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The ALICE Collaboration has recently measured the correlations between amplitudes of
anisotropic flow in different Fourier harmonics, referred to as symmetric cumulants. We derive
approximate relations between symmetric cumulants involving v4 and v5 and the event-plane cor-
relations measured by ATLAS. The validity of these relations is tested using event-by-event hydro-
dynamic calculations. The corresponding results are in better agreement with ALICE data than
existing hydrodynamic predictions. We make quantitative predictions for three symmetric cumu-
lants which are not yet measured.

Anisotropic flow is the key observable showing that the
matter produced in an ultrarelativistic nucleus-nucleus
collision behaves collectively as a fluid [1]. Following the
discovery of flow fluctuations [2] and triangular flow [3],
a “flow paradigm” has emerged, which states that parti-
cles are emitted independently (up to short-range correla-
tions) but with a momentum distribution that fluctuates
event to event [4]. The azimuthal (ϕ) distribution in a
given event is written as a Fourier series:

P (ϕ) =
1

2π

+∞∑
n=−∞

Vne
−inϕ, (1)

where Vn = vn exp(inΨn) is the (complex) anisotropic
flow coefficient in the nth harmonic, and V−n = V ∗n .
Both the magnitude [5] and phase [2, 6] of Vn fluctu-
ate event to event. In the last five years or so, an ex-
tremely rich phenomenology has emerged from this sim-
ple paradigm. RMS values of vn have been measured
up to n = 6 [7–10], and more recently, the full proba-
bility distribution of vn [11]. An even wider variety of
new observables can be constructed by combining dif-
ferent Fourier harmonics [12–14]. This new direction
was pioneered by the ATLAS collaboration which has
measured fourteen mixed correlations involving relative
phases between Fourier harmonics, dubbed event-plane
correlations [15].

Recently, the ALICE collaboration has taken a new
step in this direction [16] by measuring the correlation
between the magnitudes of different Fourier harmonics
using a cumulant analysis [17]. We define the symmetric
cumulant SC(n,m) 1 with n 6= m by

SC(n,m) ≡ 〈v
2
nv

2
m〉 − 〈v2n〉〈v2m〉
〈v2n〉〈v2m〉

. (2)

ALICE has measured SC(3, 2) and SC(4, 2) as a function
of centrality. While these two quantities are formally sim-
ilar, the hydrodynamic mechanisms giving rise to these

1 Note the ALICE collaboration uses the same notation for the
numerator only.

correlations differ. Elliptic flow, v2, and triangular flow,
v3, are both determined to a good approximation by lin-
ear response to the anisotropies of the initial density pro-
file in the corresponding harmonics [18, 19]. Therefore,
SC(3, 2) directly reflects correlations present in the ini-
tial spatial density profile, which are preserved by the
hydrodynamic evolution as the spatial anisotropy is con-
verted into a momentum anisotropy. Standard models for
the initial density indeed reproduce the negative sign and
overall (small) magnitude of the measured SC(3, 2) for
all centralities [16]. By contrast, V4 gets a significant non-
linear contribution proportional to V 2

2 generated by the
hydrodynamic evolution [20–22] in addition to the lin-
ear contribution from the initial anisotropy in the fourth
harmonic [23, 24]. The nonlinear response explains [25]
the large event-plane correlation between V2 and V4. It
also explains qualitatively why SC(4, 2) is positive.

In this paper, we derive a proportionality relation be-
tween SC(4, 2) and the corresponding event-plane cor-
relation, where the proportionality constant involves the
fluctuations of v2. Using this, we are able to relate recent
ALICE measurements with previously measured quan-
tities, which circumvents the most typical limitation of
hydrodynamic predictions that depend on initial condi-
tions or medium properties [26–32]. The sole assumption
underlying our derivation is that the linear and nonlin-
ear contributions to V4 are independent. The validity
of this assumption is tested using hydrodynamic calcula-
tions. The value of SC(4, 2) derived using our relation
and previous ATLAS measurements is compared with
the recent direct measurement by ALICE. We make pre-
dictions along the same lines for SC(5, 2), SC(5, 3) and
SC(4, 3), which are not yet measured.

We decompose V4 and V5 into linear and non-linear
parts [21]

V4 = V4L + χ4(V2)2

V5 = V5L + χ5V2V3. (3)

We define χ4 and χ5 in such a way that the linear cor-
relations between linear and nonlinear parts vanish, that
is, 〈V4L(V2)∗2〉 = 〈V5LV ∗2 V ∗3 〉 = 0. We now introduce
a measure of the relative magnitude of the linear and
nonlinear parts via the Pearson correlation coefficients
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FIG. 1. (Color online) Schematic picture of the relation be-
tween the event-plane angle Φ24 in Eq. (4) and the decompo-
sition Eq. (3). The legs of the triangle correspond to the rms
values of the linear and nonlinear parts, and the hypothenuse
is the rms v4. A similar figure can be drawn for V5.

between V4, or V5, and their nonlinear parts:

cos Φ24 ≡
Re〈V4(V ∗2 )2〉√
〈v24〉〈v42〉

cos Φ235 ≡
Re〈V5V ∗2 V ∗3 〉√
〈v25〉〈v22v23〉

, (4)

where Φ24 and Φ235 lie between 0 and π. The first angle
Φ24 corresponds precisely to the event-plane correlation
measured by ATLAS [15] and denoted by 〈cos(4(Φ2 −
Φ4))〉w.2 The second angle Φ235 almost corresponds to
the quantity denoted by 〈cos(2Φ2 + 3Φ3 − 5Φ5)〉w. The
only difference is that the latter has 〈v22〉〈v23〉 in the de-
nominator, instead of 〈v22v23〉 [21]. Therefore the precise
relation is

cos Φ235 =
〈cos(2Φ2 + 3Φ3 − 5Φ5)〉w√

1 + SC(3, 2)
, (5)

where SC(3, 2) is defined in Eq. (2).
Inserting Eq. (3) into Eq. (4), one obtains

χ2
4〈v42〉 = 〈v24〉 cos2 Φ24

χ2
5〈v22v23〉 = 〈v25〉 cos2 Φ235. (6)

These equations are exact and simply follow from the
definition of χ4 and χ5. They are depicted in Fig. 1.

We now assume that the linear parts V4L and V5L are
statistically independent of V2 and V3. This is a stronger
statement than just assuming that the linear correlation
vanishes. As will be shown below, it is a reasonable ap-
proximation in hydrodynamics. Then, only the nonlinear
response contributes to the correlation between v4 and
v2, and Eq. (3) gives:

〈v24v22〉 − 〈v24〉〈v22〉 = χ2
4

(
〈v62〉 − 〈v42〉〈v22〉

)
. (7)

2 We only consider the event-plane correlations measured using the
scalar-product method, which are denoted by the subscript “w”
in the ATLAS paper and have a clear interpretation in terms
of Vn, in contrast to the results obtained using the event-plane
method [33].
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FIG. 2. (Color online) Test of Eqs.(8) using hydro calcula-
tions. Symbols correspond to the left-hand sides of Eqs. (8),
dark shaded bands to the right-hand sides. Light-shaded
bands correspond to Eqs. (9) and (12). Errors are statisti-
cal and estimated via jackknife resampling.

Similar relations can be written for the correlations be-
tween v24 and v23 , v25 and v22 or v23 . Substituting in χ4 and
χ5 extracted from Eqs. (6), one obtains

SC(4, 2) =

(
〈v62〉
〈v42〉〈v22〉

− 1

)
cos2 Φ24
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SC(4, 3) =

(
〈v42v23〉
〈v42〉〈v23〉

− 1

)
cos2 Φ24

SC(5, 2) =

(
〈v42v23〉
〈v22v23〉〈v22〉

− 1

)
cos2 Φ235

SC(5, 3) =

(
〈v22v43〉
〈v22v23〉〈v23〉

− 1

)
cos2 Φ235 (8)

These equations express symmetric cumulants in terms
of event-plane correlations and moments of v2 and v3.
Based on these equations, one expects symmetric cumu-
lants involving v4 or v5 to increase with viscosity, in the
same way as event-plane correlations [34, 35].

In order to test Eqs. (8), we carry out event-by-event
hydrodynamic calculations using the same setup as in
Ref. [36]: initial conditions are given by the Monte-Carlo
Glauber model [37], the shear viscosity over entropy ratio
is η/s = 0.08 [38] within the viscous relativistic hydro-
dynamical model v-USPhydro [39, 40], and Vn is calcu-
lated at freeze-out [41] for pions. Note, however, that
the particular setup used, and whether or not it quan-
titatively reproduces experimental data, is irrelevant in
this context, since the statement is that Eqs. (8) should
hold to a good approximation for any hydrodynamic cal-
culation. In hydrodynamics, Vn can be computed ex-
actly from the one-particle momentum distribution for
each event [42–44]. Therefore, reasonable accuracy is ob-
tained with fewer events than in an actual experiment.
We generate 1000 events for each 5% centrality bin. Fig-
ure 2 displays the comparison between the left-hand side
(symbols) and the right-hand side (dark shaded bands)
of Eqs. (8). Agreement is good for all four quantities and
all centralities, in the sense that the absolute difference
is typically a few 10−2. The values of SC(n,m) derived
using Eqs. (8) tend to be above the actual values. This
shows that the magnitude of of V4L (or V5L) and that of
v2 (or v3) are not quite independent in hydrodynamics,
but have a slight negative correlation. However, Eqs. (8)
correctly capture the sign, magnitude and centrality de-
pendence of symmetric cumulants.

The equation for SC(4, 2) can also be tested against ex-
isting data. The moments of v2 are not directly measured
but they can be expressed [21] as a function of cumulants,
which have also been measured by ATLAS [45]. Figure 3
displays the comparison between the left-hand side of
Eq. (8) measured by ALICE [16] and the right-hand side
using ATLAS data. Agreement is reasonable for all cen-
tralities. In particular, our data-driven approach gives
a better result for SC(4, 2) than existing hydrodynamic
predictions [16, 35]. Based on the hydrodynamic calcula-
tion of Fig. 2, one would expect that the right-hand side
of Eq. (8) is larger than the left-hand side. However, it is
the other way around above 30% centrality. One reason
may be that the event-plane correlation for ATLAS uses a
much larger pseudorapidity window (|η| < 4.8) than AL-
ICE (|η| < 0.8). Now, the phase of Vn depends slightly
on rapidity [46–48], which induces a decoherence of az-
imuthal correlations for larger ∆η [49, 50]. Due to these
longitudinal flow fluctuations, the event-plane correlation
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FIG. 3. (Color online) Open symbols: ALICE data for
SC(4, 2) [16]. Closed symbols: value obtained using the right-
hand side of Eq. (8) using ATLAS data for the moments of
v2 [45] and the event-plane correlation [15].

measured by ATLAS is smaller than what ALICE would
measure in a more central rapidity window. Ideally, the
comparison between the two sides of Eq. (8) should be
done in the exact same rapidity window.

We now make predictions for SC(4, 3), SC(5, 2) and
SC(5, 3) using Eqs. (8). The right-hand sides involve the
mixed moments 〈v42v23〉 and 〈v22v43〉 which could be mea-
sured directly [14] but are not yet measured. However,
the ALICE collaboration measures |SC(3, 2)| � 1 for all
centralities [16], which implies 〈v22v23〉 ≈ 〈v22〉〈v23〉. There-
fore, one can assume, as a first approximation, that v22
and v23 are independent. Out of curiosity’s sake, we also
neglect the correlation in evaluating Φ235, i.e., we make
the approximation cos Φ235 ≈ 〈cos(2Φ2 + 3Φ3 − 5Φ5)〉w
(see Eq. (5)). Eqs. (8) then give

SC(5, 2) ≈
(
〈v42〉
〈v22〉2

− 1

)
〈cos(2Φ2 + 3Φ3 − 5Φ5)〉2w

SC(5, 3) ≈
(
〈v43〉
〈v23〉2

− 1

)
〈cos(2Φ2 + 3Φ3 − 5Φ5)〉2w.(9)

The validity of Eqs. (9) can again be tested using event-
by-event hydrodynamics. The right-hand sides are shown
as light-shaded bands in Figs. 2 (c) and (d). Agreement
is excellent for central collisions but becomes worse as the
centrality percentile increases, as expected since we have
neglected SC(3, 2) which becomes sizable for peripheral
collisions.

If one assumes that v22 and v23 are independent, the
second line of Eqs. (8) gives SC(4, 3) = 0. In order to
obtain a non-trivial prediction for SC(4, 3), we need to
take into account the small correlation between v22 and
v23 . We do this by assuming that v23 can be decomposed
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FIG. 4. (Color online) Predictions using the right-hand sides
of Eqs. (9) and (12), using ATLAS data for the moments of v2
and v3 [45] and the event-plane correlations [15], and ALICE
data for SC(3, 2) [16].

as

v23 = cv22 + β, (10)

where c is the same for all events in a centrality class, and
β is independent of v22 . Using Eq. (10), the correlation
between an arbitrary moment of v2 and v23 is given in
terms of moments of v2:

〈v22v23〉 − 〈v22〉〈v23〉 = c
(
〈v42〉 − 〈v22〉2

)
〈v42v23〉 − 〈v42〉〈v23〉 = c

(
〈v62〉 − 〈v42〉〈v22〉

)
. (11)

The first equation relates c with SC(3, 2) through Eq. (2).
Taking the ratio of Eqs. (11) and inserting into Eq. (8),
one obtains

SC(4, 3) ≈
〈v22〉

(
〈v62〉 − 〈v42〉〈v22〉

)
〈v42〉 (〈v42〉 − 〈v22〉2)

SC(3, 2) cos2 Φ24.

(12)

The right-hand side of this equation is shown as a light-
shaded band in Fig. 2 (b). It is very close to the dark-
shaded banded for all centralities, thus showing that the
decomposition in Eq. (10) appropriately takes into ac-
count the correlation between v2 and v3.

Figure 4 displays our predictions for SC(5, 3), SC(5, 2)
and SC(4, 3) using Eqs. (9) and (12), where we use AT-
LAS data for the quantities in the right-hand side. Since
〈v43〉 is not measured below 15% centrality, we assume
〈v43〉 ≈ 2〈v23〉2, i.e., Gaussian fluctuations [51] for SC(5, 3)
in the most central bins.3 For SC(4, 3), we use ALICE
data for SC(3, 2), and the other quantities in the right-
hand side of Eq. (12) (moments of v2 and cos Φ24) are
interpolated from ATLAS data, since ALICE and AT-
LAS use different centrality bins.

We have derived proportionality relations between
symmetric cumulants involving v4 or v5 and event-plane
correlations. These relations link correlations of differ-
ent orders (symmetric cumulants are 4-particle correla-
tions, while event-plane correlations are 3-particle corre-
lations) and are fully non trivial. They are satisfied to
a good approximation in event-by-event hydrodynamics,
and thus offer a direct test of hydrodynamic behavior,
which does not rely on a specific model of initial condi-
tions and medium properties. The recent measurement
of SC(4, 2) by ALICE passes the test. We have made pre-
dictions for SC(5, 2), SC(5, 3) and SC(4, 3) which can be
measured in the near future. These new observables will
allow to test hydrodynamic behavior directly, provided
that one also measures higher-order correlations between
v2 and v3 such as 〈v42v23〉.

ACKNOWLEDGMENTS

This work is supported by the European Research
Council under the Advanced Investigator Grant ERC-
AD-267258. JNH acknowledges the use of the Maxwell
Cluster and the advanced support from the Center of Ad-
vanced Computing and Data Systems at the University
of Houston to carry out the research presented here.

[1] U. Heinz and R. Snellings, Ann. Rev. Nucl. Part. Sci.
63, 123 (2013) doi:10.1146/annurev-nucl-102212-170540
[arXiv:1301.2826 [nucl-th]].

[2] B. Alver et al. [PHOBOS Collabora-
tion], Phys. Rev. Lett. 98, 242302 (2007)
doi:10.1103/PhysRevLett.98.242302 [nucl-ex/0610037].

[3] B. Alver and G. Roland, Phys. Rev. C 81,
054905 (2010) Erratum: [Phys. Rev. C 82, 039903

3 This is actually a good approximation for all centralities.

(2010)] doi:10.1103/PhysRevC.82.039903, 10.1103/Phys-
RevC.81.054905 [arXiv:1003.0194 [nucl-th]].

[4] M. Luzum, J. Phys. G 38, 124026 (2011)
doi:10.1088/0954-3899/38/12/124026 [arXiv:1107.0592
[nucl-th]].

[5] M. Miller and R. Snellings, nucl-ex/0312008.
[6] R. Andrade, F. Grassi, Y. Hama, T. Kodama and

O. Socolowski, Jr., Phys. Rev. Lett. 97, 202302 (2006)
doi:10.1103/PhysRevLett.97.202302 [nucl-th/0608067].

[7] A. Adare et al. [PHENIX Collabora-
tion], Phys. Rev. Lett. 107, 252301 (2011)

http://arxiv.org/abs/1301.2826
http://arxiv.org/abs/nucl-ex/0610037
http://arxiv.org/abs/1003.0194
http://arxiv.org/abs/1107.0592
http://arxiv.org/abs/nucl-ex/0312008
http://arxiv.org/abs/nucl-th/0608067


5

doi:10.1103/PhysRevLett.107.252301 [arXiv:1105.3928
[nucl-ex]].

[8] K. Aamodt et al. [ALICE Collabora-
tion], Phys. Rev. Lett. 107, 032301 (2011)
doi:10.1103/PhysRevLett.107.032301 [arXiv:1105.3865
[nucl-ex]].

[9] G. Aad et al. [ATLAS Collaboration], Phys. Rev.
C 86, 014907 (2012) doi:10.1103/PhysRevC.86.014907
[arXiv:1203.3087 [hep-ex]].

[10] S. Chatrchyan et al. [CMS Collaboration],
Phys. Rev. C 89, no. 4, 044906 (2014)
doi:10.1103/PhysRevC.89.044906 [arXiv:1310.8651
[nucl-ex]].

[11] G. Aad et al. [ATLAS Collaboration], JHEP 1311, 183
(2013) doi:10.1007/JHEP11(2013)183 [arXiv:1305.2942
[hep-ex]].

[12] D. Teaney and L. Yan, Phys. Rev. C 83, 064904 (2011)
doi:10.1103/PhysRevC.83.064904 [arXiv:1010.1876
[nucl-th]].

[13] R. S. Bhalerao, M. Luzum and J. Y. Ol-
litrault, Phys. Rev. C 84, 034910 (2011)
doi:10.1103/PhysRevC.84.034910 [arXiv:1104.4740
[nucl-th]].

[14] R. S. Bhalerao, J. Y. Ollitrault and S. Pal, Phys. Lett.
B 742, 94 (2015) doi:10.1016/j.physletb.2015.01.019
[arXiv:1411.5160 [nucl-th]].

[15] G. Aad et al. [ATLAS Collaboration], Phys. Rev. C 90,
no. 2, 024905 (2014) doi:10.1103/PhysRevC.90.024905
[arXiv:1403.0489 [hep-ex]].

[16] J. Adam et al. [ALICE Collaboration], arXiv:1604.07663
[nucl-ex].

[17] A. Bilandzic, C. H. Christensen, K. Gulbrand-
sen, A. Hansen and Y. Zhou, Phys. Rev. C 89,
no. 6, 064904 (2014) doi:10.1103/PhysRevC.89.064904
[arXiv:1312.3572 [nucl-ex]].

[18] H. Niemi, G. S. Denicol, H. Holopainen and P. Huovi-
nen, Phys. Rev. C 87, no. 5, 054901 (2013)
doi:10.1103/PhysRevC.87.054901 [arXiv:1212.1008
[nucl-th]].

[19] F. G. Gardim, J. Noronha-Hostler, M. Luzum and
F. Grassi, Phys. Rev. C 91, no. 3, 034902 (2015)
doi:10.1103/PhysRevC.91.034902 [arXiv:1411.2574
[nucl-th]].

[20] N. Borghini and J. Y. Ollitrault, Phys. Lett. B
642, 227 (2006) doi:10.1016/j.physletb.2006.09.062 [nucl-
th/0506045].

[21] L. Yan and J. Y. Ollitrault, Phys. Lett. B 744, 82 (2015)
doi:10.1016/j.physletb.2015.03.040 [arXiv:1502.02502
[nucl-th]].

[22] J. Qian, U. W. Heinz and J. Liu, arXiv:1602.02813 [nucl-
th].

[23] F. G. Gardim, F. Grassi, M. Luzum and
J. Y. Ollitrault, Phys. Rev. C 85, 024908 (2012)
doi:10.1103/PhysRevC.85.024908 [arXiv:1111.6538
[nucl-th]].

[24] D. Teaney and L. Yan, Phys. Rev. C 86, 044908 (2012)
doi:10.1103/PhysRevC.86.044908 [arXiv:1206.1905
[nucl-th]].

[25] D. Teaney and L. Yan, Phys. Rev. C 90, no.
2, 024902 (2014) doi:10.1103/PhysRevC.90.024902
[arXiv:1312.3689 [nucl-th]].

[26] M. Luzum and P. Romatschke, Phys. Rev. C 78,
034915 (2008) Erratum: [Phys. Rev. C 79, 039903
(2009)] doi:10.1103/PhysRevC.78.034915, 10.1103/Phys-

RevC.79.039903 [arXiv:0804.4015 [nucl-th]].
[27] C. Gale, S. Jeon, B. Schenke, P. Tribedy and R. Venu-

gopalan, Phys. Rev. Lett. 110, no. 1, 012302 (2013)
doi:10.1103/PhysRevLett.110.012302 [arXiv:1209.6330
[nucl-th]].

[28] Z. Qiu and U. Heinz, Phys. Lett. B 717, 261 (2012)
doi:10.1016/j.physletb.2012.09.030 [arXiv:1208.1200
[nucl-th]].

[29] U. Heinz, Z. Qiu and C. Shen, Phys. Rev. C 87,
no. 3, 034913 (2013) doi:10.1103/PhysRevC.87.034913
[arXiv:1302.3535 [nucl-th]].

[30] P. Bozek and W. Broniowski, Phys. Rev. C 88,
no. 1, 014903 (2013) doi:10.1103/PhysRevC.88.014903
[arXiv:1304.3044 [nucl-th]].

[31] W. van der Schee, P. Romatschke and S. Pratt,
Phys. Rev. Lett. 111, no. 22, 222302 (2013)
doi:10.1103/PhysRevLett.111.222302 [arXiv:1307.2539].

[32] E. Retinskaya, M. Luzum and J. Y. Olli-
trault, Phys. Rev. C 89, no. 1, 014902 (2014)
doi:10.1103/PhysRevC.89.014902 [arXiv:1311.5339
[nucl-th]].

[33] M. Luzum and J. Y. Ollitrault, Phys. Rev. C 87,
no. 4, 044907 (2013) doi:10.1103/PhysRevC.87.044907
[arXiv:1209.2323 [nucl-ex]].

[34] D. Teaney and L. Yan, Nucl. Phys. A 904-
905, 365c (2013) doi:10.1016/j.nuclphysa.2013.02.025
[arXiv:1210.5026 [nucl-th]].

[35] H. Niemi, K. J. Eskola and R. Paatelainen,
Phys. Rev. C 93, no. 2, 024907 (2016)
doi:10.1103/PhysRevC.93.024907 [arXiv:1505.02677
[hep-ph]].

[36] J. Noronha-Hostler, L. Yan, F. G. Gardim and
J. Y. Ollitrault, Phys. Rev. C 93, no. 1, 014909 (2016)
doi:10.1103/PhysRevC.93.014909 [arXiv:1511.03896
[nucl-th]].

[37] B. Alver, M. Baker, C. Loizides and P. Steinberg,
arXiv:0805.4411 [nucl-ex].

[38] G. Policastro, D. T. Son and A. O. Starinets,
Phys. Rev. Lett. 87, 081601 (2001)
doi:10.1103/PhysRevLett.87.081601 [hep-th/0104066].

[39] J. Noronha-Hostler, G. S. Denicol, J. Noronha,
R. P. G. Andrade and F. Grassi, Phys. Rev. C
88, 044916 (2013) doi:10.1103/PhysRevC.88.044916
[arXiv:1305.1981 [nucl-th]].

[40] J. Noronha-Hostler, J. Noronha and F. Grassi,
Phys. Rev. C 90, no. 3, 034907 (2014)
doi:10.1103/PhysRevC.90.034907 [arXiv:1406.3333
[nucl-th]].

[41] D. Teaney, Phys. Rev. C 68, 034913 (2003)
doi:10.1103/PhysRevC.68.034913 [nucl-th/0301099].

[42] B. Schenke, S. Jeon and C. Gale, Phys. Rev. Lett.
106, 042301 (2011) doi:10.1103/PhysRevLett.106.042301
[arXiv:1009.3244 [hep-ph]].

[43] F. G. Gardim, F. Grassi, Y. Hama, M. Luzum and
J. Y. Ollitrault, Phys. Rev. C 83, 064901 (2011)
doi:10.1103/PhysRevC.83.064901 [arXiv:1103.4605
[nucl-th]].

[44] Z. Qiu and U. W. Heinz, Phys. Rev. C 84, 024911 (2011)
doi:10.1103/PhysRevC.84.024911 [arXiv:1104.0650
[nucl-th]].

[45] G. Aad et al. [ATLAS Collaboration], Eur. Phys. J. C 74,
no. 11, 3157 (2014) doi:10.1140/epjc/s10052-014-3157-z
[arXiv:1408.4342 [hep-ex]].

http://arxiv.org/abs/1105.3928
http://arxiv.org/abs/1105.3865
http://arxiv.org/abs/1203.3087
http://arxiv.org/abs/1310.8651
http://arxiv.org/abs/1305.2942
http://arxiv.org/abs/1010.1876
http://arxiv.org/abs/1104.4740
http://arxiv.org/abs/1411.5160
http://arxiv.org/abs/1403.0489
http://arxiv.org/abs/1604.07663
http://arxiv.org/abs/1312.3572
http://arxiv.org/abs/1212.1008
http://arxiv.org/abs/1411.2574
http://arxiv.org/abs/nucl-th/0506045
http://arxiv.org/abs/nucl-th/0506045
http://arxiv.org/abs/1502.02502
http://arxiv.org/abs/1602.02813
http://arxiv.org/abs/1111.6538
http://arxiv.org/abs/1206.1905
http://arxiv.org/abs/1312.3689
http://arxiv.org/abs/0804.4015
http://arxiv.org/abs/1209.6330
http://arxiv.org/abs/1208.1200
http://arxiv.org/abs/1302.3535
http://arxiv.org/abs/1304.3044
http://arxiv.org/abs/1307.2539
http://arxiv.org/abs/1311.5339
http://arxiv.org/abs/1209.2323
http://arxiv.org/abs/1210.5026
http://arxiv.org/abs/1505.02677
http://arxiv.org/abs/1511.03896
http://arxiv.org/abs/0805.4411
http://arxiv.org/abs/hep-th/0104066
http://arxiv.org/abs/1305.1981
http://arxiv.org/abs/1406.3333
http://arxiv.org/abs/nucl-th/0301099
http://arxiv.org/abs/1009.3244
http://arxiv.org/abs/1103.4605
http://arxiv.org/abs/1104.0650
http://arxiv.org/abs/1408.4342


6

[46] P. Bozek, W. Broniowski and J. Moreira, Phys. Rev.
C 83, 034911 (2011) doi:10.1103/PhysRevC.83.034911
[arXiv:1011.3354 [nucl-th]].

[47] L. G. Pang, G. Y. Qin, V. Roy, X. N. Wang and
G. L. Ma, Phys. Rev. C 91, no. 4, 044904 (2015)
doi:10.1103/PhysRevC.91.044904 [arXiv:1410.8690
[nucl-th]].

[48] J. Jia and P. Huo, Phys. Rev. C 90, no. 3, 034915 (2014)
doi:10.1103/PhysRevC.90.034915 [arXiv:1403.6077
[nucl-th]].

[49] L. Adamczyk et al. [STAR Collaboration],
Phys. Rev. C 88, no. 1, 014904 (2013)

doi:10.1103/PhysRevC.88.014904 [arXiv:1301.2187
[nucl-ex]].

[50] V. Khachatryan et al. [CMS Collaboration],
Phys. Rev. C 92, no. 3, 034911 (2015)
doi:10.1103/PhysRevC.92.034911 [arXiv:1503.01692
[nucl-ex]].

[51] S. A. Voloshin, A. M. Poskanzer, A. Tang
and G. Wang, Phys. Lett. B 659, 537 (2008)
doi:10.1016/j.physletb.2007.11.043 [arXiv:0708.0800
[nucl-th]].

http://arxiv.org/abs/1011.3354
http://arxiv.org/abs/1410.8690
http://arxiv.org/abs/1403.6077
http://arxiv.org/abs/1301.2187
http://arxiv.org/abs/1503.01692
http://arxiv.org/abs/0708.0800

	Symmetric cumulants and event-plane correlations
	Abstract
	 Acknowledgments
	 References


