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The Gardner transition in finite dimensions
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Recent works on hard spheres in the limit of infinite dimensions revealed that glass states, envi-
sioned as meta-basins in configuration space, can break up in a multitude of separate basins at low
enough temperature or high enough pressure, leading to the emergence of new kinds of soft-modes
and unusual properties. In this paper we study by perturbative renormalisation group techniques
the critical properties of this transition, which has been discovered in disordered mean-field models
in the ’80s. We find that the upper critical dimension du above which mean-field results hold is
strictly larger than six and apparently non-universal, i.e. system dependent. Below du, we do not
find any perturbative attractive fixed point (except for a tiny region of the 1RSB breaking parame-
ter), thus showing that the transition in three dimensions either is governed by a non-perturbative
fixed point unrelated to the Gaussian mean-field one or becomes first order or does not exist. We
also discuss possible relationships with the behavior of spin glasses in a field.

The properties of glasses at low temperatures are the
subject of extensive experimental, numerical and analyt-
ical investigations. In order to understand them, one
has to study the properties of the amorphous solids in
which liquids freeze at the glass transition. Hence a
crucial preliminary step is arguably understanding glass-
formation. One of the most prominent theoretical ap-
proaches to do that is the Random First Order Transition
(RFOT) theory introduced by Kirkpatrick, Thirumalai,
and Wolynes [1–4]. It has its roots in the mean-field
theory of disordered models but, as it has become clear
in recent years, it goes well beyond that. RFOT theory
applies to all systems characterized by a certain kind of
(free-)energy landscape, such that below a given temper-
ature Td an exponential number (in the system size) of
metastable states emerges. By lowering the temperature
their thermodynamics becomes ruled by the competition
between two kinds of contributions: one (free-energetic)
that favours states with lower internal free energy be-
cause their corresponding Boltzmann weight is larger,
and the other (entropic) which favours states having high
internal free energy because they are more numerous. At
the so called Kauzmann temperature, TK , the entropic
contribution vanishes and the system freezes in one low-
lying glass state. RFOT theory advocates that this is pre-
cisely what happens for super-cooled liquids approaching
the glass transition, where Td corresponds to the so-called
Mode Coupling cross-over and TK to the ideal glass tran-
sition. A major result of the last thirty years was to show
that this is indeed the case within mean-field theory [5].
Actually, the range of systems displaying such an energy
landscape—at the mean field level—is remarkably broad:
it encompasses physical systems such as super-cooled liq-
uids, colloids, proteins [6, 7] and models central in other
fields like random K-satisfiability [8]. Whether this re-
mains true beyond the mean-field approximation it is still
a matter of debate, although there are by now remark-
able numerical and experimental evidences [6, 9].
For a long time the properties of low-temperature glasses
remained a separate research subject from the much more
studied problem of glass transition with the notable ex-
ception of Ref. [10]. Recently, however, there has been an

increasing research effort aimed at understanding amor-
phous solids’ unusual features and their relationship with
the glass transition [11]. This was to great extent moti-
vated by the study of jamming [12, 13]. In this con-
text, a new twist of RFOT theory is the suggestion that
glass states, envisioned as meta-basins in configuration
space, can break up in a multitude of separate basins at
low enough temperature or high enough pressure, lead-
ing to the emergence of new kinds of soft modes and
unusual properties [14]. This transition, called Gardner
transition [15, 16], was actually found long-time ago for
several mean-field models characterized by a RFOT. In
these systems at a temperature, TK , there is a glass phase
transition at which, technically, a one replica symmetry
breaking (1RSB) phase emerges and at a lower temper-
ature, TG, there is a Gardner transition towards a full
replica symmetry breaking (FRSB) phase, see for exam-
ple the case of the Ising p-spin disordered models [17, 18].
As pointed out in [19, 20] (see also [21]) this transition
from a valley in configuration space to a multitude of sep-
arated basins takes place also for non-equilibrium glass
states. In consequence, it is not limited to the (unreach-
able) equilibrium regime below TK but is also relevant
for common non-equilibrium protocols such as quenches
or crunches during which the system gets trapped in a
metastable state. For a very long time the study of the
Gardner transition remained bounded to abstract mean-
field models. From the point of view of the physics of
glasses, it was just a pure intellectual curiosity. Recent
works on the solution of glassy hard spheres in infinite
dimensions highlighted its relevance for amorphous mate-
rials [14, 22–24]. In fact the FRSB phase appearing below
TG is marginally stable and its soft-modes are deeply re-
lated to the unusual features displayed by jammed pack-
ings [13, 25–31]. Remarkably, the FRSB mean-field the-
ory predicts values for the critical exponents of the jam-
ming transition that are in perfect agreement with the
ones observed in numerical simulations in two and three
dimensions. In consequence, understanding how criti-
cal finite dimensional fluctuations affect the the Gardner
transition found within mean-field theory is no more an
abstract and academic question. It has become a open
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and very relevant issue. The aim of this work is ad-
dressing it using perturbative renormalisation group tech-
niques.
Before starting our analysis there are two important
points worth clarifying. The first question that comes
to mind when one applies mean-field results to estimate
critical exponents in three dimensional systems concerns
the role of finite dimensional fluctuations. In this re-
spect, it is important to stress that the exponents of the
jamming transition found within mean-field theory are
related to the soft-modes of the FRSB phase [13, 25–
31]. In consequence, they are related to the properties
of the low temperature/high pressure phase. They are
not exponents related to a phase transition. There are
therefore two separate issues: one is how the Gardner
transition and its critical properties change from infinite
dimension down to three, and the other is how the soft
modes of the symmetry broken phase change from infi-
nite dimension down to three. An instructive example
is provided by the ferromagnetic Heisenberg model: its
critical properties at the ferromagnetic phase transition
change below four dimensions with respect to the mean-
field ones, however the properties of the soft-Goldstone
modes remain the same, as shown by analyzing the cor-
responding non-linear σ-model [32]. What we do in this
work is to address the first issue, i.e. we focus on the
critical properties of the Gardner transition. We shall
just touch upon the second one in the conclusion.
The other point we want to address is the relationship be-
tween the FRSB physics found for hard spheres in infinite
dimensions and the one of spin-glasses in a field. In both
cases one finds a FRSB phase without any residual sym-
metry present. Thus, reasoning only in terms of phases
and type of symmetry breaking one would conclude that
spin-glasses in a field and low temperature/high pressure
glasses are in the same universality class both for the
transition, Gardner versus spin-glass, and the properties
of the FRSB phase. This would be also what one would
conclude from the works by Moore and collaborators [33–
35], in which the glass transition was argued to be related
to the spin-glass transition in a field (see also [36]). As
we shall show, however, the situation is more intricate
and need further analysis.
The starting point of our derivation is the effective replica
field theory which describes the critical fluctuations at
the Gardner transition. At TG there is a phase transi-
tion from a 1RSB to a FRSB phase. Hence, the action
of the theory can be formulated in terms of a fluctuating
space dependent overlap field Qab(r) = φab(r)+Q where
Q is the 1RSB value of the solution of the saddle point
equations. The replica indices a, b run from 1 to m and
an analytic continuation for m to real values is always as-
sumed. In our calculation m is the 1RSB breaking point
and must be considered fixed to the value reached at TG

[18, 37]. There are no extra n/m → 0 replicas since we
focus on systems without quenched disorder [38]. Other
values of m, different from m(TG), can be used to select
non-equilibrium metastable states within mean-field the-

ory [39]. Whether our analysis for generic values ofm can
be applied to metastable states will be discussed in the
conclusion. In order to construct the most general action
for φab(r) we recall that there is no other symmetry that
has to be taken into account besides replica permutation.
As a consequence, one has to consider all quadratic and
cubic terms allowed by replica symmetry. By analyzing
the quadratic terms of the expansion of the action one
recognizes that the replica field theory has a mass matrix
that can be easily diagonalized [40]. Three distinct eigen-
values are found: the replicon, the longitudinal and the
anomalous one. The mean-field analysis shows that the
Gardner transition corresponds to the vanishing of the
replicon eigenvalue whereas the others remain massive
[16]. This means that only the replicon modes are crit-
ical and the others can be safely integrated out. Thus,
in order to obtain the action of the critical modes we
only take into account the contribution from the critical
replicon modes to the fluctuating overlap field. This is
a standard procedure and it has been already followed
in the case of the Edwards-Anderson (EA) model in a
field [41]. As expected, the results of the fixed points of
the renormalization group equations are the same if the
non critical modes are also taken into account [42]. The
action that one obtains reads: [41, 42]

L =
1

2

∑

p



(p2 + r)
m
∑

a,b=1

φab(p)φab(−p)





−
˜∑

p1,p2,p3





1

6
g1

∑

a,b,c

φab(p1)φbc(p2)φca(p3)

+
1

12
g2

∑

a,b

φab(p1)φab(p2)φab(p3)





(1)

where ˜∑ denotes a sum over momenta that sum up to
zero in order to ensure translational invariance. The field
φab(p) has the following properties

φab(p) = φba(p) , φaa(p) = 0
∑

b( 6=a)

φab(p) =
∑

a( 6=b)

φab(p) = 0 (2)

that characterize the replicon eigenspace. In the limit
m → 0 this replica field theory describes the behavior of
the EA model in a field. To study the Gardner transi-
tion we instead have to keep m finite. The perturbative
renormalization group equations for such a theory were
obtained in Ref. [41, 42] by performing the ε-expansion
around d = 6, which corresponds to the upper critical
dimension of the theory (at least perturbatively, more on
this later on). The equations that describe the RG flow
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read [42]:

dr

dl
= (2−

1

3
η)r −

[

g21
m4 − 8m3 + 19m2 − 4m− 16

(m− 1)(m− 2)2

+g1g2
2(3m2 − 15m+ 16)

(m− 1)(m− 2)2
+ g22

m3 − 9m2 + 26m− 22

2(m− 1)(m− 2)2

]

I2

dg1
dl

=
1

2
(ε− η)g1 +

[

A1g
3
1 +A2g

2
1g2 +A3g1g

2
2 +A4g

3
2

]

I3

dg2
dl

=
1

2
(ε− η)g2 −

[

B1g
3
1 +B2g

2
1g2 +B3g1g

2
2 +B4g

3
2

]

I3

where I2 = (1 + r)−2, I3 = (1 + r)−3, ε = 6 − d, d is
the spatial dimension, and η the usual critical exponent
related to the anomalous dimension of the field. The
coefficients A and B reads:

A1 =
m5 − 10m4 + 33m3 − 8m2 − 104m+ 112

(m− 1)(m− 2)3

A2 =
3(3m3 − 27m2 + 64m− 48)

(m− 1)(m− 2)3

A3 =
3(−m3 + 8m2 − 17m+ 12)

(m− 1)(m− 2)3

A4 = −
1

(m− 2)3

B1 =
24m

(m− 2)2

B2 =
6(m3 − 5m2 − 8m+ 16)

(m− 1)(m− 2)2

B3 = −
3(6m2 − 38m+ 40)

(m− 1)(m− 2)2

B4 = −
m3 − 11m2 + 38m− 34

(m− 1)(m− 2)2

(3)

Moreover we have

η =
(

H1g
2
1 +H2g1g2 +H3g

2
2

) 1 + r

(1 + r)4

H1 =
m4 − 8m3 + 19m2 − 4m− 16

(m− 1)(m− 2)2

H2 =
2(3m2 − 15m+ 16)

(m− 1)(m2)2

H3 =
m3 − 9m2 + 26m− 22

2(m− 1)(m− 2)2
.

(4)

Starting from these equations we can write down an equa-
tion for λ = g2/g1 at criticality, i.e for r = 0:

dλ

dl
= −g21

[

K1 +K2λ+K3λ
2 +K4λ

2 +K5λ
4
]

K1 = B1 K5 = A4 K2 = B2 +A1

K4 = B4 +A3 K3 = B3 +A2 .

(5)

Equation (5) is dimension independent and thus it is par-
ticularly useful to discuss the RG fixed points (FP) [43].
The fixed points equation for λ reads

K1 +K2λ+K3λ
2 +K4λ

2 +K5λ
4 = 0 (6)
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FIG. 1. Basins of attraction of the Gaussian fixed point for
d > 6 in the quadrant g1 > 0, g2 > 0. The (blue) dots de-
note the non-Gaussian fixed points. The (red) continuous
and (blue) dotted lines correspond respectively to the basin
of attraction for m = 0.1 ∈ [0, m̃] and m = 0.95 ∈ [m̃, 1].
We denote with arrows the stability of the FPs and the cor-
responding eigendirections (for some FPs these are almost
collinear and not well distinguishable). The square denotes
the stable Gaussian FP.

where we consider g1 6= 0 since, as we verified, there are
no RG-FPs characterized by g1 = 0 except the Gaus-
sian one for which g1 = g2 = 0. We find that that
for m < m∗ ≃ 0.894, eq. (6) has two real solutions
λ1(m) and λ2(m). For m ≥ m∗ other two real solutions
λ3(m) and λ4(m) appear. Note that for each value of
λ there are two RG-FPs related by the transformation
(g1, g2) → (−g1,−g2). In the following we consider sep-
arately the d > 6 and d < 6 cases. For the former case
we find that λ4(m) leads always to purely imaginary FPs
and, hence, can be disregarded, whereas λ3(m) gives a
real value for g1 and g2 for m ≥ m̃ ≃ 0.905 (> m∗)
only. Thus, depending whether m ∈ [0, m̃] or m ∈ [m̃, 1]
one finds four or six FPs (none of them stable). They
all belong to the the border of the basin of attraction of
the Gaussian fixed point (G-FP), see Fig. 1. Increasing
the value of m the basin of attraction stretches along the
diagonal direction and becomes very large, or possibly
infinite, for m close to m̃. Its size shrinks to zero when
d ↓ 6, as found in Ref. [44] in the case m = 0. This is the
prelude of what happens crossing d = 6, where the G-FP
becomes unstable. For d < 6 the only physical (i.e. real)
FPs are given by λ3(m) and λ4(m) for m ∈ [m∗, m̃] and
by λ4(m) for m ∈ [m∗, 1]. We never find an attractive
FPs except in the tiny regime m ∈ [m∗, m̃]. See Fig. 2
for a summary of the d < 6 case. We now discuss the
main consequences of the perturbative RG results found
above. The situation is very different from the one corre-
sponding to standard field theories, e.g. the φ4 field the-
ory, because the basin of attraction of the G-FP shrinks
to zero approaching d = 6 and we do not find any at-
tractive FP below (we neglect for the moment the case
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FIG. 2. The RG fixed points in the quadrant g1 > 0 and
g2 > 0 for d < 6 and m ∈ [m∗, m̃]. We find an attractive
fixed point and a partially repulsive fixed point on the border
of its basin of attraction (continuous red line). For both fixed
points, the eigenvectors directions of the linearized RG flow
are almost collinear. For m ∈ [m̃, 1] only the unstable fixed
point survives.

m ∈ [m∗, m̃]). Since the bare values of the coupling con-
stants g1 and g2 are not arbitrarily small for a realistic
system, the corresponding RG flow is bound to escape
from the G-FP strictly before d = 6 [45]. This has two
consequences: first, the upper critical dimension of the
theory, du, above which mean-field results hold is strictly
larger than six and, second, it is not universal since it
depends on where the initial condition lies with respect
to the basin of attraction of the G-FP. For d < du, the
system flows to strong coupling, i.e. to a regime that
we cannot access perturbatively. Different physical situ-
ations can correspond to this behaviour. The transition
can be destroyed or can become first order for d < du
[46, 47]. Another appealing possibility is that it remains
critical but the critical behavior is dominated by a non-
perturbative fixed point. For the spin-glass transition in
a field or without time-reversal symmetry, which corre-
sponds to the casem = 0, the latter scenario is supported
both by numerical simulations [48–53] and real space RG
analyses [54] at least in high enough dimensions (the be-
haviour in three dimension is still controversial). Note
that although our results are overall very similar to the
ones of spin-glasses in a field [41, 44], the detailed be-
haviour of the RG flow in the perturbative regime is dif-
ferent [55]. This, together with the fact for spin-glasses
that the critical fluctuating field has a number of com-
ponents m(m− 3)/2 with m → 0 while in the case of the
Gardner transition the number of replicas m is fixed and
positive, suggests that the universality classes should be
distinct. On the other hand, if the theories at different m
have different critical behaviours then the critical proper-
ties of the Gardner transition are system-dependent, i.e.
not universal at all (a quite weird physical situation),

since the value of the breaking point m at the transition
is system-dependent. Non-perturbative RG treatments
and numerical simulations are needed to clarify these is-
sues. The regimem ∈ [m∗, m̃] that we neglected before is
very peculiar since one does find an attractive FP below
six dimensions but with a basin of attraction that shrinks
to zero when d ↑ 6. This leads to a rather baroque RG
phenomenology. Since the interval [m∗, m̃] is not only
very tiny but also very close to one, it corresponds to
systems (if any) extremely fine tuned. For this reason,
we shall not address it further in this work.
One of the main motivation to study the fate of the Gard-
ner transition in finite dimensions is the recent discov-
ery of the FRSB phase of hard spheres in high dimen-
sions and its relevance for the properties of amorphous
solids. As already discussed, within mean-field computa-
tions or in the limit of infinite dimensions, one can tune
the value of m to select certain metastable states, e.g.
corresponding to packings with a given volume fraction.
The problem in applying our results to this case is that
the procedure of selecting metastable states tuning m is
not well defined beyond mean-field theory. The 1RSB
solution that is used in the mean-field computations is
known to be unstable because of non-perturative effects
[56], which simply correspond to the fact that the corre-
sponding states are metastable in any finite dimension.
One way out of this problem is constraining the particles
to only move around the positions they have in a given
packing, as in the model introduced in Ref. [34]. It is
interesting to notice that this procedure explicitly intro-
duces quenched disorder. Although we did not attempt
to study this case by RG, we conjecture that a relation-
ship with spin glasses in a field could emerge since the
disorder select a given metabasin transforming the Gard-
ner transition we analyzed into a transition from a RS
phase (describing the metabasin at high temperature/low
pressure) to a FRSB phase (describing the multi-valley
structure inside the metabasin), similarly to what hap-
pens for the EA model in a field. Results supporting this
view were presented in Ref. [34, 35]. This is certainly
an issue worth investigating more both analytically and
numerically. Establishing a direct relationship between
the behavior of spin-glasses in a field and low tempera-
ture/high pressure glasses would be extremely important
and useful, as argued in [34, 35]. Our perturbative RG re-
sults cannot lead to any conclusive result on this. What
they makes clear, however, is that the Gardner transi-
tion in three dimension either does not exists or it has a
different nature from the mean-field one, namely it can
become non-perturbative in the RG sense or first order.
Numerical simulations and non-perturbative RG treat-
ments are crucially needed in order to find out which one
among these three possibilities is realized.
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[17] D. J. Gross and M. Mézard, Nucl. Phys. B 240, 431

(1984).
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