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Abstract. We present a new derivation of the distance-dependent two-point function

for planar Eulerian triangulations and give expressions for more refined generating func-

tions where we also control hull perimeters. These results are obtained in the framework
of a new recursion relation for slice generating functions and extend similar results ob-

tained recently for triangulations and quadrangulations. A number of explicit formulas

are given for the statistics of hull perimeters in infinitely large random planar Eulerian
triangulations.

1. Introduction

The enumeration of planar maps, namely connected graphs embedded on the sphere, has
now become a classical field of investigation in combinatorics and probability theory. Among
all families of maps, some are particularly simple and may serve as paradigms to test general
ideas in the domain. This is the case of planar triangulations (i.e. maps whose all faces have
degree 3) or planar quadrangulations (all faces have degree 4), whose study gave rise to a
lot of explicit results of all kinds, including many formulas for quite involved combinatorial
quantities.

Another fundamental family of maps is that of planar Eulerian triangulations which, so
to say, consists of triangulations whose faces are colored alternatively in black and white.
What makes this family particularly interesting is that maps with bi-colored faces provide
in fact a more general framework in which many of the results for uncolored maps can be
extended1 (see for instance [4]). Eulerian triangulations constitute the simplest family in this
larger set and their study also led to a number of explicit results. Eulerian triangulations are
also dual of so-called bicubic maps, as first studied in [14], and correspond to the simplest
realization of so-called 3-constellations [2].

Among the quantities amenable to an explicit formula is the so-called distance-dependent
two-point function which enumerates the maps at hand with a prescribed value of the graph
distance between two (randomly chosen) marked vertices. This two-point function can be
given a particularly simple and elegant expression, both for triangulations and quadrangu-
lations [3, 5], but also for Eulerian triangulations [3, 1] provided, in this latter case, the
distances are measured along oriented paths on the map (see below for a precise definition).

Quite recently, a new approach was proposed to compute the distance-dependent two-
point function, based on a direct decomposition of the underlying maps. This approach was
first implemented for triangulations in [10], then for quadrangulations in [9]. It takes the form
of a recursion relation for the generating function of so-called slices, which are obtained by
cutting and opening the maps at hand along some particular geodesic path. One advantage
of the method is that it not only controls the distance between the two marked vertices on
the map, but also controls the associated hull perimeter at distance d which, so to say, is the
length of the closed curve separating the two marked vertices and lying at a fixed distance
d from the first vertex (see [13, 12, 7, 6, 11]). A number of new results on the statistics of
hull perimeters, depending on both the distance between the two marked vertices and the

1Uncolored maps may in fact be viewed as a particular case of maps with bi-colored faces by inflating
their edges into faces of degree 2 and coloring these new faces in black, the original faces being white.
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distance d at which the perimeters are measured, were therefore obtained in [11], where a
particular emphasis was put on the limit of infinitely large maps.

The purpose of this paper is to extend the approach of [10, 9] to the case of planar Eulerian
triangulations, so as to again provide a new, more direct and constructive derivation of their
distance-dependent two-point function and, in a second step, to compute some statistical
properties of their hull perimeters.

The paper is organized as follows: Section 2 recalls a number of basic definitions about
Eulerian triangulations (Section 2.1) and discusses the connection between the distance-
dependent two-point function and the generating function of slices (Section 2.2). We then
remind the reader of a classical relation satisfied by these slice generating functions (Section
2.3), whose derivation is recalled in Appendix A. Section 3 explains how slices may be
decomposed in a recursive way similar to that of [9] (Section 3.1) and discusses the resulting
recursion relation for slice generating functions as well as the particular form of its kernel K
(Section 3.2). This kernel itself involves a particular generating function Φ, which enumerates
maps with a boundary and with a number of forbidden boundary-boundary connections
(Section 3.3). The explicit computation of Φ is presented in Section 4, where we first explain
how to write a closed system involving Φ and another similar generating function Ω (Section
4.1) and then show how to solve this system (Section 4.2). The explicit knowledge of Φ allows
us to rewrite our recursion relation in a form which can then be solved in a straightforward
way (Section 4.3). This eventually allows us to get the desired explicit expression for the
distance-dependent two-point function of planar Eulerian triangulations. Section 5 is devoted
to a study of the hull perimeter statistics. After some basic definition (Section 5.1), we
derive an explicit formula for a particular generating function which generalizes the two-point
function and offers some additional control on hull perimeters (Section 5.2). We finally use
this expression to obtain a number of explicit results on the statistics of hull perimeters in
the limit of large planar Eulerian triangulations (Section 5.3). We gather a few concluding
remarks in Section 6.

2. Eulerian triangulations, two-point function and slices

2.1. Eulerian triangulations: basic facts. A planar Eulerian triangulation is a planar
map whose all faces have degree 3 and are colored in black or white in such a way that any
edge of the map is incident to a face of each color. Edges in a planar Eulerian triangulation
are naturally oriented by demanding that the face on their left be black. Otherwise stated,
edges are oriented counterclockwise around black faces and clockwise around white faces.

It is easily seen that the length of any oriented cycle in the map is a multiple of 3 so that
we may assign colors 0, 1 or 2 to the vertices in such a way that the color increases by 1
mod 3 when we follow an oriented edge. In other words, the colors appear cyclically in the
order 0→ 1→ 2 counterclockwise around black faces and clockwise around white faces2. It
is also easily seen that any two vertices are accessible from one another by following some
oriented path.

A planar Eulerian triangulation is pointed if it has a marked vertex v0, called the origin.
To each vertex v of the map, we may then assign its “oriented distance” d(v) (later called
“distance” for short) defined as the length of any shortest oriented path from v0 to v. An
oriented edge of the map is said of type (`, `′) if it points from a vertex v with d(v) = ` to a
vertex v′ with d(v′) = `′. Clearly, if we give the color 0 to the origin v0, the distance d(v) of
any vertex v satisfies d(v) = c(v) mod 3. In particular, the distance of vertices increases by
1 mod 3 when we follow an oriented edge. Since distances around a face vary by at most 2,
oriented edge come in two flavors only: short-edges of type (`, ` + 1) or long-edges of type
(`+ 2, `), for some ` ≥ 0.

Any face in the map is incident to exactly one long-edge and two short-edges of type
(` + 2, `), (`, ` + 1) and (` + 1, ` + 2) respectively, for some ` ≥ 0: the three edges appear

2The assignment of colors is moreover unique, up to a global cyclic permutation.
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`+1 `+2

` `+1

Figure 1. The configuration of distances at the vertices around two adja-
cent white and black (represented here in gray) faces sharing a long-edge.
The two faces are of the same type `.

in this order counterclockwise around the face if it is black and clockwise if it is white.
Such faces will be refereed to as black and white faces of type `. In particular, any long-
edge (` + 2, `) separates a black and a white face of the same type ` 3 (see figure 1). As a
consequence, a pointed planar Eulerian triangulation has the same number of black faces
and white faces, which is also its number of long-edges. Note finally that erasing all its
long-edges provides a canonical way to transform a pointed planar Eulerian triangulation
into a particular pointed planar quadrangulation, i.e. a map whose all faces have degree 4 4.

2.2. Two-point function and slice generating function. In this paper, we adopt a
simple definition of the distance-dependent two-point function Gk ≡ Gk(g) as the generating
function of pointed planar Eulerian triangulations with a marked oriented edge of type (k −
1, k) for some k ≥ 1, enumerated with a weight g per white face (recall that the number of
white faces is also that of black faces as well as that of long-edges). In other words, maps
enumerated by Gk are endowed with two marked vertices at oriented distance k from one
another, the origin v0 of the map and the endpoint v1 of the marked edge, but the data of
these two vertices is supplemented by the precise choice of the marked edge itself, i.e. by the
data of some particular marked oriented edge pointing towards v1 and whose first extremity
lies at distance k − 1 from v0 (note that such an oriented edge always exists for any v1 at
distance k from v0). This definition is intended to eventually lead to a simple expression for
the two-point function Gk.

The maps enumerated by Gk may be transformed into so-called k-slices by a simple
(reversible) cutting procedure (see figure 2 for an illustration). The transformation is as
follows: starting from the endpoint v1 of the marked edge (at distance k from the origin
v0), we first follow the marked edge backwards to its other extremity (at distance k − 1),
then follow the leftmost edge leading backwards to a vertex at distance k − 2 and continue
the process by following backwards leftmost edges to vertices at distances k − 3, k − 4, · · ·
until we eventually reach the origin v0. The followed path constitutes what we may call the
leftmost backward shortest path from v1 to v0. Cutting the map along this path and opening
it results into is a particular planar map, which we call a k-slice, fully characterized by the
following properties (see figure 2):

(s1) A k-slice is a planar rooted map, i.e. a map with a marked oriented edge, later
called the base, and whose outer face, i.e. the face lying on the left of the base, has
degree 2k. The boundary of this outer face is moreover a simple closed curve (which
corresponds, after cutting of the original Eulerian map enumerated by Gk, to two
copies of the leftmost backward shortest path) made of three parts parts: (i) the

3This is not necessarily true for a short-edge which may separate black and white faces whose types differ
by 1.

4Not all pointed planar quadrangulations however are images of pointed Eulerian triangulations by this
transformation.
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Figure 2. In the frame: a schematic picture of the transformation
from a pointed planar Eulerian triangulation (here represented on the 2-
dimensional sphere, the light-blue background being supposedly filled with
black and white faces) with a marked oriented edge of type (k− 1, k) into a
k-slice by cutting along the leftmost backward shortest path (in green) from
the endpoint v1 of the marked oriented edge (red segment) to the origin v0
(red dot). The obtained slit is then opened so as to form the outer face
of the slice. The origin v0 becomes the apex of the k-slice and the marked
oriented edge its base. On the right: a more detailed example of a k-slice
where we now represented the black and white faces and the orientation of
edges.

base itself (which corresponds to the marked oriented edge of type (k − 1, k) in the
original Eulerian map), (ii) a left boundary made of k oriented edges leading from
an apex v0 (which corresponds to the origin in the original Eulerian map) to the
endpoint v1 of the base and (iii) a right boundary made of k − 1 oriented edges
leading from v0 to the first extremity of the base5.

(s2) The inner faces, i.e. the faces other than that the outer face, all have degree 3 and
form what we call the bulk of the k-slice. These faces are colored in black and white
so that any inner edge (i.e. an edge incident to inner faces only) is incident to one
face of each color. As before, these edges are oriented with their black incident face
on the left. As for the (already oriented) edges incident to the outer face, those of
the left boundary are incident to black inner faces only on their left while the root
edge and the edges of the right boundary are incident to white inner faces only on
their right.

5The “left” and “right” denominations for the boundaries correspond to the usual terminology which,
regardless of orientations, refers to the position of the boundaries with respect to the bulk of the slice in
a picture where the latter is represented with its base at the bottom, as in figure 2. As an oriented path
however, the left (respectively right) boundary is on the right (respectively on the left) of the bulk of the
slice, i.e. it has the bulk on its left (respectively on its right).
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(s3) The left boundary of the k-slice is a shortest oriented path from v0 to v1 within the
k-slice. The right boundary of the k-slice is the unique shortest path from v0 to the
origin of the root edge within the k-slice.

This last property is a direct consequence of our choice of cutting along the leftmost backward
shortest path. The above properties (s1)–(s3) define what we call k-slices. For convenience,
the ”single-edge-map”, i.e. the map reduced to a single edge oriented from v0 to v1 and an
outer face of degree 2 is considered a 1-slice.

Clearly, our cutting procedure transforms any pointed planar Eulerian triangulation enu-
merated by Gk into a k-slice. Conversely, any k-slice but the single-edge-map encodes a
particular map enumerated by Gk, the latter being easily obtained by re-gluing the left
boundary of the slice (of length k) to the right boundary supplemented by the base (of total
length k − 1 + 1 = k). Clearly, all the faces, vertices and edges of the original Eulerian tri-
angulation are recovered in the k-slices (the vertices and edges along the leftmost backward
shortest path appearing twice in the slice) and the oriented distance d(v) from the origin v0
to some vertex v in the original Eulerian triangulation is simply identified as the oriented
distance from the apex v0 to the corresponding vertex in the k-slice. In particular, each
inner face in the k-slice is, as before, a black or a white face of type `, i.e. incident to exactly
one long-edge and two short-edges of type (`+ 2, `), (`, `+ 1) and (`+ 1, `+ 2) respectively,
for some ` ≥ 0.

We call Rk = Rk(g) (k ≥ 1) the generating function of `-slices with 1 ≤ ` ≤ k, enumerated
with a weight g per inner face. Note that the ”single-edge-map”, which has no inner face,
contributes a term 1 to Rk for all k ≥ 1. From the above transformation, we have the

correspondence Rk = 1 +
∑k
`=1G` (with a first term 1 corresponding to the contribution of

the single-edge-map) or, by inversion

Gk = Rk −Rk−1 − δk,1 ,
with the convention R0 = 0. Computing the distance-dependent two-point function Gk
of planar Eulerian triangulation therefore reduces to computing the corresponding k-slice
generating function Rk.

2.3. A classical relation for slice generating functions. The question of computing
Rk in the context of planar Eulerian triangulations was first addressed in [3], where it was
shown that Rk satisfies the following relation:

(1) Rk = 1 + g Rk(Rk+1 +Rk−1)

for k ≥ 1, with R0 = 0. This relation follows from a simple decomposition of k-slices into
appropriate sub-slices and its derivation is recalled in Appendix A below. Note that it fixes
all the Rk’s order by order in g by demanding that Rk = 1 +O(g) for all k ≥ 1, as required
by the definition of Rk. At this stage, it is important to notice that the explicit form of
Rk given in [3] was not derived strictly speaking from the relation itself but was simply
the result of some educated guess (the solution being unique, it is enough to check that the
proposed guess actually solves the equation and satisfies the small g expansion requirement).
In this respect, the approach of [3] is not fully satisfactory. Later, the expression of Rk was
recovered, now in a constructive way, in [1], where it was shown that the Rk’s are coefficients
in a particular multi-continued fraction expansion for some more global generating function.

In the next Section of this paper, we will present a new constructive approach to compute
Rk, based on a more direct recursive relation linking Rk to Rk−1. By a slight refinement,
the method will then allow us to explore properties of hull perimeters in planar Eulerian
triangulations.

When k → ∞, Rk tends to a limit R∞ which is the generating function of `-slices with
arbitrary ` ≥ 1. From (1), R∞ is determined by the equation

R∞ = 1 + 2g R2
∞ ,
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Figure 3. A schematic picture of a bundle (the orange background is sup-
posedly filled with black and white faces). The generating function for
bundles is R1.

with the requirement that R∞ = 1 +O(g), hence

R∞ =
1−√1− 8g

4g
.

Finally, for k = 1, R1 enumerates 1-slices, i.e. slices for which the apex is identical to the
first extremity of the base. This corresponds to maps with a boundary of length 2 which,
when the map is not reduced to the single-edge-map, are formed of two distinct edges both
pointing from the first extremity of the base to its endpoint (see figure 3 for an illustration)
and a number of black or white inner faces in-between. Such maps with a boundary of length
2 we be called bundles in the following.

3. A new direct recursion relation for slice generating functions

We now come to the main point of this paper, namely the derivation of a new recursion
relation for Rk, or, more precisely, for

Tk ≡ Rk −R1 ,

k ≥ 1, which is the generating function for `-slices with 2 ≤ ` ≤ k (note that, in particular,
T1 = 0). At this stage, we simply adapt to our problem of Eulerian triangulations a con-
struction developed in [9] for quadrangulations. As in [9], the recursion relation takes the
form

(2) Tk =
R2

1(Tk−1 +R1) Φ(Tk−1)

1−R1(Tk−1 +R1) Φ(Tk−1)
, Φ(T ) ≡ Φ(T, g) =

∑

i≥2
h2i(g)T i−2 ,

where h2i(g), i ≥ 2 enumerate particular maps whose definition is detailed below. This
relation is the result of some splitting of the `-slices into various domains upon cutting along
particular paths, as we describe now.

3.1. The slice decomposition. Our decomposition is similar to that of [9]. We start with
an `-slice with 2 ≤ ` ≤ k, as enumerated by Tk, and select on the slice some particular
dividing line defined as follows: assuming ` ≥ 3, we look at the white face on the right of the
(unique) oriented right-boundary edge of type (`− 3, `− 2). A priori, the long-edge incident
to this face either starts from the right-boundary vertex y0 at distance `− 2 or ends at the
right-boundary vertex w1 at distance ` − 3 (see figure 4 for an illustration). However, it is
easily seen that this long-edge cannot start from y0 as otherwise, the white face would be
of type ` − 4 (requiring in particular ` ≥ 4), and so would be the black face on the left of
the long-edge. This would imply that y0 is adjacent, via an edge in the bulk, to a vertex
w2 at distance ` − 3 from the apex (see figure 4), in contradiction with (s3) which states
that the right boundary of the `-slice is the unique shortest path between the apex and the
first extremity x0 of the base. The long-edge therefore ends at w1 and starts at a vertex
w2 at distance ` − 1 from the apex. The white face is therefore of type ` − 3 and so is the
black face on the other side of the long-edge. This black face, incident to w1 and w2, is
therefore also incident to a third vertex w3 at distance `− 2. Note that w3 cannot be equal
to y0 as otherwise, the edge from w1 to w3 would connect w1 to y0 within the bulk and
create a second shortest path between the apex and the first extremity x0 of the base, in
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` ≤ k `−1

`−3

`−2
`−1

`−2

w2

y0
w3

x0

w1 `−3

`−2
`−3

`−4

w2

y0

w3

w1

Figure 4. Configuration of distances in the vicinity of the right-boundary
vertex y0 at distance `−2 from the apex in an `-slice enumerated by Tk (see
text – the light-blue background is supposedly filled with black and white
faces). The configuration displayed on the right is forbidden.

contradiction with (s3). As for w2, since it is adjacent to w3, it cannot be equal to the first
extremity x0 of the base since, because of (s3), x0 cannot be adjacent to a vertex at distance
`− 2 and different from y0. We thus have a two-step path (i.e. a sequence of two consecutive
edges) y0 → w2 → w3 starting from y0 satisfying d(w2) = ` − 1 and d(w3) = ` − 2 with
w2 6= x0 and w3 6= y0. We may now pick the leftmost such two-step path y0 → x1 → y1
starting from y0, where d(x1) = `− 1 and d(y1) = `− 2 with x1 6= x0 and y1 6= y0.

This construction may be repeated as follows: we first draw the leftmost backward shortest
path from x1 to the apex, taking the (backwards oriented) edge x1 → y1 as first step. This
path serves as a right boundary for the part of the slice lying in-between the path itself and
the left boundary of the slice and is the unique shortest path from the apex to x1 in this
domain. We again pick the leftmost two-step path y1 → x2 → y2 starting from y1, where
d(x2) = `− 1 and d(y2) = `− 2 with x2 6= x1 and y2 6= y1 (that such a path exists is proved
by exactly the same arguments as above). Continuing the process, it is easily shown that
the obtained path x0 → y0 → x1 → y1 → x2 → y2 → x3 → y3 · · · cannot form loops (see
[9] for a detailed argument) and is a simple path which eventually ends by reaching the left
boundary after p steps, either at the (unique) left-boundary vertex xp at distance `− 1 from
the apex or at the (unique) left-boundary vertex yp at distance ` − 2 (see figure 6 for an
illustration). As in [9], we will call this path the dividing line, as it separates the slice into
two domains: an upper part containing the apex and a lower part containing the base. By
construction the dividing line, of length 2p + 1, satisfies the following two properties (see
figure 5 for an illustration):

(d1) Two vertices of the dividing line cannot be linked by an edge lying strictly in the
lower part6.

(d2) Two distinct vertices ym and yn (n 6= m) of the dividing line, lying at distance `− 2
from the apex, cannot have a common neighbor strictly in the lower part.

6Note that this property is non-trivial only if the two vertices are at respective distances `− 1 and `− 2
as otherwise, having a direct edge between them is already trivially forbidden by congruence.
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` ≤ k

`−1

ym

y0

x0

yp

yn

`−2

`−1

`−2

(d1)(d2)
××

Figure 5. An illustration of the two constraints of properties (d1) and (d2)
fulfilled by the dividing line (see text).

Both properties follow from the fact that, in the construction of the dividing line, we always
picked the leftmost two-step paths ym → xm+1 → ym+1. Note that two vertices xm and xn
of the dividing line, lying now at distance `−1 from the apex, may have a common neighbor
strictly below the line (this common neighbor is then at distance ` and this does not lead to
any contradiction).

If ` = 2, y0 coincides with the apex of the slice and belongs already to the left boundary:
the dividing line is therefore reduced to the backward edge x0 → y0, hence, in particular,
has p = 0.

For ` ≥ 3, we now decompose the `-slice by cutting it along the dividing line as well as
along the leftmost backward shortest paths from all the vertices xm to the apex (taking the
backward oriented edge xm → ym as first edge) for m = 1 to p − 1 (note that the leftmost
backward shortest path which starts from the edge xp → yp sticks to the left boundary and
needs not being cut). This cutting results into p domains in the upper part of the slice and
one domain in the lower part (see figure 6). The p domains of the upper part are easily
recognized as being `m-slices with 2 ≤ `m ≤ `− 1 hence, for arbitrary ` ≤ k, each of this p
domains is enumerated by Tk−1. As for the lower part, it is enumerated by some generating
function Kp which does not depend on ` and will be discussed below. We deduce the relation

(3) Tk = K(Tk−1) , K(T ) ≡
∑

p≥0
Kp T p ,

where the generating function Kp of the lower part and the corresponding kernel K(T ) will
be computed in the next Section.

As a final remark, let us note that an equivalent way to obtain the above cutting lines
consists in first transforming our `-slice into a particular slice with inner faces of degree 4 only,
as those considered in [9] and then applying on this new slice the decomposition described
in [9] in this context of 4-valent inner faces. As explained above, the transformation from
3-valent to 4-valent faces is achieved canonically by simply erasing all the long-edges of the
original `-slice. The reader is invited to verify that this alternative way of decomposing our
`-slices matches precisely that of the present approach.

3.2. The generating function Kp and the kernel K(T ). We now come to the generating
function Kp for the lower part of the `-slice, i.e. the domain lying on the same side of the
dividing line as the endpoint v1 of the base. This vertex, at distance ` from the apex, is
connected in general to a number of vertices xm1 , xm2 , · · · of the dividing line at distance
` − 1. This includes in particular the vertex x0 as well as the vertex xp when the dividing
line precisely hits the left boundary at xp

7 (see figure 7-(a)). The connection from v1 to such

7A connection from v1 to xp may also be present when the dividing line hits the left boundary at yp but

it is not mandatory in this case.
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` ≤ k `−1

`−2
`−1

x1
y0y1

x0

x2
y2

yp

xp

`−2

Tk−1

Kp

yp

xp

`−2

or

Figure 6. A schematic picture of the construction of the dividing line (in
red) in an `-slice enumerated by Tk (the light-blue background is supposedly
filled with black and white faces). Vertices along the dividing line, of total
length 2p+ 1, alternate between vertices xm at distance `− 1 (open circles)
and vertices ym′ at ` − 2 (filled circles). The dividing line hits the left
boundary either at xp (distance ` − 1) or at yp (distance ` − 2). Drawing
leftmost backward shortest paths from the vertices xm to the apex, we
see that to each two-step path ym−1 → xm → ym of the dividing line is
associated a sub-slice (with base ym−1 → xm) in the upper part. Each of
these sub-slices is enumerated by Tk−1 while the lower part is enumerated
by Kp.

a vertex xmj is performed in general by several backward oriented edges and the part of the
map in-between the leftmost and rightmost such edges forms what we called a bundle, as
represented in figure 3 (recall that bundles are enumerated by R1). Similarly, the vertex v1
may also in general be connected to a number of vertices ym1

, ym2
, · · · of the dividing line

at distance `− 2 by backward oriented two-step paths passing via some intermediate vertex
at distance ` − 1 lying strictly in the lower part8. This includes in particular the vertex yp
when the dividing line hits the left boundary at yp (see figure 7-(b)). The connection to
such a vertex ymj passing through a fixed intermediate vertex z is performed in general by
several backward oriented edges from v1 to z and by several backward oriented edges from z
to ymj

. The leftmost and rightmost such edges to and from the intermediate vertex delimit
a part of the map which now forms a pair of bundles. Note also that several intermediate
vertices z1, z2, · · · may exist for a given ymj

, each giving rise to its own pair of bundles.
Cutting out all the bundles from v1 to some xmj and pairs of bundles from v1 to ymj′

leaves us with a number N ≥ 1 of intermediate domains which are rooted maps whose outer

8Here we discard possible connections to some ym via a backward oriented two-step paths having xm−1

as intermediate vertex.
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` ≤ k `−1

x1 y0

x0

yp xp

h2(q1+2)

h2(q3+2)

h2(q2+1)

q1q3 q2︷︸︸︷ ︷︸︸︷︷︸︸︷

v1

` ≤ k `−1

x1 y0

x0

yp

xp
h2(q1+2)

h2(q3+1) h2(q2+1)

q1q3 q2︷︸︸︷ ︷︸︸︷︷︸︸︷

v1

(a)

(b)

Figure 7. A Schematic picture of the decomposition of the part of the slice
lying below the dividing line, obtained by marking all the bundles or pairs
of bundles connecting the endpoint v1 of the base to vertices of the dividing
line (see text - the light-blue and orange backgrounds are supposedly filled
with black and white faces). Here we have 3 intermediate domains with
q1 = 2, q2 = 2 and q3 = 1.

face has a boundary which is a simple closed curve of length 2i ≥ 4. As displayed in figure
7, this boundary is formed of v1, of vertices of the dividing line and of intermediate vertices,
connected by successive edges which are either part of the dividing line or lie on the boundary
of the bundles: by convention, the edge towards v1 clockwise around the domain serves as
root for the corresponding map. A precise characterization of these maps describing the
intermediate domains will be given below. At this stage, it is enough to mention that they
are all described by the same internal constraints and are fully characterized by the length
2i of their boundary. We will denote by h2i ≡ h2i(g) their generating function for a fixed
boundary length 2i ≥ 4.

To compute Kp, we note that the p domains in the upper part, which are (k − 1)-slices,
are naturally associated with the p edges ym−1 → xm, m = 1, · · · , p, which serve as bases
for these slices. The n-th intermediate domain (1 ≤ n ≤ N) has on its boundary a number
qn of such edges and it is easily seen (see figure 7 – see also [9] for a more detailed argument)
that the boundary of this domain is then of length:

- 2(qn + 1) if the left9 boundary of the domain is incident to a single bundle;
- 2(qn + 2) if the left boundary of the domain is incident to a pair of bundles.

Note in particular that this length does not depend on whether the right boundary of the
domain is incident to a single bundle or to a pair of bundles. Note also that qn is necessarily
at least 1 if the left boundary of the domain is incident to a single bundle but that it can be

9By “left” and “right”, we refer here to the position of the boundary in a representation like in figure 7,
with the base at the bottom.
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×
×

×

×

(c4)

(c1)

(c3)

(c2)

h2i

Figure 8. A schematic picture of a map enumerated by h2i indicating the
edge connections forbidden by the constraints (c1)-(c4) of the text. The
length of the boundary of the map is 2i (the light-blue background is sup-
posedly filled with black and white faces).

any non-negative integer if the left boundary of the domain is incident to a pair of bundles10.
Summing over all possible configurations of bundles and pairs of bundles, we immediately
deduce

Kp = R1

∑

N≥1

∑

q1,q2,··· ,qN≥0
q1+q2+···+qN=p

N∏

n=1

(
R1 h2(qn+1) +R2

1 h2(qn+2)

)

where we take the convention h2 = 0 to suppress the contribution qn = 0 in the first term
of each factor. Here we decided to attach to the n-th intermediate domain the weight R1

of the incident single bundle or that, R2
1, of the incident pair of bundles on its left. Note

finally the presence of the prefactor R1 corresponding to the bundle linking v1 to x0 which
does not lie to the left of any intermediate domain. Summing over p ≥ 0, we deduce

(4)

K(T ) ≡
∑

p≥0
KpT p = R1

∑

N≥1


∑

q≥0

(
R1h2(q+1) +R2

1 h2(q+2)

)
T q



N

= R1

∑

N≥1
(R1 (T +R1) Φ(T ))

N

=
R2

1(T +R1) Φ(T )

1−R1(T +R1) Φ(T )
, Φ(T ) ≡

∑

i≥2
h2i T

i−2

(recall that h2 = 0). This and (3) explain the announced form (2) of our recursion for Tk.

3.3. The generating function h2i and the function Φ(T ). To compute Φ(T ), we first
need to characterize the domains enumerated by h2i for i ≥ 2. As already mentioned, these
domains are rooted maps whose outer face has a boundary which is a simple closed curve of
length 2i. The inner faces of the maps all have degree 3 and are colored in black and white
so that each edge is incident to a face of each color. The edges are oriented clockwise around
white faces and counterclockwise around black faces. To complete our characterization, we
first color the vertices in three colors 0, 1, 2 (with 2 following 1 following 0 following 2
along the oriented edges, as explained before), hereafter referred to as black, white and gray
respectively, in agreement with their representation in the figures. The color of the endpoint
of the root edge (which corresponds to the vertex v1 in the intermediate domain) in chosen
to be gray. Then, as seen from the orientation of edges along the dividing line and at the

10The case qn = 0 occurs in particular in-between pairs of bundles connecting v1 to the same ymj via

successive intermediate vertices.
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×

×

(c1)

(c3)

f2i

Figure 9. A schematic picture of a map enumerated by f2i indicating the
edge connections forbidden by the constraints (c1) and (c3) of the text.
The length of the boundary of the map is 2i (the light-blue background is
supposedly filled with black and white faces).

boundary of the bundles, the colors of the other vertices around the boundary of the maps
enumerated by h2i alternate between white and black, the two boundary vertices adjacent
to the unique gray boundary vertex being white (in particular, the number of white vertices
is i and that of black vertices i−1). Moreover the maps satisfy by construction the following
internal constraints, illustrated in figure 8:

(c1) A black vertex of the boundary cannot be linked to a white vertex of the boundary
by some oriented edge lying strictly inside the map.

(c2) A white vertex of the boundary cannot be linked to the (unique) gray vertex of the
boundary by some oriented edge lying strictly inside the map.

(c3) Two distinct black vertices of the boundary cannot have a common white adjacent
vertex strictly inside the map.

(c4) The (unique) gray vertex of the boundary cannot have with any black vertex of the
boundary a common white adjacent vertex strictly inside the map.

All these constraint immediately follow from our choice of dividing line and may be verified
straightforwardly by the reader. Let us for instance discuss how constraint (c1) emerges
from our construction of the intermediate domains (see figure 7). Note that black boundary
vertices necessarily come from the dividing line. Assume that an internal edge exists between
a black boundary vertex ymj

and a white boundary vertex. Then, if the incident white vertex
is also a vertex xm′ of the dividing line, either m′ > m and a two-step path, made of this
internal edge followed by the boundary edge xm′ → ym′ lies to the left of the two-step path
ym → xm+1 → ym+1 originally taken by the dividing line, or m′ ≤ m and a two-step path,
made of the boundary edge ym′−1 → xm′ followed the internal edge lies to the left of the
two-step path ym′−1 → xm′ → ym′ originally taken by the dividing line. In both cases, we
have a contradiction. If instead the white vertex was originally an intermediate vertex in
the middle of a pair of bundles on the right side of the domain, the sequence made of the
boundary edge of the upper bundle followed by the internal edge creates again a two-step
path strictly to the left of the dividing line, a contradiction. If the pair of bundles is on the
left side of the domain, an undesirable two-step path is now obtained by taking the internal
edge followed by the boundary edge of the upper bundle.

Having defined the maps enumerated by h2i, we may now determine Φ(T ) =
∑
i≥2 h2iT

i−2

by writing some self-consistency relation for this quantity. In order to get a simple closed
relation for Φ(T ), we have to introduce yet another family of rooted maps whose outer face
has again a boundary made of a simple closed curve of length 2i, i ≥ 2, but whose boundary
color assignment is slightly different. The generating functions of these maps will be denoted
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h2(q3+1)

g

h2(q1+1)

h2(q2+2)

h2(q3+2) h2(q1+1)

h2(q2+2)

×
g

(a) (b)

Figure 10. Decomposition of a map enumerated by f2i (see tex – the light-
blue and orange backgrounds are supposedly filled with black and white
faces). Here the qm’s designate the number of black to white counterclock-
wise oriented boundary edges incident to the domains at hand.

by f2i ≡ f2i(g), i ≥ 2 and are gathered in the quantity

(5) Ω(T ) ≡ Ω(T, g) =
∑

i≥2
f2i(g)T i−2 .

In maps enumerated by f2i, the endpoint of the root edge is white and the colors around
the boundary alternate between white and black (see figure 9 – in particular, there are i
white boundary vertices and i black boundary vertices). The maps are moreover required
to satisfy the same constraints (c1) and (c3) above, as illustrated in figure 9 (the constraints
(c2) and (c4) are pointless since there is no gray boundary vertex).

4. Computation of Φ(T ) and solution of the recursion

4.1. A closed system for Φ(T ) and Ω(T ). The functions Φ(T ) and Ω(T ) may be deter-
mined in terms of R1 and g by the following closed system:

(6)

Ω(T ) =
g

T

{
R2

1(T +R1)Φ(T )

1−R1(T +R1)Φ(T )
− R3

1 h4
1−R2

1 h4

}

Φ(T ) = g +
g

T

{
R2

1 TΩ(T )

1−R1(T +R1)Ω(T )
+

R3
1

1−R2
1 h4

(
(Φ(T )− h4)

1−R1(T +R1)Ω(T )

+
R1 TΩ(T )h4

1−R1(T +R1)Ω(T )

)}
.

Note that this system also fixes the value of h4 = Φ(0) as a function of g.
The first equation in this system is a direct consequence of the identification

(7) f2i = gKi−1 , i ≥ 2

which may be understood as follows (see figure 10 for an illustration): consider, in a map
enumerated by f2i the boundary edge starting from the (black) origin of the root-edge
counterclockwise around the map. It leads to a white boundary vertex (necessarily different
from the endpoint of the root edge since the length of the boundary is 2i ≥ 4) and has a
black inner face on its left whose third vertex is gray an therefore cannot lie on the boundary.
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f2(q3+1)

g

f2(q1+1)

f2(q2+2)

h2(q3+2)
f2(q1+1)

f2(q2+2)

g

(a) (b)

h4

Figure 11. Decomposition of a map enumerated by h2i (see text). In
case (b), the last M intermediate domains (in pink) correspond to domains
enumerated by h4 and delimited on both sides by pairs of bundles connecting
the singled out black vertex in the bulk to the gray boundary vertex (here
M = 1 – the light-blue, pink and orange backgrounds are supposedly filled
with black and white faces).

The face on the right of the edge incident to this black inner face and leading from the gray
vertex back to the black origin of the root-edge is a white inner face whose third vertex is
white and may either be the endpoint of the root edge (case (a) in figure 10) or another
white vertex (case (b) in figure 10). In this latter case, since this white vertex is connected
to the black origin of the root-edge, it cannot, because of (c1), belong to the boundary and
it cannot, because of (c3), be connected to another black vertex on the boundary. If we now
remove the black and white inner faces that we just singled out (which contribute a weight
g to f2i), the rest of the map (with boundary length 2i in case (a) and (2i + 1) in case
(b)) is characterized by exactly the same constraints as those defining Kp and illustrated
in figure 7 (with the (a) and (b) cases there matching precisely the present (a) and (b)
cases) with p = i − 1 (since, as seen in figure 7, the boundary of the lower part of the slice
has length 2p + 2 in case (a) and 2p + 3 is case (b)). This identification is best seen by
drawing the bundles performing the direct connections from the singled out gray vertex to
white boundary vertices as well as the pairs of bundles performing the connections from this
singled out gray vertex to black boundary vertices via some intermediate white bulk vertex.
We recover as in figure 7 a number N of intermediate domains enumerated by h2qm+1 or
h2qm+2 according to whether the domain is followed counterclockwise by a single bundle or
by a pair of bundles respectively (qm being the number of black to white counterclockwise
oriented boundary edges incident to the domain at hand).

Plugging (7) into (5) allows us to write

Ω(T ) =
g

T
(K(T )−K(0))

and, using the explicit form (4) of K(T ), we immediately arrive at the desired equation (6)
for Ω(T ).

To obtain the second equation in (6), we now consider a map enumerated by h2i. Its root
edge now points from a white boundary vertex to the unique gray boundary vertex and has
a white inner face on its right whose third vertex is black. The edge incident to this white
inner face and leading from the gray boundary vertex to the singled out black vertex cannot
be a boundary edge (there are no gray → black boundary edges), hence it has on its left a
black inner face whose third vertex is white. This white vertex may either be the boundary
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g

Figure 12. The simplest map contributing to h4. The contribution of this
map to Φ(T ) is g.

vertex preceding the gray boundary vertex counterclockwise around the boundary (case (a)
in figure 11) or be another white vertex (case (b) in figure 11). In this latter case, since this
white vertex is connected to the gray boundary vertex, it cannot, because of (c2), belong to
the boundary and it cannot, because of (c4), be connected to a black boundary vertex.

Note that the singled out black vertex may itself be a boundary vertex but, because of
constraints (c1), (c2) and (c4), the map necessarily reduces in this case to the trivial map
of boundary length 4 displayed in figure 12. This map contributes a weight g to h4, hence
to Φ(T ) and this explains the first term in the second line of (6). In all other cases, the
singled out black vertex does not lie on the boundary. As before, we may then remove the
singled out black and white faces (which contribute a weight g to h2i) and draw the bundles
performing direct connections from the singled out black vertex to white boundary vertices
as well as the pairs of bundles performing connections from the singled out black vertex to
black boundary vertices via some intermediate white bulk vertex (see figure 11). This defines
a number N ≥ 1 of intermediate domains. In case (a), all these domains are enumerated
by f2(qm+1) or f2(qm+2) according to whether the domain is followed counterclockwise by a
single bundle or by a pair of bundles respectively (qm begin the number of black to white
counterclockwise oriented boundary edges incident to the domain at hand), the N -th domain
being necessarily followed by a single bundle. Repeating the argument that led to (4), the
total contribution to Φ(T ) of these situations is11

g

T




R1

∑

N≥1


∑

q≥0

(
R1f2(q+1) +R2

1 f2(q+2)

)
T q



N−1

×


∑

q≥0
R1f2(q+1) T

q








=
g

T



R1

∑

N≥1
(R1 (T +R1) Ω(T ))

N−1 ×R1 TΩ(T )





=
g

T

{
R2

1 TΩ(T )

1−R1(T +R1)Ω(T )

}

(with the convention f2 = 0). This explains the second term in the second line of (6).
In case (b), among the N domains, the last M ones (0 ≤ M ≤ N − 1) corresponds

to domains delimited on both sides by pairs of bundles connecting the singled out black
vertex to the gray boundary vertex and contribute a weight R2

1h4 each (see figure 11-(b)).
Altogether, these domains eventually contribute (after summation over M) a prefactor

1

1−R2
1 h4

to the desired contribution of case (b). As for the remaining N − M domains, they are
enumerated enumerated by f2(qm+1) or f2(qm+2) according to whether the domain is followed

11The prefactor g/T includes a weight g for the removed pair of inner faces and a factor 1/T to compensate

the fact that the required power i−2 of T in Φ(T ) is 1 unit less than the sum of the qm’s (i.e.
∑N

m=1 qm = i−1).
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g

(ii)

h4

g

(iii)

h4

(i)

g
h4

h2(qN−M+2)

N−M > 1N−M = 1 N−M > 1

h2(qN−M+2)

h2(qN−M+2)

qN−M > 0 qN−M ≥ 0

(N−M− 1)-th

domain
(N−M− 1)-th

domain

qN−M > 0

Figure 13. Particular classes of maps enumerated by h2i giving rise to con-
straints on the boundary length of the (N −M)-th intermediate domain,
here in green (see text for details – as in figure 11, the last M domains,
in pink, correspond to domains delimited on both sides by pairs of bundles
connecting the singled out black vertex in the bulk to the gray boundary
vertex). In case (i) and (ii) the number qN−M of black to white counter-
clockwise oriented boundary edges incident to the domain at hand must
satisfy qN−M > 0 while in case (iii), qN−M = 0 is also allowed (the light-
blue, light-green, pink and orange backgrounds are supposedly filled with
black and white faces).

counterclockwise by a single bundle or a pair of bundles respectively (qm begin the number
of black to white counterclockwise oriented boundary edges incident to the domain at hand),
except for the (N −M)-th domain which is necessarily followed by a pair of bundles and is
enumerated by h2(qN−M+2). Repeating the summation argument above (summing now over

(N −M)), these domains contribute naively a total weight11

g

T

{
R3

1 Φ(T )

1−R1(T +R1)Ω(T )

}

to Φ(T ). This expression is however not fully satisfactory since it assumes that the (N−M)-
th domain may have an arbitrary boundary length 2(qM−N + 2) ≥ 4 while a length 4 (i.e.
qM−N = 0) is in fact not allowed in the following situations: whenever (i) (N −M) = 1
(i.e. the domains enumerated by f2(qm+1) or f2(qm+2) are absent) since this would lead to an
original map with boundary length 2i = 2, not present in Φ(T ) or whenever (ii) (N−M) > 1
and the (N −M − 1)-th domain is followed counterclockwise by a pair of bundles, since, by
definition of M , this pair of bundles cannot hit the boundary at the gray vertex (see figure
13 for illustration). On the contrary, the length 2(qM−N + 2) = 4 (i.e. qM−N = 0) is allowed
whenever (iii) (N −M) > 1 and the (N −M − 1)-th domain is followed counterclockwise by
a single bundle, since this bundle may hit the boundary at the white vertex preceding the
gray vertex counterclockwise around the map. Taking these corrections into account, our
naive estimate but be modified into

g

T

{
R3

1 (Φ(T )− h4)

1−R1(T +R1)Ω(T )
+

R3
1 h4 ×R1TΩ(T )

1−R1(T +R1)Ω(T )

}

where the first term simply forbids the length 2(qM−N + 2) = 4 in all cases (i), (ii) and (iii)
while the second term reintroduces it in the allowed case (iii) . Incorporating the prefactor
1/(1 − R2

1 h4) above, we eventually obtain the third and fourth terms in the second line of
(6).
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4.2. Solution of the system (6). We may slightly simplify the system (6) by performing
the rescalings12

G ≡ g R2
1 , t ≡ T

R1
, h̃2i(G) ≡ Ri1 h2i(g) , f̃2i(G) ≡ Ri1 f2i(g) ,

φ(t) ≡ φ(t, G) =
∑

i≥2
h̃2i(G) ti−2 = R2

1 Φ(T ) , ω(t) ≡ ω(t, G) =
∑

i≥2
f̃2i(G) ti−2 = R2

1 Ω(T ) .

With these new variables, our system simplifies into

(8)

ω(t) =
G

t

{
(t+ 1)φ(t)

1− (t+ 1)φ(t)
− h̃4

1− h̃4

}

φ(t) = G+
G

t

{
tω(t)

1− (t+ 1)ω(t)
+

1

1− h̃4

{
φ(t)− h̃4 + t ω(t) h̃4

1− (t+ 1)ω(t)

}}

where the quantity R1 dropped out. Both φ(t) and ω(t) implicitly depend on G, and so does

h̃4.
As for the recursion relation (2) itself, it also gets simpler by using similar rescalings:

rk ≡
Rk
R1

, tk ≡
Tk
R1

= rk − 1 .

With these variables, (2) translates into

(9) tk =
(tk−1 + 1)φ(tk−1)

1− (tk−1 + 1)φ(tk−1)
.

Solving a system of the form (8) a standard exercise. The first step consists in getting

an expression for h̃4 in terms of G as follows: from the first and second equations in (8), we
immediately deduce, for a given G, the two relations:

(10)

h̃4 = h̃
(1)
4 (t, φ(t), ω(t)) with h̃

(1)
4 (t, φ, ω) =

G(t+ 1)φ+ t ω ((t+ 1)φ− 1)

G+ t ω ((t+ 1)φ− 1)
,

h̃4 = h̃
(2)
4 (t, φ(t), ω(t)) with h̃

(2)
4 (t, φ, ω) =

G
(
ωt2 − t− φ

)
− t φ ((t+ 1)ω − 1)

G(t+ 1)(t ω − 1)− t φ ((t+ 1)ω − 1)
.

Since h̃4 does not depend on t, we may then write

0 =
dh̃4
dt

=
∂h̃

(1)
4

∂φ
φ′(t) +

∂h̃
(1)
4

∂ω
ω′(t) +

∂h̃
(1)
4

∂t

0 =
dh̃4
dt

=
∂h̃

(2)
4

∂φ
φ′(t) +

∂h̃
(2)
4

∂ω
ω′(t) +

∂h̃
(2)
4

∂t

and, upon eliminating ω′(t),

(11) 0 =

{
∂h̃

(1)
4

∂φ

∂h̃
(2)
4

∂ω
− ∂h̃

(2)
4

∂φ

∂h̃
(1)
4

∂ω

}
φ′(t) +

{
∂h̃

(1)
4

∂t

∂h̃
(2)
4

∂ω
− ∂h̃

(2)
4

∂t

∂h̃
(1)
4

∂ω

}
.

To obtain h̃4 in terms of G, we may now solve the system (8) on some particular line t = t(G)
where the second term between braces in (11) vanishes. From the explicit expressions (10), it

12Here we view this rescaling as a simple change of variables but the reader may easily verify, by a simple

substitution at the level of maps, that h̃2i(G) (respectively f̃2i(G)) actually enumerates the sub-family of the
maps enumerated by h2i(g) (respectively f2i(g)) made of those maps having no multiple edges connecting a

black to a white vertex or a white to a gray vertex (multiple edges connecting a gray to a black vertex are
allowed), with now a weight G per white face.
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is easily checked that such vanishing occurs whenever ω ≡ ω(t(G)) is related to φ ≡ φ(t(G))
via

(12) ω =
t(t+ 1)φ+G (t+ 1)− t
t(t+ 1)((t+ 1)φ− 1)

.

On the line t = t(G), the first term between braces in (11) must also vanish (since, generically,
φ′(t(G)) 6= 0). Plugging the above value (12) for ω, this leads to the following equation for
φ:

0 = (t+ 1)G2 +
(
2(t+ 1)2φ2 − 3(t+ 1)φ+ 1

)
G− φ ((t+ 1)φ− 1)

2
,

which we complete by demanding that h̃
(1)
4 = h̃

(2)
4 , namely, after plugging again the value

(12) of ω:

0 = (t+ 1)2
(
(t+ 1)2 φ+ 1− t

)
G2 − (t+ 1)((t+ 1)φ− 1) (2t(t+ 1)φ− 2t+ 1)G

+ t((t+ 1)φ− 1)3.

Imposing the two equations above determines an equation for the line t = t(G) as well as
the value of φ on this line. The value of ω is then obtained through (12). After some
straightforward calculations, we find explicitly:

(13) 0 = (t+ 1)5G2 − (t− 1)(t+ 1)2G− t
and the values

φ =
t

(t+ 1)2
,

ω =
t−G(t+ 1)2

t(t+ 1)
.

The reader should remain aware that these latter expressions for φ and ω do not hold for
arbitrary t and G but only on the line t = t(G) implicitly defined by (13). Still, upon

plugging these values into the expression (10) for h̃
(1)
4 (or equivalently for h̃

(2)
4 since we

imposed h̃
(1)
4 = h̃

(2)
4 ), we obtain the desired value of h̃4, namely:

h̃4 =
G2t(t+ 1)3 + t−G

(
t3 + 3t2 + 2t+ 1

)

G2(t+ 1)4 −G(t+ 1)3 + t
,

valid on the line t = t(G).
Here, t may be viewed as a simple parametrization of G via (13). In order to have a

slightly simpler parametric expression for h̃4(G), and in view of the explicit form (quadratic
in G) of the relation (13), we decide to parametrize t itself it by the quantity C solution of
the quadratic equation 0 = (t+ 1)C2 − (t− 1)C − t. In other words, we set

t = − C(C + 1)

C2 − C − 1

so that G and h̃4(G) are now expressed as rational functions in C, namely:

(14)

h̃4(G) =
C
(
C3 + 2C2 − C − 1

)

(C − 1)(2C + 1)2

where G =
C
(
C2 − C − 1

)2

(2C + 1)2
.

The above parametrization is univocal for 0 ≤ C ≤ 1/2, leading to a value of G in the range
0 ≤ G ≤ 25/128. We find in particular from this parametrization the small G expansion

h̃4(G) = G+G3+3G4+9G5+31G6+114G7+435G8+1713G9+6924G10+O
(
G11

)
.
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Going back to the system (8), now for arbitrary t and G, we may plug the above

parametrization of G and h̃4 to obtain, after eliminating ω = ω(t), an equation for φ = φ(t)
as a function of t and the quantity C (parametrizing G as above), namely:

0 = C (C + 1)3
(
C (C3 + 2C2 − C − 1) + (C2 − C − 1)2 t

)

− (2C + 1)2
(
C (C − 1)(C + 1)3 + (C + 1)(2C4 − 2C3 + C2 + 3C + 1) t

+ C
(
C2 − C − 1

)2
t2
)
φ+ (2C + 1)4 t (t+ 1)φ2 .

This is a quadratic equation in φ, whose discriminant factorizes into

∆ = (2C + 1)4
(
C (C + 1) + (C2 − C − 1) t

)2 × δ ,
δ =

(
(C − 1)2(C + 1) + C

(
C2 − C − 1

)
t
) (

(C + 1)3 + C
(
C2 − C − 1

)
t
)
.

We now note that δ is itself the discriminant of the following quadratic equation13 in the
variable Y , with coefficients linear in t :

(15) 0 = C2(C + 1)2 +
(
(C + 1)

(
C2 + 1

)
+ C

(
C2 − C − 1

)
t
)
Y + Y 2 .

This suggest to parametrize t by this quantity Y , namely set

(16) t = − (C + Y + 1)
(
C3 + C2 + Y

)

C (C2 − C − 1)Y
.

With this parametrization, φ is now a rational function of Y , namely14

(17) φ = −C
(
C2 − C − 1

)
Y
(
C4 + 2C3 − Y C2 + C2 + Y C + Y

)

(2C + 1)2 (C2 + Y ) (C3 + C2 + Y )
.

Among the two solutions Y of the quadratic equation (15), we must pick the one which

yields φ = h̃4 for t = 0, where h̃4 is given by (14). This yields the determination

(18)

Y (t) =− 1

2

(
(C + 1)

(
C2 + 1

)
+ C

(
C2 − C − 1

)
t

+

√
((C + 1) (C2 + 1) + C (C2 − C − 1) t)

2 − 4C2(C + 1)2
)

which, plugged into (17), yields an explicit expression for φ(t). In practice, this expression
is not really needed and the parametrizations (16) and (17) are sufficient.

4.3. Solution of the recursion relation. In order to incorporate the above expressions
in our recursion relation, we introduce the quantities

Yk ≡ Y (tk) , φk ≡ φ(tk) ,

13This choice of the parameter Y is definitely not unique and many other possibilities exist, based on
other choices for the quadratic equation (with still coefficients linear in t) having discriminant δ. The various

steps of our calculation may easily be repeated with these alternative definitions of Y and should eventually
lead to the same final expression for φ(t).

14The equations for φ and that for Y are quadratic hence have two solutions φ1, φ2 and Y1, Y2 respectively.
The relation that we give here corresponds to one choice of passage from Y to φ, say from Y1 to φ1 and from
Y2 to φ2. The passage from Y1 to φ2 and from Y2 to φ1 is achieved by some easily computable different
rational function, which we could chose as well in our calculation. This would then require picking the other
branch of Y in the subsequent argument.
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which, according to (16) and (17), are linked by the relations

tk = − (C + Yk + 1)
(
C3 + C2 + Yk

)

C (C2 − C − 1)Yk
,

φk = −C
(
C2 − C − 1

)
Yk
(
C4 + 2C3 − YkC2 + C2 + YkC + Yk

)

(2C + 1)2 (C2 + Yk) (C3 + C2 + Yk)
.

Plugging this parametrization of tk and the corresponding value of φk in our recursion
relation (9) transforms it into a recursion relation for Yk itself, which takes the remarkably
simple factorized form

0 =
(
C3(C + 1)− C2 Yk−1 − C2 Yk − Yk−1Yk

)
×

(
C2(C + 1)2 + (C + 1)2Yk−1 − C(C + 1)Yk + Yk−1Yk

)
.

To decide which factor actually vanishes for the correct determination (18) of Yk = Y (tk), we
note that, for G→ 0, we have tk = O(G) and C = O(G) hence, from (18), Yk = −1 +O(G)
and Yk−1 = −1 + O(G) as well. This selects the second factor and our recursion relation
translates eventually into the following homographic recursion:

Yk = (C + 1)2
Yk−1 + C2

C(C + 1)− Yk−1
with, from (18), initial condition Y1 = −(C + 1) since t1 = 0.

We now recall how to solve a general homographic recursion of the form:

Yk = f(Yk−1) , f(Y ) ≡ a Y + b

c Y + d
.

This requires introducing the two fixed points α and β of the function f (solutions of f(Y ) =
Y ) and the quantity

Wk =
Yk − α
Yk − β

.

It is indeed easily seen that Wk satisfies a geometric recursion relation Wk = xWk−1 with

x ≡ c β + d

cα+ d
.

This yields Wk = xk−1W1 and by a simple inversion (assuming α 6= β, hence x 6= 1)

Yk =
α− β xk−1W1

1− xk−1W1
=
Y1(β xk−1 − α)− αβ (xk−1 − 1)

Y1(xk−1 − 1)− (αxk−1 − β)
.

In the present case, we may take

a = (C + 1)2 , b = C2(C + 1)2 , c = −1 , d = C(C + 1) ,

so that we find

α =
1

2
(1 + C)

(
−
√

1− 4C2 − 1
)
,

β =
1

2
(1 + C)

(√
1− 4C2 − 1

)
,

x =
1−
√

1− 4C2

2C
,

with in particular 0 ≤ x < 1 for 0 ≤ C < 1/2 (i.e. 0 ≤ G < 25/128). Upon inverting the
expression for x and using (14), we deduce

C =
x

1 + x2
, G =

x
(
1 + x+ x2 + x3 + x4

)2

(1 + x)4 (1 + x2)
3 ,
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which allows us to now use x instead of C to parametrize G (the parametrization being
univocal by requiring 0 ≤ x ≤ 1, assuming again G in the range 0 ≤ G ≤ 25/128). Rewriting
the above expressions for α and β in terms of x as

α = −1 + x+ x2

(1 + x2)2
, β = −x2 1 + x+ x2

(1 + x2)2
,

and using Y1 = −(C + 1) = −(1 + x+ x2)/(1 + x2), we deduce

Yk = −
(
1 + x+ x2

)

(1 + x2)
2

(
1− xk+3

)

(1− xk+1)
.

Plugging this expression in (16) gives

tk =
x
(
1 + x+ x2

)

(1 + x+ x2 + x3 + x4)

(
1− xk−1

) (
1− xk+5

)

(1− xk+1) (1− xk+3)

and eventually

rk = tk + 1 =
(1 + x)2

(
1 + x2

)

(1 + x+ x2 + x3 + x4)

(
1− xk

) (
1− xk+4

)

(1− xk+1) (1− xk+3)
,

with in particular

r∞ ≡ lim
k→∞

rk =
(1 + x)2

(
1 + x2

)

(1 + x+ x2 + x3 + x4)
.

To eventually find the solution of our original recursion relation (2), we simply need to know
the value of R1. To this end, we combine the identities R∞ = R1r∞, R∞ = 1 + 2gR2

∞ and
G = g R2

1 to write

R1 =
1 + 2Gr2∞

r∞
=

(1 + x+ x2 + x3 + x4)

(1 + x2)
2

and finally

(19)

Tk = R1 tk =
x
(
1 + x+ x2

)

(1 + x2)
2

(
1− xk−1

) (
1− xk+5

)

(1− xk+1) (1− xk+3)
,

Rk = R1 rk =
(1 + x)2

(1 + x2)

(
1− xk

) (
1− xk+4

)

(1− xk+1) (1− xk+3)
, g =

G

R2
1

=
x(1 + x2)

(1 + x)4
.

We recover here the result guessed in [3] and later recovered in [1]. As for the distance-
dependent two-point function, it reads:

Gk = Rk −Rk−1 − δk,1 =
(1− x)3(1 + x)2

(
1 + x+ x2

)
xk−1

(
1− x2k+3

)

(1 + x2) (1− xk) (1− xk+1) (1− xk+2) (1− xk+3)
− δk,1

for k ≥ 1.

5. Hull perimeter statistics

Having computed the distance-dependent two-point function Gk, we may now evaluate
a more refined generating function Hk(α, d) which, in the maps enumerated by Gk, also
controls the hull perimeter at distance d, namely the length of a particular closed curve
separating the origin v0 of the map and the marked edge of type (k − 1, k) and sitting at
distance d from v0 (see below for a precise definition of this curve). More precisely, if we
denote denote by L(d) the hull perimeter at distance d, the generating function Hk(α, d) will
now incorporate an extra weight αL(d) for each map (we have in particular Hk(1, d) = Gk
for all the allowed values of d). Let us now come to precise definitions.
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d

d

Figure 14. Construction of the dividing line at some arbitrary distance
d (see text – the light-blue background is supposedly filled with black and
white faces).

5.1. Definition of the hull perimeter. Consider a pointed planar Eulerian triangulation
with a marked oriented edge of type (k−1, k), as enumerated by Gk, for some k ≥ 3 and the
corresponding k-slice, whose apex corresponds to the origin of the Eulerian triangulation,
and whose base corresponds to the marked oriented edge. The dividing line, as we defined
it in Section 3.1, constitutes a particular path separating the apex of the slice (which lies
strictly above the line) from its base (whose endpoint lies strictly below the line). This
paths sits moreover “at distance d = k − 1” from the apex, in the sense that it is made of a
sequence of alternating backward-oriented and forward-oriented edges of type (d−1, d) with
d = k − 1. In particular, all the vertices lying strictly below the line (i.e. on the same side
as the base) are at distance at least d from the apex.

Consider now the separating line which simply consists of the dividing line itself minus
its first edge x0 → y0. If we re-glue the boundary of the slice so as to recover the associated
pointed planar Eulerian triangulation, the extremities of this separating line, namely the
vertices y0 and yp, coalesce so that the line eventually forms a simple closed curve in the
pointed map which separates the origin of the map from its marked edge and sits at distance
d = k−1 from the origin, in the above sense. The length 2p of the separating line defines the
hull perimeter at distance d, here for d = k−1, and will be denoted by L(d) as announced15.
For k = 2 (d = 1), the separating line may be viewed as reduced to a single vertex at the
apex of the slice (or, after re-gluing, at the origin of the pointed map) and we set L(1) = 0
accordingly.

The above definition for d = k − 1 is easily generalized to some arbitrary d in the range
2 ≤ d ≤ k − 1. As explained in [11], a dividing line at distance d may be constructed in a
k-slice as follows (see figure 14): we first pick the unique backward oriented edge connecting

the right boundary vertices x
(d)
0 and y

(d)
0 at respective distance d and d − 1 from the apex

and the follow the sequence of leftmost two-step paths y
(d)
m → x

(d)
m+1 → y

(d)
m+1, m ≥ 0 made of

15The part of the map lying on the same side of the (closed) separating line forms what is called the hull
at distance d, which is the connected domain obtained by removing from the map a particular connected

component which (i) has all its vertices at distance larger than or equal to d from the origin, and (ii) contains
the marked oriented edge.
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vertices satisfying d(x
(d)
m+1) = d, d(y

(d)
m+1) = d− 1, and x

(d)
m+1 6= x

(d)
m , y

(d)
m+1 6= y

(d)
m . With the

same arguments as in Section 3.1, it is easily shown that this line indeed exists and forms
a simple path connecting the right boundary to the left boundary, reached after a number
p(d) of steps. Upon re-gluing the k-slice into a pointed Eulerian triangulation, the separating

line, consisting now of this new dividing line minus its first edge x
(d)
0 → y

(d)
0 , forms a simple

closed curve whose length L(d) = 2p(d) defines the hull perimeter at distance d, now for
some arbitrary d in the range 2 ≤ d ≤ k − 1. Again for d = 1 and arbitrary k ≥ 2, we view
the separating line as being reduced to the origin vertex and set L(1) = 0.

5.2. Generating functions with a control on the hull perimeter. Having defined the
hull perimeter L(d), we now wish to compute the generating function Hk(α, d) incorporating
the weight αL(d). For starters, consider `-slices with 2 ≤ ` ≤ k, as enumerated by Tk, for
k ≥ 3, and the corresponding hull perimeter L(`−1) at d = `−1. To enumerate these `-slices
with a weight αL(`−1), we simply have, in the slice decomposition of Section 3.1, to assign
a weight α2 to each of the sub-slices constituting the upper part of the slice. Indeed, each
such sub-slice is canonically associated to 2 edges of the separating line (see figure 6). At the
level of generating functions, this corresponds to replacing in our recursion the generating
function Tk−1 for each of these sub-slices by α2Tk−1. In other words, the enumeration of
`-slices with 2 ≤ ` ≤ k and a weight αL(`−1) is achieved by the quantity

∑

p≥0
Kp (α2Tk−1)p = K(α2Tk−1) .

Consider now the hull perimeter L(`−2) at d = `−2. As explained in [11], the separating
line at distance d = ` − 2 in an `-slice enumerated by Tk (and satisfying moreover ` ≥ 3)
is obtained by concatenating the separating lines at distance `i − 1 of the `i-slices, i =
1, · · · , p, appearing as sub-slices in the recursive decomposition of the slice (see figure 15
for an illustration). To reconstruct the desired weight αL(`−2), these sub-slices, originally
enumerated by Tk−1 = K(Tk−2), must now be counted by K(α2Tk−2). We eventually deduce
that the generating function for `-slices with 2 ≤ ` ≤ k with an extra weight αL(`−2) whenever
` ≥ 3 is K(K(α2Tk−2)) .

Repeating the argument recursively, we find that, more generally,

K
(
K
(
· · ·
(
K
(

︸ ︷︷ ︸
m times

α2 Tk−m
))))

is the generating function of `-slices with 2 ≤ ` ≤ k and with a weight αL(`−m) whenever
` ≥ m+ 1.16

As a direct consequence, the desired generating function Hk(α, d) ≡ Hk(α, d, g) for planar
pointed planar Eulerian triangulations with a marked edge of type (k − 1, k), with a weight
g per white face and a weight αL(d), is given by

(20) Hk(α, d) = K
(
K
(
· · ·
(
K
(

︸ ︷︷ ︸
k−d times

α2 Td
))))

−K
(
K
(
· · ·
(
K
(

︸ ︷︷ ︸
k−d times

α2 Td−1
))))

.

for any arbitrary d in the range 2 ≤ d ≤ k − 1.
The generating function Hk(α, d) can then be computed explicitly from this formal ex-

pression as follows: we note that, from the recursion (3), Tk is obtained from Td by (k − d)
successive actions of the hernel K and the explicit form (19) of Tk therefore allows us to

16Note that slices with ` ≤ m are enumerated as in Tk, with no dependence on α.
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` ≤ k

`−2

`−2

Tk−2

`−1

`−1

`−3

`−3

Kp

Kp5

Kp1
Kp2

Kp3

Kp4

Figure 15. Construction of the separating line at distance d = ` − 2 (i.e.
made of vertices at alternating distances `−3 and `−2) in an `-slice enumer-
ated by Tk by concatenation of the separating lines at distance `i− 1 of the
`i-slices, i = 1, · · · , p (here p = 5) appearing as sub-slices in its recursive de-
composition (the light-blue background is supposedly filled with black and
white faces). The length of this line (here in red) is L(` − 2) = 2

∑p
i=1 pi

(= 14 here), 2pi being the length of the separating line of the i-th sub-slice
(with for instance p4 = 3 here). We note that pi is also the number of
sub-sub-slices (enumerated by Tk−2) in the upper part of the i-th sub-slice,
the lower part of the sub-slice being itself enumerated by Kpi .

write the relation

(21)

K
(
K
(
· · ·
(
K
(

︸ ︷︷ ︸
k−d times

x
(
1+x+x2

)

(1+x2)
2

(
1−xd−1

) (
1−xd+5

)

(1−xd+1) (1−xd+3)

))))

=
x
(
1+x+x2

)

(1+x2)
2

(
1−xk−1

) (
1−xk+5

)

(1−xk+1) (1−xk+3)
.

From this relation, we immediately deduce17 the more general identity:

K
(
K
(
· · ·
(
K
(

︸ ︷︷ ︸
k−d times

x
(
1+x+x2

)

(1+x2)
2

(
1−λxd−1

) (
1−λxd+5

)

(1−λxd+1) (1−λxd+3)

))))

=
x
(
1+x+x2

)

(1+x2)
2

(
1−λxk−1

) (
1−λxk+5

)

(1−λxk+1) (1−λxk+3)

17Indeed, writing xk = xk−d xd, we may consider that, for a given x, the relation (21) involves two
independent parameters, on one hand the integer k − d (which appears both as a power of x and as the
number of iterations) and, on the other hand, the variable xd. This latter independent parameter may then
be replaced on both sides of the equation by some arbitrary quantity, for instance λxd with some arbitrary
λ. In practice, λ must be small enough for the equality to remain valid (see [11] for details).
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for arbitrary (small enough) λ. We have in particular

K
(
K
(
· · ·
(
K
(

︸ ︷︷ ︸
k−d times

α2 Td
))))

=
x
(
1+x+x2

)

(1+x2)
2

(
1−λ(α, d)xk−1

) (
1−λ(α, d)xk+5

)

(1−λ(α, d)xk+1) (1−λ(α, d)xk+3)

if we take for λ(α, d) the solution of

α2

(
1−xd−1

) (
1−xd+5

)

(1−xd+1) (1−xd+3)
=

(
1−λ(α, d)xd−1

) (
1−λ(α, d)xd+5

)

(1−λ(α, d)xd+1) (1−λ(α, d)xd+3)

(this equation has two solutions and we must pick that satisfying λ(1, d) = 1, see [11] for
details). We finally deduce from (20) the explicit expression

Hk(α, d) =

(
1−x2

)2 (
1+x+x2

)

1+x2
×

× xk−1(λ(α, d−1)−xλ(α, d))
(
1−λ(α, d)λ(α, d−1)x2k+3

)

(1−λ(α, d)xk+1) (1−λ(α, d)xk+3) (1−λ(α, d−1)xk) (1−λ(α, d−1)xk+2)
,

where x parametrizes g via (19) and with λ(α, d) defined as above. This expression, valid
for 2 ≤ d ≤ k − 1, is sufficient to explore the statistics of hull perimeters in large planar
Eulerian triangulations. For completeness, recall that L(1) = 0 so that Hk(α, 1) = Gk for
all k ≥ 2.

5.3. Statistics of hull perimeters in large Eulerian triangulations. We end this Sec-
tion by giving a number of explicit results on the statistics of hull perimeters. From now
on, we will consider maps with a fixed size, i.e. we will work in the ensemble of pointed pla-
nar Eulerian triangulations with a marked oriented edge of type (k − 1, k) and with a fixed
number F of white faces. The number of such maps is [gF ]Gk. We are actually interested in
the so-called local limit of large maps, which corresponds to let F →∞, keeping (at least at
a first stage) the parameter k finite. We denote by Ek ({·}) the expectation value of some
quantity {·} in this limit. We have for instance

Ek

(
αL(d)

)
= lim
F→∞

[gF ]Hk(α, d)

[gF ]Gk
.

The large F behavior of [gF ]Hk(α, d) or [gF ]Gk is easily obtained from the singular behavior
of Hk(α, d) and Gk respectively when g approaches the critical value g? = 1/8 (corresponding
to x = 1 in (19)). Setting g = g?(1 − ε4) which, from the relation (19) between g and x,
amounts to setting

x =
1− ε
1 + ε

,

this singular behavior is obtained straightforwardly from the small ε expansion of Hk(α, d)
and Gk. Only even powers of ε may appear since Hk(α, d) and Gk have expressions which
are invariant under x → 1/x. The first two terms of the expansions are of order ε0 and ε4

(there happens to be no ε2 term) and correspond to regular terms in (g? − g). The most
singular behavior therefore comes from the next term, of order ε6, and corresponds to a
singularity of the form (g? − g)3/2. We may thus write

Hk(α, d)|sing. ∼ Hk(α, d)(g? − g)3/2 , Gk|sing. ∼ Gk(g? − g)3/2 ,

and the determination of the coefficients Hk(α, d) and Gk is a rather easy task from the
above expressions for Hk(α, d) and Gk. The desired expectation value above is then simply
given by

Ek

(
αL(d)

)
=

Hk(α, d)

Gk
.

A similar calculation was presented in [11] in the context of quadrangulations or general
triangulations and we invite the reader to look at this reference for explicit intermediate
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steps. Here we do not reproduce all the details but we only present the final results of this
straightforward, although slightly involved calculation.

We distinguish two situations: (i) the case of infinite k and (ii) the case of finite k.

. Infinite k. Expressions are slightly simpler if, after having sent F → ∞, we also send
k →∞. Note that the limits are taken in this order and, in particular, k does not scale with
F . For F → ∞, it is expected that, among all the connected domains at distance larger
than d from the origin, only one has an infinite size (i.e. an infinite number of white faces).
Letting k →∞ imposes that the chosen oriented edge of type (k − 1, k) actually belongs to
this infinite connected component. The hull perimeter L(d) then corresponds, so to say, to
the length of a closed curve sitting at distance d from the origin and separating this origin
from infinity. For short, we denote by E∞ ({·}) the expectation value Ek ({·}) in the limit
k →∞. We find explicitly, for d ≥ 2:

E∞
(
αL(d)

)
=

√
(d+ 1)(d+ 3)(9− α2) + 8α2

(d+ 1)(d+ 3)(1− α2) + 8α2
−
√
d(d+ 2)(9− α2) + 8α2

d(d+ 2)(1− α2) + 8α2

which, by differentiation, yields

E∞(L(d)) =
3
(
d4 + 6d3 + 10d2 + 3d− 5

)

8(d+ 1)(d+ 2)
.

Expanding the above expression for E∞
(
αL(d)

)
in powers of α, we find equivalently that the

probability p∞ (L(d) = 2p) that L(d) equals some even integer 2p (p ≥ 1) reads, for d ≥ 2,

(22)

p∞ (L(d) = 2p) = 4× 31−2p
(

(d− 1)p(d+ 5)p

(d+ 1)p(d+ 3)p
− (d− 2)p(d+ 4)p

dp(d+ 2)p

)
A(p)

A(p) ≡
p−1∑

q=0

2q
(
p− 1

q

)(
2q + 1

q

)
.

For large d, L(d) scales as d2 and we define a rescaled hull perimeter L(d) via

L(d) ≡ L(d)

d2
.

The latter has a finite limit for large d, namely

(23) lim
d→∞

E∞(L(d)) =
3c

2

with a scaling factor c whose value is

c =
1

4
.

A more precise characterization of the statistics of L(d) at large d is via the quantity

(24) lim
d→∞

E∞(e−τL(d)) =
1

(1 + c τ)3/2

or, equivalently, via the probability P∞(L ≤ L(d) < L + dL) that L(d) lies in the range
L ≤ L(d) < L+ dL (as obtained either by a simple inverse Laplace transform of (24) or as
the limit of (22)):

(25) lim
d→∞

P∞(L ≤ L(d) < L+ dL) =
2√
π

√
L

c3/2
e−

L
c dL .

The probability p∞ (L(d) = 2p) for d = 10, 20, 50 and the corresponding limiting probability
density when d → ∞ are plotted in figure 16. Expressions (23), (24) and (25) are exactly
the same as those found in [11] and in earlier works by Krikun [13, 12] and by Curien and
Le Gall [7, 6] for other families of maps. Only the value of the scaling factor c (here c = 1/4)
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L =
2p

d2

d2

2
× p∞ (L(d) = 2p)

1

dL
× P∞ (L ≤ (L(d) < L + dL)

Figure 16. The probability p∞ (L(d) = 2p) for d = 10, 20 and 50 (with the
peak increasing for increasing d). We use as abscissa the quantity L = 2p/d2

and we rescale the probability by a factor d2/2 so that it converges to the
probability density (1/dL)P∞(L ≤ L(d) < L + dL) with expression (25),
displayed here as a green solid curve.

is specific to Eulerian triangulations. This is a manifestation of the well-known universality
found in the limit of large maps and for large distances.

. Finite k. Expressions in this case are more involved and we only give here the expectation
value of L(d). We find precisely:

Ek(L(d)) =
k(k+1)(k+2)(k+3)

2(2k+3) (10k6+90k5+283k4+348k3+103k2−42k−36)
×

×
(

(d−1)(d+1)(d+3)(d+5)(k+2)×

× (k+1)2(k+3)2
(
5k2+20k+4

)
−(d−1)(d+1)(d+3)(d+5)

(
5d2+20d+24

)
−18

(d+2)(k+1)2(k+3)2

− (d−2)d(d+2)(d+4)(k+1)×

× k2(k+2)2
(
5k2+10k−11

)
−(d−2)d(d+2)(d+4)

(
5d2+10d+9

)
−18

(d+1)k2(k+2)2

)

for 2 ≤ d ≤ k − 1. As in [11], we may eventually look at the limit where d and k become
large simultaneously, keeping the ratio u ≡ d/k finite (with in particular 0 < u < 1). The
rescaled hull perimeter L(d) has a finite expectation value in this limit, which depends on u
only, namely

lim
k→∞

Ek(L(k u)) =
3c

2
(1 + u− 3u6 + u7) .

We recover here, as expected, the universal expression found in [11].

6. Conclusion

The present study raises a number of natural questions: how general is our recursive
approach? Can it be extended to other families of maps than triangulations, quadrangu-
lations and Eulerian triangulations? A common feature of these three cases is that their
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slice generating functions can be written as bi-ratios of a quantity uk ≡ 1− xk, involving a
single parameter x (parametrizing the weight given to the faces). In our formalism, these
bi-ratios themselves come from the expression of Yk as a simple ratio of uk’s and this latter
structure reveals the existence of some underlying homographic recursion relation for Yk (or
equivalently of some underlying geometric recursion for Wk, which eventually explains the
xk dependence of uk). For more general families of maps, the slice generating functions are
now bi-ratios of more involved uk’s whose form is typical of so-called discrete solitons (see
[3] for details). A first clue to help generalizing our method would be to understand what
type of recursion leads to such a discrete soliton form.

Another natural question concerns the intermediate quantity Y in our calculations. As
we noted earlier (see footnote 13), many inequivalent choices of the relation between t and
Y are in fact possible, which transform our recursion into a simple homographic recursion
and eventually lead to the same expression for Tk. We may wonder whether some particular
choices are more natural than others and, in particular, lead to some Yk with a direct
combinatorial interpretation.

As a natural extension of our result, we note that an expression for the slice generating
function of planar Eulerian triangulations was given in [8] which incorporates more parame-
ters by assigning different weights to the vertices of each (gray, black or white) color. Again
this expression is the result of some educated guess and no constructive derivation was
provided. It is easy to incorporate such color-dependent vertex weights in our approach.
This then leads to three copies of the generating functions Φ and Ω, determined by three
independent closed systems, each depending on the three vertex weights at hand. Unfortu-
nately, although there is no fundamental obstacle in using our method to solve these systems,
expressions become rather involved and we were not able to recover the expression of [8].

Finally, we note that Eulerian triangulations, as 3-constellations, have an underlying
three-fold symmetry corresponding to a cyclic permutation of the colors of their vertices.
Our construction of the dividing line explicitly breaks this symmetry and involves maps, as
those enumerated by h2i, where colors play inequivalent roles18. One may wonder if the three-
fold symmetry could be preserved in our approach by performing some other decomposition
of the slices, involving some other, more symmetric choice of the dividing line. We were not
able to find such a manageable symmetry-preserving scheme.
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Appendix A. Derivation of (1)

Let us recall how to derive the relation (1). By definition, Rk enumerates `-slices with
1 ≤ ` ≤ k. The first term 1 in (1) is simply the contribution of the single-edge-map. For
the other `-slices, we consider the white face immediately on the right of the base. By
construction, the base in an `-slice is an oriented edge of type (`− 1, `), hence a short-edge.
As illustrated in figure 17, the long-edge incident to the considered white face is either (a)
incident to the origin of the base (at distance ` − 1) hence of type (` + 1, ` − 1) (the third
incident edge being of type (`, ` + 1)), or (b), if ` ≥ 2, incident to the endpoint of the base
(at distance `) hence of type (`, `− 2) (the third incident edge being of type (`− 2, `− 1)).
In the first case (a), the white face is of type `− 1 and so is the black face on the other side
of the long-edge (note that long-edges cannot belong to the boundary of the slice which is
made of short-edges only, thus both sides of a long-edge are inner faces). In particular, the
third vertex incident to this black face (i.e. that which is not an extremity of the long-edge)

18This explicit breaking of symmetry is also visible in the rescaling h2i(g)→ h̃2i(G) which, as mentioned
in the footnote 12, consists in fact in going from general Eulerian triangulations to Eulerian triangulations
having no multiple edges connecting a black to a white vertex or a white to a gray vertex, while multiple

edges connecting a gray to a black vertex remain allowed.
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` ≤ k

`−21
Rk =

`−1

`−1

Rk−1

+

` ≤ k

` +

`−1

`+1

Rk

g g

Rk+1 Rk

case (a) case (b)

Figure 17. A schematic picture explaining the relation (1) for the generat-
ing function Rk (the light-blue backgrounds are supposedly filled with black
and white faces).

is at distance ` from the apex. Drawing the leftmost backward shortest path from this vertex
to the apex19 and cutting along this line divides the `-slice into two parts. These parts are
easily seen to be slices, more precisely an arbitrary (`′ + 1)-slice, `′ ≥ 0 (whose base is the
short-edge of type (`+1, `) incident to the black face) and an arbitrary `′′-slice, `′′ ≥ 1 (whose
base is the short-edge of type (`, ` − 1) incident to the black face) with max(`′, `′′) = `.20

Demanding that ` ≤ k is equivalent to demanding that 1 ≤ (`′ + 1) ≤ k+ 1 and 1 ≤ `′′ ≤ k,
hence the configurations of case (a) are enumerated by g Rk+1Rk, with a weight g for the
white face. This explains the first contribution to the second term in the right hand side
of (1). In the second case (b), the short-edge of type (` − 2, ` − 1) incident to the white
face is necessarily a right boundary edge as otherwise, this right boundary would not be the
unique shortest path between the apex and the first extremity of the base. The black face
incident to the long-edge is now of type `−2 and its third incident vertex is at distance `−1
from the apex. Drawing the leftmost backward shortest path from this vertex to the apex
and cutting along this line divides the `-slice into an arbitrary `′-slice, `′ ≥ 1 (whose base is
the short-edge of type (`, ` − 1) incident to the black face) and an arbitrary (`′′ − 1)-slice,
`′′ ≥ 2 (whose base is the short-edge of type (` − 1, ` − 2) incident to the black face) with
max(`′, `′′) = `.20 Demanding that ` ≤ k is equivalent to demanding that 1 ≤ `′ ≤ k and
1 ≤ `′′ − 1 ≤ k − 1. The configurations in case (b) are thus enumerated by g RkRk−1 (with
the convention R0 = 0), hence the second contribution to the second term in the right hand
side of (1).
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