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Abstract

We construct four-center bubbled BPS solutions with a Gibbons-Hawking
base space. We give a systematic procedure to build scaling solutions:
starting from three-supertube configurations and using generalized spectral
flows and gauge transformations to extend to solutions with four Gibbons-
Hawking centers. This allows us to construct very large families of smooth
horizonless solutions that have the same charges and angular momentum as
supersymmetric black holes with a macroscopically large horizon area. Our
construction reveals that all scaling solutions with four Gibbons Hawking
centers have an angular momentum at around 99% of the cosmic censorship
bound. We give both an analytical and a numerical explanation for this
unexpected feature.
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1 Introduction
Multi-center BPS bubbling solutions brought about important breakthroughs in the un-
derstanding of the microstate geometries of black holes. In the context of the fuzzball
proposal (see [1–4] for reviews), they allow to understand the quantum structure of
black holes by resolving singularities of classical black hole solutions into smooth, hori-
zonless geometries. The main features of the geometries which replace the singularity
are topologically non-trivial cycles called “bubbles” maintained by fluxes.
The physics of bubbled geometries is highly constrained by certain regularity condi-
tions, known as the bubble equations, and the “no-CTC condition” [5, 6] which make
the charges, the angular momenta and the positions of the centers all interdependent.
Furthermore, to obtain horizonless microstate solutions with a black-hole-like throat,
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the bubbles need to “scale”, that is to say, to shrink in the R3 base of the Gibbons-
Hawking (GH) space [7, 8]. Consequently, it is important to investigate the relation
between charges, angular momenta and positions to understand the miscrostate ge-
ometries.
Bubbling BPS solutions with a Gibbons-Hawking base in five dimensions have been
meticulously studied since a few years. A very large class of microstate geometries of
supersymmetric black holes have been constructed from those solutions. The solutions
can be written in a M2-M2-M2 frame or in other duality frames such as D1-D5-P or
as D0-D4-F1 (for a review see [2]).
Finding specific examples of smooth horizonless multi-bubble solutions that have the
same charges as a large black hole is quite non-trivial. Indeed, most solutions one
can construct by putting fluxes on a multi-center Gibbons-Hawking base have angular
momenta larger than the black hole cosmic censorship bound and hence can not be
thought of as black hole microstate geometries. Trying to modify these fluxes to reduce
the angular momenta gives very often rise to closed timelike curves. This is why in
the literature, one can only find sparse specific examples of multi-center BPS solu-
tions [2, 7, 9, 10]. For example, one seven-center BPS three-charge black hole solution
was built in [7]. The solution is scaling and the angular momentum J is about 84% of
its maximal value. However, some distances between the centers are 1000 times bigger
than others.

In this article, we present a systematic construction and analysis of the largest
known family of scaling four-center smooth horizonless solutions that have the same
charges as large black holes. Our construction allows us to easily build scaling four-
center BPS solutions with any aspect ratios between the centers. We study the charges
and angular momentum of the solutions, as well as the entropy parameter, H, given
by

H ≡ Q1Q2Q3 − J2

Q1Q2Q3

. (1)

The entropy parameter H indicates how far is the solution from its corresponding max-
imally spinning black hole solution. Our first surprising result is that all our solutions
have a fine-tuned entropy parameter around 0.01. Several arguments lead us to the
idea that four Gibbons-Hawking center BPS solutions which do not have an entropy
parameter close to 0 are really rare. Moreover, we will show that when there is no
difference in scales between the inter-center distances, all BPS solutions with four GH
centers have an entropy parameter around 0,01.
The main advantage of BPS solutions with four GH centers is that they can be related
by spectral flows to three supertubes in Taub-NUT (TN). Indeed, three-supertube con-
structions in Taub-NUT are easier to analyze than general four-GH center solutions
and spectral flows are specific transformations which ensure that CTC are not intro-
duced. Consequently, one can mostly concentrate on three-supertube constructions.
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In Section two, we construct several classes of specific solutions with three supertubes
in TN. We give a systematic method to build examples of such scaling solutions. In
Section three, we use generalized spectral flow to construct bubbled BPS solutions with
four GH centers from the three-supertube solutions. We then illustrate our method by
constructing several classes of solutions with four GH centers. These solutions have an
angular momentum 99% of the cosmic censorship bound. In Section four, we present
a numerical and an analytical proof that all solutions with four GH centers and black
hole charges have such large angular momenta.

2 Particular solutions with three BPS supertubes in
Taub-NUT

2.1 Three-supertube BPS solutions in Taub-NUT

The notations and the results are taken from [9, 11]. We will recall the three-charge
solutions for a system of three supertubes in Taub-NUT. In M-theory, the three charges
correspond to three M2 branes wrapping three orthogonal 2-tori inside a 6-torus. The
eleven-dimensional metric is:

ds211 = − (Z1Z2Z3)
−2/3 (dt + k)2+(Z1Z2Z3)

1/3 ds24+(Z1Z2Z3)
1/3

3∑
I=1

dx2I + dy2I
ZI

, (2)

where dx2I + dy2I is the metric of the Ith 2-Torus and ds24 are the four-dimensional
Gibbons-Hawking metric with one Gibbons-Hawking center:

ds24 = V −1(dψ + A)2 + V
(
dx2 + dy2 + dz2

)
(3)

with
V = h +

q

r
, ~∇× ~A = ~∇V (4)

The solutions have a three-form potential A:

A =
3∑
I=1

A(I) ∧ dx2I ∧ dy2I . (5)

The one forms k and A(I) depend only on the four space coordinates transverse to the
6-Torus. The dipole field strengths Θ(I) are defined as:

Θ(I) ≡ dA(I) + d

(
dt + k

ZI

)
. (6)
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In order to have BPS solutions, the fields must satisfy the following equations [12,13],

Θ(I) = ?4Θ
(I)

∇̂2ZI =
1

2
CIJK ?4

(
Θ(J) ∧Θ(K)

)
dk + ?4dk = ZIΘ

(I).

(7)

The Hodge dual ?4 is the Hodge dual of the four-dimensional Gibbons-Hawking space,
and CIJK is the absolute value of the constant symmetric tensor.
We consider axisymmetric supertube configurations. The positions of the supertube
centers are given by the distances a1, a2 and a3 on the z-axis in the following order

a1 > a2 > a3 > 0. (8)

The BPS equations (7) allow to consider three types of two-charge supertubes.
Each supertube carries a dipole charge kI and two electric charges Q(I)

j at the points
j 6= I. Consequently, the dipole strengths Θ(I) and the scalar fields ZI are sourced by
harmonic functions which we call KI and LI

KI = αI +
kI
rI
.

L1 = 1 +
Q

(1)
2

4r2
+

Q
(1)
3

4r3
, L2 and L3 by permutation,

(9)

where rI is the distance to the Ith center

rI ≡
√
x2+y2+(z − aI)2. (10)

The complete solution for the warp factors is:

ZI = LI +
1

2
CIJK

KJKK

V

= 1 +
∑
J 6=I

Q
(I)
J

4rJ
+

CIJK
h+ q

r

(
kJkK
2rJrK

+
αJαK

2
+

αJkK
rK

)
,

(11)

and
k = µ (dψ+A) + ω, (12)

with
µ =

1

6
V −2CIJKK

IKJKK +
1

2
V −1KILI + M, (13)
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where M is another harmonic function which we will take to be

M = m∞ +
m0

r
+

3∑
j=1

mj

rj
, (14)

and ω is another vector which satisfies the following equation in the R3 base of TN:

~5× ω = V ~5µ − µ~5V − V
3∑
I=1

ZI ~5
(
KI

V

)
. (15)

Thus, µ is

µ =
1

V 2

(
k1k2k3
r1r2r3

+ α1α2α3 +
CIJK

2

(
αIkJkK
rJrK

+
αIαJkK
rK

))
+

CIJK
4V

(
αI +

kI
rI

)(
1 +

Q
(I)
J

4rJ
+

Q
(I)
K

4rK

)
+ M.

(16)

2.2 Bubble equations and regularity conditions

In addition to the BPS equations (7), the solutions must satisfy several regularity
conditions that we recall in this section. First, divergent terms along the ψ-fiber in
the metric must vanish. Second, closed timelike curves (CTC) must be absent. We
organize the harmonic functions in a symplectic vector H:

H =
(
H0, HI , HI , H0

)
≡
(
V,KI , LI , 2M

)
= ĥ +

3∑
j=0

Γj
rj
,

(17)

with

ĥ = (h, α1, α2, α3; 1, 1, 1, 2m∞) , Γ0 = (q, 0, 0, 0; 0, 0, 0, 2m0) , Γj =

(
0, kj;

1

4
Qj, 2mj

)
.

(18)
The conditions of regularity at the singularities rj→ 0 j = {0, 1, 2, 3} with r0 = r are
summed up by the following equations [6]:

3∑
J=0

〈ΓI ,ΓJ〉
rIJ

= −〈ΓI , ĥ〉 I={0, 1, 2, 3} , (19)

where 〈 , 〉 is a symplectic product defined as follows

〈A,B〉 = A0B8 − A8B0 + AIB8−I − A8−IBI . (20)
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Using the notation
ΓIJ = kIQ

(I)
J − kJQ

(J)
I , (21)

we obtain the following bubble equations

Γ12

r12
+

Γ13

r13
= 8m1

(
h+

q

a1

)
− 4k1 + Q

(2)
1 α2 + Q

(3)
1 α3

Γ21

r12
+

Γ23

r23
= 8m2

(
h+

q

a2

)
− 4k2 + Q

(1)
2 α1 + Q

(3)
2 α3

Γ32

r23
+

Γ31

r13
= 8m3

(
h+

q

a3

)
− 4k3 + Q

(1)
3 α1 + Q

(2)
3 α2

q

(
m∞ +

3∑
j=1

mj

aj

)
= m0h.

(22)

Furthermore, all the parameters inM are constrained to avoid Dirac strings at each
pole and to avoid divergences along the ψ-fiber [11]:

m1 =
Q

(2)
1 Q

(3)
1

32k1
, m2 =

Q
(1)
2 Q

(3)
2

32k2
, m3 =

Q
(2)
3 Q

(1)
3

32k3
,

m0 = 0, m∞ = −
3∑
j=1

mj

aj
.

(23)

Finally, the absence of CTCs is satisfied when the quartic invariant I4 is greater
than ω2 in the three-dimensional base space of the solution [14]:

I4 ≡ Z1Z2Z3V − µ2V 2 > ω2. (24)

2.3 Examples of solutions

The goal of this section is to construct several examples of supertube charges and dipole
charges such that the bubble equations have physical solutions. In particular, we will
focus on solutions with no difference in scales between the inter-center distances. We
know from [7] that the depth of the solution’s throat is inversely related to the distance
between the centers in R3. Thus, the centers must cluster to form a concentrated object
in order for the microstate geometry to look like a black hole when seen from large
distances. Several methods exist for constructing such solutions. In general solutions
scale when the centers move away from axisymmetry. However, to scale axisymmetric
solutions we will slightly change the value of the charges, as in [7].
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2.3.1 Specific choice of parameters and “scaling conditions”

We consider the following choice of charges and dipole charges inspired from the choice
made in [9]

k1 = k3 = − k2 = k > 0

Q
(2)
1 = Q

(2)
3 = α > 0

Q
(1)
3 = Q

(3)
2 = β > 0

Q
(1)
2 = Q

(3)
1 = γ > 0.

(25)

Finding an explicit scaling condition is crucial. Indeed, one can find many solutions
of the bubble equations which do not scale. However, one must be able to go to a scaling
limit to build a solution which looks like a black hole from far away.
For this purpose, we solve the bubble equations (22) by computing the charges for a
given cluster of supertubes infinitely close to the Gibbons Hawking center, that is to
say in the limit ai→ 0. So we consider an arbitrary arrangement of distances

aj = λ dj j={1, 2, 3} , (26)

with
λ � 1 , d1 > d2 > d3. (27)

We linearize the bubble equation (22) in powers of λ

1

λ

(
α + γ

d1 − d2
+

β − γ
d1 − d3

− q

4k2d1
αγ

)
=

h

4k2
αγ − 4 +

αα2 + γα3

k

1

λ

(
− α + γ

d1 − d2
− α + β

d2 − d3
+

q

4k2d2
βγ

)
= − h

4k2
αγ + 4 +

γα1 + βα3

k

1

λ

(
γ − β
d1 − d3

+
α + β

d2 − d3
− q

4k2d3
αβ

)
=

h

4k2
β2 − 4 +

βα1 + αα3

k
.

(28)

Consequently, the left-hand sides of the previous equations must be close to 0 if we
want λ to go to 0. With the specific choice of charges and dipole charges (25), analytic
solutions can be found

α =
4k2

q

a 3
2 a3 + a 2

1 a3 (2a2 − a3) + a1a2 (a 2
2 − 5a2a3 + 2a 2

3 )

a2 (a1 − a2) (a1 − a3) (a2 − a3)
+ O (λ)

β =
4k2

q

a 3
2 a3 + a 2

1 a3 (2a2 − a3) + a1a2 (a 2
2 − 5a2a3 + 2a 2

3 )

a1 (a1 − a2) (a2 − a3)2
+ O (λ)

γ =
4k2

q

a 3
2 a3 + a 2

1 a3 (2a2 − a3) + a1a2 (a 2
2 − 5a2a3 + 2a 2

3 )

a3 (a1 − a2)2 (a2 − a3)
+ O (λ) .

(29)
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The main difference between our solutions and the solutions in [9] is that the three
centers and the Gibbons-Hawking center are scaling together in our solutions, while
in [9] only supertubes were scaling. This will prove to be valuable when we construct
scaling solutions with four GH centers. Those formulas are useful to have an idea
about the values of charges we need to choose to obtain a particular scaling solution
with three supertubes in Taub-NUT. We apply those formulas in the next sections to
find specific examples of solutions with no difference in scales between the inter-center
distances.

2.3.2 Solutions with h = 0 and with no constant terms in all KI

Imposing h = 0 and q = 1 is principally motivated by having a Gibbons-Hawking
metric which looks like R4 at infinity. The first example of charges and dipole charges
is

h = 0

q = 1

k1 = k3 = − k2 = k = 100

Q
(2)
1 = Q

(2)
3 = α = 70 000

Q
(1)
3 = Q

(3)
2 = β = 100 000

Q
(1)
2 = Q

(3)
1 = γ = 233 333.

(30)

We solve numerically the bubble equations (22):

a1 = 8.46360 . . .×10−2 , a2 = 4.02091 . . .×10−2 , a3 = 1.80731 . . .×10−2. (31)

One can check straightforwardly by plotting the quartic invariant I4 and ω2 in the R3

space that the no-CTC condition (24) is satisfied.
We notice that many other different scaling solutions can be built from (24).

• Charges, angular momentum and entropy of the solution

We give also the charges and the angular momentum of the solution:

Q1 = Q3 =
293 333

4
Q2 = 45 000

J =
44 666 625

8
.

(32)

The Bekenstein-Hawking entropy of the corresponding black hole is then
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S = 2π
√
Q1Q2Q3 − J2 = 9.12309 . . .× 107. (33)

We compute the entropy parameter H which informs how far the charges of the
solution are from those of the corresponding maximally-spinning black hole.

H = 0.87 . . . . (34)

• Scaling solutions

Finally, we scale the solution. We fine-tune the values of the initial charges, we solve
the bubble equation, and then we check the absence of CTCs. The scaling process is
summed up in the following table:

Sol q k α β γ a1
a1
a2

a1
a3

1 1 100 70 000 100 000 233 333 8.46360× 10−2 2.10490 4.68298

2 1 100 70 000 100 000 233 333,3 8.46360× 10−3 2.10490 4.68298

3 1 100 70 000 100 000 233 333,33 8.46361× 10−4 2.10489 4.68298

4 1 100 70 000 100 000 233 333,333 8.46360× 10−5 2.10490 4.68298

5 1 100 70 000 100 000 233 333,33333 8.46360× 10−7 2.10490 4.68298

Therefore, when γ is converging towards a certain value, the supertube positions
shrink drastically. When the centers get closer and closer, the size of the throat gets
larger and larger as explained in [7] and depicted in Fig.1. Because a BPS black hole
has an infinite throat, the scaling process makes the bubbling solution get more and
more similar to a BPS black hole. We find a specific example of scaling microstate
geometry of three BPS supertubes in R4 corresponding to a BMPV microstate with
H = 0.87.

2.3.3 Solutions with h 6= 0

Adding a non-zero constant term in V will make the Gibbons-Hawking metric look like
R3 × S1 at infinity. Such a configuration will be convenient when spectral flows and
gauge transformations will be applied to reach general BPS solutions with four GH
centers. To cope with the constant term in V , constant terms in KI must be turned
on to satisfy the absence of the CTCs at infinity (24). We fix the constant terms as
follows:

α1 = −2hm∞

α2 = α3 = 0.
(35)

Indeed, such a choice ensures that
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Figure 1: A schematic description of a scaling geometry. The physical size of the
bubbles remains the same whereas the throat of the solutions deepens [7].

µ (∞) = 0

ZI (∞) = 1.
(36)

We choose the following values of charges and dipole charges as an illustration:

h = 1

q = 1

k1 = k3 = − k2 = k = 100

Q
(2)
1 = Q

(2)
3 = α = 70 000

Q
(1)
3 = Q

(3)
2 = β = 100 000

Q
(1)
2 = Q

(3)
1 = γ = 240 000.

(37)

The bubble equations (22) are solvable, the no-CTC condition is satisfied and the
three-center positions are

a1 = 3.04216 . . .×10−2 , a2 = 1.50188 . . .×10−2 , a3 = 6.69370 . . .×10−3. (38)

• Charges, angular momentum and entropy of the solution

The charges and angular momentum of the solution are :

Q1 = Q3 = 75 000

Q2 = 45 000

J = 5 687 500.

(39)
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The Bekenstein-Hawking entropy of the corresponding black hole solution is

S = 2π
√
Q1Q2Q3 − J2 = 9.33592 . . .× 107. (40)

Finally, the entropy parameter H is

H = 0.87 . . . . (41)

• Scaling solutions

As the previous section, we scale the solution by adjusting only the value of γ. The
scaling process is summed up in the following table:

Solutions γ a1
a1
a2

a1
a3

1 240 000 3.04216× 10−2 2.02557 4.54481

2 234 000 2.97358× 10−3 2.09593 4.66672

3 233 400 2.96688× 10−4 2.10405 4.68150

4 233 340 2.96621× 10−5 2.10481 4.68283

5 233 333,4 2.96614× 10−7 2.10490 4.68299

We find an example of scaling microstate geometry of three BPS supertubes with
one Gibbons-Hawking center in Taub-NUT. Furthermore, if we compare both tables
with h = 1 and with h = 0, the solutions are really similar to each other in the scaling
limit. So the constant terms of the harmonic functions are irrelevant in the scaling
limit.

3 Constructing BPS solutions with four Gibbons-Hawking
centers

3.1 Four-GH center bubbled solutions

In this chapter, we consider BPS bubbled solutions with four GH centers. Those
solutions can be entirely generated from the family of three-supertube solutions by
using three generalized spectral flows and three gauge transformations. The eleven-
dimensional metric is the same as (2). However, we consider a much more general set
of harmonic functions {V,KI , LI ,M}. Each function has poles at each GH center. We
use the following usual notations:

V = q∞ +
3∑
j=0

qj
rj
, M = m∞ +

3∑
j=0

mj

rj

KI = kI∞ +
3∑
j=0

kIj
rj
, LI = lI∞ +

3∑
j=0

lIj
rj
,

(42)
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r0, r1, r2 and r3 are the same distances as in the first section with r0 corresponding to
r. In this framework, the regularity constraints are

lIj = −1

2
CIJK

kJj k
K
j

qj
j ∈ {0, . . . , 3}

mj =
1

12
CIJK

kIjk
J
j k

K
j

q2j
j ∈ {0, . . . , 3}.

(43)

The equations (11) for the warp factors ZI , (13) for µ, (15) for ω, the bubble
equations (19) and the no-CTC condition (24) are still valid.

3.2 Spectral flows and gauge transformations

For BPS solutions, generalized spectral flows and gauge transformations are well-
understood [15,16]. They mix the harmonic functions leaving the bubble equations and
the entropy function invariant. Furthermore, they send the family of three-supertube
solutions to the family of solutions with four GH centers. The harmonic functions
{V,KI , Li,M} of BPS solutions transform under three gauge transformations param-
eterized by three constants gI as [17]:

V → V, KI → KI + gIV,

LI → LI − CIJK g
JKK − 1

2
CIJK g

JgKV,

M → M − 1

2
gILI +

1

4
CIJK g

IgJKK +
1

12
CIJK g

IgJgKV,

(44)

and under a family of generalized spectral flows parameterized by three constants
γI as [15]:

M → M, LI → LI − 2 γIM,

KI → KI − CIJK γ
JLK + CIJK γ

JγKM,

V → V + γIKI − 1

2
CIJK γ

IγJLK +
1

3
CIJK γ

IγJγKM.

(45)

3.3 One particular example of solutions

We start from the particular solution of three supertubes in Taub-NUT background of
section 2.3.3 with h 6= 0 and γ = 233 400. We perform three independent spectral
flows then three independent gauge transformations. To obtain physical solutions and
a Gibbons-Hawking metric which looks like R4 at infinity, the transformations are
constrained such that in the resulting solution:

• The constant term in V is 0.
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• The sum of all charges in V is 1.

• The charges in V are integers.

• The constant terms in all KI are 0.

• The values of the charges and dipole charges are rational [18].

To satisfy the conditions above, we first leave a non-zero constant term in V in order
to remove the constant terms in each KI with three gauge transformations. Then we
fix one spectral flow parameter to satisfy the second condition. The third condition
cannot be easily satisfied. So, we fix the two remaining spectral flow parameters to
have the closest values to integers. Afterwards, all six transformation parameters are
fixed. We remove by hand the constant term in V . Because the bubble equations
are changing significantly, we have to solve them accordingly. For this purpose, two
options exist :

• We solve the bubble equations by considering the positions of the centers as
variables and all the charges are fixed.

• We solve the bubble equation by considering the charges as variables and the
positions are fixed. In the scaling limit, one can see straightforwardly that an
infinitesimal change of three dipole charges (k10, k20 and k30 for instance) can anni-
hilate a change of order one on the right hand side of the bubble equations (19).
Consequently, one can find a solution to the bubble equations only perturbing
infinitesimally the values of the charges which ensures that no closed timelike
curves will appear.

In general, we apply the first method. However, when it was not possible to do, we
apply the second one.
At that point, the values of charges and dipole charges are real numbers with an infinite
number of digits. The last step is to round the values taking into account the neces-
sary regularity conditions (43). Once again, the solutions are not invariant, we have
to check that the bubble equations are still solvable and that the no-CTC condition is
still satisfied.
We present the result of applying the above procedures on the three-supertube config-
uration with h 6= 0 and γ = 233 400:

V =
1

r
+

1

r1
+

12

r2
− 13

r3

K1 = − 2087

10000

1

r
− 678089

1250

1

r1
+

55636379

10000

1

r2
+

3445309

2000

1

r3

K2 = − 491

2500

1

r
+

4712993

1250

1

r1
+

30306499

5000

1

r2
+

32175101

5000

1

r3

13



K3 =
1

10000

1

r
− 49939

10000

1

r1
− 311181

5000

1

r2
+

133657

2000

1

r3

L1 = 1 +
491

25000000

1

r
+

235362157427

12500000

1

r1
+

3143602221773

100000000

1

r2
+

4300427474357

130000000

1

r3

L2 = 1 +
2087

100000000

1

r
− 33863086571

12500000

1

r1
+

5770994684533

200000000

1

r2
+

460489665013

52000000

1

r3

L3 = 1 − 1024717

25000000

1

r
+

3195828710377

1562500

1

r1
− 1686143864527121

600000000

1

r2
+

110853165051209

130000000

1

r3

M = −115048645

10000
− 1024717

500000000000

1

r
+

159596489967517003

31250000000

1

r1

− 174898644635804679967

24000000000000

1

r2
+

14816301481249441313

6760000000000

1

r3
.

(46)

The bubble equations are solved by the following positions:

a1 = 2.67495 . . .×10−2 , a2 = 1.27076 . . .×10−2 , a3 = 5.70977 . . .×10−3. (47)

• Charges, angular momentum and entropy

The charges and angular momentum of the solution are:

Q1 =
99858458954459

1300000000

Q2 =
83964235108323

2600000000

Q3 =
856306630373655247

7800000000

J =
705272590995929898902049

1352000000000000
.

(48)

The Bekenstein-Hawking entropy of the corresponding black hole solution is

S = 9.12620 . . .× 107. (49)

Finally, the entropy parameter H is

H = 0.000775. (50)

The angular momentum is extremely close to the maximally spinning value. This is
not a coincidence and this is one of the key points of our paper. Picking random three-
supertube configuration also gives a near-maximally spinning solution after spectral
flows and gauge transformations. In order to prevent this, a very fine tuning between
the parameters of the three-supertube solution is required. The main reason is that
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the charges Q1, Q2 and Q3 strongly increase under spectral flows if all the conditions
imposed for V are satisfied. Consequently, the angular momentum is forced to reach
a value close to

√
Q1Q2Q3 to leave the entropy function invariant. This will be fully

described in section 4.

3.3.1 Scaling solutions

We check whether the new solution can still scale. We only change k12, but any other
KI coefficient would have worked. Furthermore, we take into account that any change
of k12 produces a change in the LI ’s charges and in M according to (43). We give the
steps in the following table:

Sol k12 a1
a1
a2

a1
a3

1 5563.6379 2.67494× 10−2 2.10499 4.68485

2 5562.9979 5.47309× 10−3 2.10489 4.68358

3 5562.8379 1.52860× 10−4 2.10487 4.68327

4 5562.83334 1.22654× 10−6 2.10486 4.68326

5 5562.822208 1.62447× 10−7 2.10487 4.68325

6 5562.8333032 2.83275× 10−9 2.10487 4.68325

7 5562.8333031 1.72517× 10−10 2.10486 4.68324

Thus, we built asymptotically R4 solutions with a shrinking cluster of four bubbled
GH centers with no difference in scales. These are microstates of a black hole with a
macroscopically large horizon. In the next section we investigate how systematic the
large J is.

4 Discussion

4.1 Solutions with four GH centers with no difference in scales
are necessarily near-maximally spinning

Understanding the impact of spectral flows on a cluster of three supertubes in Taub-
NUT by an analytical approach is complicated due to the number of parameters and
the complexity of the equations. However, by a numerical approach, it appears that
performing three constrained spectral flows on a three-supertube solution with no dif-
ference in scales between the inter-center distances (that is to say a3, a2−a3 and a1−a2
are of the same order of magnitude) will result in an entropy parameter extremely close
to 0. By “constrained spectral flows” one means that the resulting harmonic function
V must have integer charges whose sum is equal to one. We reached this conclusion
after having studied many different examples which have led to a value of H around
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0.01 each time. Insights of our approach are given in the next two sections and in
appendix A.

4.1.1 Numerical analysis

First, we investigate all the solutions with four GH centers where the centers scale as
follows:

a1 − a2
a3

≈ 1

a2 − a3
a3

≈ 1.
(51)

We would like to scan all the solutions of this kind, to compute their entropy parame-
ters, and to find out if they are indeed all of the order of 0.01.
Let us list all the free parameters. The starting configuration is a three-supertube solu-
tion with six positive charges Q(J)

I , three dipole charges kI and one Gibbons-Hawking
charge q. The constant terms do not enter in the formula for the entropy parameter
and hence are irrelevant. The scaling conditions fix three charges. Furthermore, we
notice that changes of q can be reabsorbed into changes of dipole charges. So without
loss of generality we can consider that q is equal to one. We can also restrict the sign
changes of dipole charges by symmetry. Then, all six parameters of the spectral flows
and the gauge transformations are constrained to cancel the constant terms in all KI

and to have a Gibbons-Hawking harmonic function of the form:

V =
1

r
− 2

r1
+

1

r2
− 1

r3
. (52)

This constitutes the best choice to maximize the value of the entropy parameter as
shown at the end of appendix A. The process to obtain such solutions is the same as
the one given in section 3.3. Finally, one needs to vary only three charge ratios, the
norms and some signs of the dipole charges to scan all the solutions satisfying (51) and
(52). We built a huge number of such four-center solutions using a loop algorithm.
We have computed their entropy parameter to establish the variation of the entropy
parameter as a function of the free parameters. We concluded that in any situation the
entropy parameter is at most of order of 0.01. Then, we extended to solutions which
do not necessarily satisfy (51) and (52). We observed the same feature. All the details
are presented in appendix A.

4.1.2 An analytical argument

We investigate the near-maximally spinning feature in the context of the specific choice
of charges and dipole charges made in 2.3.1. With this specific choice it is easier to
understand analytically why the conditions imposed to the spectral flows produce an
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important increase in the charges Q1, Q2 and Q3 which requires an increase in J to
leave the entropy invariant. We sum up how we proceed in the following steps:

• We express the charges α, β and γ using the scaling condition relation (29) to
reduce the number of independent parameters. We obtain approximations as
F
(
a1
a3
, a2
a3

)
4k2 for each charge where the F ’s are rational fractions.

• Assuming no difference in scales (for instance 1.2 a3 < 1.1 a2 < a1 < 10 a3)
allows to restrict the functions F

(
a1
a3
, a2
a3

)
to certain ranges of values for each

charge.

• We analytically express how Q1, Q2 and Q3 transform under three generalized
spectral flows one of which is fixed by requiring the sum of the charges in V to
be equal to one.

• For each domain of F
(
a1
a3
, a2
a3

)
we show numerically that if Q1, Q2 and Q3 do

not double after spectral flows, the spectral flow parameters must be in the same
order of magnitude as k

α
at most.

• Finally, by studying the transformation of V under spectral flows (45) in the
specific domains of parameters found above, this gives rise to a function V with
charges smaller than one which is non-physical.

With those two analyses, we conclude that any BPS bubbled scaling solution with four
GH centers with no difference in scales is necessarily near-maximally spinning.

By the same kind of arguments, if no assumption about the positions is made, building
a solution which is not a near-maximally spinning solution is also difficult but not
impossible [19].

5 Conclusion
We have built several examples of four-center BPS bubbled solutions. Starting with
three supertubes in Taub-NUT, we gave a systematic protocol and we built several
scaling solutions. Secondly, using generalized spectral flows we generated BPS solu-
tions with four Gibbons-Hawking centers. We gave a numerical protocol to obtain
such solutions from three-supertube scaling solutions and we built specific examples.
We reached one important conclusion: BPS solutions with four GH centers that do
not have an entropy parameter close to 0 are rare. Furthermore, when such solutions
have no difference in scales between the inter-center distances, they are necessarily
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near-maximally spinning.

There are several interesting directions for future research. The first is to find BPS
solutions with four GH centers which are not near-maximally spinning. We expect them
to display a difference in scales between the inter-center distances, as in the examples
built in [7]. Using algorithms to fine-tune the initial three-supertube parameters, one
can plan to find such solutions [19]. One can also investigate different four-center
constructions with one supertube and three Gibbons-Hawking centers. Those solutions
are smooth in the D1-D5-P duality frame and can be generated from three-supertube
solutions by two spectral flows. Thus, one may expect them not to necessarily be
near-maximally spinning solutions even when the centers have no difference in scale.
Secondly, one can extend our work to almost-BPS four-center solutions [20] following
the same ideas. Thirdly one can add non-Abelian hair to the solutions as it was
done in [21]. Finally, one can also investigate whether solutions with more than four
Gibbons-Hawking centers without difference in scale are also near-maximally spinning
and, more generally, how universal is the feature we found.
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A Numerical analysis of the entropy parameter of
four-GH center solutions

In this section, we detail how we scanned all the different values of the entropy parame-
ter we can get from scaling solutions with four Gibbons-Hawking centers. As explained
in section 4.1.1, we first scanned all the scaling solutions which satisfy

a1 − a2
a3

≈ 1

a2 − a3
a3

≈ 1

V =
1

r
− 2

r1
+

1

r2
− 1

r3
,

(53)

by varying the free parameters of the constructions: three charge ratios (Q
(1)
2

Q
(3)
1

, Q
(2)
3

Q
(2)
1

and
Q

(3)
2

Q
(1)
3

for instance) and the three dipole charges k1, k2 and k3. The graphs Fig.2 give the
variations of the entropy parameter according to three charge ratios from 0.1 to 4 with
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q, k1, −k2 and k3 equal to 1. Each graph has been built with 10000 scaling solutions
which are not necessarily CTC-free and the result has been interpolated and smoothed
for readability. Thus, it is important to point out that a point of one curve does not
necessarily correspond to a CTC-free solution with four GH centers. Nevertheless, any
CTC-free four-center solution meeting the conditions above has an entropy parameter
near or below the curve’s prediction.

In the domains studied, the entropy parameter is indeed of order 0.01. One also
has to check the regions where H increases. For this purpose, we have investigated
the evolution of the entropy parameter as a function of one of the charge ratios for a
larger range of values. We observed that the evolutions for any value of the two other
charge ratios are similar to the four evolutions shown in Fig.3 and that H is bounded
between 0 and 0.09. However it is important to point out that in the domains of very
large or very small charge ratios the solutions can possibly have closed timelike curves.
Indeed, if we want the four centers to scale in one block, the bubble equations (19)
imply that one supertube at least must have a negative dipole charge. Consequently, if
some charges are small compared to the value of the dipole charge, the warp factor (11)
of the corresponding supertube may be negative around other poles. Thus, the upper
bound 0.09 of the entropy parameter can be thought of as a generous upper bound for
CTC-free solutions.

Similarily, we studied the entropy parameter as a function of the dipole charges
and their signs. We found in all configurations the same kind of evolutions as in Fig.2.
Consequently, any entropy parameter of solutions with four Gibbons-Hawking centers
satisfying (51) and (52) are of the order of 0.01. The last step is to ensure that solutions
which do not satisfy (51) and (52) have the same property. The graph Fig.4 illustrates
that if the GH function V has higher charges the entropy parameter is getting closer
to 0. So the condition (52) gives the solutions which have the highest values of H. We
vary also the condition (51) taking into account that the inter-center distances must
remain of the same order. The graphs Fig.5 show that changing the aspect ratio a1

a2
does not produce a significant change of the entropy parameter.

This exhaustive numerical analysis shows that any solution with four GH centers
with no difference in scales is necessarily near-maximally spinning.
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Figure 2: The entropy parameter H as a function of the charge ratios with q, k1, −k2
and k3 equal to 1 equal to 1.
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Figure 3: The entropy parameter H as a function of one of the charge ratios with q,
k1, −k2 and k3 equal to 1.
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