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The Super-Potts glass: a new disordered model for glass-forming liquids
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We introduce a new disordered system, the Super-Potts model, which is a more frustrated version
of the Potts glass. Its elementary degrees of freedom are variables that can take M values and are
coupled via pair-wise interactions. Its exact solution on a completely connected lattice demonstrates
that for large enough M it belongs to the class of mean-field systems solved by a one step replica
symmetry breaking Ansatz. Numerical simulations by the parallel tempering technique show that
in three dimensions it displays a phenomenological behaviour similar to the one of glass-forming
liquids. The Super-Potts glass is therefore the first long-sought disordered model allowing one to
perform extensive and detailed studies of the Random First Order Transition in finite dimensions.
We also discuss its behaviour for small values of M , which is similar to the one of spin-glasses in a
field.

Glass forming liquids have a very peculiar and rich
phenomenology [1]. Dynamical correlation functions are
characterized by a two-steps relaxation indicating that a
finite fraction of degrees of freedom, e.g. density fluctua-
tions, takes a longer and longer time τ to relax. This
time-scale actually grows very rapidly—more than 14
orders of magnitude in a rather restricted window of
temperatures—and can be fitted by the Vogel-Fulcher-
Tamman law, hence suggesting a possible divergence at
finite temperature. The slowing down of the dynamics is
accompanied by the growing of dynamical correlations,
which can be measured by a four point susceptibility.
This function displays at time τ a peak, that grows de-
creasing the temperature and is related to the number of
molecules that have to move in a correlated way in order
to make the liquid flow.
One of the most influential results obtained in the field
of the glass transition was the discovery by Kirkpatrick,
Thirumalai and Wolynes [2] that some—apparently
unrelated—fully connected mean-field disordered sys-
tems, like the Potts glass, display a phenomenology very
similar to the one described above. This set the stage for
an approach to the glass transition problem that com-
bined disordered systems, Mode-Coupling and Adam-
Gibbs theories and culminated in the development of
the Random First Order Transition theory [3]. Although
structural liquids do not explicitly contain quenched dis-
order in the Hamiltonian, they are frustrated and charac-
terized by a very complicated rugged energy landscape.
This is the key element they have in common with several
disordered systems and that is at the origin of the rela-
tionship cited above. Mean-field (MF) disordered sys-
tems divide in two classes: some have a phenomenology
similar to glass-forming liquids, others to spin-glasses.
The former are the ones for which, in replica language,
the one step replica symmetry breaking (1RSB) approxi-
mation is exact [4]. For these models the relaxation time
is known to diverge at a finite temperature, called Td [5],
akin to the Mode Coupling ”Transition” temperature of
real glassy liquids. Below Td ergodicity is broken. The
phase space is fractured into a number of states N that

is exponential with the size N of the system: N ∝ eNΣ

(Σ is called complexity or configurational entropy). The
system undergoes a thermodynamic phase transition à
la Kauzmann at a smaller temperature TK < Td, where
the configurational entropy vanishes and hence number
of states that dominate the Boltzmann measure becomes
sub-exponential [6]. The order parameter for this tran-
sition is the overlap q measuring the similarity between
two different replicas of the system (characterized by the
same realization of the disorder). Its distribution, P (q),
shows a single peak at qRS for T > TK and two dis-
tinct peaks q0 and q1 for T < TK . The lowest value, q0,
corresponds to configurations belonging to two different
amorphous states, whereas the higher one, q1, to config-
urations belonging to the same state. This behaviour is
quite different from the one of models providing a mean-
field theory of spin-glasses, which instead display a con-
tinuous spin-glass transition and are solved by the Full
Replica Symmetry Breaking (FRSB) ansatz [7]. Indeed,
for the latter ones dynamical correlation functions do not
show any two-step relaxation, the four point susceptibil-
ity is not peaked, P (q) has a continuous support below
the transition and TK = Td.
In view of the forementioned analogy between structural
glasses and MF 1RSB disordered models and of its rel-
evance for RFOT theory, the numerical results on finite
dimensional counterpart of MF 1RSB systems were de-
ceiving. It was found that the usual fate of these systems,
once studied on finite dimensional lattices, is to display
either a continuous spin glass transition or no transition
at all! For instance, the MF Potts glass [8], the model
from which RFOT theory originated, is characterized by
a glass transition for any p > 4, where p is the number of
the Potts states, but in three dimension it does not show
any transition for p = 10 [9]. The problem of the disap-
pearing of the 1RSB phenomenology in finite dimension
could be a signal of the fragility of the 1RSB theory out
of mean-field, and poses the question of the validity of
RFOT in D = 3 as discussed in a series of paper by
Moore and collaborators [10]. In a recent work [11] it
was pointed out that the mean-field disordered models
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studied so far are not frustrated enough and even simple
local fluctuations are enough to change their physics (see
also [12]). This is well illustrated by their change of be-
haviour on Bethe lattices, which despite the fact of still
being mean-fieldish have finite connectivity and thus al-
low one to take into account the kind of local fluctuations
present in finite dimensions. One should not conclude
however that there are not models or results connecting
MF theory to the behavior of finite dimensional glass-
forming liquids. Indeed, there are. Lattice glass models
display the correct phenomenological behavior and they
belong to the 1RSB class when solved on a Bethe lat-
tice [13, 14]. A particular form of a disordered 5-spin
model appears to behave correctly too [15]. Finally, hard
spheres in the limit of infinite dimensions do display a
1RSB transition [16]. However, from the point of view
of the quest of finding simple finite dimensional models
displaying a glass transition, all these systems suffer from
one or more limitations: they are either too hard to sim-
ulate in finite dimensions or they display a crystal phase
that preempts the existence of the glass transition and
deep super-cooling or they do not have pair-wise interac-
tions, which makes them difficult to be analyzed in finite
dimensions, in particular by real space renormalization
group methods.
The aim of this work is to introduce and study a model
that short-circuit these problems and therefore offers a
new way to test RFOT theory and to answer questions
on glassy physics. We call it the Super-Potts model. Its
degrees of freedom are variables that take M values, as
in the usual Potts model, and its Hamiltonian reads:

H({σ}) =
∑

(i,j)

ǫij(σi, σj) with

ǫij(σi, σj) =

{

E0 if (σi, σj) = (σ∗
i , σ

∗
j )

E1 otherwise
(1)

and (σ∗
i , σ

∗
j ) are randomly drawn among the M×M pos-

sible couples (σi, σj) (independently for any couple of
neighbors (i, j)). For simplicity we will take E0 = 0.
This model is similar to the Potts glass [8], for which
the Hamiltonian is the same as in eq. (1) with ener-
gies that take values ǫij(σi, σj) = Jijδ(σi, σj) and Jij are
quenched random variables. However the present model
is more frustrated than the usual Potts one. This is evi-
dent in dimension D = 1. For a Potts chain, after having
chosen the value of the first Potts variable, one can eas-
ily find sequentially the configuration of the next variable
that minimizes the energy, because for each value of one
variable, there exists a value of the neighboring one that
can minimize the energy of the link. This is not true for
our model, because for each link there is only one partic-
ular configuration of both variables that minimizes the
energy of the link, and not all the links can be satisfied

M βRS βd βk q1(βd)− q0(βd)

4 2.0841(9) 2.07(3) 2.07(3) 0

10 1.9658(6) 1.949(12) 1.949(12) 0

20 2.306(1) 2.215(4) 2.229(1) 0.2623(1)

50 3.255(6) 2.589(7) 2.665(3) 0.5772(7)

TABLE I: βRS , βd, βk and the difference q1 − q0 at the
dynamical transition for different values of M for the
fully connected MF version of the Super-Potts model.

simultaneously even in D = 1. The Super-Potts glass
can easily be generalized to more complicated choices of
the link-energy, e.g. ǫij(σi, σj) randomly drawn from a
Gaussian distribution. In this way, in the limit M → ∞
one ends up with a random energy model on each link
[17, 18].
We first present the analytical solution of the fully con-

nected MF Super-Potts glass. The corresponding Hamil-
tonian is the one in eq. (1) with the sum over all the
pairs of spins and the energy that scales as E1 = e1√

N
,

with e1 = O(1) for finite M . We sketch briefly the main
steps of the computation and the results, more details
can be found in the supplementary material. The replica
method allows one to compute the average intensive free
energy f = fǫ in terms of the partition function of n
replicas (the bar indicates the average over the disorder):

e−βNnf = lim
n→0

Zn = lim
n→0

∑

{σ}

∏

i,j

e−β
∑

n
a=1 ǫij(σa

i σ
a
j ). (2)

Repeating standard procedures [6], i.e. computing the
average over the disorder, expanding the exponential for
large N and introducing Gaussian integrals over an aux-
iliary matrix Qab, we obtain:

Zn ∝
∑

{σ}

∫

∏

a<b

dQabe
−NA(Q,{σ}) ∝

∫

dQe−NS(Q) (3)

with A(Q, {σ}) = C
∑

a<b

Q2
ab −

1

N

∑

a<b

2C
N
∑

i=1

δσa
i σ

b
i
Qab

(4)
where we defined C = (βe1

M
)2. We have chosen e1 = M

in order to reabsorb the scaling with M of the critical
temperature. The integral over Q is performed by the
saddle-point method. The saddle point value of Qab, de-

fined by the equation dA(Q,{σ})
dQ

= 0, corresponds to the

average value of the overlap 1
N

∑

i δσa
i σ

b
i
. By using the

replica symmetric (RS) ansatz, we restrict the possible
forms of Qab to Qab = qRS . Within this assumption the
saddle-point equation simplifies to:

qRS =

∫ M
∏

τ=1

dhτ√
4π

e−
h2
τ
4

∑M
τ=1 e

2
√
CqRShτ

(
∑M

τ=1 e
√
CqRShτ )2

.
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Here and in the following, we shall solve these kinds of
M -dimensional integrals by the Monte Carlo method. In
order to analyze whether the RS solution is the correct
one we have also studied its local stability by diagonaliz-

ing the Hessian of the action: Gab,cd = d2S(Qab)
dQabdQcd

∣

∣

∣

Qab=qRS

[19]. One eigenvalue is always larger than 0, while
the other one becomes negative at TRS(M), indicating
that the RS solution becomes unstable at low temper-
ature. The values of TRS(M) are listed in Table I for
M = 4, 10, 20, 50. Below TRS(M) one necessarily has to
look for a RSB solution. The next step is therefore to
assume a 1RSB ansatz [4] for the matrix Qab, which is
parametrized by three parameters q0, q1, 0 ≤ m ≤ 1. We
are interested in finding Td, TK and deciding whether the
transition is continuous or discontinuous; all this infor-
mation can be obtained in the limit m → 1 [20]. In this
case q0 = qRS and the saddle point equation on q1 reads:

q1 =

∫ M
∏

τ=1

dητ√
4π

e−
η2
τ
4

∑M
τ=1 e

C(q1−qRS)+
√
CqRSητ

×

×
∫ M
∏

τ ′=1

dhτ ′√
4π

e−
h2
τ′

4

∑M
τ ′=1 e

2(
√

C(q1−qRS)hτ′+
√
CqRSητ )

∑M
τ ′=1 e

√
C(q1−qRS)hτ′+

√
CqRSητ

.

Note that q1 = qRS is always a solution. As usual, we
locate Td as the highest temperature at which one finds a
solution q1 6= q0 and TK as the temperature at which the
configurational entropy vanishes [21]. We found that for
large values of M (M = 20, 50) the transition is 1-RSB,
i.e. glass transition-like, whereas for smaller M (M =
4, 10) it becomes continuous and similar to the one of MF
spin-glasses in a field, i.e. of FRSB type. In particular,
for M = 4 and M = 10, q1 emerges continuously from q0,
while forM = 20 and M = 50 it appears discontinuously.
The difference between q0 and q1 at Td grows for larger
M indicating that increasing M indeed favors structural
glass-like behavior. The values of Td(M), TK(M) and
q1 − q0 at Td are listed in Table I. In agreement with the
previous results, for M = 4 and M = 10, we find that
the critical temperatures are compatible within the error
with TRS [22].
As discussed previously, three dimensional glass mod-

els may behave quite differently from their MF counter-
parts. It is therefore crucial to check that the Super-Potts
glass still behaves like a glass beyond MF. To this aim,
we performed Monte Carlo (MC) numerical simulations
of the model on a cubic lattice. We use the parallel tem-
pering algorithm [23] to thermalize the system at low
temperatures, running it simultaneously at 30 different
temperatures. Four replicas have been simulated in par-
allel, letting them evolve independently with the same re-
alization of disorder. We measure the overlap q between
two of them, replicas a, b, as qab = 1

N

∑N
i=1 δσa

i ,σ
b
i
. We

check the equilibration dividing the first measurements
into bins with a logarithmically growing size, and we as-
sume that the system has reached the equilibrium when
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FIG. 1: Two-time correlation function for systems with
M = 30 and L = 8 (main panel, inverse temperature β
from 0.28 to 0.85) and with L = 12 M = 4 (inset, β

from 0.76 to 1.09).
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FIG. 2: Four point susceptibility for a system with
L = 8 M = 30 (main panel) and with L = 12 M = 4

(inset). Temperatures as in Fig. 1.

the probability distribution of the overlap P (q) between
the first two replicas is equal to P (q) of the second two
replicas inside the last bin, and with respect to the prece-
dent bin (practically we check the first four moments of
q). Equilibration time is of the order of 108 MC steps for
systems with M = 30 and size L = 8. Once the system is
thermalized, we run standard MC simulations to measure
dynamical correlation functions. Disorder averages were
performed over 30 samples, while thermal ones over 100
trajectories. The behavior of the two times correlation
(brackets indicate thermal average):

C(t) =
1

N

∑

i

〈σi(0)σi(t)〉

is shown in Fig. 1 for M = 30. By lowering the tem-
perature the two-steps relaxation characteristic of glass-
forming liquids emerges (For M = 30 the true plateau,
corresponding in the peak of the susceptibility, is pre-
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FIG. 3: P (q) for a system with L = 10 M = 20. Inverse
temperature β from 1.3 to 0.55.

ceeded by a first plateau that saturates at low enough
temperature). Note that the asymptotic value of C(t)
is non zero since the model has no symmetry precluding
q0 from being different from zero. For small values of
M , instead, one finds a relaxation similar to the one of
spin-glasses in a field, as shown in the inset for M = 4.
In Fig. 2 we show that the evolution of the four point
susceptibility χ4(t), defined as

1

N

∑

i,j

(

〈σi(0)σi(t)σj(0)σj(t)〉 − 〈σi(0)σi(t)〉〈σj(0)σj(t)〉
)

,

confirms this trend: χ4(t) is peaked, its maximum takes
place at the time at which the correlation escape from
the plateau and grows when lowering the temperature as
it happens for super-cooled liquids. Again, the behavior
for M = 30 is markedly different from the one for M = 4
(shown in the inset). For Ms in between the two pre-
sented values the system actually seems to show a mixed
behaviour, for instance χ4(t) shows a peak but also a
growing plateau. We also studied the overlap distribution
P (q). Although of course one would need much larger
sizes to provide convincing evidences of a phase transi-
tion, our results shown in Fig. 3 suggest that if there is
a transition then it should be discontinuous already for
M = 20, since a second peak seems to appear discon-
tinuously at small temperatures as if a 1RSB transition
were indeed taking place [24]. Overall our numerical re-
sults indicate that at large M (M & 20) the Super-Potts
glass behaves similarly to glass-forming liquids whereas
for smaller Ms analogously to a spin-glass in a field, in
agreement with the MF treatment presented before.

In conclusion we introduced a new model, the Super-
Potts glass, and showed that is the first long-sought ex-
ample of glassy disordered system with pair-wise inter-
actions, solved by a 1RSB ansatz at the MF level, and
which has the correct phenomenological behaviour—à la
glass-forming liquids—in three dimensions. Compared
to previous models for which the glassy behaviour does
not survive in finite dimensions, the Super-Potts glass is

more frustrated and this enhances its stability. Indeed,
we computed the so called surface energy cost, Y , to dis-
rupt amorphous order as done in [11] and found a value
of Y/TK which is an order of magnitude higher than in
previous models for large values of M , e.g. M = 50.
There are several extensions of our work worth pursuing
further. First, it would be interesting to clarify how the
transition between the glass-like to the spin-glass like be-
haviour induced by decreasing the value ofM takes place,
both in mean-field and in finite dimensions. A possible
scenario, inspired by the behaviour of the 2+4 spin MF
model, is the following [25]: Whereas at small M there is
a pure FRSB phase and at large M a pure 1RSB phase,
at intermediate M , by decreasing the temperature, there
is first a RS to FRSB transition, and then, lowering the
temperature further, there is a transition to a 1+FRSB
in which P (q) has a continuous part but also develops a
discontinuous peak. This is consistent with the fact that
for intermediate values of M the correlation function and
the four point susceptibility show mixed features char-
acteristic both of the 1RSB and FRSB phases. Another
research direction for future studies is solving exactly the
Super-Potts model on Bethe lattices. This would provide
a good approximation to the 3D case since, as we found in
numerical simulations, the behaviour on cubic and Bethe
lattices with connectivity C = 6 is qualitatively and also
quantitatively similar. The exact solution of models on
the Bethe lattices can be obtained via the cavity method
which in the case of the Super-Potts glass, however, is
particularly challenging [26]. Finally, besides making
more extensive numerical simulations, another interest-
ing route to follow in order to clarify the behaviour of the
3D model is performing a renormalization group analy-
sis. Since the model has pair-wise interactions, this can
be naturally done by the Migdal-Kadanoff approxima-
tion.
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SUPPLEMENTARY MATERIAL

In the following we provide more details on the MF
solution presented in the main text.
In order to compute the replicated free energy:

Zn =
∑

{σ}

∏

i,j

e−β
∑

n
a=1 ǫij(σa

i σ
a
j ) =

we introduce (γ, τ ) as the couple for which ǫij = E0, and
making explicit the average over the disorder, that is the
average over the randomly chosen (γ, τ ), we obtain:

Zn =
∑

σ

∏

i,j

1

M2

∑

γ,τ

e
−βE1

∑

(γ,τ)6=(γ,τ)

∑n
a=1 δ(σa

i
,σa

j
),(γ,τ)

Expanding around small energies E1 = e1√
N

and reex-

ponentiating, the expression becomes:

Zn =
∑

σ

∏

i,j

e
− β2E2

1
2M2

∑n
a,b=1

(

∑

i δσa
i
,σb

i

)2

.

Performing the usual Hubbard-Stratonovich transfor-
mation to eliminate the quadratic term, with the help of
an auxiliary matrix Qab, we obtain:

Zn ∝
∑

σ

∫

∏

a<b

dQabe
−NA(Q)

with

A(Q) = C
∑

a<b

Q2
ab −

1

N

∑

a<b

2C
N
∑

i=1

δσa
i σ

b
i
Qab

and C = (βe1)
2

M2 . This is the equation quoted in the main
text.

RS ansatz

By using the replica symmetric ansatz Qab = q, we
obtain

Zn ∝
∫

dqe−NS(q)

with

S(q) =Cq2
n2 − n

2
+ Cnq+

− n

∫ M
∏

τ=1

dhτ√
4π

e−
h2
τ
4 log(

M
∑

τ=1

e
√
Cqhτ )

The overlap qRS satisfies the self-consistent equation

obtained imposing dS(q)
dq

= 0 in the limit n → 0:

qRS =

∫ M
∏

τ=1

dhτ√
4π

e−
h2
τ
4

∑M
τ=1 e

2
√
CqRShτ

(
∑M

τ=1 e
√
CqRShτ )2

http://arxiv.org/abs/1208.3044
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RS stability

To study the RS stability we look at the Hessian of
S(Qab). The second derivatives are:

Gabcd =
d2S(Qab)

dQabdQcd

=

=2Cδab,cd − (2C)2(〈δσa,σb
δσc,σd

〉 − 〈δσa,σb
〉〈δσc,σd

〉)

In particular

Gabab = 2C − (2C)2(〈δσa,σb
〉 − 〈δσa,σb

〉2) = P

Gabac = −(2C)2(〈δσa,σb,σc
〉 − 〈δσa,σb

〉〈δσa,σc
〉) = Q

Gabcd = −(2C)2(〈δσa,σb
δσc,σd

〉 − 〈δσa,σb
〉〈δσc,σd

〉) = R

〈δσa,σb
〉 = qRS =

∫ M
∏

τ=1

dhτ√
4π

e−
h2
τ
4

∑M
τ=1 e

2
√
CqRShτ

(
∑M

τ=1 e
√
CqRShτ )2

〈δσa,σb,σc
〉 =

∫ M
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τ=1

dhτ√
4π

e−
h2
τ
4

∑M
τ=1 e

3
√
CqRShτ

(
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τ=1 e
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CqRShτ )3

〈δσa,σb
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〉 =
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dhτ√
4π

e−
h2
τ
4

(

∑M
τ=1 e
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√
CqRShτ

)2

(
∑M

τ=1 e
√
CqRShτ )4

The eigenvalues are

λ1 = 2C−(2C)2 (〈δσa,σb
〉 − 4〈δσa,σb,σc

〉+ 3〈δσa,σb
δσc,σd

〉)

λ2 = 2C − (2C)2 (〈δσa,σb
〉 − 2〈δσa,σb,σc

〉+ 〈δσa,σb
δσc,σd

〉)

The first one is always larger than 0, while λ2 becomes
negative at TRS(M).

1RSB ansatz

In the 1RSB ansatz we have three parameters q0, q1,
m and

S(Qab) =
C

2
n(q21(m− 1) + q20(n−m)) + nCq1+

− n

m

∫ M
∏

τ=1

dητ√
4π

e−
η2
τ
4 log

[

∫ M
∏

τ ′=1

dhτ ′√
4π

e−
h2
τ′

4 ×

×
(

M
∑

τ ′=1

e
√

C(q1−q0)hτ′+
√
Cq0ητ

)m]

.

We are interested in obtaining Tc and finding whether
the transition is continuous or discontinuous. In conse-
quence we have just to focus on m → 1. In this case
q0 = qRS and we can find q1 self-consistently imposing
dS(q1,qRS)

dq1
= 0. We can expand the resulting equation

around m = 1, and at the 1st order we find (the 0th
order is 0):

q1 = f(q1, qRS , β) =

∫ M
∏

τ=1

dητ√
4π

e−
η2
τ
4

∑M
τ=1 e

C(q1−qRS)+
√
CqRSητ

×

×
∫ M
∏

τ ′=1

dhτ ′√
4π

e−
h2
τ′

4

∑M
τ ′=1 e

2(
√

C(q1−qRS)hτ′+
√
CqRSητ )

∑M
τ ′=1 e

√
C(q1−qRS)hτ′+

√
CqRSητ

that is valid for β ∈ [βd, βK ].


