ′(q+1 )

ψ(q1, q2) = sup
q1∈∂g(q2)
q2∈∂f(q1)

ψ(q1, q2)

and these extremas are achieved at some (possibly many) couples. All these optimal couples are in [0, supx≥0 g
′(x+)] ×

[0, supx≥0 f
′(x+)]. Moreover, if g is strictly convex, then the above extremas are achieved precisely on the same couples

(q1, q2) and f is differentiable at q1.

Corollary G.2: Let f be a convex, Lipschitz, non-decreasing function on R+. Define ρ = supx≥0 f
′(x+). Let g : [0, ρ] → R

be a convex, Lipschitz, non-decreasing function. For q1 ∈ R+ and q2 ∈ [0, ρ] we define ψ(q1, q2) = f(q1) + g(q2) − q1q2.

Then

sup
q1≥0

inf
q2∈[0,ρ]

ψ(q1, q2) = sup
q2∈[0,ρ]

inf
q1≥0

ψ(q1, q2)
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Proof: In order to apply Lemma G.1 we need to extend g on R+. We thus define for x ≥ 0

g̃(x) =

{
g(x) if x ≤ ρ

g(ρ) + (x − ρ)g′(ρ+) if x ≥ ρ

g̃ is simply equal to g that we extend for x ≥ ρ using his tangent at ρ. Obviously g̃ is a convex, Lipschitz, non-decreasing

function on R+. One can thus apply Lemma G.1:

sup
q1≥0

inf
q2≥0

f(q1) + g̃(q2)− q1q2 = sup
q2≥0

inf
q1≥0

f(q1) + g̃(q2)− q1q2

and both “sup-inf” are achieved on [0, supx≥0 g̃
′(x+)]× [0, supx≥0 f

′(x+)]. By definition, ρ = supx≥0 f
′(x+), thus

sup
q1≥0

inf
q2∈[0,ρ]

f(q1) + g̃(q2)− q1q2 = sup
q1≥0

inf
q2≥0

f(q1) + g̃(q2)− q1q2

= sup
q2≥0

inf
q1≥0

f(q1) + g̃(q2)− q1q2 = sup
q2∈[0,ρ]

inf
q1≥0

f(q1) + g̃(q2)− q1q2

which concludes the proof because g̃(q2) = g(q2) for q2 ∈ [0, ρ].
To prove Lemma G.1 we will need the following lemma on the Fenchel-Legendre transform.

Lemma G.3: Let V ⊂ R be an interval and let g : V → R be a convex function. Define

g∗ : x ∈ R 7→ sup
y∈V

{
xy − g(y)

}
∈ R ∪ {+∞} . (109)

Let Dg∗ = {x ∈ R | g∗(x) < ∞}. Then g∗ is a convex function on the interval Dg∗ 6= ∅. Moreover, Dg∗ = {a} if and only

if g : x 7→ ax. For x ∈ Dg∗ the set of maximizers of (109) is of the form [ax, bx], where ax, bx ∈ R ∪ {±∞}. Then, the

left-hand and right-hand derivatives of g∗ at x are respectlively ax and bx.

In particular, if g is strictly convex then g∗ is differentiable around every point in the interior of Dg∗ .

Proof: g∗ is convex because an supremum of linear functions is a convex function.

For x ∈ R we define the function ϕx : y 7→ xy−g(y). Let x ∈ Dg∗ . We are only going to show that the left-hand derivative

of g∗ at x is equal to ax, the result for the right-hand derivative is proved analogously.

Gx is then a closed interval of the form [a, b] (b may be +∞). Because of convexity, g∗ is left- and right-hand differentiable

at x. First of all, notice that if a = −∞ then g∗(x′) = +∞ for any x′ < x, so the left-hand derivative of g∗ is not defined.

We will thus concentrate on the cases where ax ∈ R and a = +∞.

Let us consider first the case where ax is finite. By definition, g∗(x) = ϕx(a). Let now x′ < x. We have

ax(x− x′) = ϕx(ax)− ϕx′(ax) ≥ g∗(x)− g∗(x′)

which implies that (g∗)′(x−) ≤ ax. The fact that ax achieves the maximum in (109) implies that x ∈ ∂g(ax). Let now x′ < x
in Gg∗ . Notice that bx′ ≤ ax. We have then, by convexity g(bx′) ≥ g(ax) + (bx′ − ax)x which implies

g∗(x)− g∗(x′) = axx− g(ax)− bx′x′ + g(bx′)

≥ ax− g(a)− bx′x′ + g(a) + (bx′ − ax)x

≥ bx(x − x′)

When x′ → x, one can verify easily that bx′ → ax. We obtain therefore that (g∗)′(x−) ≤ ax. We conclude (g∗)′(x−) = ax.

Suppose now that ax = +∞. Let x′ < x′′ < x. bx′ and ax′′ are necessarily finite, otherwise g∗(x) = +∞. Applying the

result we just proved, we have
g∗(x′′)− g∗(x′)

x′′ − x′
−−−−→
x′→x′′

ax′′

Thus, by convexity (g∗)′(x−) ≥ ax′′ . Since ax = +∞, ax′′ → +∞ when x′′ → x. We conclude (g∗)′(x−) = +∞.

Proof of Lemma G.1: Let q1, q2 ≥ 0 such that q1 ∈ ∂g(q2). Then, by convexity of g, ψ(q1, q2) = infq′2≥0 ψ(q1, q
′
2).

Consequently:

sup
q1≥0

inf
q2≥0

ψ(q1, q2) ≥ sup
q1∈∂g(q2)
q2∈∂f(q1)

ψ(q1, q2) ≥ sup
q1∈∂g(q2)

q2=f ′(q+1 )

ψ(q1, q2)

Let us now prove the converse bound. Let Lg = supy≥0 g
′(y+). Lg is finite because g is Lipschitz. Notice that for 0 ≤ y < Lg,

g∗(y) <∞ while for y > Lg, g∗(y) = +∞. f is continuous on [0, Lg] and g∗ is convex on [0, Lg] (g∗(Lg) may be equal to

+∞). Therefore f − g∗ achieves its suppremum at some q∗1 ∈ [0, Lg].
If 0 < q∗1 < Lg then the optimality condition at q∗1 gives f ′(q∗−1 )− g∗′(q∗−1 ) ≥ 0 and f ′(q∗+1 )− g∗′(q∗+1 ) ≤ 0. Thus

g∗′(q∗−1 ) ≤ f ′(q∗−1 ) ≤ f ′(q∗+1 ) ≤ g∗′(q∗+1 ) (110)
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We know by Lemma G.3 that [g∗′(q∗−1 ), g∗′(q∗+1 )] is the set of maximizers of q2 7→ q∗1q2 − g(q2). Consequently q2 = f ′(q∗+1 )
maximizes q2 7→ q∗1q2 − g(q2). This gives q∗1 ∈ ∂g(q∗2). We conclude:

sup
q1≥0

inf
q2≥0

ψ(q1, q2) = f(q∗1) + g(q∗2)− q∗1q
∗
2 ≤ sup

q1∈∂g(q2)

q2=f ′(q+1 )

f(q1) + g(q2)− q1q2

If now q∗1 = 0, the optimality condition is now: f ′(0+) − g∗′(0+) ≤ 0. f is non-decreasing, hence 0 ≤ f ′(0+) ≤ g∗′(0+).
g is non-decreasing, thus the set of maxizers of g∗(0) is, by Lemma G.3 [0, g∗′(0+)]. Therefore q∗2 = f(0+) maximizes

q2 7→ q∗1q2 − g(q2) and we conclude similarly as before.

If q∗1 = Lg, then the optimality condition is f ′(q∗−1 )−g∗′(q∗−1 ) ≥ 0. Therefore f ′(q+1 ) ≥ f ′(q−1 ) ≥ g∗′(q∗−1 ). Again by Lemma

G.3, q∗2 = f(q∗+1 ) maximizes q2 7→ q∗1q2 − g(q2), we conclude similarly as before.

Suppose now that g is strictly convex. This means (by Lemma G.3) that g∗ is differentiable. Let (q1, q2) ∈ R
2
+ be a

couple that achieves the supremum in one of the last two sup. This means in particular that q1 ∈ ∂g(q2). By convexity of

g we have then ψ(q1, q2) = infq′2≥0 ψ(q1, q
′
2). Since ψ(q1, q2) = supq′1≥0 infq′2≥0 ψ(q

′
1, q

′
2), (q1, q2) achieves the sup-inf. Let

(q1, q2) be a couple that achieves the sup-inf. It remains to show that q1 ∈ ∂g(q2) and q2 = f ′
1(q

+
1 ). First of all, the fact

that ψ(q1, q2) = infq′2≥0 ψ(q1, q
′
2) implies (by convexity) that q1 ∈ ∂g(q2). Now, as in the proof above we have to distiguish

whenever q1 ∈ (0, Lg), q1 = 0 or q1 = Lg. When q1 ∈ (0, Lg), the strict convexity of g implies the differentiability of g∗,

therefore the inequality (110) gives that f is differentiable at q1 and f ′(q1) = g∗′(q1) = q2. The case q1 = 0 goes the same

way. It remains to see that q1 could not be equal to Lg. Indeed, by strict convexity, the infimum of q′2 7→ ψ(Lg, q
′
2) is only

achieved when q′2 → +∞. Lemma G.3 gives then that g∗(L−
g ) = +∞, which gives that the function q1 7→ f(q1)− g∗(q1) is

decreasing on [Lg − ǫ, Lg], for some ǫ > 0. The supremum can therefore not be achieved at q1 = Lg .

The proof of Lemma G.1 could be straigthforwardly adapted, to obtain the next lemma.

Lemma G.4: Let g be a strictly convex, differentiable, Lipschitz non-decreasing function on R+. Define ρ = supx≥0 g
′(x).

Let f be a convex, non-decreasing function on [0, ρ], differentiable on [0, ρ). For q1, q2 ∈ R+ we define ψ(q1, q2) = f(q1) +
g(q2)− q1q2. Then

sup
q1∈[0,ρ]

inf
q2≥0

ψ(q1, q2) = sup
q1=g′(q2)
q2=f ′(q1)

ψ(q1, q2)

Moreover, the above extremas are achieved precisely on the same couples.

APPENDIX H

CONCENTRATION OF THE FREE ENTROPY

The goal of this Appendix is to prove the following concentration result. To simplify the notations we use C(ϕ, S, α), for

a generic strictly positive constant depending only on ϕ, S and α (S the supremum over signal values). It is also understood

that n and m are large enough and m/n→ α
Theorem H.1: Suppose we have a prior with bounded support and ϕ : R2 → R is bounded and differentiable with respect

to its firs argument with bounded derivative. We can find a constant C(ϕ, S, α) > 0 such that

P
(
| 1
n
lnZt − E[

1

n
lnZt]| > r

)
≤ e−C(ϕ,S,α)r2n (111)

for any r > 0. Moreover

E
[
| 1
n
lnZt − E[

1

n
lnZt]|2

]
≤ 1

nC(ϕ, S, α)
(112)

We first recall some set-up and notation for the convenience of the reader. The interpolating Hamiltonian (62)-(60) is (we

indicate only the annealed variables in its arguments)

−
m∑

µ=1

lnPout (Yµ|st,µ(x, wµ)) +
1

2

n∑

i=1

(Y ′
i −

√
trxi)

2 (113)

where

st,µ(x, wµ) =

√
1− t

n
[Φx]µ + k1(t)Vµ + k2(t)wµ, k1(t) =

√∫ t

0

q(v)dv, k2(t) =

√∫ t

0

(ρ− q(v))dv

We find it convenient to use the random function representation for the interpolating model, namely
{
Yt,µ = ϕ

(√
1−t
n [ΦX∗]µ + k1(t)Vµ + k2(t)W

∗
µ , Aµ

)
+ Zµ,

Y ′
t,i =

√
rtX∗

i + Z ′
i
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where ϕ(x, y) is bounded, in C2 with respect to x, and supx,y |∂xϕ(x, y)| < ∞, supx,y |∂2xϕ(x, y)| < ∞. We will use the

notation ϕ′(x, y) = ∂xϕ(x, y), ϕ
′′(x, y) = ∂2xϕ(x, y). In this representation the iid random variables Aµ ∼ PA are arbitrary,

and Zµ ∼ N (0, 1), µ = 1, . . . ,M . We have (here aµ ∼ PA)

Pt,out(Yt,µ|st,µ(x,w)) =

∫
dPA(aµ)

1√
2π

exp
{
−1

2

(
Yt,µ − ϕ(st,µ(x, wµ), aµ

)2}

=

∫
dPA(aµ)

1√
2π

exp

{
− 1

2
Γt,µ(x, wµ, aµ)

2

}
(114)

where, using the random function representation,

Γt,µ(x, wµ, aµ) = ϕ
(√1− t

n
[ΦX∗]µ + k1(t)Vµ + k2(t)W

∗
µ , Aµ

)
− ϕ

(√1− t

n
[Φx]µ + k1(t)Vµ + k2(t)wµ, aµ

)
+ Zµ .

(115)

From (113), (114), (115) we can express the free entropy of the interpolating model as

1

n
lnZt =

1

n
ln
{∫

dP0(x)dPA(a)Dw e−Ht(x,w,a)
}

(116)

where we introduced an “effective” Hamiltonian is now (we drop an irrelevant constant M
√
2π)

Ht(x,w, a) =
1

2

m∑

µ=1

Γt,µ(x, wµ, aµ)
2 +

1

2

n∑

i=1

(
√
rtX∗

i + Z ′
i −

√
trxi)

2 . (117)

The interpretation here is that x,w, a are annealed variables and Φ,V,A,Z,Z′,X∗,W∗ are quenched. The inference problem

is to recover X∗,W∗ given all other quenched variables.

Our goal is to show that the free energy (116) concentrates with respect to all quenched variables. We will first show

concentration w.r.t all Gaussian variables Φ,V,Z,Z′,W∗ thanks to the classical Gaussian concentration inequality, then the

concentration w.r.t A and finally the one w.r.t X∗ thanks to Mc-Diarmid’s inequality. The order in which we prove the

concentrations matters. Here is a statement of these two inequalities.

Proposition H.2 (Tsirelson - Ibragimov - Sudakov inequality): Let U = (U1, . . . , UN) be a vector of N independent standard

normal random variables. Let L > 0 and let g : RN → R be a L-Lipschitz function with respect to the Euclidean distance.

Then for any r > 0,

P
(
g(U)− Eg(U) ≥ r

)
≤ e−

r2

2L2 . (118)

Remark H.3: If g is differentiable and supRN ‖∇g‖ ≤ L <∞ then g is Lipschitz w.r.t the Euclidean distance.

Proposition H.4 (McDiarmid inequality): Let U ⊂ R. Let g : UN → R a function that satisfies the bounded difference

property, i.e., there exists some constants c1, . . . , cN ≥ 0 such that

sup
u1,...uN∈UN

u′
i∈U

|g(u1, . . . , ui, . . . , uN)− g(u1, . . . , u
′
i, . . . , uN)| ≤ ci , for all 1 ≤ i ≤ N .

Let U = (U1, . . . , UN) be a vector of N independent random variables that takes values in U . Then for all r ≥ 0,

P
(
g(U)− Eg(U) ≥ r

)
≤ e

− 2r2∑N
i=1

c2
i . (119)

Before we proceed it is useful to remark

1

n
lnZt =

1

n
ln Ẑt −

1

2n

m∑

µ=1

Z2
µ − 1

2n

n∑

i=1

Z ′2
i (120)

where

1

n
ln Ẑt =

1

n
ln
{∫

dP0(x)dPA(a)Dw e−Ĥt(x,w,a)
}

(121)

with

Ĥt(x,w, a) =
1

2

m∑

µ=1

{
Γ̂t,µ(x, wµ, aµ)

2 + 2ZµΓ̂t,µ(x, wµ, aµ)
}
+

1

2

n∑

i=1

{
(
√
rtX∗

i −
√
trxi)

2 + 2Z ′
i(
√
rtX∗

i −
√
trxi)

}

(122)

and

Γ̂t,µ(x, wµ, aµ) = ϕ
(√1− t

n
[ΦX∗]µ + k1(t)Vµ + k2(t)W

∗
µ , Aµ

)
− ϕ

(√1− t

n
[Φx]µ + k1(t)Vµ + k2(t)wµ, aµ

)
.

Obviously, if (121) concentrates then (120) also concentrates. In the rest of the analysis we show concentration of (121).
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A. Concentration with respect to Gaussian random variables Zµ, Z ′
i, Vµ, W ∗

µ , Φµi

We set g = 1
n ln Ẑt and first prove concentration with respect to Zµ, Z ′

i. We have for the gradient with respect to Zµ and

Z ′
i

‖∇g‖2 =
m∑

µ=1

∣∣ ∂g
∂Zµ

∣∣2 +
n∑

i=1

∣∣ ∂g
∂Z ′

i

∣∣2. (123)

Each of these derivatives are of the form ∂g = n−1〈∂Ĥt〉Ĥt
where the Gibbs bracket 〈−〉Ĥt

pertains to the effective Hamiltonian

(122). We find

∣∣ ∂g
∂Zµ

∣∣ = n−1
∣∣〈Γ̂t,µ〉Ĥt

∣∣ ≤ 2n−1 sup |∂xϕ|
∣∣ ∂g
∂Z ′

i

∣∣ = n−1
∣∣〈
√
rtX∗

i −
√
trxi〉Ĥt

∣∣ ≤ 2n−1S

and replacing in (123)

‖∇g‖2 ≤ 2n−1(
m

n
sup |∂xϕ|+ S) ≡ L2

n.

Applying Proposition (H.2) we have

P

(∣∣ 1
n
ln Ẑt −

1

n
EZ,Z′ [ln Ẑt]

∣∣ > r
)
≤ 2e−C(ϕ,S,α)nr2 (124)

where EZ,Z′ is the expectation w.r.t Z,Z′ only, and P is the probability w.r.t all random variables.

Now we set g = n−1
EZ,Z′ [ln Ẑt] and show concentration w.r.t the rest of the Gaussian variables, namely Vµ, W ∗

µ , Φµi. We

have

∣∣ ∂g
∂Vµ

∣∣ = n−1
∣∣EZ,Z′

[〈
(Γ̂t,µ + Zµ)

∂Γ̂t,µ

∂Vµ

〉
Ht

]∣∣

≤ n−1
EZ,Z′

[
(2 sup |ϕ|+ |Zµ|)(2 sup |∂xϕ|)

]

= n−1(2 sup |ϕ|+
√

2

π
)(2 sup |∂xϕ|)

The same inequality holds for
∣∣ ∂g
∂W∗

µ

∣∣. To compute the derivative w.r.t Φµi we first remark

∂Γ̂t,µ

∂Φµi
=

√
1− t

n

(
X∗

i − xi
){
∂xϕ

(√1− t

n
[ΦX∗]µ + k1(t)Vµ + k2(t)W

∗
µ , Aµ

)

− ∂xϕ
(√1− t

n
[Φx]µ + k1(t)Vµ + k2(t)wµ, aµ

)}
.

Therefore

∣∣ ∂g
∂Φµi

∣∣ = n−1
∣∣EZ,Z′

[〈
(Γ̂t,µ + Zµ)

∂Γ̂t,µ

∂Φµi

〉
Ht

]∣∣

≤ n−3/2
EZ,Z′

[
(2 sup |ϕ|+ |Zµ|)(4S sup |∂xϕ|)

]

= n−3/2(2 sup |ϕ|+
√

2

π
)(4S sup |∂xϕ|)

Putting these inequalities together we find for the gradient w.r.t Vµ, Wµ, Φµi

‖∇g‖2 =
m∑

µ=1

∣∣ ∂g
∂Vµ

∣∣2 +
m∑

µ=1

∣∣ ∂g
∂Vµ

∣∣2 +
m∑

µ=1

n∑

i=1

∣∣ ∂g
∂Φµi

∣∣2

≤ m

n2
(2 sup |ϕ|+

√
2

π
)(2 sup |∂xϕ|) +

mn

n3
(2 sup |ϕ|+

√
2

π
)(4S sup |∂xϕ|)

and a direct application of (H.2) then yields

P

(∣∣ 1
n
EZ,Z′ [ln Ẑt]−

1

n
EZ,Z′,V,W∗,Φ[ln Ẑt]

∣∣ > r
)
≤ 2e−C(ϕ,S,α)nr2. (125)

By a simple application of the triangle inequality and the union bound estimates (124) and (125) imply

P

(∣∣ 1
n
ln Ẑt −

1

n
EZ,Z′,V,W∗,Φ[ln Ẑt]

∣∣ > r
)
≤ 4e−C(ϕ,S,α)nr2. (126)

where P is the probability w.r.t all random variables.
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B. Bounded difference with respect to Aµ

The next step is an application of MacDiarmid’s inequality to show that g = 1
nEZ,Z′,V,W∗,Φ[ln Ẑt] concentrates w.r.t Aµ

(we still keep X∗
i fixed for the moment). To ease the notation we set EZ,Z′,V,W∗,Φ = EG in the rest of this paragraph. We

must estimate variations g − g(ν) corresponding to two vectors A and A(ν) with A
(ν)
µ = Aµ for µ 6= ν and A

(ν)
ν = Ãν . By an

application of Jensen’s inequality one finds

1

n
EG〈Ĥ(ν)

t − Ĥt〉Ĥ(ν)
t

≤ g − g(ν) ≤ 1

n
EG〈Ĥ(ν)

t − Ĥt〉Ĥt
(127)

where the Gibbs brackets pertain to the effective Hamiltonians (122). From (122) we obtain

H(ν)
t −Ht =

1

2

m∑

µ=1

{
Γ̂
(ν)2
t,µ − Γ̂2

t,µ + 2Zµ(Γ̂
(ν)
t,µ − Γ̂t,µ)

}

Now, a look at equation (115) shows that for µ 6= ν we have (Γ
(ν)
t,µ)

2 = (Γt,µ)
2, and therefore only the term µ = ν survives

in this sum. Consequently

1

2n
EG

〈
Γ̂
(ν)2
t,ν − Γ̂2

t,ν + 2Zν(Γ̂
(ν)
t,ν − Γ̂t,ν)

〉
H(ν)

t

≤ g − g(ν) ≤ 1

2n
EG

〈
Γ̂
(ν)2
t,ν − Γ̂2

t,ν + 2Zν(Γ̂
(ν)
t,ν − Γ̂t,ν)

〉
Ht

. (128)

Using
∣∣Γ̂(ν)2

t,ν − Γ2
t,ν + 2Zν(Γ̂

(ν)
t,ν − Γ̂t,ν)

∣∣ ≤ 4 sup |ϕ|2 + 4|Zν| sup |ϕ|,
from (128) we conclude

|g − g(ν)| ≤ 2

n
sup |ϕ|(sup |ϕ|+ 2

√
2

π
). (129)

An application of Proposition H.4 yields

P

(∣∣ 1
n
EG[ln Ẑt]−

1

n
EG,A[ln Ẑt]

∣∣ > r
)
≤ 2e−C(ϕ,S,α)nr2. (130)

where we recall EG = EZ,Z′,V,W∗,Φ and P the probability w.r.t all random variables.

C. Bounded difference with respect to X∗
i

Set EΘ = EZ,Z′,V,W∗,Φ,A for all quenched variables except X∗. We prove concentration of g = 1
nEΘ[ln Ẑt] with respect to

X∗. This is done by showing a bounded difference property for

g − g(j) =
1

n
EΘ

[ Ẑt

Ẑ(j)
t

]

where Ẑt and Ẑ(j)
t are the partition functions corresponding to two input signals X∗,X∗(j) such that X

∗(j)
i = Xi for i 6= j

and X
∗(j)
j = X̃∗

j . By Jensen’s inequality,

1

2n

m∑

µ=1

EΘ

〈
Γ̂
(j)2
t,µ − Γ̂2

t,µ + 2Zµ(Γ̂
(j)
t,µ − Γ̂t,µ)

〉
Ĥ(j)

t

+
1

2n
EΘ

〈
rt(X∗

j − X̃∗
j )− 2

√
tr(xj + Z ′

j)(X
∗
j − X̃∗

j )
〉
Ĥ(j)

t

≤ g − g(j) ≤ 1

2n

m∑

µ=1

EΘ

〈
Γ̂
(j)2
t,µ − Γ̂2

t,µ + 2Zµ(Γ̂
(j)
t,µ − Γ̂t,µ)

〉
Ĥt

+
1

2n
EΘ

〈
rt(X∗

j − X̃∗
j )− 2

√
tr(xj + Z ′

j)(X
∗
j − X̃∗

j )
〉
Ĥt

(131)

The second expectations on each side of the inequality are obviously bounded by O(n−1) for P0 with bounded support. The

other terms are more tedious to treat carefully. We have

Γ̂
(j)2
t,µ − Γ̂2

t,µ + 2Zµ(Γ̂
(j)
t,µ − Γ̂t,µ)

= ϕ
(√1− t

n
[ΦX∗(j)]µ + k1(t)Vµ + k2(t)W

∗
µ , Aµ

)2
− ϕ

(√1− t

n
[ΦX∗]µ + k1(t)Vµ + k2(t)W

∗
µ , Aµ

)2

− 2
{
ϕ
(√1− t

n
[ΦX∗(j)]µ + k1(t)Vµ + k2(t)W

∗
µ , Aµ

)
− ϕ

(√1− t

n
[ΦX∗]µ + k1(t)Vµ + k2(t)W

∗
µ , Aµ

)}

×
{
ϕ
(√1− t

n
[Φx]µ + k1(t)Vµ + k2(t)wµ, aµ

)
− 2Zµ

}
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Taking the Gibbs brackets 〈−〉Ĥt
or 〈−〉Ĥ(j)

t

and the expectation EΘ we see that the term Zµ vanishes (because E[Zµ] = 0)

and the upper and lower bounds in (131) are both of the form T1 + T2 with

T1 =
1

2n

m∑

µ=1

EΘ

[
ϕ
(√1− t

n
[ΦX∗(j)]µ + k1(t)Vµ + k2(t)W

∗
µ , Aµ

)2
− ϕ

(√1− t

n
[ΦX∗]µ + k1(t)Vµ + k2(t)W

∗
µ , Aµ

)2]

T2 =
1

n

m∑

µ=1

EΘ

[{
ϕ
(√1− t

n
[ΦX∗(j)]µ + k1(t)Vµ + k2(t)W

∗
µ , Aµ

)
− ϕ

(√1− t

n
[ΦX∗]µ + k1(t)Vµ + k2(t)W

∗
µ , Aµ

)}

×
〈
ϕ
(√1− t

n
[Φx]µ + k1(t)Vµ + k2(t)wµ, aµ

)〉]

Here we denote by 〈−〉 either Gibbs bracket 〈−〉Ĥt
or 〈−〉Ĥ(j)

t

.

1) Estimating T1: We note that the arguments of ϕ only differ by
√
(1− t)/nΦµj(X̃

∗
j −X∗

j ). Thus Taylor expanding each

term to second order we find

ϕ
(√1− t

n
[ΦX∗(j)]µ + k1(t)Vµ + k2(t)W

∗
µ , Aµ

)2
− ϕ

(√1− t

n
[ΦX∗]µ + k1(t)Vµ + k2(t)W

∗
µ , Aµ

)2

=

√
1− t

n
Φµj(X̃

∗
j −X∗

j )2(ϕ∂xϕ)∼Φµj
+ (remainder)1

where (ϕ∂xϕ)∼Φµj
mean that the argument of ϕ∂ϕ is independent of Φµj . It is easy to show (e.g., using a Lagrange formula)

(remainder)1 ≤ C(ϕ, S)n−1Φ2
µj because ϕ bounded and twice differentiable with bounded first and second derivative. When

we average over Φµj the first term disappears and for the second EΦµj
[(remainder)1] ≤ C(ϕ, S)n−1. Therefore we obtain

|T1| ≤ C(ϕ, S, α)n−1 (132)

2) Estimating T2: Proceeding by a similar Taylor expansion for the difference of ϕ’s in T2 we find

ϕ
(√1− t

n
[ΦX∗(j)]µ + k1(t)Vµ + k2(t)W

∗
µ , Aµ

)
− ϕ

(√1− t

n
[ΦX∗]µ + k1(t)Vµ + k2(t)W

∗
µ , Aµ

)

×
〈
ϕ
(√1− t

n
[Φx]µ + k1(t)Vµ + k2(t)wµ, aµ

)〉

=

√
1− t

n
Φµj(X̃

∗
j −X∗

j )(∂xϕ)∼Φµj

〈
ϕ
(√1− t

n
[Φx]µ + k1(t)Vµ + k2(t)wµ, aµ

)〉
+ (remainder)2 (133)

where (remainder)2 ≤ C(ϕ, S)m−1Φ2
µj . If we average over Φµj the first term does not directly disappear because the Gibbs

bracket 〈−〉 stil depends on Φµj and we have to work a little bit more. We use the mean value theorem to write

〈
ϕ
(√1− t

n
[Φx]µ + k1(t)Vµ + k2(t)wµ, aµ

)〉
=
〈
ϕ
(√1− t

n

n∑

i6=j

Φµixi + k1(t)Vµ + k2(t)wµ, aµ

)〉

+Φµj
d

dΦµj

〈
ϕ
(√1− t

n
[Φx]µ + k1(t)Vµ + k2(t)wµ, aµ

)〉∣∣∣
ξµj

for some 0 ≤ ξµj ≤ Φµj . The derivative is of the form

d

dΦµj

〈
ϕ
〉
=

√
1− t

n

〈
∂xϕ

〉
+
〈
ϕ(Γt,µ + Zµ)

dΓ̂t,µ

dΦµj

〉
−
〈
ϕ
〉〈
(Γ̂t,µ + Zµ)

dΓ̂t,µ

dΦµj

〉

=

√
1− t

n

{〈
∂xϕ

〉
+
〈
ϕ(Γt,µ + Zµ)(X

∗
j − xj)∂xϕ

〉
−
〈
ϕ
〉〈
(Γt,µ + Zµ)(X

∗
j − xj)∂xϕ

〉}

where it is understood that Γ̂t,µ, X∗
j appears for the bracket 〈−〉Ĥt

and Γ̂
(j)
t,µ, X̃j appears for 〈−〉Ĥt

. Putting all these remarks

together (133) becomes equal to
√

1− t

n
Φµj(X̃

∗
j −X∗

j )(∂xϕ)∼Φµj

〈
ϕ
(√1− t

n

n∑

i6=j

Φµixi + k1(t)Vµ + k2(t)wµ, aµ

)〉
+ (remainder)2 + (remainder)′2

where (remainder)′2 ≤ C(ǫ, ϕ, S)n−1Φ2
µj(1 + |Zµ|). Now, averaging over Φµj the first term vanishes, and (with the further

average over Zµ also) both remainders become O(n−1). Summarizing, we find

|T2| ≤ C(ϕ, S, α)n−1. (134)
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Finally from (131), (132), (134) we obtain the bounded difference property

|g − g(j)| ≤ C(ϕ, S, α)n−1 (135)

and an immediate application of Proposition H.4 then yields

P

(∣∣ 1
n
EΘ[ln Ẑt]−

1

n
E[ln Ẑt]

∣∣ > r

)
≤ 2e−C(ϕ,S,α)r2n. (136)

Recall that here EΘ = EZ,Z′,V,W∗,Φ,A and P is the probability with respect to all variables Z,Z′,V,W∗,Φ,A,X∗.

D. Proof of Theorem H.1

By the triangle inequality
∣∣ ln Ẑt − E ln Ẑt

∣∣ ≤
∣∣ ln Ẑt − EG ln Ẑt

∣∣+
∣∣EG ln Ẑt − EΘ ln Ẑt

∣∣+
∣∣EΘ ln Ẑt − E ln Ẑt

∣∣

Therefore by the union bound and and (126), (130) and (136)

P

(∣∣ ln Ẑt − E ln Ẑt

∣∣ > nr
)
≤ P

(∣∣ ln Ẑt − EG ln Ẑt

∣∣ > nr

3

)
+ P

(∣∣EG ln Ẑt − EΘ ln Ẑt

∣∣ > nr

3

)

+ P

(∣∣EΘ ln Ẑt − E ln Ẑt

∣∣ > nr

3

)

≤ 8e−
C(ϕ,S,α)r2n

9

which is equivalent to (111). To get the second statement (112) of the Theorem we use the observation E[X2] =
∫ +∞
0 daP(X2 >

a) and apply it to X = n−1
∣∣ ln Ẑt − E ln Ẑt

∣∣.

APPENDIX I

CONCENTRATION OF THE OVERLAP

In this appendix we give the main steps of the proof of Lemma 5.3. We denote by 〈−〉n,t,ǫ the Gibbs measure associated

to the perturbed Hamiltonian

Ht(x,w;Y,Y′) +
n∑

i=1

(
ǫ
x2i
2

− ǫxiX
∗
i −√

ǫxiẐi

)

i.e., the sum of (62) and (70). It is crucial that the second term is a perturbation which preserves the Nishimori identity of

Appendix A. We note that the precise form of the first term does not matter and all subsequent arguments are generic as long as

it is a Hamiltonian whose Gibbs distribution satisfies this Nishimori identity. The corresponding average free entropy is denoted

fn,ǫ(t) and we call Fn,ǫ(t) the free entropy for a realisation of the quenched variables, that is Fn,ǫ(t) = n−1 lnZt(Y,Y
′).

Let

Lǫ :=
1

n

n∑

i=1

(x2i
2

− xisi −
xiẑi
2
√
ǫ

)
.

Up to the prefactor n−1 this quantity is the derivative of the perturbation term in (70). The fluctuations of the overlap

Q = n−1
∑n

i=1X
∗
i xi and those of Lǫ are related through the remarkable identity

E
〈
(Lǫ − E〈Lǫ〉n,t,ǫ)2

〉
n,t,ǫ

=
1

4
E〈(Q − E〈Q〉n,t,ǫ)2

〉
n,t,ǫ

+
1

2
E[〈Q2〉n,t,ǫ − 〈Q〉2n,t,ǫ] +

1

4n2ǫ

n∑

i=1

E[〈X2
i 〉n,t,ǫ − 〈Xi〉2n,t,ǫ].

A detailed derivation is found in Appendix IX of [46] and involves only some lengthy algebra using the Nishimori identity and

integrations by parts w.r.t the Gaussian Ẑi in the perturbation term. Lemma 5.3 is then a direct consequence of the following:

Proposition I.1 (Concentration of Lǫ on E [〈Lǫ〉] ): Let P0 with bounded support in [−S, S]. For any 0 < a < b < 1,

lim
n→+∞

∫ b

a

dǫE
〈
(Lǫ − E〈Lǫ〉n,t,ǫ)2

〉
n,t,ǫ

= 0. (137)

The proof of this proposition is broken in two parts. Notice that

E
〈
(Lǫ − E〈Lǫ〉n,t,ǫ)2

〉
n,t,ǫ

= E
〈
(Lǫ − 〈Lǫ〉n,t,ǫ)2

〉
n,t,ǫ

+ E
[
(〈Lǫ〉n,t,ǫ − E〈Lǫ〉n,t,ǫ)2

]
. (138)

Thus it suffices to prove the two following lemmas. The first lemma expresses concentration w.r.t the posterior distribution (or

“thermal fluctuations”) and is an elementary consequence of concavity properties of the free energy and the Nishimori identity.
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Lemma I.2 (Concentration of Lǫ on 〈Lǫ〉 ): Let P0 with bounded second moment. For any 0 < a < b < 1 we have

lim
n→+∞

∫ b

a

dǫE
[〈
(Lǫ − 〈Lǫ〉n,t,ǫ)2

〉
n,t,ǫ

]
= 0 (139)

The second lemma expresses the concentration of the average overlap w.r.t the realizations of quenched disorder variables

and is a consequence of the concentration of the free energy (more precisely equation (112) in Appendix H).

Lemma I.3 (Concentration of 〈Lǫ〉 on E〈Lǫ〉 ): Let P0 with bounded support in [−S, S]. For any 0 < a < b < 1 we have

lim
n→+∞

∫ b

a

dǫE
[
(〈Lǫ〉n,t,ǫ − E[〈Lǫ〉n,t,ǫ])2

]
= 0 (140)

The reader is refered to Sec. V of [46] for the proof of these two Lemmas. We point out that the analysis gives a rate of

decay O(n−1) for (140) which is optimal but a weaker decay rate for (140). However any decay rate will do for the present

proof of the replica formula.

APPENDIX J

COMPUTING THE OPTIMAL GENERALIZATION ERROR

A. Generalization error at finite ∆te

Let w ∼ N (0, 1) and a ∼ PA. It is convenient to introduce the following function

f te(y|√q V, ρ− q) := EwP
te
out(y|

√
q V +

√
ρ− q w) = Ew,a

e−
1

2∆te

(
y−ϕ(

√
q V+

√
ρ−q w,a)

)2
√
2π∆te

. (141)

It is related to the expression of ΨP te
out

(q; ρ) that appears in the potential (40). Using (16) we obtain

ΨP te
out

(q; ρ) = E

∫
dyf te(y|√q V, ρ− q) ln f te(y|√q V, ρ− q) . (142)

Denote (q∗, r∗) the values corresponding to supq∈[0,ρ] infr≥0 f
ts
RS(q, r), where f ts

RS is the expression inside the brackets in (40).

Then the envelope theorem [56] allows to write

df ts
RS(q

∗, r∗)

d(∆te)−1
=
∂f ts

RS(q, r)

∂(∆te)−1

∣∣∣
q∗,r∗

. (143)

Using the expression of f ts
RS and noticing that only the third term ΨP te

out
given by (142) depends explicitly on ∆te, one gets

(using the dominated convergence theorem)

∂f ts
RS(q, r)

∂(∆te)−1
= α(1 − β)

∂ΨP te
out

(q; ρ)

∂(∆te)−1

= α(1 − β)E

∫
dy
∂f te(y|√q V, ρ− q)

∂(∆te)−1

(
1 + ln f te(y|√q V, ρ− q)

)

= α(1 − β)E

∫
dy
∂f te(y|√q V, ρ− q)

∂(∆te)−1
ln f te(y|√q V, ρ− q) , (144)

using that f te(y|√q V, ρ− q) is a probability density for the last equality. Another convenient equivalent expression is

∂f ts
RS(q, r)

∂(∆te)−1
= α(1 − β)

∆te

2

∫
dY

{
d
dyf

te(y|√q V, ρ− q)
}2

f te(y|√q V, ρ− q)
. (145)

The expression (145) is obtained from (144) using the easily checkable identity

∂f te(y|√q V, ρ− q)

∂(∆te)−1
= −∆te

2

d2f te(y|√q V, ρ− q)

dy2
(146)

and an integration by part. Finally combining (143), (145) and (46), it leads the expression of the generalization error

lim
n→∞

Egen = ∆te
(
1−∆te

E

∫
dy

{
d
dyf

te(y|√q∗ V, ρ− q∗)
}2

f te(y|√q∗ V, ρ− q∗)

)

= ∆te
(
1− E

∫
dy

Ew,a

[
1√

2π∆te
e−

1
2∆te

(
y−ϕ(

√
q∗ V +

√
ρ−q∗ w,a)

)2(
y − ϕ(

√
q∗ V +

√
ρ− q∗ w, a)

)]2

Ew,a

[
1√

2π∆te
e−

1
2∆te

(
y−ϕ(

√
q∗ V+

√
ρ−q∗ w,a)

)2]
)
. (147)
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Do not get confused: E[·]2 is an expectation to the square, and not of a squared quantity. For illustrating purpose, simple

algebra leads that this formula for the binary perceptron ϕ(x) = sgn(x) is given by

lim
n→∞

Egen =
∆te

2
E

[
(1 + u)

∫
dy
e−

y2

2√
2π

(
y2 − 1

)
ln
{
cosh

( y√
∆te

+
1

∆te

)
+ u sinh

( y√
∆te

+
1

∆te

)}]

+
∆te

2
E

[
(1− u)

∫
dy
e−

y2

2√
2π

(
y2 − 1

)
ln
{
cosh

( y√
∆te

− 1

∆te

)
+ u sinh

( y√
∆te

− 1

∆te

)}]
(148)

where u = u(V, q, ρ) := erf(V
√
q/(2(ρ− q))). One can also check directly from this formula instead of the general one (38)

that (50) is recovered in the high test noise ∆te → ∞ limit.

Let mention that expanding the square in (147), one directly obtains that this expression of the generalization error at finite

noise ∆te in the test set matches the equivalent expression (25).

B. Taking the ∆te → ∞ limit

Let us now consider the high noise limit of (147). Let us denote the integral appearing in it as I . Denote for this subsection

ϕ∗ := ϕ(
√
q∗ V +

√
ρ− q∗ w, a) and let y ∼ N (0, 1). First, using a change of variable and isolating a Gaussian probability

density function, we rewrite it as

I = ∆te
Ey

Ew,a

[
e

yϕ∗√
∆te

− ϕ2
∗

2∆te
(
y − ϕ∗√

∆te

)]2

Ew,ae
yϕ∗√
∆te

− ϕ2
∗

2∆te

= ∆te
Ey

Ew,a

[(
1 + yϕ∗√

∆te
− ϕ2

∗
2∆te +

y2ϕ2
∗

2∆te

)(
y − ϕ∗√

∆te

)]2

Ew,a

[
1 + yϕ∗√

∆te
− ϕ2

∗
2∆te +

y2ϕ2
∗

2∆te

] + O((∆te)−1) . (149)

Now denote ϕ1 := Ew,aϕ(
√
q∗ V+

√
ρ− q∗ w, a) and ϕ2 := Ew,a[ϕ(

√
q∗ V+

√
ρ− q∗ w, a)2]. Expanding around (∆te)−1 → 0

we get

I = ∆te
Ey

[
y2 +

ϕ1(y
3 − 2y)√
∆te

+
1

∆te

(
ϕ2
1 −

5

2
ϕ2y

2 +
1

2
ϕ2y

4
)]

+ O((∆te)−1) = ∆te + ϕ2
1 − ϕ2 + O((∆te)−1) . (150)

Plugging this in (147) finally leads limn→∞ Egen = EV [ϕ2 − ϕ2
1] + O((∆te)−1). The last step for obtaining (38) is to notice

that EV ϕ2 = EV,w,a

[
ϕ(

√
q∗ V +

√
ρ− q∗ w, a)2

]
= EV,a

[
ϕ(

√
ρ V, a)2

]
as V and w are i.i.d N (0, 1) random variables.

ACKNOWLEDGMENTS

Jean Barbier acknowledges funding from the Swiss National Science Foundation (grant 200021-156672). Florent Krzakala

acknowledges funding from the ERC under the European Union 7th Framework Programme Grant Agreement 307087-SPARCS.

Part of this work was done while Léo Miolane was visiting EPFL.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015.
[2] P. Bühlmann and S. Van De Geer, Statistics for high-dimensional data: methods, theory and applications. Springer Science & Business Media, 2011.
[3] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms for compressed sensing,” Proc. Natl. Acad. Sci., vol. 106, no. 45, pp.

18 914–18 919, 2009.
[4] E. J. Candes and T. Tao, “Near-optimal signal recovery from random projections: Universal encoding strategies?” IEEE Transactions on Information

Theory, vol. 52, no. 12, pp. 5406–5425, Dec 2006.
[5] C. E. Shannon, “A mathematical theory of communication, part i, part ii,” Bell Syst. Tech. J., vol. 27, pp. 623–656, 1948.
[6] M. Mézard, G. Parisi, and M.-A. Virasoro, “Spin glass theory and beyond.” 1987.
[7] H. S. Seung, H. Sompolinsky, and N. Tishby, “Statistical mechanics of learning from examples,” Phys. Rev. A, vol. 45, pp. 6056–6091, Apr 1992.

[Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.45.6056
[8] T. L. H. Watkin, A. Rau, and M. Biehl, “The statistical mechanics of learning a rule,” Rev. Mod. Phys., vol. 65, pp. 499–556, Apr 1993. [Online].

Available: https://link.aps.org/doi/10.1103/RevModPhys.65.499
[9] K. H. Fischer and J. A. Hertz, Spin glasses. Cambridge university press, 1993, vol. 1.

[10] V. Dotsenko, An introduction to the theory of spin glasses and neural networks. World Scientific, 1995, vol. 54.
[11] A. Engel and C. Van den Broeck, Statistical mechanics of learning. Cambridge University Press, 2001.
[12] H. Nishimori, Statistical physics of spin glasses and information processing: an introduction. Clarendon Press, 2001, vol. 111.
[13] M. Mezard and A. Montanari, Information, physics, and computation. Oxford University Press, 2009.
[14] L. Zdeborová and F. Krzakala, “Statistical physics of inference: thresholds and algorithms,” Advances in Physics, vol. 65, no. 5, pp. 453–552, 2016.
[15] N. El Karoui, D. Bean, P. J. Bickel, C. Lim, and B. Yu, “On robust regression with high-dimensional predictors,” Proceedings of the National Academy

of Sciences, vol. 110, no. 36, pp. 14 557–14 562, 2013.
[16] M. Bayati and A. Montanari, “The lasso risk for gaussian matrices,” IEEE Transactions on Information Theory, vol. 58, no. 4, pp. 1997–2017, April

2012.
[17] D. Donoho and A. Montanari, “High dimensional robust m-estimation: asymptotic variance via approximate message passing,” Probability Theory and

Related Fields, vol. 166, no. 3, pp. 935–969, Dec 2016. [Online]. Available: https://doi.org/10.1007/s00440-015-0675-z
[18] R. Gribonval and P. Machart, “Reconciling" priors" &" priors" without prejudice?” in Advances in Neural Information Processing Systems, 2013, pp.

2193–2201.
[19] M. Advani and S. Ganguli, “An equivalence between high dimensional bayes optimal inference and m-estimation,” in Advances in Neural Information

Processing Systems, 2016, pp. 3378–3386.

https://link.aps.org/doi/10.1103/PhysRevA.45.6056
https://link.aps.org/doi/10.1103/RevModPhys.65.499
https://doi.org/10.1007/s00440-015-0675-z


34

[20] D. Donoho and J. Tanner, “Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and
signal processing,” Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 367, no. 1906,
pp. 4273–4293, 2009.

[21] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms for compressed sensing,” Proceedings of the National Academy of Sciences,
vol. 106, no. 45, pp. 18 914–18 919, Nov 2009.

[22] S. Rangan, “Generalized approximate message passing for estimation with random linear mixing,” in 2011 IEEE International Symposium on Information
Theory Proceedings, July 2011, pp. 2168–2172.

[23] P. T. Boufounos and R. G. Baraniuk, “1-bit compressive sensing,” in Information Sciences and Systems, 2008. CISS 2008. 42nd Annual Conference on.
IEEE, 2008, pp. 16–21.

[24] J. Barbier, “Statistical physics and approximate message-passing algorithms for sparse linear estimation problems in signal processing and coding
theory,” Ph.D. dissertation, Université Paris Diderot, 2015. [Online]. Available: http://arxiv.org/abs/1511.01650

[25] J. Barbier, M. Dia, N. Macris, F. Krzakala, T. Lesieur, and L. Zdeborová, “Mutual information for symmetric rank-one matrix estimation: A proof of
the replica formula,” in Advances in Neural Information Processing Systems 29, 2016, p. 424–432.

[26] M. Lelarge and L. Miolane, “Fundamental limits of symmetric low-rank matrix estimation,” ArXiv e-prints, Nov. 2016.
[27] L. Miolane, “Fundamental limits of low-rank matrix estimation: the non-symmetric case,” ArXiv e-prints, Feb. 2017.
[28] T. Lesieur, L. Miolane, M. Lelarge, F. Krzakala, and L. Zdeborová, “Statistical and computational phase transitions in spiked tensor estimation,” ArXiv

e-prints, Jan. 2017.
[29] T. Tanaka, “A statistical-mechanics approach to large-system analysis of cdma multiuser detectors,” IEEE Transactions on Information Theory, vol. 48,

no. 11, pp. 2888–2910, Nov 2002.
[30] D. Guo and S. Verdú, “Randomly spread cdma: Asymptotics via statistical physics,” IEEE Transactions on Information Theory, vol. 51, no. 6, pp.

1983–2010, June 2005.
[31] A. R. Barron and A. Joseph, “Toward fast reliable communication at rates near capacity with gaussian noise,” in 2010 IEEE International Symposium

on Information Theory, June 2010, pp. 315–319.
[32] J. Barbier and F. Krzakala, “Approximate message-passing decoder and capacity-achieving sparse superposition codes,” 2015. [Online]. Available:

http://arxiv.org/abs/1503.08040
[33] J. Barbier, M. Dia, and N. Macris, “Proof of threshold saturation for spatially coupled sparse superposition codes,” in 2016 IEEE International Symposium

on Information Theory (ISIT), July 2016, pp. 1173–1177.
[34] A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, “Inference and Phase Transitions in the Detection of Modules in Sparse Networks,” Physical

Review Letters, vol. 107, no. 6, p. 065701, Aug. 2011.
[35] F. Krzakala, C. Moore, E. Mossel, J. Neeman, A. Sly, L. Zdeborová, and P. Zhang, “Spectral redemption in clustering sparse networks,” Proceedings of

the National Academy of Science, vol. 110, pp. 20 935–20 940, Dec. 2013.
[36] F. Caltagirone, M. Lelarge, and L. Miolane, “Recovering asymmetric communities in the stochastic block model,” ArXiv e-prints, Oct. 2016.
[37] E. Abbe, “Community detection and stochastic block models: recent developments,” ArXiv e-prints, Mar. 2017.
[38] F. Krzakala, A. Montanari, F. Ricci-Tersenghi, G. Semerjian, and L. Zdeborova, “Gibbs states and the set of solutions of random constraint satisfaction

problems,” Proceedings of the National Academy of Science, vol. 104, pp. 10 318–10 323, Jun. 2007.
[39] J. Barbier, F. Krzakala, L. Zdeborová, and P. Zhang, “The hard-core model on random graphs revisited,” in Journal of Physics Conference Series, ser.

Journal of Physics Conference Series, vol. 473, Dec. 2013, p. 012021.
[40] C. Baldassi, A. Braunstein, N. Brunel, and R. Zecchina, “Efficient supervised learning in networks with binary synapses,” Proceedings of the National

Academy of Sciences, vol. 104, no. 26, pp. 11 079–11 084, 2007.
[41] C. Baldassi, C. Borgs, J. T. Chayes, A. Ingrosso, C. Lucibello, L. Saglietti, and R. Zecchina, “Unreasonable effectiveness of learning neural networks:

From accessible states and robust ensembles to basic algorithmic schemes,” Proceedings of the National Academy of Sciences, vol. 113, no. 48, pp.
E7655–E7662, 2016. [Online]. Available: http://www.pnas.org/content/113/48/E7655.abstract

[42] J. A. Nelder and R. J. Baker, Generalized linear models. Wiley Online Library, 1972.
[43] E. Gardner and B. Derrida, “Three unfinished works on the optimal storage capacity of networks,” Journal of Physics A: Mathematical and General,

vol. 22, no. 12, p. 1983, 1989.
[44] G. Györgyi, “First-order transition to perfect generalization in a neural network with binary synapses,” Physical Review A, vol. 41, no. 12, p. 7097,

1990.
[45] E. B. Baum and Y.-D. Lyuu, “The transition to perfect generalization in perceptrons,” Neural computation, vol. 3, no. 3, pp. 386–401, 1991.
[46] J. Barbier and N. Macris, “The stochastic interpolation method: A simple scheme to prove replica formulas in bayesian inference,” CoRR, vol.

abs/1705.02780, 2017. [Online]. Available: http://arxiv.org/abs/1705.02780
[47] J. Barbier, M. Dia, N. Macris, and F. Krzakala, “The mutual information in random linear estimation,” in 2016 54th Annual Allerton Conference on

Communication, Control, and Computing (Allerton), 2016.
[48] J. Barbier, N. Macris, M. Dia, and F. Krzakala, “Mutual Information and Optimality of Approximate Message-Passing in Random Linear Estimation.”

[Online]. Available: https://arxiv.org/pdf/1701.05823v1.pdf
[49] G. Reeves and H. D. Pfister, “The replica-symmetric prediction for compressed sensing with gaussian matrices is exact,” in 2016 IEEE International

Symposium on Information Theory (ISIT), July 2016, pp. 665–669.
[50] M. Opper and D. Haussler, “Generalization performance of bayes optimal classification algorithm for learning a perceptron,” Physical Review Letters,

vol. 66, no. 20, p. 2677, 1991.
[51] D. J. Thouless, P. W. Anderson, and R. G. Palmer, “Solution of‘solvable model of a spin glass’,” Philosophical Magazine, vol. 35, no. 3, p. 593–601,

1977.
[52] M. Mézard, “The space of interactions in neural networks: Gardner’s computation with the cavity method,” Journal of Physics A: Mathematical and

General, vol. 22, no. 12, pp. 2181–2190, 1989.
[53] Y. Kabashima, “Inference from correlated patterns: a unified theory for perceptron learning and linear vector channels,” Journal of Physics: Conference

Series, vol. 95, no. 1, p. 012001, 2008. [Online]. Available: http://stacks.iop.org/1742-6596/95/i=1/a=012001
[54] F. Krzakala, M. Mézard, F. Sausset, Y. Sun, and L. Zdeborová, “Statistical-physics-based reconstruction in compressed sensing,” Phys. Rev. X, vol. 2, p.

021005(18), May 2012.
[55] J. P. Vila and P. Schniter, “Expectation-maximization gaussian-mixture approximate message passing,” IEEE Transactions on Signal Processing, vol. 61,

no. 19, pp. 4658–4672, 2013.
[56] P. Milgrom and I. Segal, “Envelope theorems for arbitrary choice sets,” Econometrica, vol. 70, no. 2, pp. 583–601, 2002.
[57] T. Richardson and R. Urbanke, Modern coding theory. Cambridge university press, 2008.
[58] M. J. Wainwright, M. I. Jordan et al., “Graphical models, exponential families, and variational inference,” Foundations and Trends R© in Machine

Learning, vol. 1, no. 1–2, pp. 1–305, 2008.
[59] J. Ziniel, P. Schniter, and P. Sederberg, “Binary linear classification and feature selection via generalized approximate message passing,” in Information

Sciences and Systems (CISS), 2014 48th Annual Conference on. IEEE, 2014, pp. 1–6.
[60] M. Bayati and A. Montanari, “The dynamics of message passing on dense graphs, with applications to compressed sensing,” IEEE Transactions on

Information Theory, vol. 57, no. 2, pp. 764–785, Feb 2011.

http://arxiv.org/abs/1511.01650
http://arxiv.org/abs/1503.08040
http://www.pnas.org/content/113/48/E7655.abstract
http://arxiv.org/abs/1705.02780
https://arxiv.org/pdf/1701.05823v1.pdf
http://stacks.iop.org/1742-6596/95/i=1/a=012001


35

[61] M. Bayati, M. Lelarge, and A. Montanari, “Universality in polytope phase transitions and message passing algorithms,” The Annals of Applied Probability,
vol. 25, no. 2, pp. 753–822, 2015.

[62] A. Javanmard and A. Montanari, “State evolution for general approximate message passing algorithms, with applications to spatial coupling,” Information

and Inference: A Journal of the IMA, vol. 2, no. 2, pp. 115–144, 2013.
[63] D. Guo, S. Shamai, and S. Verdú, “Mutual information and minimum mean-square error in gaussian channels,” IEEE Transactions on Information

Theory, vol. 51, no. 4, pp. 1261–1282, April 2005.
[64] Y. Xu, Y. Kabashima, and L. Zdeborová, “Bayesian signal reconstruction for 1-bit compressed sensing,” Journal of Statistical Mechanics: Theory and

Experiment, vol. 2014, no. 11, p. P11015, 2014.
[65] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011.

[66] F. Chollet, “keras,” https://github.com/fchollet/keras, 2015.
[67] F. Guerra and F. L. Toninelli, “The thermodynamic limit in mean field spin glass models,” Communications in Mathematical Physics, vol. 230, no. 1,

pp. 71–79, 2002.
[68] M. Talagrand, Mean field models for spin glasses: Volume I: Basic examples. Springer Science & Business Media, 2010, vol. 54.
[69] N. Macris, “Griffith-kelly-sherman correlation inequalities: A useful tool in the theory of error correcting codes,” IEEE Transactions on Information

Theory, vol. 53, no. 2, pp. 664–683, Feb 2007.
[70] S. B. Korada and N. Macris, “Tight bounds on the capacity of binary input random cdma systems,” IEEE Transactions on Information Theory, vol. 56,

no. 11, pp. 5590–5613, Nov 2010.
[71] ——, “Exact solution of the gauge symmetric p-spin glass model on a complete graph,” Journal of Statistical Physics, vol. 136, no. 2, pp. 205–230,

2009.

https://github.com/fchollet/keras

	I Introduction
	II Setting and main results
	II-A Generalized linear estimation: Problem statement
	II-B Two scalar inference channels
	II-C Replica-symmetric formula, mutual information and optimal output error
	II-D Optimality of the generalized approximate message-passing algorithm

	III Optimal generalization error in supervised learning
	III-A Teacher-student scenario
	III-B Optimal generalization error
	III-C Computing the optimal generalization error

	IV Application to concrete situations
	IV-A Optimal generalization error for some applications
	IV-B Phase diagrams: Easy, hard and impossible estimation and learning phases
	IV-C Generalization in classification problems
	IV-D Generalization in regression problems

	V Proof of the replica formula by the stochastic interpolation method
	V-A Interpolating estimation problem
	V-B Free entropy variation along the interpolation path
	V-C Overlap concentration
	V-D Cancelling the remainder
	V-E Lower and upper matching bounds

	Appendix A: The Nishimori identity
	Appendix B: Some properties of the scalar channel
	Appendix C: A general class of models satisfying the hypothesis
	Appendix D: Proof of Proposition 5.1
	Appendix E: Boundedness of an overlap fluctuation
	Appendix F: Approximation
	Appendix G: A sup-inf formula
	Appendix H: Concentration of the free entropy
	H-A Concentration with respect to Gaussian random variables Z, Zi, V, W*, i
	H-B Bounded difference with respect to A
	H-C Bounded difference with respect to Xi*
	H-D Proof of Theorem H.1

	Appendix I: Concentration of the overlap
	Appendix J: Computing the optimal generalization error
	J-A Generalization error at finite te
	J-B Taking the te limit

	References

