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Abstract

2D quantum gravity is the idea that a set of discretized surfaces (called map, a graph

on a surface), equipped with a graph measure, converges in the large size limit (large

number of faces) to a conformal field theory (CFT), and in the simplest case to the

simplest CFT known as pure gravity, also known as the gravity dressed (3,2) minimal

model. Here we consider the set of planar Strebel graphs (planar trivalent metric

graphs) with fixed perimeter faces, with the measure product of Lebesgue measure of

all edge lengths, submitted to the perimeter constraints. We prove that expectation

values of a large class of observables indeed converge towards the CFT amplitudes of

the (3,2) minimal model.
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1 Introduction

The idea of two-dimensional quantum gravity was born in the 1980’s and developed

in 1990’s. It consists in the study of two-dimensional (2d) surfaces equipped with a

random Riemaniann metric. By analogy with Euclidean path and functional integrals

in quantum mechanics and quantum field theories and with general relativity, the

randomness corresponds to quantization and the 2d metric to some 2d ”gravitational

field”, whence the name ”2d quantum gravity”.
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In 1981, motivated by string theory, Polyakov [Polyakov, 1981] argued that 2d-

quantum gravity should be equivalent to a 2d-quantum field theory (CFT) on the

surface, the Liouville conformal field theory (CFT). This theory has been extensively

studied, see [Nakayama, 2004] for an extensive but not too recent review. Massless

matter coupled to 2d gravity is described by a CFT characterized (sometimes uniquely)

by its central charge c, and the central charge of the associated Liouville CFT should

be cL = 26− c. (see for instance [David, 1988a], [Distler and Kawai, 1989]). For pure

gravity c = 0.

Another idea is to discretize the problem: start from a set of discrete surfaces (also

called random maps in the mathematical literature), for example triangulated surfaces

with N triangles, equipped with some local measure, for instance the uniform measure.

These discretized models can often be mapped onto random matrix models, and have

been studied by random matrix theory, by combinatorics and by statistical physics

methods, including numerical methods. The continuum limit is defined by letting the

average number of triangles tend to infinity, and the mesh to zero, while keeping the

area fixed. It is conjectured that this limit should exist and be a 2d Liouville CFT. In

order to identify the Liouville CFT, one has to embed the discrete surface on a surface

with a metric, and measure expectation values and correlations of distances between

points. This limit is expected to be universal, in the sense that it should be the same

for a large class of random maps (triangles, quadrangles, or other sets of graphs) rather

independently of the measure.

In 1990 Di Francesco and Kutasov [Di Francesco - Kutasov, 1990] showed that for

some special values of c, some quite special observables of the Liouville CFT (the

partition functions and certain correlation functions) coincide with the amplitudes (co-

efficients of the τ -function) of an integrable system formulated by Douglas and Shenker

[Douglas - Shenker, 1990] as a reduction of the KdV integrable hierarchy, known as the

(p, q) minimal model. There is a central charge associated to this integrable system,

given by c = 1− 6(p− q)2/pq. For c = 0, this degenerate Liouville theory is associated

to the minimal model (3, 2). Therefore, in a setup supposed to be a discretized model

of 2d pure quantum gravity, one should be able to relate the continuum limit to the

minimal model (3, 2).

The purpose of this work is to establish this general equivalence for a specific

discretization setup of pure 2d gravity, that we present now . Consider an abstract

triangulation in the plane (planar triangulation), and its dual, an abstract trivalent

graph. Many methods to embed such an abstract triangulation into the plane have been

developed and studied, for example those based on circle packings [Benjamini, 2009]

and those on more general circle patterns [David and Eynard 2014]. One asset of these
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embeddings is that they show a conformal invariance even for a finite number of points,

a property that one wants to have in the continuum limit, in order to make contact

with CFT. The embedding that that we shall consider here is based on Strebel graphs

[Harer - Zagier, 1986], [Penner, 1987], [Kontsevich, 1992]. Strebel graphs are metric

trivalent ribbon graphs drawn on surfaces. “Metric” means that a length is associated

to each edge, and their dual are triangulations. Strebel’s theorem says that the graph’s

metric can be uniquely extended to a metric on the whole surface, with the curvature

localized at face centers. The set of Strebel graphs of genus g with N faces is isomorphic

to the moduli space of (decorated) Riemann surfaces of genus g with n marked points

(the face centers) decorated by N real numbers (the face perimeters). This is a non–

compact space since perimeters can be as large as desired. In this work, and restrain

the set of Strebel graphs to the subset of graphs with uniform fixed perimeters for the

faces (see below for a precise definition), and we choose the Kontsevich measure on

Strebel graphs, which is local.

The features of the Kontsevich measure along with this restriction will allow to

compute the partition function of the Strebel graphs and the expectation values of

all the observables which have a topological interpretation in 2d gravity. Using the

knowledge of Kontsevich–Witten planar intersection numbers, we shall derive explicit

expressions for these correlation functions, and we shall be able to compute explicitly

(by saddle point approximation) their continuum limit, and show that they tend to the

(3,2) minimal model amplitudes.

Moreover, by a Laplace transform, we shall show how to associate a spectral curve

to this discrete model, and write it explicitly, in terms of Bessel functions. The spectral

curve is an object that encodes all the observables of the model, and it will depend

on a single parameter µ. The continuum limit N →∞ of the model will be shown to

be equivalent to a limit where µ approaches a critical value µc. We shall show that

as µ → µc the spectral curve tends to a universal and simple spectral curve, which is

nothing but the spectral of the integrable system corresponding to the (3, 2) minimal

model of Douglas-Shenker. In this way, we show that the expectation values of all the

topological observables of the model tend in the continuum limit to the amplitudes of

the (3, 2) minimal model.

Following the equivalence stated by Di Francesco and Kutasov

([Di Francesco - Kutasov, 1990]), this paper shows that considering Strebel graphs

with uniform perimeters is a relevant discretization of 2d quantum gravity, which

allows to recover it in the continuum limit.

This paper is organized as follows. First, we set the notations and recall the defi-
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nitions of Strebel graphs. We describe the measure and its relation to the Chern-Class

measure on Moduli space of Riemann surfaces, following Kontsevich [Kontsevich, 1992].

We then restrict the model on uniform perimeters, which is specific to this paper. Last,

we define the observables and their generating functions.

In a second part, the explicit computation of generating functions –made possible

by the restriction on uniform perimeters– is carried out.

The third part is dedicated to the spectral curve and its critical form. It then

contains the main result of this paper.

Last, in a fourth section, as an application, we derive the large size limit of several

observables by different means (analysis of the partition function, saddle point method,

and use of the spectral curve).

2 Strebel graphs with uniform perimeters

2.1 General definitions – Strebel graphs, moduli space of Rie-
mann surfaces and Chern classes

2.1.1 Strebel and Kontsevich graphs

Strebel graphs

A Strebel graph of genus g with n faces, is a trivalent cellular ribbon graph, that can

be embedded on a surface of genus g, whose faces are topological discs, and whose

edges e carry a real positive number called the edge length `e ≥ 0. Strebel’s theorem

[Strebel, 1984] provides a canonical embedding of the Strebel graph on a Riemann

surface, equipped with a canonical metric, in such a way that each edge e is a geodesic

of length `e (see appendix A).

We shall call:

• F= set of faces

• V= set of vertices

• E= set of edges, and Ef the set of edges adjacent to a face f .

If a graph is planar, if we denote N = |F| − 3 (|F| denotes the cardinal), we have

|E| = 3N + 3 , |V| = 2N + 2. (1)

The face perimeters

Lf =
∑
e∈Ef

`e
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Figure 1: Sample of Strebel Graph with Lf = 1: the figure shows a sample from a
Strebel graph. All the vertices are trivalent, and a positive real number is associated
to each edge. Summing over the lengths of a face yields Lf = 1.

play a special role. In figure 1, a portion of a planar Strebel graph with all face

perimeters equal to 1 (Lf = 1) is represented.

Kontsevich studied the set of Strebel graphs, equipped with the measure product

of edge measures

measure =
∏
e∈E

d`e
∏
f∈F

δ(Lf −
∑
e∈Ef

`e). (2)

In the planar case, we may chose an edge basis E0 ⊂ E of cardinal |E0| = 2N (thus

solving the perimeter constraints), and we also have (see [Kontsevich, 1992])

measure =
1

2

∏
e∈E0

d`e. (3)

This measure is not normalized, one of our goals will be to compute the total volume.

Kontsevich graphs

In fact Kontsevich was also interested in computing Laplace transforms of various

observables, by Laplace transformation over the perimeters. The Laplace transform
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with respect to perimeters, reformulates the problem in terms of the dual graphs.

Since vertices of a Strebel graph are generically trivalent, its dual –that we shall call a

”Kontsevich graph”– is a triangulation of the surface, whose vertices zi are the center

of faces of the Strebel graph. Instead of carrying edge lengths, Kontsevich graphs carry

a variable λi at each vertex, and the positions zi of the vertices on the Riemann surface.

Kontsevich studied the set of Strebel graphs with |F| = N + 3 vertices, equipped

with the Chern-class measure

measureK =
1

N !

(
N+3∑
i=1

L2
i c1(T ∗zi)

)N+3g

(4)

where c1(T ∗zi) is a 2-form, the Chern class of the cotangent bundle T ∗zi at the ith marked

point zi, and g is the genus of the surface (we shall specialize to the planar case g = 0).

He showed that this measure is in fact proportional to the measure (2) and (4) by

a power of 2, that we shall recall below.

2.1.2 Moduli spaces of surfaces

Let Mg,N be the moduli space of Riemann surfaces of genus g, and with N marked

points:

Mg,N = {(Σ, p1, . . . , pN)}/Aut (5)

where Σ is a Riemann surface of genus g and p1, . . . , pN are N distinct and labelled

marked points on Σ. Two Riemann surfaces are isomorphic iff there is an analytic

bijection (whose inverse is also analytic) that maps one to the other, respecting the

marked points. Mg,N is an orbifold (locally a manifold quotiented by a group – the

group of automorphisms), of real dimension

dimMg,N = 2(3g − 3 +N). (6)

This means that it can be parametrized (locally) by 2(3g− 3 +N) real parameters, or

also by 3g − 3 +N complex parameters.

From now on, we shall focus on the planar case g = 0. We shall also consider that

the number of marked points be N + 3. We have

dimM0,N+3 = 2N. (7)

Indeed, there is a unique (up to automorphisms) Riemann surface of genus 0, this is

the Riemann sphere, i.e. the complex plane compactified by adding a point at ∞, and

this is also the complex projective line, we write it

C̄ = C ∪ {∞} = CP 1. (8)
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Automorphisms of the Riemann sphere, are Möbius transformations z → (az+b)/(cz+

d) with ad− bc = 1, i.e.

Aut(C̄) = Sl2(C). (9)

This means that, by chosing a, b, c, d, one can map any 3 of the marked points,

let’s say p1, p2, p3 to 3 given points, let’s say 0, 1,∞. In other words an element

(C̄, p1, . . . , pN+3) ∈ M0,N+3 is equivalent to (C̄, 0, 1,∞, p4, . . . , pN+3), and thus to the

data of N distinct complex numbers p4, . . . , pN+3. This shows that dimCM0,N+3 = N ,

and thus dimRM0,N+3 = 2N .

Decoration with perimeters

We shall now consider the space

M̃0,N+3 =M0,N+3 × RN+3
+ , (10)

i.e. we associate a positive real number Li to each marked point pi. It is also a trivial

real bundle over M0,N+3, with fiber RN+3
+ . It has dimension:

dimR M̃0,N+3 = 2N +N + 3 = 3N + 3. (11)

Strebel, Penner, Harrer, Zaguier, Kontsevich found that

M̃0,N+3 ∼ ⊕G∈G0,N+3
RE(G)

+ (12)

where G0,N+3 is the set of planar Strebel graphs with N + 3 faces, and E(G) its set of

edges. The isomorphism is an orbifold–isomorphism, i.e. respecting the quotients by

automorphism groups on both sides. The zi are the centers of faces of Strebel graphs,

i.e. vertices of Kontsevich graph, and the Lis are the perimeters. In other words, a

point of M̃0,N+3, is uniquely represented by a Strebel graph (or its dual the Kontsevich

graph which is a triangulation), and the edge lengths provide a set of real coordinates.

2.1.3 Chern classes on moduli space of curves of genus 0.

Let us consider the bundle Li overM0,N+3, whose fiber over (C̄, z1, . . . , zN+3) ∈M0,N+3

is the cotangent plane T ∗ziC̄ of the Riemann sphere at the ith marked point zi:

Li →M0,N+3

(C̄, z1, . . . , zN+3, T
∗
zi
C̄) 7→ (C̄, z1, . . . , zN+3). (13)

The fiber is homeomorphic to the complex plane, it is thus a complex line bundle. Let

us denote

ψi = c1(Li) (14)
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its 1st Chern class. We also consider the bundle L̃i over M̃0,N+3, whose fiber over

(C̄, z1, . . . , zN+3, L1, . . . , LN+3) ∈ M̃0,N+3 is again the cotangent plane T ∗ziC̄ of the

Riemann sphere at the ith marked point zi, and denote ψ̃i = c1(L̃i) its 1st Chern class.

Since M̃0,N+3 =M0,N+3×RN+3
+ is a product bundle, the Chern classes add, and since

RN+3
+ is a flat bundle its Chern class vanishes, so that we may identify

ψi = ψ̃i. (15)

Kontsevich found that, in the edge lengths coordinates, the Chern class takes the form

ψi =
∑

e<e′ , adjacent to zi

d

(
`e
Li

)
∧ d
(
`e′

Li

)
, Li =

∑
e , adjacent to zi

`e. (16)

This may seem to depend on a choice of labelling of edges around zi (i.e. choosing a

first edge and then order edge labels counterclockwise), but one can easily check that

it doesn’t depend on which edge is chosen to be the first.

ψi is a 2-form on M0,N+3, and therefore (
∑

i L
2
iψi)

N
is a top dimensional volume

form on M0,N+3, and multiplied by
∏

i dLi it is a top dimensional volume form on

M̃0,N+3. It is thus proportional to
∏

e d`e, and Kontsevich found that(∑
i

L2
iψi

)N∏
i

dLi = N ! 22N+1
∏
e

d`e. (17)

2.2 Restriction of the model, definition of the observables

2D quantum gravity requires to carry out averages over the set of all possible –

conformally non-equivalent– metrics on all possible compact complex surfaces. Ac-

tually, it is possible to restrain the sum over connected compact Riemann surfaces,

and (using the conformal gauge fixing of [Polyakov, 1981]) the sum over the metrics is

reduced to the sum over a local conformal factor (the Liouville field) and some moduli.

To leading order in the topological expansion (the planar limit) one can consider only

the fields living on a genus 0 surface (i.e. the Riemann sphere). We focus on this

leading order in this paper. Yet, the measure over the Liouville field is not easy to

construct (see however [David et al. 2016] for a recent rigourous construction of this

measure). Therefore, as in the standard discretization schemes, we shall approach the

set of Liouville fields (which is an infinite dimensional space) by a sequence of finite

dimensional spaces. These are precisely M̃0,N+3 and G0,N+3. Every point in these

spaces, through Strebel’s theorem is equivalent to a metric over the Riemann sphere

with N + 3 punctures. The hope is that the limit N → ∞ gives the continuous 2D

pure (i.e. without matter fields) quantum gravity. Actually, each Strebel graph (see
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appendix A) represents a flat metric over the Riemann sphere with N + 3 punctures,

all the curvature being located at the vertices. It is thus a special class of metrics.

Moreover, we will restrain this to a certain subset of Strebel graphs, namely the

graphs with uniform perimeters: L1 = · · · = LN+3 = L, so that the space of metrics is

even more specific. However, we expect universality, i.e. that the large N limit (the

continuum limit) of the observables will be independent of the type of Strebel graphs

considered. In the end, the sum over these particular metrics shall already yield the 2D

pure quantum gravity. In other word, the additional variables (the perimeters of the

face) should be irrelevant redundant variables which do not change the continuum limit.

The aim of this paper is thus to compute the large N limit of the following observ-

ables defined on the set of Strebel Graphs with fixed number of faces. These observables

have to be understood as pure gravity correlation functions. They are averages of a

variable over all possible metrics. In this section, we first define the observables. As

the computation of the observables is an enumeration problem, we encode each observ-

able in a generating function. Then, using known results on moduli spaces, we give an

explicit computation of the generating functions.

2.2.1 Volume

We are interested in the measure on the moduli space M̃0,N+3:

dµ =
∏
e

d`e =
1

N !22N+1

(∑
i

L2
iψi

)N∏
i

dLi. (18)

Its volume is clearly infinite, because the volume of the fiber RN+3
+ is infinite. We may

however compute the volume of a strata with fixed perimeters L = (L1, . . . , LN+3)

ZN+3(L) =

∫
M̃0,N+3(L1,...,LN+3)

dµ

=
1

N !22N+1

∫
M0,N+3

(∑
i

L2
iψi

)N

. (19)

By the Kontsevich’s theorem, we can rewrite this volume over M̃0,N+3 as a volume

over Strebel graphs with N + 3 faces:

ZN+3(L) =
∑

G∈G0,N+3

1

|Aut(G)|
∏
e∈E

d`e

N+3∏
i=1

δ(Li −
∑
e∈Vzi

`e). (20)

It then corresponds to the volume of the set of Strebel graphs with N + 3 faces,

whose perimeters are (L1, . . . , LN+3). Let us simplify the formulae. First, on the
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Strebel graphs side, whenever the surface has marked points, there is no non-trivial

automorphisms, |Aut(G)| = 1, so the volume is:

ZN+3(L) =
∑

G∈G0,N+3

∏
e∈E

d`e

N+3∏
i=1

δ(Li −
∑
e∈Vzi

`e). (21)

Second, on the moduli space side, the standard convention is that if a form is integrated

on a cycle whose dimension is not equal to the form’s dimension, then the integral is

zero. For example we may write here:

1

22NN !

∫
M0,N+3

(
∑
i

L2
iψi)

N =

∫
M0,N+3

e
1
4(

∑
i L

2
iψi) =

1

2N

∫
M0,N+3

e
1
2(

∑
i L

2
iψi). (22)

We shall use the standard Witten’s notation for powers of the Chern classes

ψdi = τd, (23)

and for the intersection numbers〈
k∏
i=1

τdi

〉
g

=

∫
Mg,k

∏
i

τdi =

∫
Mg,k

∏
i

ψdii (24)

which – by convention – are zero if
∑

i di 6= 3g − 3 + k. The volume of our moduli

space is then

2ZN+3(L) =

∫
M0,N+3

e
1
4

∑
i L

2
iψi

=

∫
M0,N+3

N+3∏
i=1

e
1
4
L2
iψi

=

∫
M0,N+3

N+3∏
i=1

(∑
di

L2di
i

22didi!
τdi

)

=
∑

d1+···+dN+3=N

N+3∏
i=1

L2di
i

22didi!

〈
τd1τd2 . . . τdN+3

〉
0

(25)

Let us now consider Strebel graphs of genus 0 with the same fixed perimeter L for

all faces (Li = L for all i). We are then interested in the following volumes:

ZN+3(L)
def
= ZN+3(

N+3︷ ︸︸ ︷
L, . . . , L)

=

∫
M0,N+3(L,...,L)

dµ, (26)
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which we can restate – from what precedes – as:

ZN+3(L) = 4

〈(
1

2

∑
d

L2d

2dd!
τd

)N+3〉
0

. (27)

The generating function associated to the volume is defined as:

Ẑ(µ, L) =
∑
N

µN+3

(N + 3)!
ZN+3(L)

= 4

〈
exp

(
µ

2

∑
d

L2d

2d d!
τd

)〉
0

. (28)

2.2.2 Correlation functions

In the present model, all the faces of a graph have the same perimeter L. The perimeters

of a genus 0 Strebel graph are the lengths of closed geodesics of the punctured Riemann

sphere, computed with the Strebel’s metric (see appendix A). As the measure of the

perimeter of a face is directly linked to the way the metric behaves in this face, and

as the metric contains all the ”gravitational” information, then the measure of the

perimeter of a face shall be a ”gravitational observable”. We allow a finite set of faces

to have a prescribed perimeter, that is to say, if we fix n, we allow n faces to have

perimeters L1, . . . , Ln. We then look at Strebel graphs with N + 3 + n faces (here n is

fixed, and N varies), n of them having the prescribed perimeters L1, . . . , Ln, and the

N + 3 others have perimeter L. Then, we define the following volumes for this kind of

Strebel graphs:

ZN+3,n(L;L1, . . . , Ln)
def
= ZN+3+n(

N+3︷ ︸︸ ︷
L, . . . , L, L1, . . . , Ln)

=

∫
M0,N+3+n(L,...,L,L1,...,Ln)

dµ

= 22−n
∑

d1,...,dn

〈(
1

2

∑
d

L2d

2dd!
τd

)N+3 n∏
i=1

L2di
i

2didi!
τdi

〉
0

. (29)

The subsequent generating function is:

Ẑn(µ, L;L1, . . . , Ln)
def
=

∑
N

µN+3

(N + 3)!
ZN+3,n(L;L1, . . . , Ln)

= 22−n
∑

d1,...,dn

〈
e
µ
2

∑
d
L2d

2dd!
τd

n∏
i=1

L2di
i

2didi!
τdi

〉
0

. (30)

Note that setting n = 0, we recover the definition of the volumes, which is just a

specification of these observables. We will need the auxiliary generating function U ,
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which does not take the lengths Li into account, defined as the Legendre transform of

Ẑn:

Un(µ, L; d1, . . . , dn)

=
1

2

∑
N

µN L2D

22(N−D) (N + n)!

∫
M0,N+3+n

(∑
d

L2d

d!
τd

)N+3

ψd1N+3+1 . . . ψ
dn
N+3+n

=
1

2

∑
N

µN L2D

22(N−D) (N + n)!

∑
d̃1+···+d̃N+3=N−D

L2(N−D)∏N+3
i=1 d̃i!

(N + n)!∏N+3
i=1 d̃i!

∏n
i=1 di!

=
1

2

∑
N

µN L2N

n∏
i=1

1

di!

∑
d̃1+···+d̃N+3=N−D

N+3∏
i=1

1

22d̃i d̃i!2
. (31)

It is possible to compute these generating function explicitly, which will be done in

the next section. One efficient method of computation is to use the Eynard-Orantin

Topological Recursion. We will use it to get the large N behaviour of the observables.

The Topological Recursion requires to encode the generating functions in differential

forms. These differential forms are defined on a ”spectral curve”. In order to get

complex parameters likely to live on a spectral curve (or, more generally, allowing the

use of complex analysis methods), we carry out the Laplace transform of the generating

functions with respect to the Li:

Fn(µ, L; z1, . . . , zn)
def
=

∫ ∞
0

dL1 . . .

∫ ∞
0

dLne
−

∑
i ziLiẐn(µ, L;L1, . . . , Ln)

= 22−n
∑

d1,...,dn

n∏
i=1

(2di − 1)!!

z2di+1
i

〈
e
µ
2

∑
d
L2d

2dd!
τd

n∏
i=1

τdi

〉
0

. (32)

The differential forms are then obtained by differentiating with respect to z1, . . . , zn:

Wn(µ, L; z1, . . . , zn)
def
= dz1 . . . dznFn(µ, L; z1, . . . , zn)

= (−1)n 22−n
∑

d1,...,dn

n∏
i=1

(2di + 1)!! dzi

z2di+2
i

〈
e
µ
2

∑
d
L2d

2dd!
τd

n∏
i=1

τdi

〉
0

.

(33)

3 Explicit computations of generating functions

It is possible to compute the correlation functions explicitly by taking advantage of the

knowledge of the intersection numbers in genus 0. Indeed, the genus zero intersection

numbers are (see for example [Kontsevich, 1992]):

< τd1 . . . τdN+3
>0=

N !∏
i di!

δN,
∑
i di
. (1)

The whole section relies on this result.
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3.1 Volumes of the strata

It is easier to compute the 3rd derivative of the volume generating function. Using 1,

we get:

∂3

∂µ3
Ẑ(µ, L) =

∑
N

µN

N !
ZN+3(L)

=
1

2

∑
N

µN

22N N !

∑
d1+···+dN+3=N

L2N∏
i di!

〈∏
i

τdi

〉
0

=
1

2

∑
N

µN

22N N !

∑
d1+···+dN+3=N

L2N∏
i di!

N !∏
i di!

=
1

2

∑
N

µNL2N
∑

d1+···+dN+3=N

1∏
i 2

2didi!2

(2)

Let us consider the first kind modified Bessel function I0(z):

I0(z) =
∞∑
d=0

z2d

22d d!2
. (3)

We have ∑
d1+···+dN+3=N

1∏
i 2

2didi!2
= [z2N ]I0(z)N+3 = Resz→0

dz

z2N+1
I0(z)N+3. (4)

where [zk]f(z) stands for the coefficient of zk in the expansion of f around 0.

Therefore

∂3

∂µ3
Ẑ(µ, L) =

1

2

∑
N

Resz→0
dz

z2N+1
I0(z)N+3(µL2)N

=
1

4πi

∮
C

dz

z

I0(z)3

1− µL2I0(z)/z2
(5)

where C is the integration contour of fig.3 below. Indeed, since Ẑ is a µ formal series,

instead of surrounding only 0, the integration contour of z must surround all poles that

tend to 0 as µ→ 0, and thus C has to surround ±u(µL2) defined as the O(µ) solution

of

µL2 =
u2

I0(u)
. (6)

The function u2/I0(u) is plotted in fig.2 below.

The contour integral can be evaluated, it consists of residues of the 2 poles at

z = ±u(µL2):

∂3

∂µ3
Ẑ(µ, L) =

1

µL2u

I0(u)3

2I0(u)/u3 − I ′0(u)/u2

14



Figure 2: Plot of the function u2

I0(u)
Figure 3: Contour of integration

=
I0(u)4

2I0(u)− uI ′0(u)
(7)

The derivative of the Bessel function I0 is the Bessel function I1, thus

∂3

∂µ3
Ẑ(µ, L) =

I0(u)3

2− uI1(u)/I0(u)
=
uI0(u)2

L2

du

dµ
. (8)

Using I ′1 = I0 − I1/u, we can integrate:

∂2

∂µ2
Ẑ(µ, L) =

u2(I0(u)2 − I1(u)2)

2L2
. (9)

Further integration is not doable explicitly, but this formula fits for our purpose of

getting the large N volumes.

3.2 Correlation functions

Let us fix d1, . . . , dn, and note D
def
=
∑

i(di−1). We begin with the auxiliary generating

function U . In the same manner as for the volumes, we introduce the Bessel function

I0(z) and we have:

Un(µ, L; d1, . . . , dn) =
1

2

∑
N

µN L2N∏n
i=1 di!

Resz→0
dz

z1+2(N−D)
I0(z)N+3

=
1

4πi

1∏
i di!

∮
C

z2Ddz

z

I0(z)3

1− µL2I0(z)/z2

(10)

The residue can be evaluated easily, at the two poles z = ±u(µL2). Beside, if D < 0,

there can be another pole at z = 0. We have

Un(µ, L; d1, . . . , dn) =
1∏
i di!

u2D I0(u)4

2I0(u)− uI1(u)
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+
1

2

1∏
i di!

Resz→0 z
2D+1dz

I0(z)3

z2 − µL2I0(z)

=
1∏
i di!

u2D I0(u)4

2I0(u)− uI1(u)

−1

2

1∏
i di!

−D∑
j=1

1

(µL2)j
Resz→0 z

2(D+j)−1dz I0(z)3−j.

(11)

If D < 0, the first term, proportional to u2D is a Laurent formal series of µL2,

starting with a negative power, whereas the last term contributing only if D < 0, is a

polynomial of 1/µL2. Since the whole result should be a power series of µL2 with only

positive powers, we understand that the last term just cancels the negative part of the

first. We thus may write:

Un(µ, L; d1, . . . , dn) =
1∏
i di!

(
u2D I0(u)4

2I0(u)− uI1(u)

)
+

(12)

meaning that we keep only positive powers of µL2 in the Laurent expansion. We

observe that upon multiplying by
∏

i di!, the right hand side depends only on D and

u, we write it

Un(µ, L; d1, . . . , dn) =
1∏
i di!

fD(u) , fD(u) =

(
u2D I0(u)4

2I0(u)− uI1(u)

)
+

. (13)

The relationship to our previously defined generating function is

Ẑn(µ, L;L1, . . . , Ln) = L2n
∑

d1,...,dn

n∏
i=1

L2di
i L−2di

22didi!
∂n−3
µ (µnUn(µ, L; d1, . . . , dn))(14)

So

Ẑn(µ, L;L1, . . . , Ln)

= L2n
∑

d1,...,dn

n∏
i=1

L2di
i L−2di

22didi!2
∂n−3
µ

(
µnfD(u(µL2))

)
= ∂n−3

µ

(
µnL2n

∑
D

fD(u(µL2))
∑

d1+···+dn=D+n

n∏
i=1

L2di
i L−2di

22didi!2

)

= ∂n−3
µ

(
µnL2n

∑
D

fD(u(µL2)) Resz→0
dz

z1+2(D+n)

n∏
i=1

I0(zLi/L)

)

= ∂n−3
µ

(
µnL2n Resz→0

dz

z1+2n

n∏
i=1

I0(zLi/L)
∞∑

D=−n

z−2D fD(u(µL2))

)
(15)
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Carrying the sum over D is possible if we impose |z| > |u|, so enforcing this condi-

tion, one gets:

1

z1+2n

+∞∑
D=−n

fD(u(µL2))

z2D
=

(
1

u2n

z

z2 − u2

I0(u)4

2I0(u)− uI1(u)

)
+

(16)

Then we can rewrite Ẑ in the following way:

Ẑn(µ, L;L1, . . . , Ln) =
1

2πi
∂n−3
µ

(
µnL2n

[
1

u2n

I0(u)4

2I0(u)− uI1(u)
×∮

C

zdz

z2 − u2

n∏
i=1

I0(zLi/L)

]
+

)

= ∂n−3
µ

(
µnL2n

[
1

u2n

I0(u)4

2I0(u)− uI1(u)

n∏
i=1

I0(uLi/L)

]
+

)
(17)

The contour integral is now C (see figure 3), because, though the residue is around 0,

we imposed |z| > |u|, in order to sum over D. Its Laplace transform is

Fn(µ, L; z1, . . . , zn) = ∂n−3
µ

(
µnL2n

[
1

u2n

I0(u)4

2I0(u)− uI1(u)

n∏
i=1

(z2
i − u2/L2)−1/2

]
+

)
.

(18)

Again, note that the third derivative simplifies the result:

∂3
µFn(µ, L; z1, . . . , zn) = ∂nµ

(
µnL2n

u2n

I0(u)4

2I0(u)− uI1(u)

n∏
i=1

(z2
i − u2/L2)−1/2

)
. (19)

4 Spectral curve

All the combinatorics of the Strebel graphs is encoded in one complex curve: the

Spectral Curve. It is the main object needed to run the Topological Recursion. Here, we

use the fact that Topological Recursion solves the combinatorics of Strebel graphs and

allows to compute all correlation functions. The first step is to determine the Spectral

Curve. Actually, we find a family of Spectral Curves, indexed by the parameter µ

introduced in the previous part. We first give the generic form of the Spectral Curve,

and then a singular curve obtained when the parameter µ approaches a singular value

µc.
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4.1 Generic Spectral Curve

One can re–express the generating function Ẑ(µ, L) in the following way:

Ẑ(µ, L) = 4

〈
e
µ
2

∑
d
L2d

2d d!
τd

〉
0

(1)

and similarly

2n−2−
∑
i diL−2D ∂n−3

∂µn−3
µn Un(µ, L, d1, . . . , dn) =

〈
τd1 . . . τdn e

µ
2

∑
d
L2d

2d d!
τd

〉
0

(2)

Kontsevich proved (this was Witten’s conjecture) that〈
e

1
2

∑
d(2d−1)!! t2d+1 τd

〉
all genus

= TKdV(
1

2
(2d− 1)!!t2d+1) (3)

is the KdV-Tau function of the times t2d+1s. In other words, our generating function

is equal to genus zero part of the KdV tau function evaluated at times

t2d+1 =
µL2d

(2d)!
. (4)

Since the KdV tau function is independent of even times, we may chose

tk+1 =
µLk

k!
. (5)

Beside, in [Eynard, 2007], [Eynard, 2011], it was shown that the following〈
e

1
2

∑
d(2d−1)!! t2d+1 τd

〉
= e

∑
g Fg (6)

where Fgs are the EO-invariants (defined in [Eynard - Orantin, 2007]) of the spectral

curve

S =

{
x = z2 + ť1
y = z − 1

2

∑+∞
k=0 ť2k+3z

2k+1

with the coefficients ťk related to the tks as follows:

ť1 =
∞∑
j=0

(2j − 1)!!

2jj!
ťj1t2j+1 , ť2k+1 =

∞∑
j=0

(2k + 2j − 1)!!

(2k − 1)!! 2jj!
ťj1t2k+2j+1.

In our case the equation determining ť1 is

ť1 = µ

∞∑
j=0

1

22jj!j!
ťj1L

2j = µI0(L
√
ť1),

whose solution is

L
√
ť1 = u(µL2) (7)
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with the function u already introduced in (6). And for higher times

ť2k+1 =
∞∑
j=0

(2k + 2j − 1)!!

(2k − 1)!! 2jj!
ťj1t2k+2j+1

=
µL2k

(2k − 1)!!

∞∑
j=0

1

22j+k(k + j)!j!
ťj1L

2j

=
µL2k

(2k − 1)!!uk

∞∑
j=0

u2j+k

22j+k(k + j)!j!

=
µL2k

(2k − 1)!!uk
Ik(u). (8)

In other words, up to combinatorial prefactors, the spectral–curve times, are the Bessel

functions of u.

S =

{
x = z2 + u2

L2

y = z − µ
2

∑+∞
k=1

L2kIk(u)
(2k−1)!!uk

z2k−1 (9)

In the spectral curve, z is only a parameter, and reparametrizing

z =

√
u

L
ζ, (10)

we write the spectral curve as

S =

{
x = u

L2 (ζ2 + u)

y =
√
u
L

(
ζ − u

2I0(u)

∑+∞
k=1

Ik(u)
(2k−1)!!

ζ2k−1
)

(11)

The one-form ydx

The expression of the 1-form ydx is:

ydx =
u3/2

L3

(
2ζ2 − u

I0(u)

+∞∑
k=1

Ik(u)

(2k − 1)!!
ζ2k

)
dζ, (12)

which yields the derivative with respect to µ:

∂ydx

∂u

∣∣∣∣
fixedx

=
−2udz

L2
+
µdz

2

+∞∑
k=1

L2kz2k

uk (2k − 1)!!


=0︷ ︸︸ ︷

Ik+1 − Ik−1 + 2k
Ik
u

+ µI1(u)dz

=
−2udz

L2
+ µI1(u)dz.

(13)

Its Laplace transform is;∫ +∞

0

ydxe−vx =
1

2

u3/2

L3 I0(u)
e−

vu2

L2

∫
R

(
2I0(u)ζ2 − u

+∞∑
k=1

Ik(u)

(2k − 1)!!
ζ2k

)
e−

vu
L2 ζ

2

dζ
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=
1

2

u
√
π

L2 I0(u)
√
v
e−

vu2

L2

(
L2

uv
I0(u)− u

+∞∑
k=1

Ik(u)L2k

2kukvk

)

=
1

2

√
π

I0(u)

e−
vu2

L2

v3/2

(
I0(u)− u2v

L2

+∞∑
k=1

Ik(u)L2k

2kukvk

)
(14)

4.2 Critical Spectral Curve

Studying the large N limit of a combinatorial data encoded in a generating function is

closely related to the behaviour of the generating function near a singular point. The

generating functions defined in the previous part all depend on the parameter µ, on

which depends the Spectral Curves S(µ). When µ is close to µc, a singular point of the

generating functions, the Spectral curve S(µ) is close to a critical Spectral curve S(µc)

that is singular. This critical Spectral curve must provide the large N behaviours of

observables of the Strebel Graphs.

For a generic µ, we have 2I0(u(µ)) − u(µ)I1(u(µ)) 6= 0. Indeed, this quantity is null

when u(µ) = u(µc) = uc. We define the critical point µc by:

µc =
1

L2
max

u2

I0(u)
, (15)

this is the maximum of the curve in figure 2. The two preimages of µc are uc (say

uc > 0) and −uc. They satisfy:

± ucI1(±uc)− 2I0(±uc) = 0. (16)

Their numerical values are:

± uc = ±2.5844... ; L2µc = 1.902... (17)

Therefore, for µ 6= µc, that is u 6= ±uc, we have y′(0) = 1 − uI1(u)
2I0(u)

6= 0. The

spectral curve S(µ) is then regular for µ < µc, and close to ζ = 0, y behaves like√
x− u2/L. At µ = µc, y behaves as a cusp y ∼ (x − u2/L)3/2, and S(µc) is no

longer a regular spectral curve (see figure 4). Its Eynard-Orantin invariants diverge

(see [Eynard - Orantin, 2007]). How they diverge is controlled by computing the res-

olution of the singularity, the blow up of the spectral curve in the vicinity of µ = µc.

Therefore, when µ→ µc, and thus u→ uc, we rescale the variable z as

z =

√
u

L
ζ = −

√
uc − u

√
u

L
ξ. (18)

In that limit the spectral curve becomes

x =
u2
c

L2
+ (uc − u)

uc
L2

(ξ2 − 2) +O((uc − u)2) (19)
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Figure 4: Projection in the plane (x, y) ∈ R2 of Spectral curves for different
values of the index µ. The second curve is the critical Spectral curve and shows
the cusp. The third one is the curve near the critical point. At the leading
order in µ− µc, it is the critical curve S̃(3,2) of the minimal model (3, 2).

y = (uc − u)3/2 u
2
c − 4

6L
√
uc

(ξ3 − 3ξ) +O((uc − u)2) (20)

The blow up of the spectral curve near its singularity is the rescaled curve

S(3,2) =

{
x̃(ξ) = ξ2 − 2
ỹ(ξ) = ξ3 − 3ξ

(21)

It is known [Eynard, 2016] that this is the spectral curve of the (3, 2) minimal model,

which according to [Douglas - Shenker, 1990], [Di Francesco - Kutasov, 1990] is equiv-

alent to Liouville gravity with matter central charge c = 0.

5 Large N limits

It remains to study the large N behaviour of the observables. Since N + 3 + n is the

number of faces of the Strebel graph (number of vertices of the dual triangulation),

the large N limit should be the continuum limit of large maps, it should tend towards

the Brownian map (according to [Le Gall, 2013]-[Miermont, 2013]) and it is expected

to converge towards Liouville theory.
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As was mentionned in the previous part, large N expansions are controlled by the

singularities of the generating functions, that is to say we have to study the behavior

as µL2 → µcL
2, where µc is a point (closest to 0) at which the generating functions are

not analytic.

Volume and correlation functions large N asymptotics are then related to the sin-

gular behavior of their respective generating functions when approaching the critical

point µc.

We first dwell on asymptotics of the volume, using the explicit computation we did

in the second part. In order to compute the one point function at large N , we enforce

the saddle point method in a second time. This allows us to identify a typical length

scale for large maps. Last, we use Topological Recursion results and we use the critical

Spectral curve to compute n-point functions.

5.1 Asymptotics of the volume

The third derivative of the generating function for the volume is given by formula 8 of

section 3.1:

∂3
µẐ(µ, L) =

I0(u)4

2I0(u)− uI1(u)
(1)

The critical point µc, is the same as for the Spectral curve. Indeed, if µ = µc, one gets

2I0(u(µc))− u(µc)I1(u(µc)) = 0, so when µ→ µc, ∂
3
µẐ diverges.

If µ is close to µc, i.e. u close to uc, we have:

µ

µc
= 1− u2

c − 4

2u2
c

(uc − u)2 +O
(
(uc − u)3

)
,

u2
c − 4

2u2
c

= 0.2005...

i.e.

uc − u ∼

√
2u2

c

u2
c − 4

√
1− µ

µc
(1 +O(

√
1− µ/µc)) ,

√
2u2

c

u2
c − 4

= 2.23... (2)

So we get:

∂3
µẐ(µ, L) ∼

µ→µc

C√
1− µ

µc

+O(1) , C =
1√
2

I0(uc)
3√

u2
c − 4

= 18.69... (3)

∂3
µẐ behaves as (1− µ/µc)−1/2, so Ẑ(µ, L) has a (1− µ/µc)5/2 singularity. Writing

that
C√

1− µ
µc

=
∑
N

µN

N !

C(2N − 1)!!

2NµNc
, (4)

and comparing with:

∂3
µẐ(µ, L) =

∑
N

µN

N !
ZN+3(L), (5)
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we find the large N behavior of the volume

ZN+3(L) ∼ C
(2N − 1)!!

2NµNc
= C

(2N − 1)!!L2N

2N(µcL2)N
, µcL

2 = 1.902... (6)

5.2 One-point function – Saddle point method

We want to study the large N limit of the one-point function:

fN

(
L,
L1

L

)
def
= ZN+3(L,L1)

= . . . (7)

=
N !L2N

2
Res
z→0

dz

z
I2

0 (z)eN(ln I0(z)−2 ln z+ 1
N

ln I0(L1
L
z)) (8)

(9)

The detail of the computation has been transferred to appendix B for readability, as

the calculus is close to the one for the volume. Let us define

SN(z) = ln I0(z)− 2 ln z +
1

N
ln I0

(
L1

L
z

)
(10)

SN is an even function. In the large N limit, we use the saddle point approximation

to compute the residue, hence we have to find the saddle point of SN . First, let us

compute its derivatives.

∂

∂y
SN(x+ iy) = i

[
I1(x+ iy)

I0(x+ iy)
− 2

x+ iy
+

1

N

L1

L

I1

(
L1

L
(x+ iy)

)
I0

(
L1

L
(x+ iy)

)]
(11)

∂2

∂y2
SN(x+ iy) = −1 +

I1(x+ iy)

(x+ iy)I0(x+ iy)
+
I2

1 (x+ iy)

I2
0 (x+ iy)

− 2

(x+ iy)2
−

(12)

1

N

(
L1

L

)2
(

1−
I1

(
L1

L
(x+ iy)

)
L1

L
(x+ iy)I0

(
L1

L
(x+ iy)

) − I2
1

(
L1

L
(x+ iy)

)
I2

0

(
L1

L
(x+ iy)

))
(13)

(14)

We distinguish three regimes for the behaviour of L1 at large N . For each regime, we

may compute the saddle points and carry out the residue.
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5.2.1 Regime 1: L1/(NL)→ 0 when N →∞

In this regime, the term 1
N

ln I0

(
L1

L
z
)

is negligible, the saddle point is the saddle point

of ln I0(z)− 2 ln z, it is independent of L1/L, and it is worth z = ±uc. This gives

fN

(
L,
L1

L

)
∼ I0

(
L1

L
uc

)
I0(uc)

N+2

u2N
c

√
2π√

u2
c − 4

N !L2N (15)

∝ I0

(
L1

L
uc

)
(16)

It thus behaves like Bessel function I0(ucL1/L).

5.2.2 Regime 2: L1/NL→ l when N →∞

We use the asymptotics:

I0(x) =
x→∞

ex√
2πx

(1 +O

(
1

x

)
) (17)

which gives:

SN(z) = ln

(
I0(z)

z2

)
+ lz +O

(
lnN

N

)
(18)

By the same argument as in the first regime, there are two saddle points x0(l), x1(l) =

−x0(l) situated on the real axis. Again, let x0 be the positive one. The equation

S ′N(x0) = 0 gives:

x0I1(x0)− (2− lx0) I0(x0) = 0 (19)

At the point x0(l):

SN(x0) = ln I0(x0)− 2 lnx0 + lx0 + o(1) (20)

∂2

∂y2
SN(x0) = −

(
1 +

4l

x0

− 4

x2
0

− l2
)

+ o(1) (21)

= −1 +

(
l − 2

x0

)2

+ o(1) (22)

= O(1) (23)

We then have:

fN

(
L,
L1

L

)
= N !L2N I0(x0(l))N+2

x0(l)2N

eNlx0(l)√
2πNlx0(l)

√
2π√

(l2 + 1)x0(l)2 + 5x0(l)− 4
(24)

Of course, the factors 2π simplify, but in this form, we see that fN in the second regime

is matching the one of the first regime. Indeed, as L1

L
∼ Nl, we have:

I0

(
L1

L
x0(l)

)
∼ eNlx0(l)√

2πNlx0(l)
(25)

What is more, if l = 0, the last fraction is equal to
√

2π√
u2c−4

. So we recover the first

regime in this limit.
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5.2.3 Regime 3: L1/(NL)→∞ when N →∞

We note l = 1
N
L1

L
, so in this regime, l � 1. We can show that in this regime, we have

necessarily, for the saddle point x0:

x0 →
N→∞

0 (26)

L1

L
x0 →

N→∞
+∞ (27)

We can then expand x0 as a series of Nα
(
L1

L

)β
. We find:

x0(l) =
2

l
+

2

5

1

Nl
+O

(
1

N2l

)
(28)

We then get:
∂2S

∂y2
(x0(l)) = − l

2

2
(1 +O

(
1

N

)
) (29)

and

S(x0(l)) = ln I0

(
2

l

)
− 2 ln

2

l
+

1

N
ln I0(2N) (30)

In the end, we obtain:

fN

(
L,
L1

L

)
= N !L2NI0

(
2

l

)N+2(
l

2

)2N √
πI0(2N) (31)

5.3 Correlation functions from the Spectral Curve

In [Eynard, 2011] it was shown that the Eynard-Orantin invariants of the spectral

curve, are generating functions of intersection numbers

22−2g−n
∑

d1,...,dn

n∏
i=1

(2di − 1)!!

z2di+1
i

〈
e

1
2

∑
k(2k−1)!!t̃2k+1τk

n∏
i=1

τdi

〉
g

= Fg,n(S; z1, . . . , zn) (32)

This is true in particular for g = 0. We have

F0,n(S; z1, . . . , zn) = Fn(µ, L; z1, . . . , zn). (33)

We recall here a theorem that we will use for asymptotics of n-point functions with

n ≥ 3. It is the theorem of section 8 in [Eynard - Orantin, 2007], proven by Eynard

and Orantin. It states that, if 2 − 2g − n < 0 and the spectral index µ is close to its

critical value µc, the Eynard-Orantin invariants diverge as:

Fg,n(S; z1, . . . , zn) ∼
µ→µc

(uc − u)(2−2g−n)(1+ 3
2

)

(
uc
L2

u2
c − 4

6L
√
uc

)2−2g−n

×

Fg,n(S(3,2); ξ1, . . . , ξn)
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∼
µ→µc

(uc − u)(2−2g−n) 5
2

(
uc
L2

u2
c − 4

6L
√
uc

)2−2g−n

Fg,n(S(3,2); ξ1, . . . , ξn)

∼
µ→µc

(1− µ/µc)(2−2g−n) 5
4

((
2u2

c

u2
c − 4

) 5
4 uc
L3

u2
c − 4

6
√
uc

)2−2g−n

×

Fg,n(S(3,2); ξ1, . . . , ξn)

(34)

Again the exponent 5/4 = (p + q)/(p + q − 1) is the KPZ exponent

[Knizhnik - Polyakov - Zamolodchikov, 1988] for the (p, q) minimal model coupled to

gravity, and here (p, q) = (3, 2).

5.3.1 The one-point function

Here, we compute the same quantity as in the previous section, from the spectral curve.

The asset of such a method is that it generalizes easily to higher correlation functions.

The quantity fN
(
L1

L

)
is encoded in the following generating function:

H(µ, L, L1) =
∞∑
N=0

µN+3

(N + 3)!
fN

(
L,
L1

L

)
(35)

In terms of the Chern classes, we can express fN as:

fN

(
L,
L1

L

)
=

1

2N+1

∫
M0,+3

e
L2

2

∑N+3
i=2 ψi+

L2
1
2
ψ1 (36)

It is related to the differential W1(µ, L; z1) by:

H(µ, L, L1) =
∞∑
d1=0

L2d1
1 Res

z1→∞

z2d1+1
1

(2d1 + 1)!
W1(µ, L; z1) (37)

Setting x1 = z2
1 , we can rewrite it in the following way:

H(µ, L, L1) =
∞∑
d1=0

L2d1
1 Res

x1→∞

x
d1+ 1

2
1

(2d1 + 1)!
W1(µ, L;x1) (38)

The differential W1 = ydx is the one point function of our model with times tk (see

section 3), in which t1 = µ 6= 0. To get rid of t1, we have renormalized the times

into ťi, and then the one point function is given by y(z)dx(z) (the spectral curve being

given by (x(z), y(z))). In our model, x = z2 + u2

L2 . In the end, we have to compute the

following:

H(µ, L, L1) =
∞∑
d1=0

L2d1
1 Res

z→∞

(z2 + u2

L2 )d1+ 1
2

(2d1 + 1)!
y(z)dx(z) (39)
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The function y(z) is an entire function of z, with only poles at infinity. The differential

dx(z) = 2zdz also has no pole except at ∞. We may then deform the contour of

integration of the residue. The quantities (z2 + u2

L2 )d1+ 1
2 have branch cuts. We choose

as branch cut for x 7→
√
x the half line iR−. Then (z2 + u2

L2 )d1+ 1
2 has one cut, along the

segment [−i u
L
,+i u

L
].

Let us deform the contour of the residue around this segment and call it C. The

following residue is null:

1

2iπ

∮
C
(z2 +

u2

L2
)d1y(z)dx(z) = 0 (40)

for any integer d1, as it does not enclose any pole or cut. We can then add to the sum

the following sum without changing the function H:

∞∑
d1=0

L2d1−1
1

(2d1)!

1

2iπ

∮
C
(z2 +

u2

L2
)d1y(z)dx(z) (41)

So:

H(µ, L, L1) = − 1

L1

∞∑
d1=0

Ld11

d1!

1

2iπ

∮
C

√
z2 +

u2

L2

d1

y(z)dx(z). (42)

We can exchange
∑

and
∮

, and it remains to compute:

H(µ, L, L1) = − 1

L1

1

2iπ

∮
C
e

√
z2+ u2

L2L1y(z)dx(z) (43)

Let us decompose the contour C into C+ = [−i u
L

+ε,+i u
L

+ε] and C− = [−i u
L
−ε,+i u

L
−ε],

with ε > 0 and small. Then:

H(µ, L, L1) = − 1

L1

1

2iπ

(∫
C+
−
∫
C−

)
e

√
z2+ u2

L2L1y(z)dx(z) (44)

= − 1

L1

1

2iπ

∫
[−i u

L
,+i u

L
]

2 sinh

(√
z2 +

u2

L2
L1

)
y(z)dx(z) (45)

(in the last line, the cut of
√

is R−).

H(µ, L, L1) = − 1

L1

1

2iπ

∫ +i u
L

−i u
L

2 sinh

(√
z2 +

u2

L2
L1

)[
z2 − µ

2

∞∑
k=1

Ik(u)L2k

(2k + 1)!!uk
z2k+2

]
dz

(46)

This last integral is explicitly computable. In order to do that, we use the result:∫ a

0

t
√
a2 − t2

2k+1
sinh t dt =

π

2
ak+2(2k + 1)!!Ik+2(a) (47)
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In the end, we obtain:

H(µ, L, L1) =
1

L1

u2

L2

[
I2(u

L1

L
)− µ

2

∞∑
k=1

(
− L

L1

)k
Ik(u)Ik+2(u

L1

L
)(2k + 1)

]
(48)

As µ → µc, H remains finite (this is not true anymore for n−point functions with

n ≥ 3) and has a non null limit, but has a singular term in (µc − µ)
1
2 in its expansion

near µc.

5.3.2 n-point functions for n ≥ 3.

For n ≥ 3, we have:

22−n
n∏
i=1

(2di − 1)!!〈e
µ
2

∑
d
L2d

2dd!
τd

n∏
i=1

τdi〉0 = Res
zi→∞

n∏
i=1

z2di
i dziF0,n(S; z1, . . . , zn). (49)

The quantity we are interested in is Ẑn(µ, L;L1, . . . , Ln) and we want to recover it from

the previous expression. The left hand side is equal to:

l.h.s. = 2−
∑
i diL−2D

n∏
i=1

(2di − 1)!!
∂n−3

∂µn−3
[µnUn(µ, L, d1, . . . , dn)] (50)

Hence, in order to recover Ẑn, we have to carry out the following sum:

Ẑn(µ, L;L1, . . . , Ln) =
∑
d1...dn

n∏
i=1

L2di
i

2di(2di − 1)!!di!
× l.h.s. (51)

=
∑
d1...dn

n∏
i=1

L2di
i

(2di)!
× Res

zi→∞

n∏
i=1

z2di
i dziF0,n(S; zi). (52)

The functions F0,n(S, zi) are entire functions of the 1
zi

. By the following change of

coordinates : zi =
√
z̃2
i + u2

L2 , the functions F0,n(S; z̃i) are then polynomials in the 1
z̃i

.

This change of variable is similar to the one done for the one-point function of the

previous section. Indeed, the variables z̃2
i + u2

L2 are the xi, living on the spectral curve

S, and are then more ’canonical’ than the zi. So we have:

Ẑn(µ, L;Li) =
∑
d1...dn

n∏
i=1

L2di
i

(2di)!
Res
z̃i→∞

n∏
i=1

(
z̃2
i +

u2

L2

)di− 1
2

2z̃idz̃iF0,n(S; z̃i) (53)

The residue is taken at infinity, and we want to deform its contour of integration. The

function F0,n(S; z̃i) has poles only around z̃i = 0 ; the term
(
z̃2
i + u2

L2

)di− 1
2

has a cut

on the segment
[
−i u

L
; +i u

L

]
(the branch cut for

√
is −iR). Hence, we can deform the
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Figure 5: The contour of integration of Res
∞

is deformed and encloses a cut.

contour of integration into the one described in figure 5.

Now it is possible to exchange
∑

and Res, because the contour is no longer at

infinity. This gives:

Ẑn(µ, L;Li) =
∑
d1...dn

Res
z̃i→∞

n∏
i=1

Ldii
di!

√
z̃2
i +

u2

L2

di
2z̃iF0,n(S; z̃i)√

z̃2
i + u2

L2

dz̃i (54)

= 2n Res
z̃i→∞

n∏
i=1

eLi
√
z̃2i + u2

L2
z̃iF0,n(S; z̃i)√

z̃2
i + u2

L2

dz̃i (55)

We want the asymptotic behaviour (N → ∞) of the Strebel Graph volumes with

n marked faces, which corresponds to look at the limit µ → µc in the function Ẑn.

In that limit, the contour can be divided into two regions (see figure 5) : region 1

corresponds to the parts of the contour which are close to the pole (z̃i = 0) of F0,n,

region 2 corresponds to the rest of the contour.

The contour integral over region 2 remains finite (of order 1) when µ→ µc. As we may

see in the following, on the contrary, the integral over region 1 diverges as µ→ µc.

Region 1 is the part of the integral close to 0. Let us define:

z̃i = −
√
uc − u

√
u

L
ξi (56)

From the theorem of section 8 of [Eynard - Orantin, 2007], we have, in the limit µ→ µc
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Figure 6: Contour of the region 1 in the variable ξi.

(and hence z̃i → 0):

F0,n(S; z̃i) ∼
µ→µc

(uc − u)
5
2

(2−n)

(
uc
L2

u2
c − 4

6L
√
uc

)2−n

F0,n(S(3,2); ξi) (57)

where F0,n(S(3,2); ξi) are the invariants of the model (3,2). We see that this quantity

behaves like (uc − u)
5
2

(2−n), so, as n ≥ 3, it is divergent as µ→ µc.

In order to get the dominant order in the large N limit, we may then focus our

attention on the region 1. In the variables ξi, we have to carry out the integration over

the contours C+, C− (see figure 6). C+ is going from +i∞ to −i∞, with Re(ξi) > 0 ;

C− is going from −i∞ to +i∞, with Re(ξi) < 0.

We look at the expansion in µc − µ, so we reexpress the square roots as:√
z̃2
i +

u2

L2
=

√
u2
c

L2
+ (uc − u)

uc
L2

(ξ2
i − 2) +O((uc − u)2) (58)

=
uc
L

√
1 +

uc − u
uc

(ξ2
i − 2) +O((uc − u)2) (59)

=
uc
L

+
1

2

uc − u
L

(ξ2
i − 2) +O((uc − u)2) (60)

We are also looking at a regime where Li
L
→ ∞ as µ → µc. From the previous

expansion, we see that the argument of the exponential contains Li
L

(uc − u)(ξ2
i − 2),

which, at ξi fixed, remains of order 1 if Li
L
∼ (uc−u)−1 ∼ (µc−µ)−

1
2 . This corresponds

to a regime where Li
L
∼
√
N .
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The function to integrate is odd, but C+ and C− have opposite orientations, so we

can restrict to the integration over C+:

Ẑn(µ, L;Li) ∼
µ→µc

2n(uc − u)
5
2

(2−n)

(
uc
L2

u2
c − 4

6L
√
uc

)2−n
2

2iπ

∫ −i∞
+i∞

dξ1 . . .
2

2iπ

∫ −i∞
+i∞

dξn

n∏
i=1

euc
Li
L

+ 1
2

Li
L

(uc−u)(ξ2i−2)(uc − u)
u

L2

ξi
uc
L

+ 1
2
uc−u
L

(ξ2
i − 2)

×

F0,n(S(3,2); ξi)(1 +O((uc − u)2))

∼
µ→µc

22n

(2iπ)n
(uc − u)5− 3

2
n

(
u2
c − 4

6L
√
uc

)2−n(∫ −i∞
+i∞

dξ1 . . .

∫ −i∞
+i∞

dξn

)
n∏
i=1

euc
Li
L

+ 1
2

Li
L

(uc−u)(ξ2i−2) ξi
uc
L

F0,n(S(3,2); ξi)(1 +O(uc − u))

(61)

We carry out the change of variable ξi = iζi, and in the end:

Ẑn(µ, L;Li) ∼
µ→µc

2n

inπn
(uc − u)5− 3

2
n

(
u2
c − 4

6L
√
uc

)2−n
Ln

unc

∫ −∞
+∞

idζ1 . . .

∫ −∞
+∞

idζn

n∏
i=1

eu
Li
L

n∏
j=1

e−
1
2

Lj
L

(uc−u)ζ2j iζjF0,n(S(3,2); iζj)(1 +O(uc − u))

∼
µ→µc

2n

inπn
(uc − u)5− 3

2
n

(
u2
c − 4

6L
√
uc

)2−n
Ln

unc

∫ +∞

−∞
dζ1 . . .

∫ +∞

−∞
dζn

n∏
i=1

eu
Li
L

n∏
j=1

e−
1
2

Lj
L

(uc−u)ζ2j ζjF0,n(S(3,2); iζj)(1 +O(uc − u)).

(62)

The function F0,n being a polynomial in 1
ζj

, the result, as we shall see with Ẑ3 and Ẑ4,

is expressible in terms of Gamma functions.

5.3.3 3-point function and 4-point function in the large N limit

In the (3,2) model, we have:

F0,3(S(3,2); ξ1, ξ2, ξ3) =
1

6ξ1ξ2ξ3

(63)

F0,4(S(3,2); ξ1, ξ2, ξ3, ξ4) = − 1

36ξ1ξ2ξ3ξ4

[
1 +

1

ξ2
1

+
1

ξ2
2

+
1

ξ2
3

+
1

ξ2
4

]
(64)

Applying the result of the previous section, we obtain:

Ẑ3(µ, L;Li) ∼
µ→µc

8

(
2

π

) 3
2 L4

u
5
2
c (u2

c − 4)
(uc − u)

1
2

3∏
i=1

euc
Li
L√

Li
L

(uc − u)
(65)
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It may seem that this quantity is not divergent, but remember that, in the exponentials,

we have Li
L
∼ (uc − u)−1.

For the 4-point function:

Ẑ4(µ, L;Li) ∼
µ→µc

64

π2

L6

u3
c

1

(u2
c − 4)2

(uc − u)−1

(
1 +

4∑
i=1

Li
L

(uc − u)

)
4∏
i=1

euc
Li
L√

Li
L

(uc − u)

(66)

Here, the divergence is clear. We want to underline that the terms
∑

i
Li
L

(uc − u) are

not subdominant, but of order 1, so we have to take them into account.

6 Conclusion

We showed that in the large N limit (number of vertices) the expectation values (over

the set of Strebel graphs with fixed perimetres and the Kontsevich measure) of all the

topological observables (algebraic combinations of the Chern classes) converge to the

corresponding Liouville CFT amplitudes at central charge c = 0, i.e. quantum gravity,

equivalent to the (3, 2) minimal model. In particular we recovered the KPZ exponents.

Moreover, we found explicit expressions of all those amplitudes at finite N , as well as

their explicit asymptotics at N →∞, in various regimes.

Our method could be easily generalized to genus one graphs, since all intersection

numbers of genus one are explicitly known, and generating functions are also Bessel

functions. The spectral curve methods works for all genus and shows that the con-

tinuum limit tends to the (3,2) minimal model’s result for all genus. It would be

interesting to extend results in higher genus cases.
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A Metric associated to a Strebel graph

To every Strebel graph is associated a unique metric. We use the Strebel foliation to

determine the metric.

As we mentionned in the first part, and as was proven by Strebel, Penner, Zaguier and
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Kontsevich, the set of Strebel graphs ⊕G∈G0,N+3
RE(G)

+ is in bijection with M̃0,N+3. A

point in M̃0,N+3 is a set {z1, . . . , zN+3} of distinct complex numbers, with {z1, z2, z3} =

{0, 1,∞}, along with N+3 positive perimeters L1, . . . , LN+3. Let us define a quadratic

differential Ω(z) = f(z)dz2 having N + 3 double poles in zi, i = 1, . . . , N + 3. We

hence impose the following behaviour to f(z):

f(z) =
z→zi

−L2
i

(z − zi)2
(1 +O(z − zi)). (1)

The level lines of this differential are the lines where

Im

(∫ x√
f(z)dz

)
= constant. (2)

Almost all the closed level lines are circles surrounding double poles. The other closed

trajectories form a graph. The Strebel theorem ([Strebel, 1984]) states that, to a point

in M̃0,N+3 corresponds a unique quadratic differential Ω (called Strebel differential)

having the same behaviour as defined in equation 1, and such that the graph formed

by the non circular closed level lines is connected.

The metric associated to a Strebel graph is then the flat metric :

gzz = gz̄z̄ = 0, gzz̄ =
1

2
|f(z)|. (3)

The lengths of the Strebel graph are the lengths measured with the metric g along the

level lines joining the vertices of the graph.

The metric is defined on C\({z1, . . . , zN+3} ∪ {zeros of Ω}), and it is flat. A Strebel

graph with N +3 faces carrying the perimeters L1, . . . , LN+3 represents a surface made

of N + 3 semi-infinite cylinders whose perimeters are L1, . . . , LN+3, pasted along their

bases.

B Explicit computation of the one point function

The one point function fN
(
L, L1

L

)
can be computed in the same manner as the volumes

ZN .

fN

(
L,
L1

L

)
= ZN+3(L,L1)

= 2
+∞∑
d1=0

〈(
1

2

∑
d

L2d

2dd!
τd

)N+2
L2d1

1

2d1d1!
τd1

〉
0

=
2

2N+2

∑
d1,...,dN+3

L2(d2+···+dN+3)

2d2+···+dN+3d2! . . . dN+3!

L2d1
1

2d1d1!
〈τd1 . . . τdN+3

〉0

(1)
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Now:

〈τd1 . . . τdN+3
〉0 =

N !

d1! . . . dN+3!
δ(N −

N+3∑
i=1

di). (2)

So:

fN

(
L,
L1

L

)
=

N !L2N

2

∑
d1+...dN+3=N

1

22(d2+···+dN+3)

(
L1

2L

)2d1 1

(d1! . . . dN+3!)2

=
N !L2N

2
[z2N ]I0(z)N+2I0

(
z
L1

L

)
=

N !L2N

2
Res
z→0

dz

z1+2N
I0(z)N+2I0

(
z
L1

L

)
=

N !L2N

2
Res
z→0

dz

z
I0(z)2eN(ln I0(z)−2 ln z+ 1

N
I0(zL1/L)). (3)
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