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Large Strebel Graphs and (3,2) Liouville CFT

Séverin Charbonnier, Bertrand Eynard and François David

Abstract. 2D quantum gravity is the idea that a set of discretized sur-
faces (called map, a graph on a surface), equipped with a graph measure,
converges in the large size limit (large number of faces) to a conformal
field theory (CFT), and in the simplest case to the simplest CFT known
as pure gravity, also known as the gravity dressed (3,2) minimal model.
Here, we consider the set of planar Strebel graphs (planar trivalent metric
graphs) with fixed perimeter faces, with the measure product of Lebesgue
measure of all edge lengths, submitted to the perimeter constraints. We
prove that expectation values of a large class of observables indeed con-
verge toward the CFT amplitudes of the (3,2) minimal model.
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1. Introduction

The idea of two-dimensional quantum gravity was born in the 198’s and de-
veloped in 1990s. It consists in the study of two-dimensional (2d) surfaces
equipped with a random Riemannian metric. By analogy with Euclidean path
and functional integrals in quantum mechanics and quantum field theories and
with general relativity, the randomness corresponds to quantization and the
2D metric to some 2D “gravitational field,” whence the name “2d quantum
gravity.”

In 1981, motivated by string theory, Polyakov [19] argued that 2D quan-
tum gravity should be equivalent to a 2D quantum field theory (CFT) on the
surface, the Liouville conformal field theory (CFT). This theory has been ex-
tensively studied, see [17] for an extensive but not too recent review. Massless
matter coupled to 2D gravity is described by a CFT characterized (sometimes
uniquely) by its central charge c, and the central charge of the associated Li-
ouville CFT should be cL = 26 − c. (see for instance [2,6]). For pure gravity
c = 0.

Another idea is to discretize the problem: start from a set of discrete sur-
faces (also called random maps in the mathematical literature), for example
triangulated surfaces with N triangles, equipped with some local measure, for
instance the uniform measure. These discretized models can often be mapped
onto random matrix models and have been studied by random matrix the-
ory, by combinatorics and by statistical physics methods, including numerical
methods. The continuum limit is defined by letting the average number of tri-
angles tend to infinity, and the mesh to zero, while keeping the area fixed. It is
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conjectured that this limit should exist and be a 2D Liouville CFT. In order to
identify the Liouville CFT, one has to embed the discrete surface on a surface
with a metric, and measure expectation values and correlations of distances
between points. This limit is expected to be universal, in the sense that it
should be the same for a large class of random maps (triangles, quadrangles,
or other sets of graphs) rather independently of the measure.

In 1990, Di Francesco and Kutasov [5] showed that for some special val-
ues of c, some quite special observables of the Liouville CFT (the partition
functions and certain correlation functions) coincide with the amplitudes (co-
efficients of the τ -function) of an integrable system formulated by Douglas and
Shenker [7] as a reduction of the KdV integrable hierarchy, known as the (p, q)
minimal model. There is a central charge associated with this integrable sys-
tem, given by c = 1 − 6(p − q)2/pq. For c = 0, this degenerate Liouville theory
is associated with the minimal model (3,2). Therefore, in a setup supposed
to be a discretized model of 2d pure quantum gravity, one should be able to
relate the continuum limit to the minimal model (3,2).

The purpose of this work is to establish this general equivalence for a
specific discretization setup of pure 2D gravity that we present now . Consider
an abstract triangulation in the plane (planar triangulation), and its dual, an
abstract trivalent graph. Many methods to embed such an abstract triangula-
tion into the plane have been developed and studied, for example those based
on circle packings [1] and those on more general circle patterns [3]. One asset
of these embeddings is that they show a conformal invariance even for a finite
number of points, a property that one wants to have in the continuum limit,
in order to make contact with CFT. The embedding that we shall consider
here is based on Strebel graphs [12,14,18]. Strebel graphs are metric trivalent
ribbon graphs drawn on surfaces. “Metric” means that a length is associated
with each edge, and their duals are triangulations. Strebel’s theorem says that
the graph’s metric can be uniquely extended to a metric on the whole surface,
with the curvature localized at face centers. The set of Strebel graphs of genus
g with N faces is isomorphic to the moduli space of (decorated) Riemann sur-
faces of genus g with n marked points (the face centers) decorated by N real
numbers (the face perimeters). This is a non-compact space since perimeters
can be as large as desired. In this work, we restrain the set of Strebel graphs to
the subset of graphs with uniform fixed perimeters for the faces (see below for
a precise definition), and we choose the Kontsevich measure on Strebel graphs,
which is local.

The features of the Kontsevich measure along with this restriction will
allow us to compute the partition function of the Strebel graphs and the ex-
pectation values of all the observables which have a topological interpretation
in 2D gravity. Using the knowledge of Kontsevich–Witten planar intersection
numbers, we shall derive explicit expressions for these correlation functions,
and we shall be able to compute explicitly (by saddle point approximation)
their continuum limit and show that they tend to the (3,2) minimal model
amplitudes.
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Moreover, by a Laplace transform, we shall show how to associate a
spectral curve to this discrete model and write it explicitly, in terms of Bessel
functions. The spectral curve is an object that encodes all the observables
of the model, and it will depend on a single parameter μ. The continuum
limit N → ∞ of the model will be shown to be equivalent to a limit where
μ approaches a critical value μc. We shall show that as μ → μc the spectral
curve tends to a universal and simple spectral curve, which is nothing but
the spectral curve of the integrable system corresponding to the (3,2) minimal
model of Douglas–Shenker. In this way, we show that the expectation values
of all the topological observables of the model tend in the continuum limit to
the amplitudes of the (3,2) minimal model.

Following the equivalence stated by Di Francesco and Kutasov ([5]), this
paper shows that considering Strebel graphs with uniform perimeters is a
relevant discretization of 2D quantum gravity, which allows us to recover it
in the continuum limit.

This paper is organized as follows. In Sect. 2, we set the notations and
recall the definitions of Strebel graphs. We describe the measure and its relation
to the Chern-class measure on moduli space of Riemann surfaces, following
Kontsevich [14]. We then restrict the model on uniform perimeters, which is
specific to this paper. Last, we define the observables and their generating
functions.

In Sect. 3, the explicit computation of generating functions—made pos-
sible by the restriction on uniform perimeters—is carried out.

Section 4 is dedicated to the spectral curve and its critical form. It then
contains the main result of this paper: the spectral curve of isoperimetric
Strebel graphs admits a limit when the parameter μ approaches the critical
value μc. This critical spectral curve turns out the be the one of the (3,2)
minimal model.

Last, in Sect. 5, as an application, we derive the large size limit of several
observables. We first show that, from the explicit formula of its generating
function, the volume of the set of isoperimetric Strebel graphs with N + 3
faces has the following scaling:

ZN+3(L) ∼
N→∞

C N !ANN− 1
2 .

Using the saddle point method, we also find the scaling of the one-point func-
tion ZN+3(L;L1) in the 3 regimes:

• in the regime L1
L � N , ZN+3(L;L1) ∼

N→∞
C N !AN I0

(
L1
L uc

)

• in the regime L1
L ∼ N , ZN+3(L;L1) ∼

N→∞
C N !A

(
L1
L N

)N
I0
(

L1
L uc

)

• in the regime L1
L � N , ZN+3(L;L1) ∼

N→∞
C N !AN I0

(
2N L

L1

)N

(
L1

2NL

)2N
I0(2N).

Using the critical spectral curve, we give the behavior of the generating
functions of 3-point functions (Ẑ3(μ,L;L1, L2, L3)) and 4-point functions
(Ẑ4(μ,L;L1, L2, L3, L4)) near the critical point.
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2. Strebel Graphs with Uniform Perimeters

2.1. General Definitions—Strebel Graphs, Moduli Space of Riemann Surfaces
and Chern Classes

2.1.1. Strebel and Kontsevich Graphs.

Strebel Graphs. A Strebel graph of genus g with n faces is a trivalent cellular
ribbon graph that can be embedded on a surface of genus g, whose faces are
topological disks, and whose edges e carry a real positive number called the
edge length �e ≥ 0. Strebel’s theorem [20] provides a canonical embedding of
the Strebel graph on a Riemann surface, equipped with a canonical metric, in
such a way that each edge e is a geodesic of length �e (see “Appendix A”).

We shall call:
• F = set of faces
• V = set of vertices
• E = set of edges, and Ef the set of edges adjacent to a face f .

If a graph is planar, if we denote N = |F| − 3 (|F| denotes the cardinal),
we have

|E| = 3N + 3, |V| = 2N + 2. (2.1)

The face perimeters

Lf =
∑

e∈Ef

�e

play a special role. In Fig. 1, a portion of a planar Strebel graph with all face
perimeters equal to 1 (Lf = 1) is represented.

Kontsevich studied the set of Strebel graphs, equipped with the measure
product of edge measures

measure =
∏

e∈E
d�e

∏

f∈F
δ

⎛

⎝Lf −
∑

e∈Ef

�e

⎞

⎠ . (2.2)

In the planar case, we may choose an edge basis E0 ⊂ E of cardinal |E0| = 2N
(thus solving the perimeter constraints), and we also have (see [14])

measure =
1
2

∏

e∈E0

d�e. (2.3)

This measure is not normalized, one of our goals will be to compute the total
volume.

Kontsevich Graphs. In fact, Kontsevich was also interested in computing
Laplace transforms of various observables, by Laplace transformation over the
perimeters. Taking the Laplace transform with respect to perimeters reformu-
lates the problem in terms of the dual graphs. Since vertices of a Strebel graph
are generically trivalent, its dual—that we shall call a “Kontsevich graph”—is
a triangulation of the surface, whose vertices zi are the center of faces of the
Strebel graph. Instead of carrying edge lengths, Kontsevich graphs carry a
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Figure 1. Sample of Strebel Graph with Lf = 1: the figure
shows a sample from a Strebel graph. All the vertices are
trivalent, and a positive real number is associated with each
edge. Summing over the lengths of a face yields Lf = 1

variable λi at each vertex, and the positions zi of the vertices on the Riemann
surface.

Kontsevich studied the set of Strebel graphs with |F| = N + 3 vertices,
equipped with the Chern-class measure

measureK =
1

N !

(
N+3∑

i=1

L2
i c1(T ∗

zi
)

)N+3g

(2.4)
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where c1(T ∗
zi

) is a 2-form, the Chern class of the cotangent bundle T ∗
zi

at the
ith marked point zi, and g is the genus of the surface. We shall specialize to
the planar case g = 0.

He showed that this measure is in fact proportional to the measure (2.2),
and the coefficient of proportionality is a power of 2 that we shall recall below.

2.1.2. Moduli Spaces of Surfaces. Let Mg,N be the moduli space of Riemann
surfaces of genus g, and with N marked points:

Mg,N = {(Σ, p1, . . . , pN )}/Aut (2.5)

where Σ is a Riemann surface of genus g and p1, . . . , pN are N distinct and
labeled marked points on Σ. Two Riemann surfaces are isomorphic iff there
is an analytic bijection (whose inverse is also analytic) that maps one to the
other, respecting the marked points. Mg,N is an orbifold (locally a manifold
quotiented by a group—the group of automorphisms), of real dimension

dim Mg,N = 2(3g − 3 + N). (2.6)

This means that it can be parametrized (locally) by 2(3g −3+N) real param-
eters, or also by 3g − 3 + N complex parameters.

From now on, we shall focus on the planar case g = 0. We shall also
require that the number of marked points be N + 3. We have

dim M0,N+3 = 2N. (2.7)

Indeed, there is a unique (up to automorphisms) Riemann surface of genus 0,
this is the Riemann sphere, i.e., the complex plane compactified by adding a
point at ∞, and this is also the complex projective line, we write it

C̄ = C ∪ {∞} = CP 1. (2.8)

Automorphisms of the Riemann sphere are Möbius transformations z → (az+
b)/(cz + d) with ad − bc = 1, i.e.,

Aut(C̄) = Sl2(C). (2.9)

This means that, by choosing a, b, c, d, one can map any 3 of the marked
points, let’s say p1, p2, p3 to 3 given points, let us say 0, 1,∞. In other words, an
element (C̄, p1, . . . , pN+3) ∈ M0,N+3 is equivalent to (C̄, 0, 1,∞, p4, . . . , pN+3),
and thus to the data of N distinct complex numbers p4, . . . , pN+3. This shows
that dimC M0,N+3 = N , and thus dimR M0,N+3 = 2N .

Decoration with Perimeters. We shall now consider the space

M̃0,N+3 = M0,N+3 × R
N+3
+ , (2.10)

i.e., we associate a positive real number Li to each marked point pi. It is also
a trivial real bundle over M0,N+3, with fiber R

N+3
+ . It has dimension:

dimR M̃0,N+3 = 2N + N + 3 = 3N + 3. (2.11)

Strebel [20], Penner [18], Harer and Zagier [12], Kontsevich [14] found that

M̃0,N+3 ∼ ⊕G∈G0,N+3R
E(G)
+ (2.12)
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where G0,N+3 is the set of planar Strebel graphs with N + 3 faces, and E(G)
is the set of edges of G. The isomorphism is an orbifold isomorphism, i.e.,
respecting the quotients by automorphism groups on both sides. The zi are
the centers of faces of Strebel graphs, i.e., vertices of Kontsevich graph, and
the Li’s are the perimeters. In other words, a point of M̃0,N+3 is uniquely
represented by a Strebel graph (or its dual the Kontsevich graph which is a
triangulation), and the edge lengths provide a set of real coordinates.

2.1.3. Chern Classes on Moduli Space of Curves of Genus 0. Let us consider
the bundle Li over M0,N+3, whose fiber over (C̄, z1, . . . , zN+3) ∈ M0,N+3 is
the cotangent plane T ∗

zi
C̄ of the Riemann sphere at the ith marked point zi:

Li → M0,N+3

(C̄, z1, . . . , zN+3, T
∗
zi
C̄) �→ (C̄, z1, . . . , zN+3). (2.13)

The fiber is homeomorphic to the complex plane; it is thus a complex line
bundle. Let us denote by

ψi = c1(Li) (2.14)

its first Chern class. We also consider the bundle L̃i over M̃0,N+3, whose
fiber over (C̄, z1, . . . , zN+3, L1, . . . , LN+3) ∈ M̃0,N+3 is again the cotangent
plane T ∗

zi
C̄ of the Riemann sphere at the ith marked point zi, and denote by

ψ̃i = c1(L̃i) its 1st Chern class. Since M̃0,N+3 = M0,N+3 ×R
N+3
+ is a product

bundle, the Chern classes add, and since R
N+3
+ is a flat bundle its Chern class

vanishes, so that, by misuse of notations, the two objects

ψi and ψ̃i (2.15)

will be denoted the same way. Kontsevich found that, in the edge lengths
coordinates, the Chern class takes the form

ψi =
∑

e<e′,adjacent to zi

d

(
�e

Li

)
∧ d

(
�e′

Li

)
, Li =

∑

e , adjacent to zi

�e, (2.16)

where the e’s adjacent to the vertex zi are labeled in counterclockwise order.
With this convention, the notation “e < e′ adjacent to zi” means that the sum
runs on the pairs of edges e, e′ adjacent to the vertex zi and such that their
labels satisfy e < e′. This may seem to depend on a choice of labeling of edges
around zi (i.e., choosing a first edge and then order edge labels counterclock-
wise), but one can easily check that it does not depend on which edge is chosen
to be the first.

ψi is a 2-form on M0,N+3, and therefore (
∑

i L2
i ψi)N is a top dimensional

volume form on M0,N+3, and multiplied by
∏

i dLi it is a top dimensional
volume form on M̃0,N+3. It is thus proportional to

∏
e d�e, and Kontsevich

found that
(
∑

i

L2
i ψi

)N ∏

i

dLi = N ! 22N+1
∏

e

d�e. (2.17)
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2.2. Restriction of the Model, Definition of the Observables

2D quantum gravity requires to carry out averages over the set of all possible—
conformally non-equivalent—metrics on all possible compact complex surfaces.
Actually, it is possible to restrict the sum over connected compact Riemann
surfaces, and (using the conformal gauge fixing of [19]) the sum over the met-
rics is reduced to the sum over a local conformal factor (the Liouville field) and
some moduli. To leading order in the topological expansion (the planar limit),
one can consider only the fields living on a genus 0 surface (i.e., the Riemann
sphere). We focus on this leading order in this paper. Yet the measure over
the Liouville field is not easy to construct. (See however [4] for a recent rigor-
ous construction of this measure). Therefore, as in the standard discretization
schemes, we shall approach the set of Liouville fields (which is an infinite di-
mensional space) by a sequence of finite dimensional spaces. These are precisely
M̃0,N+3 and G0,N+3. Every point in these spaces, through Strebel’s theorem,
is equivalent to a metric over the Riemann sphere with N + 3 punctures. The
hope is that the limit N → ∞ gives the continuous 2D pure (i.e., without
matter fields) quantum gravity. Actually, each Strebel graph (see “Appendix
A”) represents a flat metric over the Riemann sphere with N +3 punctures, all
the curvature being located at the vertices. It is thus a special class of metrics.

Moreover, we will restrain this to a certain subset of Strebel graphs,
namely the graphs with uniform perimeters: L1 = · · · = LN+3 = L, so that
the space of metrics is even more specific. However, we expect universality,
i.e., that the large N limit (the continuum limit) of the observables will be
independent of the type of Strebel graphs considered. In the end, the sum over
these particular metrics will already yield the 2D pure quantum gravity. In
other words, the additional variables (the perimeters of the face) should be
irrelevant redundant variables which do not change the continuum limit.

The aim of this paper is thus to compute the large N limit of certain
observables defined on the set of Strebel graphs with a fixed number of faces.
These observables have to be understood as pure gravity correlation functions.
They are averages of a variable over all possible metrics. In this section, we
first define the observables. As the computation of the observables is an enu-
meration problem, we encode each observable in a generating function. Then,
using known results on moduli spaces, we give an explicit computation of the
generating functions.

2.2.1. Volume. We are interested in the measure on the moduli space
M̃0,N+3:

dμ =
∏

e

d�e =
1

N !22N+1

(
∑

i

L2
i ψi

)N ∏

i

dLi. (2.18)
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Its volume is clearly infinite, because the volume of the fiber R
N+3
+ is infinite.

We may, however, compute the volume of a stratum with fixed perimeters
L = (L1, . . . , LN+3)

ZN+3(L) =
∫

M̃0,N+3(L1,...,LN+3)

dμ

=
1

N !22N+1

∫

M0,N+3

(
∑

i

L2
i ψi

)N

. (2.19)

By Kontsevich’s theorem [14], we can rewrite this volume over M̃0,N+3 as a
volume over Strebel graphs with N + 3 faces:

ZN+3(L) =
∑

G∈G0,N+3

1
|Aut(G)|

∏

e∈E
d�e

N+3∏

i=1

δ

⎛

⎝Li −
∑

e∈Vzi

�e

⎞

⎠ . (2.20)

It then corresponds to the volume of the set of Strebel graphs with N +3 faces,
whose perimeters are (L1, . . . , LN+3). Let us simplify the formulae. First, on
the Strebel graphs side, whenever the surface has marked points, there is no
non-trivial automorphisms, |Aut(G)| = 1, so the volume is:

ZN+3(L) =
∑

G∈G0,N+3

∏

e∈E
d�e

N+3∏

i=1

δ

⎛

⎝Li −
∑

e∈Vzi

�e

⎞

⎠ . (2.21)

Second, on the moduli space side, the standard convention is that if a form is
integrated on a cycle whose dimension is not equal to the form’s dimension,
then the integral is zero. For example, we may write here:

1
22NN !

∫

M0,N+3

(
∑

i

L2
i ψi

)N

=
∫

M0,N+3

e
1
4 (
∑

i L2
i ψi)

=
1

2N

∫

M0,N+3

e
1
2 (
∑

i L2
i ψi). (2.22)

We shall use the standard Witten’s notation for powers of the Chern classes

ψd
i = τd, (2.23)

and for the intersection numbers

〈
k∏

i=1

τdi

〉

g

=
∫

Mg,k

∏

i

τdi
=
∫

Mg,k

∏

i

ψdi
i (2.24)
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which—by convention—are zero if
∑

i di �= 3g − 3 + k. The volume of our
moduli space is then

2ZN+3(L) =
∫

M0,N+3

e
1
4

∑
i L2

i ψi

=
∫

M0,N+3

N+3∏

i=1

e
1
4L2

i ψi

=
∫

M0,N+3

N+3∏

i=1

(
∑

di

L2di
i

22didi!
τdi

)

=
∑

d1+···+dN+3=N

N+3∏

i=1

L2di
i

22didi!
〈
τd1τd2 . . . τdN+3

〉
0

(2.25)

Let us now consider Strebel graphs of genus 0 with the same fixed perime-
ter L for all faces (Li = L for all i). We are then interested in the following
volumes:

ZN+3(L) def= ZN+3(

N+3
︷ ︸︸ ︷
L, . . . , L)

=
∫

M0,N+3(L,...,L)

dμ, (2.26)

which we can restate—from what precedes—as:

ZN+3(L) = 4

〈(
1
2

∑

d

L2d

2dd!
τd

)N+3〉

0

. (2.27)

The generating function associated with the volume is defined as:

Ẑ(μ,L) =
∑

N

μN+3

(N + 3)!
ZN+3(L)

= 4

〈

exp

(
μ

2

∑

d

L2d

2d d!
τd

)〉

0

. (2.28)

2.2.2. Correlation Functions. In the present model, all the faces of a graph
have the same perimeter L. The perimeters of a genus 0 Strebel graph are the
lengths of closed geodesics of the punctured Riemann sphere, computed with
the Strebel’s metric (see “Appendix A”). As the measure of the perimeter of
a face is directly linked to the way the metric behaves in this face, and as
the metric contains all the “gravitational” information, the measure of the
perimeter of a face shall be a “gravitational observable.” We allow a finite set
of faces to have a prescribed perimeter, that is to say, if we fix n, we allow
n faces to have perimeters L1, . . . , Ln. We then look at Strebel graphs with
N +3+n faces (here n is fixed, and N varies), n of them having the prescribed
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perimeters L1, . . . , Ln, and the N +3 others have perimeter L. Then, we define
the following volumes for this kind of Strebel graphs:

ZN+3,n(L;L1, . . . , Ln) def= ZN+3+n(

N+3
︷ ︸︸ ︷
L, . . . , L, L1, . . . , Ln)

=
∫

M0,N+3+n(L,...,L,L1,...,Ln)

dμ

= 22−n
∑

d1,...,dn

〈(
1
2

∑

d

L2d

2dd!
τd

)N+3 n∏

i=1

L2di
i

2didi!
τdi

〉

0

.

(2.29)

The subsequent generating function is:

Ẑn(μ,L;L1, . . . , Ln) def=
∑

N

μN+3

(N + 3)!
ZN+3,n(L;L1, . . . , Ln)

= 22−n
∑

d1,...,dn

〈

e
µ
2

∑
d

L2d

2dd!
τd

n∏

i=1

L2di
i

2didi!
τdi

〉

0

. (2.30)

Note that setting n = 0, we recover the definition of the volumes, which is
just a specification of these observables. We will need the auxiliary generating
function U , which does not take the lengths Li into account, defined as the
Legendre transform of Ẑn:

Un(μ,L; d1, . . . , dn)

=
1
2

∑

N

μN L2D

22(N−D) (N + n)!

∫

M0,N+3+n

(
∑

d

L2d

d!
τd

)N+3

ψd1
N+3+1 . . . ψdn

N+3+n

=
1
2

∑

N

μN L2D

22(N−D) (N + n)!

∑

d̃1+···+d̃N+3=N−D

L2(N−D)

∏N+3
i=1 d̃i!

(N + n)!
∏N+3

i=1 d̃i!
∏n

i=1 di!

=
1
2

∑

N

μN L2N
n∏

i=1

1
di!

∑

d̃1+···+d̃N+3=N−D

N+3∏

i=1

1
22d̃i d̃i!2

. (2.31)

It is possible to compute these generating functions explicitly, which will be
done in the next section. One efficient method of computation is to use the
Eynard–Orantin Topological Recursion. We will use it to get the large N be-
havior of the observables. The Topological Recursion requires to encode the
generating functions in differential forms. These differential forms are defined
on a “spectral curve.” In order to get complex parameters likely to live on a
spectral curve (or, more generally, allowing the use of complex analysis meth-
ods), we carry out the Laplace transform of the generating functions with
respect to the Li:
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Fn(μ,L; z1, . . . , zn) def=
∫ ∞

0

dL1 . . .

∫ ∞

0

dLne−∑
i ziLiẐn(μ,L;L1, . . . , Ln)

= 22−n
∑

d1,...,dn

n∏

i=1

(2di − 1)!!
z2di+1
i

〈

e
µ
2

∑
d

L2d

2dd!
τd

n∏

i=1

τdi

〉

0

.

(2.32)

The differential forms are then obtained by differentiating with respect to
z1, . . . , zn:

Wn(μ,L; z1, . . . , zn) def= dz1 . . . dzn
Fn(μ,L; z1, . . . , zn)

= (−1)n 22−n
∑

d1,...,dn

n∏

i=1

(2di + 1)!! dzi

z2di+2
i

×
〈

e
µ
2

∑
d

L2d

2dd!
τd

n∏

i=1

τdi

〉

0

. (2.33)

3. Explicit Computations of Generating Functions

It is possible to compute the correlation functions explicitly by taking advan-
tage of the knowledge of the intersection numbers in genus 0. Indeed, the genus
zero intersection numbers are (see for example [14]):

< τd1 . . . τdN+3 >0=
N !

∏
i di!

δN,
∑

i di
. (3.1)

The whole section relies on this result.

3.1. Volumes of the Strata

It is easier to compute the third derivative of the volume generating function.
Using 3.1, we get:

∂3

∂μ3
Ẑ(μ,L) =

∑

N

μN

N !
ZN+3(L)

=
1
2

∑

N

μN

22N N !

∑

d1+···+dN+3=N

L2N

∏
i di!

〈
∏

i

τdi

〉

0

=
1
2

∑

N

μN

22N N !

∑

d1+···+dN+3=N

L2N

∏
i di!

N !
∏

i di!

=
1
2

∑

N

μNL2N
∑

d1+···+dN+3=N

1
∏

i 22didi!2
(3.2)

Let us consider the first kind modified Bessel function I0(z):

I0(z) =
∞∑

d=0

z2d

22d d!2
. (3.3)
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Figure 2. Plot of the function u2

I0(u)

Figure 3. Contour of integration

We have
∑

d1+···+dN+3=N

1
∏

i 22didi!2
= [z2N ]I0(z)N+3 = Resz→0

dz

z2N+1
I0(z)N+3, (3.4)

where [zk]f(z) stands for the coefficient of zk in the expansion of f around 0.
Therefore

∂3

∂μ3
Ẑ(μ,L) =

1
2

∑

N

Resz→0
dz

z2N+1
I0(z)N+3(μL2)N

=
1

4πi

∮

C

dz

z

I0(z)3

1 − μL2I0(z)/z2
(3.5)

where C is the integration contour of Fig. 3. Indeed, since Ẑ is a μ formal series,
instead of surrounding only 0, the integration contour of z must surround all
poles that tend to 0 as μ → 0, and thus, C has to surround ±u(μL2) defined
as the O(μ) solution of

μL2 =
u2

I0(u)
. (3.6)

The function u2/I0(u) is plotted in Fig. 2.
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The contour integral can be evaluated; it consists of residues of the 2
poles at z = ±u(μL2):

∂3

∂μ3
Ẑ(μ,L) =

1
μL2u

I0(u)3

2I0(u)/u3 − I ′
0(u)/u2

=
I0(u)4

2I0(u) − uI ′
0(u)

(3.7)

The derivative of the Bessel function I0 is the Bessel function I1; thus

∂3

∂μ3
Ẑ(μ,L) =

I0(u)3

2 − uI1(u)/I0(u)
=

uI0(u)2

L2

du

dμ
. (3.8)

Using I ′
1 = I0 − I1/u, we can integrate:

∂2

∂μ2
Ẑ(μ,L) =

u2(I0(u)2 − I1(u)2)
2L2

. (3.9)

Further integration is not doable explicitly, but this formula fits for our purpose
of getting the large N volumes.

3.2. Correlation Functions

Let us fix d1, . . . , dn, and note D
def=

∑
i(di − 1). We begin with the auxiliary

generating function U . In the same manner as for the volumes, we introduce
the Bessel function I0(z) and we have:

Un(μ,L; d1, . . . , dn) =
1
2

∑

N

μN L2N

∏n
i=1 di!

Resz→0
dz

z1+2(N−D)
I0(z)N+3

=
1

4πi
1

∏
i di!

∮

C

z2Ddz

z

I0(z)3

1 − μL2I0(z)/z2
(3.10)

The residue can be evaluated easily, at the two poles z = ±u(μL2). Beside, if
D < 0, there can be another pole at z = 0. We have

Un(μ,L; d1, . . . , dn) =
1

∏
i di!

u2D I0(u)4

2I0(u) − uI1(u)

+
1
2

1
∏

i di!
Resz→0 z2D+1dz

I0(z)3

z2 − μL2I0(z)

=
1

∏
i di!

u2D I0(u)4

2I0(u) − uI1(u)

− 1
2

1
∏

i di!

−D∑

j=1

1
(μL2)j

Resz→0 z2(D+j)−1dz I0(z)3−j .

(3.11)

If D < 0, the first term, proportional to u2D, is a Laurent formal series of
μL2, starting with a negative power, whereas the last term contributing only
if D < 0, is a polynomial of 1/μL2. Since the whole result should be a power



S. Charbonnier et al. Ann. Henri Poincaré

series of μL2 with only positive powers, we understand that the last term just
cancels the negative part of the first. We thus may write:

Un(μ,L; d1, . . . , dn) =
1

∏
i di!

(
u2D I0(u)4

2I0(u) − uI1(u)

)

+

(3.12)

meaning that we keep only positive powers of μL2 in the Laurent expansion.
We observe that upon multiplying by

∏
i di!, the right hand side depends only

on D and u; we write it

Un(μ,L; d1, . . . , dn) =
1

∏
i di!

fD(u), fD(u) =
(

u2D I0(u)4

2I0(u) − uI1(u)

)

+

. (3.13)

The relationship to our previously defined generating function is

Ẑn(μ,L;L1, . . . , Ln) = L2n
∑

d1,...,dn

n∏

i=1

L2di
i L−2di

22didi!
∂n−3

μ (μnUn(μ,L; d1, . . . , dn))

(3.14)

So

Ẑn(μ,L;L1, . . . , Ln)

= L2n
∑

d1,...,dn

n∏

i=1

L2di
i L−2di

22didi!2
∂n−3

μ

(
μnfD(u(μL2))

)

= ∂n−3
μ

(

μnL2n
∑

D

fD(u(μL2))
∑

d1+···+dn=D+n

n∏

i=1

L2di
i L−2di

22didi!2

)

= ∂n−3
μ

(

μnL2n
∑

D

fD(u(μL2))Resz→0
dz

z1+2(D+n)

n∏

i=1

I0(zLi/L)

)

= ∂n−3
μ

(

μnL2n Resz→0
dz

z1+2n

n∏

i=1

I0(zLi/L)
∞∑

D=−n

z−2D fD(u(μL2))

)

(3.15)

Carrying out the sum over D is possible if we impose |z| > |u|, so enforcing
this condition, one gets:

1
z1+2n

+∞∑

D=−n

fD(u(μL2))
z2D

=
(

1
u2n

z

z2 − u2

I0(u)4

2I0(u) − uI1(u)

)

+

(3.16)

Then, we can rewrite Ẑ in the following way:

Ẑn(μ, L; L1, . . . , Ln)

=
1

2πi
∂n−3

μ

(

μnL2n

[
1

u2n

I0(u)4

2I0(u) − uI1(u)
×
∮

C

zdz

z2 − u2

n∏

i=1

I0(zLi/L)

]

+

)

= ∂n−3
μ

(

μnL2n

[
1

u2n

I0(u)4

2I0(u) − uI1(u)

n∏

i=1

I0(uLi/L)

]

+

)

(3.17)
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The contour integral is now C (see Fig. 3), because though the residue is
around 0, we imposed |z| > |u|, in order to sum over D. Its Laplace transform
is

Fn(μ,L; z1, . . . , zn)

= ∂n−3
μ

(

μnL2n

[
1

u2n

I0(u)4

2I0(u) − uI1(u)

n∏

i=1

(z2i − u2/L2)−1/2

]

+

)

.
(3.18)

Again, note that the third derivative simplifies the result:

∂3
μFn(μ,L; z1, . . . , zn)

= ∂n
μ

(
μnL2n

u2n

I0(u)4

2I0(u) − uI1(u)

n∏

i=1

(z2i − u2/L2)−1/2

)

.
(3.19)

4. Spectral Curve

All the combinatorics of the Strebel graphs are encoded in one complex curve:
the spectral curve. It is the main object needed to run the Topological Recur-
sion. Here, we use the fact that Topological Recursion solves the combinatorics
of Strebel graphs and allows the computation of all correlation functions. The
first step is to determine the spectral curve. Actually, we find a family of spec-
tral curves, indexed by the parameter μ introduced in the previous part. We
first give the generic form of the spectral curve, and then a singular curve
obtained when the parameter μ approaches a singular value μc.

4.1. Generic Spectral Curve

One can reexpress the generating function Ẑ(μ,L) in the following way:

Ẑ(μ,L) = 4
〈

e
µ
2

∑
d

L2d

2d d!
τd

〉

0

(4.1)

and similarly

2n−2−∑
i diL−2D ∂n−3

∂μn−3
μn Un(μ,L, d1, . . . , dn) =

〈
τd1 . . . τdn

e
µ
2

∑
d

L2d

2d d!
τd

〉

0
(4.2)

Kontsevich proved (this was Witten’s conjecture) that
〈

e
1
2

∑
d(2d−1)!! t2d+1 τd

〉

all genera
= TKdV

(
1
2
(2d − 1)!!t2d+1

)
(4.3)

is a KdV tau function in the times t2d+1. In other words, our generating
function is equal to the genus zero part of the KdV tau function evaluated at
times

t2d+1 =
μL2d

(2d)!
. (4.4)

Since the KdV tau function is independent of even times, we may choose

tk+1 =
μLk

k!
. (4.5)
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Furthermore, in [8,9], it was shown that the following
〈

e
1
2

∑
d(2d−1)!! t2d+1 τd

〉
= e

∑
g Fg (4.6)

where the Fg’s are the EO-invariants (defined in [11]) of the spectral curve

S =

⎧
⎨

⎩

x = z2 + ť1

y = z − 1
2

+∞∑

k=0

ť2k+3z
2k+1

with the coefficients ťk related to the tks as follows:

ť1 =
∞∑

j=0

(2j − 1)!!
2jj!

ťj1t2j+1, ť2k+1 =
∞∑

j=0

(2k + 2j − 1)!!
(2k − 1)!! 2jj!

ťj1t2k+2j+1.

In our case, the equation determining ť1 is

ť1 = μ

∞∑

j=0

1
22jj!j!

ťj1L
2j = μI0

(
L
√

ť1

)
,

whose solution is
L
√

ť1 = u(μL2) (4.7)

with the function u already introduced in (3.6). And for higher times

ť2k+1 =
∞∑

j=0

(2k + 2j − 1)!!
(2k − 1)!! 2jj!

ťj1t2k+2j+1

=
μL2k

(2k − 1)!!

∞∑

j=0

1
22j+k(k + j)!j!

ťj1L
2j

=
μL2k

(2k − 1)!!uk

∞∑

j=0

u2j+k

22j+k(k + j)!j!

=
μL2k

(2k − 1)!!uk
Ik(u). (4.8)

In other words, up to combinatorial prefactors, the spectral curve can be ex-
panded in terms of Bessel functions of u.

S =

{
x = z2 + u2

L2

y = z − μ
2

∑+∞
k=1

L2kIk(u)
(2k−1)!!uk z2k−1

(4.9)

In the spectral curve, z is only a parameter, and reparametrizing

z =
√

u

L
ζ, (4.10)

we write the spectral curve as

S =

⎧
⎨

⎩

x = u
L2

(
ζ2 + u

)

y =
√

u
L

(
ζ − u

2I0(u)

+∞∑

k=1

Ik(u)
(2k−1)!! ζ2k−1

)
(4.11)
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The One-Form ydx. The expression of the 1-form ydx is:

ydx =
u3/2

L3

(

2ζ2 − u

I0(u)

+∞∑

k=1

Ik(u)
(2k − 1)!!

ζ2k

)

dζ, (4.12)

which yields the derivative with respect to u:

∂ydx

∂u

∣
∣
∣
∣
fixed x

=
−2udz

L2
+

μdz

2

+∞∑

k=1

L2kz2k

uk (2k − 1)!!

⎛

⎜
⎜
⎝

=0
︷ ︸︸ ︷

Ik+1 − Ik−1 + 2k
Ik

u

⎞

⎟
⎟
⎠+ μI1(u)dz

=
−2udz

L2
+ μI1(u)dz. (4.13)

Its Laplace transform is:
∫ +∞

0

ydxe−vx =
1

2

u3/2

L3 I0(u)
e

− vu2

L2

∫

R

(

2I0(u)ζ2 − u

+∞∑

k=1

Ik(u)

(2k − 1)!!
ζ2k

)

e
− vu

L2 ζ2
dζ

=
1

2

u
√

π

L2 I0(u)
√

v
e

− vu2

L2

(
L2

uv
I0(u) − u

+∞∑

k=1

Ik(u)L2k

2kukvk

)

=
1

2

√
π

I0(u)

e
− vu2

L2

v3/2

(

I0(u) − u2v

L2

+∞∑

k=1

Ik(u)L2k

2kukvk

)

(4.14)

4.2. Critical Spectral Curve

Studying the large N limit of a combinatorial data encoded in a generating
function is closely related to the behavior of the generating function near a
singular point. The generating functions defined in the previous part all depend
on the parameter μ, on which depend the spectral curves S(μ). When μ is close
to μc, a singular point of the generating functions, the spectral curve S(μ) is
close to a critical spectral curve S(μc) that is singular. This critical spectral
curve must provide the large N behavior of observables of the Strebel graphs.
For a generic μ, we have 2I0(u(μ)) − u(μ)I1(u(μ)) �= 0. This quantity is null
when u(μ) = u(μc) = uc. We define the critical point μc by:

μc =
1
L2

max
u2

I0(u)
, (4.15)

this is the maximum of the curve in Fig. 2. The two preimages of μc are uc

(say uc > 0) and −uc. They satisfy:

± ucI1(±uc) − 2I0(±uc) = 0. (4.16)
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Their numerical values are:

± uc = ±2.5844 . . . ; L2μc = 1.902 . . . (4.17)

Therefore, for μ �= μc, that is u �= ±uc, we have y′(0) = 1 − uI1(u)
2I0(u)

�= 0. The
spectral curve S(μ) is then regular for μ < μc and close to ζ = 0, y behaves like√

x − u2/L. At μ = μc, y behaves as a cusp y ∼ (x − u2/L)3/2, and S(μc) is
no longer a regular spectral curve (see Fig. 4). Its Eynard–Orantin invariants
diverge (see [11]). How they diverge is controlled by computing the resolution
of the singularity, the blowup of the spectral curve in the vicinity of μ = μc.

Figure 4. Projection in the plane (x, y) ∈ R
2 of spectral

curves for different values of the index μ. The second curve is
the critical spectral curve and shows the cusp. The third one
is the curve near the critical point. At the leading order in
μ−μc, it is the critical curve S̃(3,2) of the minimal model (3,2)
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Therefore, when μ → μc, and thus u → uc, we rescale the variable z as

z =
√

u

L
ζ = −

√
uc − u

√
u

L
ξ. (4.18)

In that limit, the spectral curve becomes

x =
u2

c

L2
+ (uc − u)

uc

L2
(ξ2 − 2) + O((uc − u)2) (4.19)

y = (uc − u)3/2 u2
c − 4

6L
√

uc
(ξ3 − 3ξ) + O((uc − u)2) (4.20)

The blowup of the spectral curve near its singularity is the rescaled curve

S(3,2) =
{

x̃(ξ) = ξ2 − 2
ỹ(ξ) = ξ3 − 3ξ

(4.21)

It is known [10] that this is the spectral curve of the (3, 2) minimal model,
which according to [5,7] is equivalent to Liouville gravity with matter central
charge c = 0.

5. Large N Limits

It remains to study the large N behavior of the observables. Since N + 3 + n
is the number of faces of the Strebel graph (number of vertices of the dual
triangulation), the large N limit should be the continuum limit of large maps.
It should tend toward the Brownian map (according to [15,16]), and it is
expected to converge toward Liouville theory.

As was mentioned in the previous part, large N expansions are controlled
by the singularities of the generating functions, that is to say we have to study
the behavior as μL2 → μcL

2, where μc is a point (closest to 0) at which the
generating functions are not analytic.

Volume and correlation functions large N asymptotics are then related to
the singular behavior of their respective generating functions when approach-
ing the critical point μc.

We first focus on asymptotics of the volume, using the explicit compu-
tation we did in the second part. In order to compute the one point function
at large N , we enforce the saddle point method in a second time. This allows
us to identify a typical length scale for large maps. Last, we use Topological
Recursion results and the critical Spectral curve to compute n-point functions.

5.1. Asymptotics of the Volume

The third derivative of the generating function for the volume is given by
formula 3.8 of Sect. 3.1:

∂3
μẐ(μ,L) =

I0(u)4

2I0(u) − uI1(u)
(5.1)

The critical point μc is the same as for the spectral curve. Indeed, if μ = μc,
one gets 2I0(u(μc)) − u(μc)I1(u(μc)) = 0, so when μ → μc, ∂3

μẐ diverges.
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If μ is close to μc, i.e., u is close to uc, we have:

μ

μc
= 1 − u2

c − 4
2u2

c

(uc − u)2 + O
(
(uc − u)3

)
,

u2
c − 4
2u2

c

= 0.2005 . . .

i.e.,

uc −u ∼
√

2u2
c

u2
c − 4

√
1 − μ

μc
(1+O(

√
1 − μ/μc)),

√
2u2

c

u2
c − 4

= 2.23 . . . (5.2)

So we get:

∂3
μẐ(μ,L) ∼

μ→μc

C
√

1 − μ
μc

+ O(1), C =
1√
2

I0(uc)3√
u2

c − 4
= 18.69 . . . (5.3)

∂3
μẐ behaves as (1−μ/μc)−1/2, so Ẑ(μ,L) has a (1−μ/μc)5/2 singularity.

Writing that
C

√
1 − μ

μc

=
∑

N

μN

N !
C(2N − 1)!!

2NμN
c

, (5.4)

and comparing with:

∂3
μẐ(μ,L) =

∑

N

μN

N !
ZN+3(L), (5.5)

we find the large N behavior of the volume

ZN+3(L) ∼
N→∞

C
(2N − 1)!!

2NμN
c

= C
(2N − 1)!!L2N

2N (μcL2)N
, μcL

2 = 1.902 . . .

∼
N→∞

C N !A(L)N N− 1
2

5.2. One-Point Function—Saddle Point Method

We want to study the large N limit of the one-point function:

fN

(
L,

L1

L

)
def= ZN+3(L,L1)

= . . . (5.6)

=
N !L2N

2
Res
z→0

dz

z
I20 (z)eN(ln I0(z)−2 ln z+ 1

N ln I0(L1
L z)) (5.7)

The detail of the computation has been transferred to “Appendix B” for read-
ability, as the calculus is close to the one for the volume. Let us define

SN (z) = ln I0(z) − 2 ln z +
1
N

ln I0

(
L1

L
z

)
(5.8)

SN is an even function. In the large N limit, we use the saddle point approxi-
mation to compute the residue; hence, we have to find the saddle point of SN .
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First, let us compute its derivatives.

∂

∂y
SN (x + iy) = i

[
I1(x + iy)

I0(x + iy)
− 2

x + iy
+

1

N

L1

L

I1
(

L1
L

(x + iy)
)

I0
(

L1
L

(x + iy)
)

]

(5.9)

∂2

∂y2
SN (x + iy) = −1 +

I1(x + iy)

(x + iy)I0(x + iy)
+

I2
1 (x + iy)

I2
0 (x + iy)

− 2

(x + iy)2
(5.10)

− 1

N

(
L1

L

)2
(

1 − I1
(

L1
L

(x + iy)
)

L1
L

(x + iy)I0
(

L1
L

(x + iy)
) − I2

1

(
L1
L

(x + iy)
)

I2
0

(
L1
L

(x + iy)
)

)

(5.11)

We distinguish three regimes for the behavior of L1 at large N . For each
regime, we may compute the saddle points and carry out the residue.

5.2.1. Regime 1: L1/(NL) → 0 When N → ∞. In this regime, the term
1
N ln I0

(
L1
L z

)
is negligible, the saddle point is the saddle point of ln I0(z) −

2 ln z, it is independent of L1/L, and it is worth z = ±uc. This gives

fN

(
L,

L1

L

)
∼

N→∞
I0

(
L1

L
uc

)
I0(uc)N+2

u2N
c

√
2π

√
u2

c − 4
N !L2N (5.12)

∼
N→∞

C N !A(L)N I0

(
L1

L
uc

)
(5.13)

∝ I0

(
L1

L
uc

)
(5.14)

It thus behaves like Bessel function I0(ucL1/L).

5.2.2. Regime 2: L1/NL → l When N → ∞. We use the asymptotics:

I0(x) =
x→∞

ex

√
2πx

(
1 + O

(
1
x

))
(5.15)

which gives:

SN (z) = ln
(

I0(z)
z2

)
+ lz + O

(
ln N

N

)
(5.16)

By the same argument as in the first regime, there are two saddle points x0(l),
x1(l) = −x0(l) situated on the real axis. Again, let x0 be the positive one. The
equation S′

N (x0) = 0 gives:

x0I1(x0) − (2 − lx0) I0(x0) = 0 (5.17)

At the point x0(l):

SN (x0) = ln I0(x0) − 2 ln x0 + lx0 + o(1) (5.18)

∂2

∂y2
SN (x0) = −

(
1 +

4l

x0
− 4

x2
0

− l2
)

+ o(1) (5.19)

= −1 +
(

l − 2
x0

)2

+ o(1) (5.20)

= O(1) (5.21)
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We then have:

fN

(
L,

L1

L

)
= N !L2N I0(x0(l))N+2

x0(l)2N

eNlx0(l)

√
2πNlx0(l)

√
2π

√
(l2 + 1)x0(l)2 + 5x0(l) − 4

(5.22)
Of course, the factors 2π simplify, but in this form, we see that fN in the
second regime is matching the one of the first regime. Indeed, as L1

L ∼ Nl, we
have:

I0

(
L1

L
x0(l)

)
∼

N→∞
eNlx0(l)

√
2πNlx0(l)

(5.23)

What is more, if l = 0, the last fraction is equal to
√
2π√

u2
c−4

. So we recover the

first regime in this limit, and more generally, in this regime:

ZN+3(L;L1) ∼
N→∞

C N !A
(

L1

LN

)N

I0

(
L1

L
uc

)

5.2.3. Regime 3: L1/(NL) → ∞ When N → ∞. We note l = 1
N

L1
L , so in

this regime, l � 1. We can show that in this regime, we have necessarily, for
the saddle point x0:

x0 →
N→∞

0 (5.24)

L1

L
x0 →

N→∞
+∞ (5.25)

We can then expand x0 as a series of Nα
(

L1
L

)β
. We find:

x0(l) =
2
l

+
2
5

1
Nl

+ O

(
1

N2l

)
(5.26)

We then get:
∂2S

∂y2
(x0(l)) = − l2

2

(
1 + O

(
1
N

))
(5.27)

and

S(x0(l)) = ln I0

(
2
l

)
− 2 ln

2
l

+
1
N

ln I0(2N) (5.28)

In the end, we obtain:

fN

(
L,

L1

L

)
= N !L2NI0

(
2
l

)N+2(
l

2

)2N √
πI0(2N), (5.29)

so in the third regime:

ZN+3(L;L1) ∼
N→∞

C N !AN I0

(
2N

L

L1

)N (
L1

2NL

)2N

I0(2N)
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5.3. Correlation Functions from the Spectral Curve

In [9], it was shown that the Eynard–Orantin invariants of the spectral curve
are generating functions of intersection numbers

22−2g−n
∑

d1,...,dn

n∏

i=1

(2di − 1)!!
z2di+1
i

〈

e
1
2

∑
k(2k−1)!!t̃2k+1τk

n∏

i=1

τdi

〉

g

= Fg,n(S; z1, . . . , zn)

(5.30)

This is true in particular for g = 0. We have

F0,n(S; z1, . . . , zn) = Fn(μ,L; z1, . . . , zn). (5.31)

We recall here a theorem that we will use for asymptotics of n-point
functions with n ≥ 3. It is the theorem of section 8 in [11], proven by Eynard
and Orantin. It states that if 2 − 2g − n < 0 and the spectral index μ is close
to its critical value μc, the Eynard–Orantin invariants diverge as:

Fg,n(S; z1, . . . , zn) ∼
μ→μc

(uc − u)(2−2g−n)(1+ 3
2 )

(
uc

L2

u2
c − 4

6L
√

uc

)2−2g−n

× Fg,n(S(3,2); ξ1, . . . , ξn)

∼
μ→μc

(uc − u)(2−2g−n) 5
2

(
uc

L2

u2
c − 4

6L
√

uc

)2−2g−n

× Fg,n(S(3,2); ξ1, . . . , ξn)

∼
μ→μc

(1 − μ/μc)
(2−2g−n) 5

4

((
2u2

c

u2
c − 4

) 5
4 uc

L3

u2
c − 4

6
√

uc

)2−2g−n

× Fg,n(S(3,2); ξ1, . . . , ξn) (5.32)

Again the exponent 5/4 = (p + q)/(p + q − 1) is the KPZ exponent [13]
for the (p, q) minimal model coupled to gravity, and here (p, q) = (3, 2).

5.3.1. The One-Point Function. Here, we compute the same quantity as in
the previous section, from the spectral curve. The asset of such a method is
that it generalizes easily to higher correlation functions. The quantity fN

(
L1
L

)

is encoded in the following generating function:

H(μ,L, L1) =
∞∑

N=0

μN+3

(N + 3)!
fN

(
L,

L1

L

)
(5.33)

In terms of the Chern classes, we can express fN as:

fN

(
L,

L1

L

)
=

1
2N+1

∫

M0,+3

e
L2
2

∑N+3
i=2 ψi+

L2
1
2 ψ1 (5.34)

It is related to the differential W1(μ,L; z1) by:

H(μ,L, L1) =
∞∑

d1=0

L2d1
1 Res

z1→∞
z2d1+1
1

(2d1 + 1)!
W1(μ,L; z1) (5.35)
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Setting x1 = z21 , we can rewrite it in the following way:

H(μ,L, L1) =
∞∑

d1=0

L2d1
1 Res

x1→∞
x

d1+
1
2

1

(2d1 + 1)!
W1(μ,L;x1) (5.36)

The differential W1 = ydx is the one-point function of our model with times
tk (see Sect. 3), in which t1 = μ �= 0. To get rid of t1, we have renormalized
the times into ťi, and then, the one-point function is given by y(z)dx(z) (the
spectral curve being given by (x(z), y(z))). In our model, x = z2 + u2

L2 . In the
end, we have to compute the following:

H(μ,L, L1) =
∞∑

d1=0

L2d1
1 Res

z→∞
(z2 + u2

L2 )d1+
1
2

(2d1 + 1)!
y(z)dx(z) (5.37)

The function y(z) is an entire function of z, with only poles at infinity. The
differential dx(z) = 2zdz also has no pole except at ∞. We may then deform
the contour of integration of the residue. The quantities (z2 + u2

L2 )d1+
1
2 have

branch cuts. We choose as branch cut for x �→ √
x the half line iR−. Then,

(z2 + u2

L2 )d1+
1
2 has one cut, along the segment [−i u

L ,+i u
L ].

Let us deform the contour of the residue around this segment and call it C.
The following residue is null:

1
2iπ

∮

C

(
z2 +

u2

L2

)d1

y(z)dx(z) = 0 (5.38)

for any integer d1, as it does not enclose any pole or cut. We can then add to
the sum the following sum without changing the function H:

∞∑

d1=0

L2d1−1
1

(2d1)!
1

2iπ

∮

C

(
z2 +

u2

L2

)d1

y(z)dx(z) (5.39)

So:

H(μ,L, L1) = − 1
L1

∞∑

d1=0

Ld1
1

d1!
1

2iπ

∮

C

√

z2 +
u2

L2

d1

y(z)dx(z). (5.40)

We can exchange
∑

and
∮

, and it remains to compute:

H(μ,L, L1) = − 1
L1

1
2iπ

∮

C
e

√
z2+ u2

L2 L1y(z)dx(z) (5.41)

Let us decompose the contour C into C+ = [−i u
L + ε,+i u

L + ε] and C− =
[−i u

L − ε,+i u
L − ε], with ε > 0 and small. Then:

H(μ,L, L1) = − 1
L1

1
2iπ

(∫

C+
−
∫

C−

)
e

√
z2+ u2

L2 L1y(z)dx(z) (5.42)

= − 1
L1

1
2iπ

∫

[−i u
L ,+i u

L ]

2 sinh

(√

z2 +
u2

L2
L1

)

y(z)dx(z) (5.43)
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(in the last line, the cut of √ is R−).

H(μ, L, L1) = − 1

L1

1

2iπ

∫ +i u

L

−i u

L

2 sinh

(√

z2 +
u2

L2
L1

)

×
[

z2 − μ

2

∞∑

k=1

Ik(u)L2k

(2k + 1)!!uk
z2k+2

]

dz

(5.44)

This last integral is explicitly computable. In order to do that, we use the
result: ∫ a

0

t
√

a2 − t2
2k+1

sinh t dt =
π

2
ak+2(2k + 1)!!Ik+2(a) (5.45)

In the end, we obtain:

H(μ,L, L1)

=
1
L1

u2

L2

[

I2

(
u

L1

L

)
− μ

2

∞∑

k=1

(
− L

L1

)k

Ik(u)Ik+2

(
u

L1

L

)
(2k + 1)

]

(5.46)

As μ → μc, H remains finite (this is not true anymore for n−point functions
with n ≥ 3) and has a non-null limit, but has a singular term in (μc − μ)

1
2 in

its expansion near μc.

5.3.2. n-point Functions for n ≥ 3. For n ≥ 3, we have:

22−n
n∏

i=1

(2di−1)!!

〈

e
µ
2

∑
d

L2d

2dd!
τd

n∏

i=1

τdi

〉

0

= Res
zi→∞

n∏

i=1

z2di
i dziF0,n(S; z1, . . . , zn).

(5.47)
The quantity we are interested in is Ẑn(μ,L;L1, . . . , Ln) and we want to re-
cover it from the previous expression. The left hand side is equal to:

l.h.s. = 2−∑
i diL−2D

n∏

i=1

(2di − 1)!!
∂n−3

∂μn−3
[μnUn(μ,L, d1, . . . , dn)] (5.48)

Hence, in order to recover Ẑn, we have to carry out the following sum:

Ẑn(μ,L;L1, . . . , Ln) =
∑

d1...dn

n∏

i=1

L2di
i

2di(2di − 1)!!di!
× l.h.s. (5.49)

=
∑

d1...dn

n∏

i=1

L2di
i

(2di)!
× Res

zi→∞

n∏

i=1

z2di
i dziF0,n(S; zi). (5.50)

The functions F0,n(S, zi) are entire functions of the 1
zi

’s. By the following

change of coordinates : zi =
√

z̃2i + u2

L2 , the functions F0,n(S; z̃i) are then
polynomials in the 1

z̃i
. This change of variable is similar to the one done for

the one-point function of the previous section. Indeed, the variables z̃2i + u2

L2
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Figure 5. The contour of integration of Res∞ is deformed and
encloses a cut

are the xi’s, living on the spectral curve S and are then more ‘canonical’ than
the zi’s. So we have:

Ẑn(μ,L;Li) =
∑

d1...dn

n∏

i=1

L2di
i

(2di)!
Res

z̃i→∞

n∏

i=1

(
z̃2i +

u2

L2

)di− 1
2

2z̃idz̃iF0,n(S; z̃i)

(5.51)
The residue is taken at infinity, and we want to deform its contour of in-
tegration. The function F0,n(S; z̃i) has poles only around z̃i = 0; the term
(
z̃2i + u2

L2

)di− 1
2

has a cut on the segment
[
− i u

L ; +i u
L

]
(the branch cut for √ is

− iR). Hence, we can deform the contour of integration into the one described
in Fig. 5.

Now it is possible to exchange
∑

and Res, because the contour is no
longer at infinity. This gives:

Ẑn(μ,L;Li) =
∑

d1...dn

Res
z̃i→∞

n∏

i=1

Ldi
i

di!

√

z̃2i +
u2

L2

di

2z̃iF0,n(S; z̃i)√
z̃2i + u2

L2

dz̃i (5.52)

= 2n Res
z̃i→∞

n∏

i=1

e
Li

√
z̃2
i +

u2
L2

z̃iF0,n(S; z̃i)√
z̃2i + u2

L2

dz̃i (5.53)

We want the asymptotic behavior (N → ∞) of the Strebel Graph vol-
umes with n marked faces, which corresponds to looking at the limit μ → μc
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in the function Ẑn. In that limit, the contour can be divided into two re-
gions (see Fig. 5): region 1 corresponds to the parts of the contour which are
close to the pole (z̃i = 0) of F0,n, region 2 corresponds to the rest of the
contour.
The contour integral over region 2 remains finite (of order 1) when μ → μc.
As we may see in the following, on the contrary, the integral over region 1
diverges as μ → μc.
Region 1 is the part of the integral close to 0. Let us define:

z̃i = −
√

uc − u

√
u

L
ξi (5.54)

From the theorem of section 8 of [11], we have, in the limit μ → μc (and hence
z̃i → 0):

F0,n(S; z̃i) ∼
μ→μc

(uc − u)
5
2 (2−n)

(
uc

L2

u2
c − 4

6L
√

uc

)2−n

F0,n(S(3,2); ξi) (5.55)

where F0,n(S(3,2); ξi) are the invariants of the model (3,2). We see that this
quantity behaves like (uc − u)

5
2 (2−n), so, as n ≥ 3, it is divergent as μ → μc.

In order to get the dominant order in the large N limit, we may then focus
our attention on the region 1. In the variables ξi, we have to carry out the
integration over the contours C+, C− (see Fig. 6). C+ is going from +i∞ to
−i∞, with Re(ξi) > 0 ; C− is going from −i∞ to +i∞, with Re(ξi) < 0.

We look at the expansion in μc − μ, so we reexpress the square root as:

√

z̃2i +
u2

L2
=

√
u2

c

L2
+ (uc − u)

uc

L2
(ξ2i − 2) + O((uc − u)2) (5.56)

=
uc

L

√
1 +

uc − u

uc
(ξ2i − 2) + O((uc − u)2) (5.57)

=
uc

L
+

1
2

uc − u

L
(ξ2i − 2) + O((uc − u)2) (5.58)

We are also looking at a regime where Li

L → ∞ as μ → μc. From the previous
expansion, we see that the argument of the exponential contains Li

L (uc−u)(ξ2i −
2), which, at ξi fixed, remains of order 1 if Li

L ∼ (uc −u)−1 ∼ (μc −μ)− 1
2 . This

corresponds to a regime where Li

L ∼
√

N .

The function to integrate is odd, but C+ and C− have opposite orienta-
tions, so we can restrict to the integration over C+:
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Figure 6. Contour of the region 1 in the variable ξi

Ẑn(μ,L;Li)

∼
μ→μc

2n(uc − u)
5
2 (2−n)

(
uc

L2

u2
c − 4

6L
√

uc

)2−n 2
2iπ

∫ −i∞

+i∞
dξ1 . . .

2
2iπ

∫ −i∞

+i∞
dξn

n∏

i=1

euc
Li
L + 1

2
Li
L (uc−u)(ξ2

i −2)(uc − u)
u

L2

ξi
uc

L + 1
2

uc−u
L (ξ2i − 2)

× F0,n(S(3,2); ξi)(1 + O((uc − u)2))

∼
μ→μc

22n

(2iπ)n
(uc − u)5− 3

2n

(
u2

c − 4
6L

√
uc

)2−n (∫ −i∞

+i∞
dξ1 . . .

∫ −i∞

+i∞
dξn

)

n∏

i=1

euc
Li
L + 1

2
Li
L (uc−u)(ξ2

i −2) ξi
uc

L

F0,n(S(3,2); ξi)(1 + O(uc − u)) (5.59)

We carry out the change of variable ξi = iζi, and in the end:
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Ẑn(μ,L;Li)

∼
μ→μc

2n

inπn
(uc − u)5− 3

2n

(
u2

c − 4
6L

√
uc

)2−n
Ln

un
c

∫ −∞

+∞
idζ1 . . .

∫ −∞

+∞
idζn

n∏

i=1

eu
Li
L

n∏

j=1

e− 1
2

Lj
L (uc−u)ζ2

j iζjF0,n(S(3,2); iζj)(1 + O(uc − u))

∼
μ→μc

2n

inπn
(uc − u)5− 3

2n

(
u2

c − 4
6L

√
uc

)2−n
Ln

un
c

∫ +∞

−∞
dζ1 . . .

∫ +∞

−∞
dζn

n∏

i=1

eu
Li
L

n∏

j=1

e− 1
2

Lj
L (uc−u)ζ2

j ζjF0,n(S(3,2); iζj)(1 + O(uc − u)). (5.60)

The function F0,n being a polynomial in 1
ζj

, the result, as we shall see with Ẑ3

and Ẑ4, is expressible in terms of Gamma functions.

5.3.3. 3-Point Function and 4-Point Function in the Large N Limit. In the
(3,2) model, we have:

F0,3(S(3,2); ξ1, ξ2, ξ3) =
1

6ξ1ξ2ξ3
(5.61)

F0,4(S(3,2); ξ1, ξ2, ξ3, ξ4) = − 1
36ξ1ξ2ξ3ξ4

[
1 +

1
ξ21

+
1
ξ22

+
1
ξ23

+
1
ξ24

]
(5.62)

Applying the result of the previous section, we obtain:

Ẑ3(μ,L;Li) ∼
μ→μc

8
(

2
π

) 3
2 L4

u
5
2
c (u2

c − 4)
(uc − u)

1
2

3∏

i=1

euc
Li
L

√
Li

L (uc − u)
(5.63)

It may seem that this quantity is not divergent, but remember that, in the
exponentials, we have Li

L ∼ (uc − u)−1.
For the 4-point function:

Ẑ4(μ,L;Li) ∼
μ→μc

64
π2

L6

u3
c

1
(u2

c − 4)2
(uc − u)−1

×
(

1 +
4∑

i=1

Li

L
(uc − u)

)
4∏

i=1

euc
Li
L

√
Li

L (uc − u)

(5.64)

Here, the divergence is clear. We want to underline that the terms
∑

i
Li

L (uc−u)
are not subdominant, but of order 1, so we have to take them into account.

6. Conclusion

We showed that in the large N limit (number of vertices) the expectation
values (over the set of Strebel graphs with fixed perimeters and the Kont-
sevich measure) of all the topological observables (algebraic combinations of
the Chern classes) converge to the corresponding Liouville CFT amplitudes
at central charge c = 0, i.e., quantum gravity, equivalent to the (3,2) minimal
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model. In particular, we recovered the KPZ exponents. Moreover, we found
explicit expressions of all those amplitudes at finite N , as well as their explicit
asymptotics at N → ∞, in various regimes.

Our method could be easily generalized to genus one graphs, since all in-
tersection numbers of genus one are explicitly known, and generating functions
are also Bessel functions. The spectral curve methods works for all genera and
shows that the continuum limit tends to the (3,2) minimal model’s result for
all genera. It would be interesting to extend results in higher genus cases.
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Appendix A. Metric Associated with a Strebel Graph

To every Strebel graph is associated a unique metric.
As we mentioned in the first part, and as was proven by Strebel [20], Pen-
ner [18], Harer and Zagier [12], Kontsevich [14], the set of Strebel graphs
⊕G∈G0,N+3R

E(G)
+ is in bijection with M̃0,N+3. A point in M̃0,N+3 is a set

{z1, . . . , zN+3} of distinct complex numbers, with {z1, z2, z3} = {0, 1,∞},
along with N + 3 positive perimeters L1, . . . , LN+3. Let us define a mero-
morphic quadratic differential Ω(z) = f(z)dz2 with f(z) a rational function
having N + 2 double poles in zi, i = 1, 2, 4, . . . , N + 3, and behaving like
O(1/z2) near z3 = ∞. We hence impose the following behavior to f(z):

i �= 3 → f(z) =
z→zi

−L2
i

(z − zi)2
(1 + O(z − zi))

i = 3 → f(z) =
z→∞

−L2
3

z2
(1 + O(1/z)). (A.1)

The generic f is:

f(z) =
−1

∏
i�=3(z − zi)

⎛

⎝
∑

i�=2

L2
i

∏
j �=i,3(zi − zj)
z − zi

+ L2
3z

N + pN−1(z)

⎞

⎠ (A.2)

where pN−1 = polynomial of degree ≤ N − 1.
The level lines—called horizontal trajectories—of this differential are the

lines where

Im
(∫ x √

f(z)dz

)
= constant. (A.3)

Almost all the closed level lines are topological circles surrounding one or sev-
eral double poles. The other closed trajectories—called critical trajectories—
form a graph. The Strebel’s theorem ([20]) states that, to a point in M̃0,N+3
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corresponds a unique quadratic differential Ω—called the Strebel differential—
having the same behavior as defined in Eq. A.1, and such that the graph formed
by the critical trajectories is cellular on the surface: each face is a topological
disk and contains exactly one double pole.
The metric associated with a Strebel graph is then the flat metric :

gzz = gz̄z̄ = 0, gzz̄ = gz̄z =
1
2
f(z). (A.4)

The lengths �e of the Strebel graph edges are the lengths measured with the
metric g along the level lines joining the vertices of the graph.
The metric is flat on C\({z1, . . . , zN+3}∪{zeros of Ω}). Its curvature is a distri-
bution localized at the N + 3 poles zi (curvature 2π) and the 2N + 2 vertices
(curvature =−π), so that the total curvature is 4π = 2πχ with the Euler
characteristic χ = 2 − 2g = 2 for a genus zero surface.

The Riemann surface with N +3 punctures can be realized by N +3 semi-
infinite cylinders of respective perimeters L1, . . . , LN+3 glued to the graph
along their bases.

Appendix B. Explicit Computation of the One-Point Function

The one-point function fN

(
L, L1

L

)
can be computed in the same manner as

the volumes ZN .

fN

(
L,

L1

L

)

= ZN+3(L,L1)

= 2
+∞∑

d1=0

〈(
1
2

∑

d

L2d

2dd!
τd

)N+2
L2d1
1

2d1d1!
τd1

〉

0

=
2

2N+2

∑

d1,...,dN+3

L2(d2+···+dN+3)

2d2+···+dN+3d2! . . . dN+3!
L2d1
1

2d1d1!
〈τd1 . . . τdN+3〉0 (B.1)

Now,

〈τd1 . . . τdN+3〉0 =
N !

d1! . . . dN+3!
δ

(

N −
N+3∑

i=1

di

)

. (B.2)

So:

fN

(
L,

L1

L

)
=

N !L2N

2

∑

d1+...dN+3=N

1
22(d2+···+dN+3)

(
L1

2L

)2d1 1
(d1! . . . dN+3!)2

=
N !L2N

2
[z2N ]I0(z)N+2I0

(
z
L1

L

)

=
N !L2N

2
Res
z→0

dz

z1+2N
I0(z)N+2I0

(
z
L1

L

)

=
N !L2N

2
Res
z→0

dz

z
I0(z)2eN(ln I0(z)−2 ln z+ 1

N I0(zL1/L)). (B.3)
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