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Spin Glass in a Field: a New Zero-Temperature Fixed Point in Finite Dimensions
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By using real space renormalisation group (RG) methods we show that spin-glasses in a field
display a new kind of transition in high dimensions. The corresponding critical properties and
the spin-glass phase are governed by two non-perturbative zero temperature fixed points of the RG
flow. We compute the critical exponents, discuss the RG flow and its relevance for three dimensional
systems. The new spin-glass phase we discovered has unusual properties, which are intermediate
between the ones conjectured by droplet and full replica symmetry breaking theories. These results
provide a new perspective on the long-standing debate about the behaviour of spin-glasses in a field.

Spin glasses were the focus of an intense and success-
ful research activity in the last forty years. The tech-
niques and the concepts developed to understand them
had an enormous impact in several fields. Moreover, spin-
glass (SG) theory lead to various spin-offs even in other
branches of science. Amazingly, despite all these suc-
cesses and forty years of efforts there is still no consensus
on their physical behaviour: the low temperature phase
as well as the out of equilibrium ageing dynamics remain
matter of strong debates. On one side, there is the line of
research starting from mean-field (MF) models, such as
the one introduced by Sherrington and Kirkpatrick (SK)
[1]. These are solved by the full replica symmetry break-
ing (FRSB) theory [2], predicting a SG phase character-
ized by an infinite number of pure states organised in an
ultra-metric structure. On the other side stands droplet
theory (DT), which is a low energy scaling theory based
on the existence of only two pure states related by spins
flip [3, 4]. Although the two approaches provide differ-
ent predictions, contrasting them has proven to be very
difficult both in numerical simulations and experiments
due to severe finite-size and finite-time effects [5]. The
most clear-cut difference between them concerns the fate
of the SG phase in the presence of an external magnetic
field: the SG phase remains stable up to the so-called de
Almeida-Thouless (AT) line hAT (T ) within MF theory
[6], whereas according to the DT it is wiped out by even
an infinitesimal magnetic field [3]. In consequence, much
of the debate crystallised in proving (or disproving) the
existence of the AT line in finite dimensional SGs.
Field theoretical analysis showed that the Gaussian fixed
point (FP) that controls the critical behaviour of the AT
line for MF model becomes unstable for d < 6, and its
basin of attraction shrinks to zero as d ↓ 6 [7, 8]. These
findings have two important consequences. First, if there
is a transition in a field below six dimension then it
necessarily corresponds to a non-perturbative (NP) fixed
point. Second, this NP-FP could be relevant even well
above six dimensions: it depends in which basin of attrac-
tion the initial condition of the RG flow, corresponding to
finite dimensional SG, lies. As a matter of fact, the MF
behaviour could be recovered in very high dimensions
only. On the numerical side, the most recent numeri-

cal results obtained with the use of the Janus dedicated
computer found that no phase transition can be iden-
tified with traditional data analysis [9]; however highly
non-trivial signals are detected such as a growing cor-
relation length, peaks in the susceptibility, and a wide
probability distribution function of the overlap. These
effects are unlikely to be caused by the zero-field transi-
tion and should be explained by a different mechanism.
Alternative numerical studies performed on one dimen-
sional long-range models [10], that are proxies for three
and four dimensional short-range SGs, also seem to show
that there is no AT line, even though there are some
particular observables that are compatible with a transi-
tion in non zero field. Finally, RG studies performed by
the Migdal-Kadanoff (MK) approximation [11] also find
no SG phase in a field: the renormalized couplings ini-
tially grow for sufficiently small temperatures and fields
but eventually vanish when the paramagnetic (PM) FP
is reached, as expected from the DT [12] . In conclusion,
it is fair to say that the state of the art on SGs in a field,
whose study was supposed to clarify the situation, is as
intricate as the zero-field case [13]. Evidences converge
toward a picture in which pseudo-critical behaviour is
present on finite length-scales but there is likely no tran-
sition. Neither FRSB nor DT provide a coherent and
satisfactory explanation of all findings.
In this work, by using real space RG methods, we show
that SGs in a field have a new kind of transition for
sufficiently large dimensions (d > 8). By studying the
RG flow we identify two different zero-temperature fixed
points, one governing the critical properties and the other
the low temperature SG phase. These NP-FPs, whose
existence was hinted at by the perturbative RG study
discussed above, are absent in three dimensions. Nev-
ertheless, they still affect the RG flow and, hence, are
relevant for the physical behaviour.
In the following we present the analysis performed by
the MK-RG method. In order to check the robustness of
our results, we complemented our study using the Dyson
hierarchical RG approach. In a nutshell, the MK pro-
cedure applied to a hyper-cubic lattice in d-dimensions
consists in replacing it with a hierarchical diamond one,
for which the MK RG is exact [11, 14] (there is a sub-
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FIG. 1: Construction of a Hierarchical Lattice with
p = 3 and s = 2.

tlety in the presence of an external field that will be dis-
cussed later). Hierarchical lattices (HL) are generated
iteratively as shown in Fig. 1. The procedure starts at
the step G = 0 with two spins connected by a single
link. At each step G the construction in Fig. 1 is ap-
plied to each link of step G− 1. For each link, p parallel
branches, made of s bonds in series each, are added, cre-
ating p · (s− 1) new spins. The relationship between the
dimension of the hyper cubic lattice and the number of
branches is d = 1 + ln(p)/ ln(s). We restrict ourselves to
study HL with s = 2. The SG Hamiltonian on HL is the
usual one:

H = −
1

p





∑

〈i,j〉
Jijσiσj +

∑

i

σihi



 ,

where Jij and hi are independent random variables ex-
tracted from a Gaussian distribution with variance v2J
and v2h respectively. In the following we will use the typi-
cal value of the coupling as energy scale, hence set vJ = 1.
The sum over i and j runs over nearest neighbours on the
lattice. Without loss of generality we focus on a random
external magnetic field, but the results are the same for
a uniform field. The RG procedure is exactly the oppo-
site of the iterative procedure to construct the HL. For
instance, in step 1, the p spins generated at the last level
are integrated out. By performing an RG step one gener-
ates new effective couplings between the remaining spins.
By integrating out the spins connecting, say σ1 and σ2,
one gets:

Ẽi
1,2 = J̃ i

12σ1σ2 +
−→
h1

iσ1 +
←−
h2

iσ2 + c12.

New fields (
−→
h1

i and
←−
h2

i) associated to each link and an
effective coupling between σ1 and σ2 are generated in ad-
dition to a constant c12. As anticipated, in the presence
of external fields there is a difference between HL and
bond-moving MK. In the MK approximation, the spins
in the lattice are divided in blocks of size ℓ. Then all the
couplings internal to the blocks are moved to the spins at
the edges of the blocks. At this point a decimation of the
spins at the edges, except those on the corners, is per-
formed. When a field is present, one has to decide how
to move the fields on the bare spins. We follow [12] and
move them coherently with the bonds on the spins placed
on the edges of the blocks that are traced out in the RG
step. In this way, the RG iteration is exactly the same
one of a HL except that the fields associated with the
links are moved from the external spins to the internal
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FIG. 2: Renormalization flow in the plane T/vJ -v~h/vJ
for d ≥ dL. In the SG phase, the flow is attracted by

the new stable FP indicated as SGH.

ones for all p branches but one. The unmoved fields rep-
resent the ones on the original link. None of the original
site-fields is moved. This change in the renormalisation
procedure is important to have a correct interpretation
in terms of bond moving. Indeed, without it one encoun-
ters pathological behaviours. The exact equations for the
flow of the probability distribution of fields and couplings
are reported in the Supplementary Information (SI). We
analysed them by using the population dynamics method
[15] (we switch automatically to zero-temperature equa-
tions when the values of couplings and fields become too
large, see SI for more details).
In the following we present our results on the RG flow.
Let us recall first the zero-field results [16]. For d ≥ 2.58
(p ≥ 3), the model has a phase transition from a PM to a
SG phase at T 0

c . The critical temperature is p-dependent
and is equal to 1√

p in the large p limit [17]. The criti-

cal FP related to the transition corresponds to a finite
value of T/vJ . The corresponding SG phase is associ-
ated to a non-trivial zero temperature FP at which the
typical value of the couplings after n iteration scale as

v
(n)
J ∝ ℓθ0, where ℓ is the renormalization length after
n RG steps: ℓ = 2n (see Fig.2). The behaviour of θ0
as a function of the dimension approximatively follows
d−2.5

2 , which is consistent with the lower critical dimen-
sion dL = 2.5 found in usual short range SG without
field [18]. Applying a small field for T < T 0

c the system
first approaches the zero temperature FP in zero field
but eventually flows away from it since the external field
corresponds to a relevant perturbation. Correspondingly,
the variances of coupling vJ and bond-field v−→

h
grow as

v
(n)
J ∝ ℓθ0 , v

(n)
−→
h
∝ ℓ

d

2 with θ0 < d
2 , as predicted by the

DT. The exponent d/2 is expected on general grounds
because the field couples in a random way to the SG
phase. No matter how small is the initial value of vh,
the renormalised field eventually becomes larger than the
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FIG. 3: Evolution of the observable v~h/vJ as a function
of the renormalization step at T = 0 for d = 10 starting

from different vh.

coupling. On this basis the DT concluded that any in-
finitesimal field destroys the SG phase. This would take

place when v
(n)
−→
h
∝ v

(n)
J and is indeed what we obtain for

d < 8.066. In agreement with previous results that fo-
cused on the three dimensional case [12] one finds that

the ratio v
(n)
−→
h

/v
(n)
J increases but when it exceeds a cer-

tain value r, v
(n)
J starts to decrease and v

(n)
−→
h

tends to

a constant value. However for d ≥ dL = 8.066, when

the ratio
v
(n)
−→

h

v
(n)
J

exceeds r, the growth of v
(n)
−→
h

and vJ
(n)

changes: v
(n)
−→
h
∝ ℓθ, v

(n)
J ∝ ℓθ with θ < θ0. In Fig.

2 we show the RG flow in the plane T
vJ

vs
v−→

h

vJ
. The

system flows towards a new zero-temperature stable FP
(T/vJ , v−→h /vJ) = (0, (v−→

h
/vJ )

∗), called SGH in Fig. 2,
which rules the behaviour of the SG phase in a field.
Since at high temperature or for strong fields the system
has to flow to the PM-FP (T/vJ , v−→h /vJ) = (∞,∞), there
is necessarily an unstable FP, that we denote SGHc, sepa-
rating the disordered (PM) and the ordered (SGH) ones.
As shown in Fig. 2, this is also at zero temperature and
governs the transition of SGs in a field: when approach-

ing it the couplings and the fields grow as v
(n)
J ∝ ℓθU ,

v
(n)
−→
h
∝ ℓθU . The three zero-temperature FPs are clearly

d hc θ θU ν xS xU

8.066 23.4(1) 0.6222(1) 0.4833(6) 9.1(6) 3.7611(2) 3.4795(1)

9.229 85.15(10) 1.5824(2) 0.1203(3) 1.72(3) 5.5509(4) 2.8640(2)

9.966 151.05(10) 2.0044(9) 0.060(1) 1.60(16) 6.36295(9) 2.8139(2)

TABLE I: Table of the critical properties for systems
with different p.
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visible in Fig. 3, where the evolution of v
(n)
−→
h

/v
(n)
J is shown

as a function of n at T = 0, starting from different initial
vh. We checked that no other FP exists.
Now that we have elucidated the RG flow, we fully char-
acterise the critical properties. For zero-temperature
FPs, there are three independent critical exponents, one
more than for standard phase transitions [19]. The ad-
ditional one is θ that we have already introduced and
computed. The other two exponents we focus on are x
and ν, following the notation of Ref. [19]. The exponent
x describes the rescaling of an infinitesimal symmetry-
breaking field under renormalization, hence it is related
to the anomalous dimension of the order parameter. The
exponent ν is the one associated to the divergence of
the correlation length. In the case of SGs, the order pa-
rameter introduced by Edwards and Anderson [20] corre-
sponds to the overlap between two different replicas sub-
jected to the same quenched disorder. Correspondingly,
the symmetry-breaking field ǫ is an effective attraction
(or repulsion) between two different replicas {σ1} and
{σ2}. We proceed as for the Random Field Ising Model
[21]: we introduce a field ǫ at the extremities of each bond
and analyzed how its average is renormalized in one RG

step. We extract the x exponent as x = ln(dǫR/dǫ)
ln(2) . We

indicate with xS and xU the exponents for the symmetry-
breaking field for SGH and SGHc respectively. The cal-
culation of x at the zero-field FP can be performed an-
alytically, leading to x0 = d. In order to compute ν
we measured how two renormalized flows of the observ-
able v−→

h
/vJ corresponding to different original vh dis-

tance themselves. All other exponents can be obtained
from θ, x, ν using the scaling relations worked out in [19],
for example β = (d − x)ν, α = 2 − (d − θ)ν (we use the
standard notation of critical phenomena). The values of
θ, x and ν as a function of d are reported in Tab. I. We
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find that ν increases and possibly diverges at d = 8, as ex-
pected since the FPs disappears below eight dimension.
Moreover, since the value of xU is less than d, we find
that β > 0 and hence that the SG transition in a field
is continuous. Actually, also at the SGH-FP the value of
x is less than d contrary to what happens in zero field.
This unveils that the SG phase in a field has a very dif-
ferent nature from its zero field counterpart: the system
is ordered but only on a fractal system-size set. Corre-
spondingly the transition induced by changing ǫ from 0+

to 0− is second order instead of being first order. Let
us finally discuss the behaviour of correlation functions.
As it is known for zero temperature FPs, two different
correlation functions are critical [19]. One is associated
to thermal fluctuations:

Gc(r) = 〈σ0σr〉2 − 〈σ0〉2〈σr〉2 =
T

rd−2+η
g(r/ξ) (1)

while the other is associated to disorder fluctuations:

Gd(r) = 〈σ0〉2〈σr〉2 − 〈σ0〉2 · 〈σr〉2 =
1

rd−4+η̃
gdis(r/ξ) .

(2)
The exponents η and η̃ are linked by the relation η̃− η =
2−θ, and η̃ = d+4−2x. Since θ > 0, the two correlation
functions decay with different power-laws (the disordered
one more slowly than the thermal one). Note that the
system is not only critical at the transition, but also in
the whole SG phase in a field.
We have also studied the large d limit of the RG equa-
tions, as done for the zero-field case in Ref. [17]. For
d → ∞, they simplify and some direct analytical re-
sults can be obtained. For instance, we found that
(v−→

h
/vJ)

∗∣
∣

SGH
≃ 5.045 and θ(d) ≃ (d − 1)/2 − 2.425,

which are actually a good approximation for all dimen-
sions larger than 8. As for the unstable FP, we find that
θU → 0. Hence the transition looses its zero temperature
character for d→∞ [22].
We now turn to general considerations about our results.
First, let us discuss their relevance for systems in dimen-
sions less than dL. In Fig. 4 we show the flow diagram
at T = 0 for different dimensions, starting from a very
small field. For d < dL the flow still feels the vestige of
the SGH-FP and is initially attracted towards it, closer
and closer as d approaches dL. However when the ratio
v−→

h

vJ
becomes larger than the value at the stable FP, the

transition is avoided and the system finally escapes from
the SGH-FP and flows away towards the PM fixed point.
In order to test the robustness of our results, we re-
peated the analysis using a particular long-range lattice,
the Dyson one [23], that emulate a short-range model in
different dimensions just by changing a parameter. We
solved the RG equations via an approximation, the real
space Ensemble Renormalization Group (ERG) method,
that was introduced and tested for SGs without field in
Ref. [24]. Within this framework the relation between
original and renormalized parameters (the variance of

couplings and fields) are obtained by imposing the equiv-
alence between the average of some particular observables
over an ensemble of 2n-spins lattices and an ensemble of
2n−1-spins lattices [24]. While the MK renormalization
is believed to be more accurate in lower dimensions, the
ERG was shown to be able to capture the high dimen-
sional behaviour correctly. For instance, it identifies the
upper critical dimension of SGs in zero field [24]. More-
over, it does not suffer of the ambiguity in the treatment
of the external magnetic fields. The results we found
(using essentially the same method and observable as in
Ref.[24]) are in agreement with the MK’s ones, in par-
ticular the lower critical dimension is close to eight and
the nature of the FPs is the same. MF critical behaviour
is not recovered even for d = 20. This means that the
initial condition corresponding to microscopic SG mod-
els in a field does not lie in the basin of attraction of
the Gaussian (MF) fixed point except possibly for very
high dimensions. The reason for presenting the MK ap-
proach is that this is the one usually associated to the
DT and, hence, was believed to be necessarily linked to
the absence of transition in a field. This is not the case,
as we showed. The ERG analysis will be the focus of a
subsequent paper.
The peculiarity of the SG transition in a field is the ab-
sence of Z2 symmetry. In consequence in the presence
of an external field, contrary to the zero field case where
it was conjectured the existence of just two pure states
(related by spin-flip) or an infinite number, the only pos-
sibility is the latter one [25]. Whether this is related to
FRSB physics is nevertheless unclear. Indeed, we do not
find any sign of states characterized by extensive free en-
ergy differences of the order of one, a hallmark of FRSB.
Moreover, the MF transition is not governed by a zero-
temperature FP. However, it might be that our RG meth-
ods are too crude to address this issue. For this reason
and in order to get a better understanding of the new
SG phase discovered in this work and obtain more pre-
cise quantitative results (e.g. the value of dL), it would
be very interesting to develop and apply a more refined
non-perturbative RG methods such as the Wetterich’s
one [26, 27]. Numerical simulations of high dimensional
systems would also be instrumental. In particular, it is
worth performing new simulations for LR models consid-
ered proxies of short-range models in large dimensions.
Previous works already found a SG transition in non-
zero field for these systems [28]. It would be interesting
to check whether this transition is associated to a T = 0-
FP. As for three dimensional SGs in a field, we notice that
the results of numerical simulation can indeed be inter-
preted in terms of an avoided transition where time and
length-scales are exponentially related [9, 10], exactly as
it would expected from the RG flow we obtained. Finally,
it would also be interesting to identify the consequences
of the phase transition we found for the problem of the
glass transition, for which an analogy to the Ising SG in
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a field was already proposed [29].
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