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Critical dynamical heterogeneities close to continuous second-order glass transitions
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We analyse, using Inhomogenous Mode-Coupling Theory, the critical scaling behaviour of the
dynamical susceptibility at a distance ǫ from continuous second-order glass transitions. We find
that the dynamical correlation length ξ behaves generically as ǫ−1/3 and that the upper critical
dimension is equal to six. More surprisingly, we find activated dynamic scaling, where ξ grows
with time as ln2 t exactly at criticality. All these results suggest a deep analogy between the glassy
behaviour of attractive colloids or randomly pinned supercooled liquids and that of the Random
Field Ising Model.

Several recent studies have revealed that the proper-
ties of the glass transition can be drastically modified by
suitably tuning some control parameters. In the case of
the colloidal glass transition, an attractive interaction on
top of the hard-sphere repulsion can change the dynami-
cal behaviour and lead to glass-glass transitions and log-
arithmic relaxation [1]. This behaviour is also expected
for glassy liquids in porous media [2]. For generic glass-
forming liquids, it was recently predicted [3, 4] that ran-
domly pinning a fraction of particles would transmute
the glass transition in a continuous second-order phase
transition akin to that of the Random Field Ising model
(RFIM) [3–5]. There are strong theoretical indications
that these phenomena are in fact all related to the ex-
istence of a new kind of glassy critical point, first found
within Mode-Coupling Theory (MCT) as a higher-order
singularity [6]. The physical contexts in which it ap-
pears are quite different: for attractive colloids it is a
terminal point of a glass-glass transition line, for glass-
forming liquids either pinned or trapped in porous me-
dia it corresponds to the locus where the Mode-Coupling
transition and the Ideal Glass transition lines merge. In
the former case the glass transition line stops at this new
critical point [3], whereas in the latter it carries on and
becomes continuous [2]. Remarkably, in all these physi-
cal situations, activated processes not described by MCT
are either suppressed, since the region where they appear
shrinks to zero for glass-forming liquids, or not relevant
since the system is in the glass phase for attractive col-
loids. Hence, MCT might become quantitatively accurate
in these situations. The dynamical behaviour of the two-
point functions at this new glassy critical point, that we
will call A3 using Götze’s terminology, was predicted by
MCT computations [6] and confirmed later both numeri-
cally and experimentally in colloids [1]. The static prop-
erties of the fluctuations of the overlap field between two
equilibrium configurations were recently investigated in
[3, 5] and, using simulations, in [7]. A complete theory of
dynamical correlations is however still lacking. The aim
of this paper is to develop such a theory by extending

the “Inhomogeneous” MCT (IMCT) formalism, which
was developed by some of us [8] to describe dynamical
heterogeneities at the usual MCT transition. We shall
obtain the mean-field values of the critical exponents, the
upper critical dimension and derive the critical behavior,
which turns out to be very different from the usual one.
We find in particular activated dynamic scaling, which
strongly bolsters the relationship with the RFIM [3, 5].

In order to grasp the main properties of the A3 critical
point, it is useful to focus on the mean-field Landau-
like potential V (f ; ε), called the Franz-Parisi (FP) po-
tential in the present context [9]. The arguments ε and
f are, respectively, the vector of all control parameters
that can be tuned (e.g. the temperature and the frac-
tion of pinned particles) and the glassy (non-ergodic)
order parameter, which measures how far the dynam-
ics can displace the system away from its initial config-
uration. For usual glass transitions, the FP potential
has a unique minimum f0 = 0 at high temperatures; it
corresponds to a complete loss of memory of the initial
condition as normal in a liquid. A secondary minimum
appears for f = f∗ > 0 below a certain transition tem-
perature Tc, see Fig. 1. An important achievement of
the last decades was to establish that Tc actually co-
incides with the MCT transition, where locally stable,
long-lived amorphous structures, corresponding to the
secondary minimum of V (f ; ε), appear. Roughly speak-
ing, the connection between the FP potential and MCT
may be expressed as V ′(f ; ε) = f

1−f −Fε[f ], where Fε[f ]

is the memory function of the MCT equations (The full-
fledged MCT calculation deals with wave-vector depen-
dent order parameters f~q, we will return to this below)
[10]. An A3 critical point corresponds to the merging
of the minima f0 and f∗ [11, 12]. It is of co-dimension
2, much as the liquid-gas critical point, i.e. one needs
to tune at least two control parameters to reach it, as
found for systems with quenched pinning sites (see inset
of Fig. 1) and for hard sphere systems, where one tunes
the short-range attractive interactions and the density.

Technically, the existence of an underlying thermody-
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FIG. 1: Schematic presentation of the FP potential. The
second minimum that develops below the transition point
becomes flat as the usual MCT (A2) transition point is ap-
proached from below. The two minima coalesce one at the A3

point. Inset: schematic phase diagram obtained for random
pinning glass transitions. In the temperature-pinning fraction
plane the MCT transition line ends in an A3 critical point [3].
The two special directions mentioned in the text are shown.

namical formulation has been extremely useful to under-
stand that the MCT transition is necessarily accompa-
nied by the divergence of a length scale, which governs
the spatial extent over which dynamical fluctuations are
correlated, a feature that was hard to anticipate within
the original framework of Götze et al. This diverging
length scale is in fact a direct consequence of the van-
ishing of the curvature V ′′(f∗; ε) of the FP potential at
Tc (see Fig. 1) [13–15]. The IMCT formalism allowed us
to make a series of precise predictions about the space-
time scaling of dynamical heterogeneities in supercooled
liquids close to Tc [8]. One finds in particular that the
dynamical correlation length diverges as |T − Tc|−1/4 as
the critical point is approached. Although the IMCT pre-
dictions are only expected to be correct far enough from
Tc below 8 dimensions, many general predictions appear
to be confirmed, sometimes quantitatively, by large scale
computer simulations, see [16] and refs therein. These de-
velopments, and others, strongly support a quantitative
theory of supercooled liquids built using the mean-field
scenario as a starting point, much as Curie-Weiss theory
provides a foundation for the modern theory of critical
phenomena [17, 18].
In the following we first explain our results in an in-

formal and simple way based on the behaviour of the FP
potential; we then sketch the complete IMCT derivation.
We will denote as V (n) the n-th derivative of V (f ; ε) with

respect to f (V ′ = V (1), etc.), and ~∇εV the gradient
of V with respect to the parameters. The expansion of
V ′(f ; ε) around the transition point f = fc, ~ε = 0 reads,
with δf = f − fc:

V ′(f ; ε) ≈ V (2)
c δf +

1

2
V (3)
c δf2 +

1

3
V (4)
c δf3

+ ~∇εV
′
c · ~ε+ ~∇εV

(2)
c · ~ε δf + . . . ,

where we have used that by definition, at the transition,
V ′(fc; 0) ≡ 0. The standard MCT transition (the A2

critical point) occurs when the secondary minimum of

V (f) just appears, implying V
(2)
c = 0 (see Fig. 1). The

next order singularity (A3) occurs when V
(3)
c concomi-

tantly vanishes as well (see Fig. 1). Looking for the new
location f∗ of the minimum away from the transition,
one finds, to leading order in ǫ = |~ε|: f∗ − fc ∼

√
ǫ, as is

familiar for the A2 case and f∗ − fc ∼ 3
√
ǫ in the generic

A3 case. There is however a subtlety here: since the A3
point requires at least two parameters to be varied simul-
taneously, one needs to include the case where the chosen
trajectory in parameter space is precisely perpendicular
to ~∇εV

′
c , in which case one finds again the weaker sin-

gularity f∗ − fc ∼ √
ǫ‖, where ǫ‖ is the distance to the

critical point along that special direction. The motiva-
tion for the notation ǫ‖ stems from the liquid-glass phase
diagram, sketched in the inset of Fig. 1 in the case of
random pinning glass transitions [3]. In general A3 is
the terminal point of the line of A2 critical points. The
special direction found above is the one tangent to the
A2 line. In consequence, we also introduce the notation
ǫ⊥ for the magnitude of the component of ~ε perpendicu-
lar to the A2 line (i.e. parallel to ~∇εV

′
c ).

The main idea of IMCT [8] is to perturb the system with
a small spatially periodic external potential ∝ cos(~q0 ·~x),
whose spatial profile varies over the length-scale 1/q0.
The characteristic value of q∗0 at which the external per-
turbation starts to act differently from a uniform, q0 = 0,
perturbation allows one to obtain the correlation length
of dynamical heterogeneities as ξ = 1/q∗0 . Since all the
physics of the slowing down is governed by the vanishing
of the curvature of the FP potential, the crucial point is
to work out how the periodic perturbation (of zero mean)
changes this curvature. Because the system is rotation-
ally invariant, it is reasonable to assume that the extra
contribution to the curvature is ∼ q20 . Therefore, one has:

V ′′(f∗, ε) ≈ V (3)
c (f∗−fc)+

1

2
V (4)
c (f∗−fc)2+~∇εV

(2)
c ·~ε+Γq20 .

Close to an A2 critical point, V
(3)
c 6= 0 and f∗−fc ∼

√
ǫ,

which shows that the characteristic value of q0 beyond
which the relaxation time substantially changes is ∼ ǫ1/4,
leading to ξ ∼ ǫ−1/4, in agreement with the result of [8].

Upon approaching an A3 critical point, V
(3)
c = 0, lead-

ing to ξ ∼ ǫ
−1/3
⊥ in the generic case, and to ξ ∼ ǫ

−1/2
‖

in the special case where ǫ⊥ = 0. These results are fully
confirmed, and made more precise, by the IMCT analysis
that we now briefly present.
The IMCT formalism starts from an exact equa-
tion for the inhomogeneous dynamic structure factor
F (q1,q2, t) = 〈ρq1

(t)ρ−q2
(0)〉 in the presence of an in-

homogeneous external field u(q0):

∂F (q1,q2,t)
∂t +Ωq1F (q1,q2, t) +

∑
k

∫ t

0 M(q1,k, t− t′)

×∂F (k,q2,t
′)

∂t′ dt′ = Tu(q1,q2, t), (1)
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FIG. 2: Numerical results obtained by solving the schematic
F13 equations. χq0=0 as a function of time approaching the
A3 critical point, which is indeed found to rescale as |ǫ⊥|

−2/3

times a function of |ǫ⊥|1/6 × ln t. Inset: Scaling collapse,
for different q0 and t, of q20χ

c
q0

as a function of q0 ln
2 t at

criticality, as predicted from the theory.

where Ωq1 ≡ q21kBT/Sq1 is a frequency term, M(q1,k, t)
is the memory kernel and Tu(q1,q2, t) contains all
the terms generated due to the external potential.
The dynamical susceptibility is defined as χq0

(q1, t) =
δF (q1,q1 + q0, t)/δu(q0)|u→0. This object obeys a lin-
ear equation (that we do not write here, see [8]) obtained
by taking the derivative of Eq. (1) with respect to u(q0).
In the long-time limit, this linear equation reads:

∑

k

(
δk,q − Cq;k(q0)

)
χq0

(k, t → ∞) = S(q,q0), (2)

where S(q,q0) is a non singular source term and Cq;k(q0)
is a q0 dependent matrix that can be fully computed in
terms of the memory kernel of the model, see [8]. Note
that χq0

(k, t → ∞) is nothing else than the variation of
the non-ergodic parameter fk = F (k, t→ ∞) due to the
external potential. In order to analyse Eq. (2) we recall
(see [11]) that Cq;k(0) = (1− fk)

2∂Fq,ε[{fk}]/∂fk. The
properties of the operator δk,q−Cq;k(0), which is akin to
V ′(f ; ε), are reported in [11]: at distance ǫ from the tran-
sition, one finds fk = f c

k+(1−f c
k)

2gk, where gk ∝ 3
√
ǫψR

k

and ψR
k is the (right) zero mode of I− Ĉ(0) evaluated at

the transition point. This scaling holds when approach-
ing the A3 critical point in any direction other than the
one parallel to the line of usual A2 transitions that ap-
proach the A3 point. In this case one finds gk ∝ √

ǫψR
k .

Away from criticality, the smallest eigenvalue of the ma-
trix I − Ĉ(0) is not exactly zero: the deviations are of

order, respectively, ǫ
2/3
⊥ and ǫ‖ close to an A3 point, de-

pending on the direction of approach to criticality. Com-
ing back to our original problem, we remark that the

eigenvalues of Cq;k(q0) can be computed using pertur-
bation theory. Due to rotational invariance, one finds
that all eigenvalues of Cq;k(0) are shifted by an amount

∝ q20 . The smallest eigenvalue of I − Ĉ(q0) is therefore
equal to α|ǫ⊥|2/3+Γq20 , where α and Γ are numbers, and
ǫ⊥ 6= 0. The solution of Eq. (2) will be dominated by
this very small eigenvalue, and thus reads:

χq0
(k, t → ∞) ≈ 〈ψL|S〉ψR

k

α|ǫ⊥|2/3 + Γq20
, (3)

where ψL,R are the left and right largest eigenvectors
of Cq;k at criticality. From this expression, one directly
demonstrates the existence of a diverging susceptibility
and a diverging length scale within MCT, which is inti-
mately due to the vanishing of the curvature of the FP
potential. Close to an A3 point, this length scale diverges
as |ǫ⊥|−1/3, as announced above. The time dependent
analysis is more cumbersome and will be presented in
detail elsewhere [23]. The final result is:

χq0
(k, t) ≃ V⊥(k)ξ

2
⊥

1 + Γ(q0ξ⊥)2
G‖

(
ln t√
ξ⊥
, q0ξ⊥

)
, ǫ⊥ 6= 0,

χq0
(k, t) ≃

V‖(k)ξ
2
‖

1 + Γ(q0ξ‖)2
G⊥

(
ln t√
ξ‖
, q0ξ‖

)
, ǫ⊥ = 0,

where V‖,⊥(k) are certain functions, and ξ⊥ = |ǫ⊥|−1/3,

ξ‖ = |ǫ‖|−1/2, as indeed anticipated by the simple argu-
ments above.
The scaling functions G‖,⊥(u, v) are such that in the

limit ǫ‖,⊥ → 0 and q0 = 0 (corresponding to a uni-
form perturbation), the dynamical susceptibility is well
defined. This imposes G‖,⊥(u, v = 0) ∼ u4, and there-

fore, at criticality, χc
0(k, t) ∼ ln4 t, a result that can be

obtained directly by taking the derivative of the scal-
ing form of F (k, t) close to an A3 critical point, see
[11], and that is compatible with the simulation results
of attractive colloids reported in [19]. Away from criti-
cality, the ln4 t behaviour only persists up to a time τξ
such that ln τξ ∼

√
ξ‖ (or ln τξ ∼

√
ξ⊥ along the special

line ǫ‖ = 0.). Note that the exponential dependence of
the relaxation time as a function of the distance from
the critical point was already known from the critical
behaviour of the dynamical structure factor, see [11].
Another interesting limit is when the system is critical
ǫ‖,⊥ = 0 and perturbed at a non-zero spatial frequency,
q0 6= 0. In order to retain a non-trivial dynamics, one
must now have G‖,⊥(u → 0, v → ∞) = g(u2v), where
g(x) is a certain function behaving as x2 for small x,
and saturating to a constant for x → ∞. This leads
to: χc

q0
(k, t) = q−2

0 g(q0 ln
2 t), which shows that at crit-

icality, the dynamical length grows without bound, as
ξc(t) ∼ ln2 t [20]. This should be compared with the
corresponding result for the A2 point, where ξc ∼ ta/2,
where a is the MCT exponent for the β-regime. As the
A3 point is approached, the value of a tends to zero and
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the power law crosses over to a logarithmic behaviour.
Note that there is no α-regime at the A3 point, contrar-
ily to the usual phenomenology of the A2 transition. In
the latter case, the q0 dependence of χq0

for q0 ≫ ξ−1

crosses over from q−2
0 in the short time, β-regime, to q−4

0

in the long time, α-regime. For the A3 transition, on the
other hand, only the q−2

0 behaviour survives. We have
checked all these results numerically by solving exactly
the dynamical equation obeyed by χq0

(t) in the so-called
schematic limit where all k dependence is discarded. We
have chosen the F13 model for which the memory kernel
is Fε[f ] = ǫ1f + ǫ3f

3. The salient features of the above
scaling predictions for χq0

(t) are confirmed in Fig. 2.
From a purely phenomenological point of view, the most
important points are: (1) the growth of χq0

is a logarith-
mic function of the relaxation time thus implying that
dynamical heterogeneities increase much slower close to
an A3 critical point than close to an A2 one; this might
explain the numerical data of [21]; (2) the shape of χq0

is markedly different from the one found at an ordinary
MCT transition. In particular, both the maximum and
the long-time limit of χq0

diverge as the transition is ap-
proached, at variance with what happens close to an A2
point, where the long-time limit of χq0

remains bounded.

All the above results should be only be valid in high
enough dimensions. In order to asses the effect of critical
fluctuations on mean-field results one has to focus on the
4-point density correlations often called G4(r), which is
related (in Fourier space) to the square of the dynamical
susceptibility χq0

defined above (see [22] for a full justifi-
cation of this relation). Since χq0

behaves as q−2
0 at crit-

icality, G4(r) is found to decay as 1/rd−4 up to distances
of order ξ. This allows one to estimate the intensive fluc-
tuations of the order parameter f∗ in a region of size ξd,
which is found to be

√
〈δf2〉 ∼ ξ−(4−d)/2 = ǫν(4−d)/2,

which must be compared to f∗ − fc ∼ ǫβ. Since β = ν =
1/3 for A3 transitions (or β = ν = 1/2 along the special
direction) we conclude that the upper critical dimension
dc below which critical fluctuations change the nature of
the transition is dc = 6, instead of dc = 8 as found for
usual MCT transitions [22, 24]. Therefore, in physical
dimensions d = 3, one expects that these critical fluctu-
ations will considerably affect the above predictions, at
least close enough to the critical point. The relative influ-
ence of these fluctuations, and the quantitive size of the
Ginzburg region where critical fluctuations are strong,
are expected to depend on the model. But one conse-
quence of these fluctuations that is physically relevant is
the violation of the Stokes-Einstein relation, relating the
relaxation time of the system to the diffusion constant
of probe particles. Simulations of thermal and ather-
mal [25, 28] systems appear to conform to the prediction
dc = 8 for usual MCT transitions, yielding, for example,
a Stokes-Einstein violation exponent that vanishes lin-
early as 8−d [26]. Our above analysis demonstrates that
near an A3 singularity the upper critical dimension of

fluctuations is shifted down to a value dc = 6. This result
is indeed qualitatively consistent with the fact that some
aspects of dynamical heterogeneity (such as bimodality of
particle displacement distributions) are suppressed as one
tunes, via the introduction of short-ranged attractions, a
supercooled hard-sphere suspension to a regime domi-
nated by higher-order singularities [27]. More numerical
work on this and other aspects of our theory would be
welcome, using simulations of attractive hard-spheres in
higher dimensions, along the lines of [28].

Finally, the alert reader will have recognized, both
from the evolution of the FP potential shown in Fig. 1
and the value of the exponent β = 1/3 in generic direc-
tions and β = 1/2 in a special direction, that the A3
critical point is akin to an Ising transition, where ǫ‖ is a
magnetic-field-like perturbation and ǫ⊥ is a temperature-
like perturbation. The behaviour of the correlation func-
tion G4(r) ∼ r4−d and the corresponding value dc = 6
point towards the universality class of the RFIM, in line
with previous static treatments [3, 5]. Indeed, the A2 line
is analogous to the spinodal line of the RFIM [24], which
terminates at the A3 RFIM critical point. Remarkably,
the logarithmic behaviour of the correlation function and
of the dynamical correlation length that we found is usu-
ally a manifestation of activated events, which are indeed
expected for the RFIM at criticality, but were thought
to be impossible to grasp within an MCT formalism [30].
On the other hand, as mentioned above, cooperative ac-
tivated processes not described by MCT are either sup-
pressed or not relevant at an A3 critical point, thus open-
ing the possibility that above d > 6 MCT indeed captures
the correct behaviour. Curiously, however, the dynam-
ical behaviour of the RFIM in high dimensions has not
been worked out yet. Usual scaling arguments leading to
log τ ∝ ξθ (where θ is the stiffness exponent) are expected
to break down above d = dDR ≃ 5.1 [29]. Understand-
ing to what extent dynamic scaling holds above dDR and
comparing the actual RFIM dynamical behaviour above
six dimension to the prediction of MCT near an A3 point
is certainly a topic worth a further studies.
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