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Abstract

In this paper, we rigorously construct 2d Liouville Quantum Field Theory on the Riemann sphere
introduced in the 1981 seminal work by Polyakov Quantum Geometry of bosonic strings. We also
establish some of its fundamental properties like conformal covariance under PSL2(C)-action, Seiberg
bounds, KPZ scaling laws, KPZ formula and the Weyl anomaly (Polyakov-Ray-Singer) formula for
Liouville Quantum Gravity.
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1 Introduction

1.1 Liouville quantum gravity

The two dimensional Liouville Quantum Field Theory (Liouville QFT for short, or also LQG * as a short-
cut for Liouville Quantum Gravity as is now usual in the mathematics literature) was introduced by A.
Polyakov in 1981 [47] as a model for quantizing the bosonic string in the conformal gauge and gravity in two
space-time dimensions. Liouville QFT is one of the most important 2d-Conformal Field Theories (CFT).

In its simplest formulation, the Liouville QFT is a quantum field theory of the conformal mode X of a
two dimensional ”Riemannian metric” g conformally equivalent (in a heuristic sense) to the flat metric dz?,
namely g = ”Xdz?, with the random field X governed by the action

1
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Sr(X) /((8X)2+47me7x) d*x. (1.1)
Heuristically, the field X : R? — R (called Liouville field) has to be understood as a random function with
probability distribution of the form (up to a renormalizing constant)

e SX)pDx

where DX stands for a uniform measure on some space of functions X. The parameter p is the analog of
a“cosmological constant” and the measure e”*X d?x is an interaction term. We stress that for z > 0 this field
is non Gaussian whereas for u = 0 it is Gaussian, in which case it is known under the name Gaussian Free
Field (GFF), free referring to the fact that the field is "free” of interactions (here the term peY*dz?).
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The classical Liouville theory is the study of the extrema of the Liouville action: these are found by
solving the classical Liouville equation (with unknown function w)

Au = 2wpe®.

This equation describes the conformal metrics e*dz? with constant Ricci scalar curvature R = —2mu. The
Liouville QFT can be seen as a randomization of the Liouville equation, hence its name.

In the quantum conformal theory, the structure of the action (1.1) entails that the field X must obey
some reparametrization rules: the Liouville QFT can be formulated with respect to any background metric
((1.1) is just the expression in the flat background metric) and all these formulations must satisfy some
consistency conditions. In particular, the random field X must transform under a conformal change of
coordinates z — w = w(z) as (see section 3.2)

X(2) = X(w) = X(2(w)) + Qlog 0z

%‘. (1.2)

In the jargon of CFT this is equivalent to stating that the analytic part of the energy-momentum tensor
(or Schwarzian connection) is T,, = —(9,X)?+Q 9?X . The interaction term e?7X d?z (or Liouville measure)
must be invariant under this rule. The requirement of such an invariance fixes the value of the constant
Q = 2/v + /2. In the standard branches of LQG, the parameter v belongs to ]0,2]. Furthermore, the
central charge of a CFT is a one-dimensional parameter that reflects the way the CFT reacts to changes
of the background metric (see section 3.4). For the Liouville quantum theory, the central charge of LQG
is ¢y, = 1+ 6Q?: thus it can range continuously in the interval [25, +oc[ and this is one of the interesting
features of this theory.

Since its introduction, Liouville QFT has been and is still much studied in theoretical physics, in the
context of integrable systems and conformal field theories, of string theories, of quantum gravity, for its
relation with random matrix models and topological gravity (see [46] for a review), and more recently in
the context of its relations with 4 dimensional supersymmetric gauge theories and the AGT conjecture [1].

Liouville theory has also raised recently much interest in mathematics and theoretical physics in the
(slightly different) context of probability theory and random geometry where the conjectured link between
large planar maps and LQG is intensively studied (see the next subsection for a discussion on this point). Up
to now such studies have exclusively focused on the incarnation of the Liouville theory as a free field theory
where the parameter p is set to zero”: see for instance [23, 50] and the review [27]. Within this framework,
the Liouville measure e"Xd?z is formally the exponential of the GFF and is mathematically defined via
Kahane’s theory of Gaussian multiplicative chaos [35] for v €]0,2[. It is then possible to study in depth
the properties of the measure in relation with SLE curves or geometrical objects in the plane that can be
constructed out of the GFF [4, 20, 59]. In particular, in this geometrical and probabilistic context, a precise
mathematical formulation of the KPZ scaling relations can be given [5, 23, 50]. Let us also mention that
defining a random metric is an important open problem in the field and steps towards this problem have
been achieved in [12] and [45] in the special case y = /8/3: recall that for this value of v (and in the context
1 = 0) the work [45] constructs a random growth process which is conjectured to be the growth of balls
of a metric space formally corresponding to the ”tangent plane” of LQG. This metric space is supposed to
correspond to the conformal embedding in the plane of the so-called Brownian plane, recently constructed
n [13]. Also, as originally suggested in [15], one can define rigorously the associated diffusion process called
Liouville Brownian motion [28] (see also [7] for a construction starting from one point). This has led to
further understanding of the geometry of (u = 0) LQG via heat kernel techniques, see [3, 8, 29, 43, 51] for
recent progresses.

Treating the Liouville theory as a GFF (thus setting g = 0) is justified in some cases. It provides an
approximation sufficient to derive the conformal weights of the operators (see the seminal work [36] and
also [14, 17] for the framework considered here) and is the basis of many calculations of the correlation
functions of the Liouville theory, i.e. expectations of product of vertex operators of the form V, (z) = e*¥X(®)

2In the mathematics literature, one speaks of critical LQG when p = 0 though the terminology is misleading because non
critical LQG, which is the object of this work, is also a CFT.



[16, 32, 33]. Indeed for some specific choices of the parameters, one may reduce the calculation of Liouville
theory correlations to the calculation of correlations with respect to the GFF and then compute the latter
quantity using Coulomb gas and CFT techniques [19]. This leads in particular to the famous DOZZ formula
for the 3-point correlation functions of Liouville theory on the sphere [18, 61] (see section 5 for further
explanations). Thanks to such calculations, many checks have been done between the results of Liouville
theory for the correlation functions and the corresponding calculation using random matrix models and
integrable hierarchies [46].

Nevertheless for many questions the ”interaction” exponential term has to be taken into account. This is
for instance the case for the open string (Liouville theory in the disk) where the negative curvature metric
and the boundary conditions play an essential role. The purpose of this paper is precisely to define the
full Liouville theory for all x4 > 0 in the simple case of the theory defined on the Riemann sphere Sy (the
theory in the disk can be defined along the same lines but details of the construction will appear elsewhere).
More generally, the purpose of this paper is to rigorously define the general k-point correlation function of
vertex operators on the sphere for £k > 3. We will also study the conformal invariance properties of these
correlation functions and study the associated Liouville measure. Our results should not appear as a surprise
for theoretical physicists as we recover (in a rigorous setting) many known properties of LQG but they are
the first rigorous probabilistic results about the full Liouville theory (on the sphere), as it was introduced
by Polyakov in his 1981 seminal paper [47].

1.2 Relation with discretized 2d quantum gravity

In this Section we will present some precise conjectures on the connection of our results to the work on
discrete models of 2d gravity, randoms surfaces and random maps.

The standard way to discretize 2d quantum gravity coupled to matter fields is to consider a statistical
mechanics model (corresponding to a conformal field theory with central charge ¢,) defined on a random
lattice (or random map), corresponding to the random metric, for instance a random triangulation of the
sphere. We formulate below precise mathematical conjectures on the relationship of LQG to that setup..

Let T be the set of triangulations of S with N faces and 7,3 be the set of triangulations with IV faces
and 3 marked faces or points (called roots).

Next consider a model of statistical physics (matter field) that can be defined on every T € Tx. The list
of such models contains pure gravity (no matter field), Ising model (a spin 1 on each triangle or vertex),
the multicritical discrete spin models (which correspond to the discrete series of the minimal CFT with
1/2 < ¢ < 1), the O(N) dilute and dense loop models with 0 < N < 2, the ¢ = 3 or ¢ = 4 Potts models
and discrete models associated to minimal or rational conformal field theories with central charge ¢, such
that —2 < ¢y, < 1). We refer to [39] for a review and references.

For T € Ty, define the partition function of the matter field on T’

Zn(T,B) =Y _W(Cr,B)
Cr

as a sum of configurations Cr (defined as ensemble of some local or geometric discrete degrees of freedom)
over T with positive local Boltzmann weights W (C7, 3). These Boltzmann weights depend on some param-
eters denoted 3 and these parameters are tuned to their critical point . such that the statistical model
coupled to gravity is critical. At this point, the triangulation 7" has no marked points. Call Zy the partition
function at criticality for triangulations of size N

ZN: Z Zm(Tvﬁc)a (13)

TeTN,3

where we extend straightforwardly the above definition of Zy, (T, ;) to triangulations T' with marked points
(the marked points play no role in the definition of Z, (T, 3.)). It is known (see [2]) that Zy, diverges as N
goes to infinity as

Zn ~ N3=(@=7:)=1emN (] 4 o(1)) (1.4)



with p* some critical “cosmological constant” or “fugacity” that depends on the critical model considered,
and the string exponent 7, can be explicitly expressed in terms of the central charge ¢y, of the CFT for the
matter field through the relations

2—%:¥ for Q=2/v+7v/2=1+/(25—cm)/6. (1.5)

Therefore, for i > p2*, the full partition of the system triangulations+matter field

Zp=> e "™ Zy (1.6)
N

converges and we can sample a random triangulation according to this partition function. We are interested
in the regime where the system samples preferably the triangulations with a large number of faces. Notice
that for —2 < ¢y, < 1, we have v/2 < v < 2 and therefore —1 < v, < 0. From (1.4), we see that the closer /i
is to pu, the larger the typical area of the random triangulation (with 3 marked points) is and for p ~ p,
the size of the typical area diverges. Therefore, we are interested in the limit i — p* in the following regime:
we assume that iz depends on a parameter ¢ > 0 such that

=y + pa® (1.7)

where p is a fixed positive constant.

Let us now explain how to embed a triangulation T € Ty ,3 onto the sphere Sp and define a random
measure on Sy out of it. Following [31] (see also [12, section 2.2]), we can equip such a triangulation with
a conformal structure (where each face has the geometry of an equilateral triangle). The uniformization
theorem tells us that we can then conformally map the triangulation onto the sphere Sy and the conformal
map is unique if we pick three distinct points x1, x2, 3 on the sphere S; and demand the map to send the
three marked points to x1, 22, 3. We denote by vr, the corresponding deterministic measure where each
triangle of the sphere is given a volume a?. Concretely, the uniformization provides for each face t € T a
conformal map ¢; : A — Sy where A is an equilateral triangle of volume 1. Then v o(dz) = a?|(¢; ') |2 dz
on the image triangle 1;(A). In particular, the volume of the total space Sy is Na?. Now, we consider the
random measure v,z defined by

7 1 (T, m
E“HF (vap)] = - D e FHIN N Fura),
@ N TeTN,3

for positive bounded functions F' where Z, is a normalization constant. We denote by IP%* the probability
law associated to E**,

We can now state a precise mathematical conjecture:

Conjecture 1. Under P** and under the relation (1.7), the family of random measures (Vo 1z)a>0 converges
in law as a — 0 in the space of Radon measures equipped with the topology of weak convergence towards the
law of the Liouville measure of LQG with parameter v given by (1.5), cosmological constant y and vertex
operators at the points x1,xq,x3 with weights o; =~ for all i.

Note that v, 7(S2) converges in law under P“* as a — 0 towards a F(M, w) distribution with
parameter v, pu and «; = v for all ¢, which corresponds precisely to the law of the volume of the space for
LQG with these parameters (see Subsection 3.3).

Exemple 1: Pure gravity ¢, = 0,7 = %

Pure gravity corresponds to the case when no matter field is put on the triangulation, in which case
Zm(T,B) = > 0, W(Cr,B) =1 for all T. Zx thus stands for the cardinal of Ty 3 and it is known (see [2])
that

Zn ~ N33 1t N (1 4 o(1))



3
as N goes to infinity. Notice that 3 = Z:Tla where a; =« for all ¢ and % = @ for v = \/g.
One can check that v, z(S2) converges in law under P** as a — 0 towards a l"(%, u) distribution with

parameter v = %, w and «; = 7y for all 4.

Exemple 2: Ising model: ¢, = %,7 =3
From [2], the partition function of the Ising model on triangulations at criticality Z% (corresponding to

(1.3)) diverges as N3~ 5~ Letc N (14-0(1)) as N goes to infinity (note that the critical temperature is different

Z?:l @i
v

on the random lattice models from the regular lattice). Once again, notice that 3 = where a; =

for all i and I = % for v = v/3. Again, v, 7(S2) converges in law under P“¥ as a — 0 towards a I'(2, 1)
distribution.

Conjecture with general vertex operators

Finally one may ask what is the relation between the general vertex operators Vo, (z) = exp (X (z)) (with
a < @) that we consider in this paper, the Liouville measure given by (3.33) with more than 3 points
x; and some «a; # 7 , and local observables in discrete 2 dimensional gravity. Since the 3 original V,(x)
correspond to fixing through conformal invariance the points on Ss, hence to the local density of vertices
of the triangulation 7" through the conformal mapping onto the sphere, it is natural to consider the local
density moment defined as follows. In addition to the points x1, z2,z3 (to which the centers of the marked
faces of the triangulation T are sent), we consider additional fixed points x; with ¢ > 3 on the sphere, around
which a small disc D, ¢, centered at x; with radius ¢; is drawn. Then we consider the number of vertices
Ny, .e;(T) of the triangulation T mapped inside the disk D, ,. We consider the random measure defined
for all positive bounded functions F' as

a1 (€;): 1 (=™ A, Q4
B F (v )] = o 32 N S T @@ Ny, (1) ¥ Flora),
a,(ei) "N TETw.3 >3
where Z, (c,), is a normalization constant, A; = 5 (Q — %) the conformal weight (see next sections). We

denote by P ()i the probability law associated to E®# ()i Notice that we have included the renormal-
ization terms a? and e?Ai although they cancel with the same terms in Z, (,),. However, they are needed
if one were consider the limit for the partition function Z, (,),. We can now state our conjecture:

Conjecture 2. Under P“7(<)i and under the relation (1.7), the family of random measures (Vaji,(e1)s )Ja>0
converges in law as a — 0 and then as €¢; — 0 in the space of Radon measures equipped with the topology
of weak convergence towards the law of the Liouville measure of LQG with parameter y given by (1.5),
cosmological constant p and vertex operators at the points x1,xs, T3 with weights a; =~y for all i < 3 and
vertex operators at the points x; with weights o for i > 3.

Relation with the Brownian map

It is natural to ask if, in conjecture 1, one can reinforce the convergence of measures to a convergence in
the space of random metric spaces (equipped with a natural volume form). More precisely, in the case of
pure gravity ¢, = 0, consider the Riemannian metric defined on each image triangle ¢;(A) C Sg of the
uniformization by a|(y; ')'|2dz? (hence the lengths of the edges of the image triangles are \/a). Let dr,
be the corresponding distance function on Sy and d, 5 the random metric on S, defined analogously to the
random measure v, 5. Then, it is widely believed that the metric space (equipped with a volume measure)
(S2,da s Va,n) converges in law as a — 0 towards a metric space (Sq, d, v), where v is the LQG measure of
conjecture 1. If this is the case, then the space (Sz,d,v) should be related to the Brownian map equipped
with its volume measure (see [41, 44]): more precisely, for all fixed A > 0, both metric spaces should be
isometric (up to some global constant) once conditioned to have same volume A. The isometry should also
send the Brownian map volume measure to the measure v.



1.3 Summary of our results

The sphere can be seen as the compactified plane R? equipped with the spherical metric

4
j = ————dz>.
I Py
Our main goal is here to explain how to give sense to the Liouville partition function on the sphere corre-
sponding to the action (for v € [0, 2[)

1

SL(X7 g) = E

/ (109X |? + QRy X + Ampe?™) Ay, (1.8)
R2

where 99, Ry and )\ respectively stand for the gradient, Ricci scalar curvature and volume form in the metric
g, which is called background metric. Observe here that the curved background of the sphere imposes to
consider an additional curvature term Q R; X, which is not seemingly present in the flat metric action (1.1)?.

Formally, considering an action like (1.8) means that we want to define a random function X : R2 — R
such that its probability distribution is given for all suitable functionals F' by

E[F(X) =2} /F(X)e‘SL(X’-‘”DX (1.9)

where Z is a normalization constant and DX stands for some uniform measure on the Sobolev space
H(R?, §) (see subsection 2.1 for a precise definition). There are several reasons that make the construction
of such an action not straightforward.

First recall that such a uniform measure does not exist. Actually, the theory of linear Gaussian spaces
may give sense to the squared gradient in the action (1.8) but this gives rise to an infinite measure. This
infinite measure can be ”localized” by requiring, for instance, the mean value of the field X over the sphere
to vanish. This gives rise to the notion of Gaussian Free Field X; with vanishing mean in the metric of
the sphere §, which is a random distribution living almost surely in the dual Sobolev space H ~!(R?, §) (see
[20]). To recover the full meaning of the squared gradient in the action (1.8), one has to tensorize the law P
of the GFF X; with vanishing mean with the Lebesgue measure dc on R and consider the ”law” of the field
X as the image of the measure de® P under the mapping (¢, Xj) — ¢+ Xj. The "random variable” ¢ stands
for the mean value of the field X, i.e. fR2 X )y, and is known under the name ”zero mode” in physics. Once
the meaning of this squared gradient term is understood, the first mathematical issue is the non-continuity
of the mapping X € H Y(R?,§) — Il e’X d\;, which can be handled via renormalization (here Gaussian
multiplicative chaos [35]).

Second, it turns out (as is well known in physics) that the partition function (1.9) is diverging because
of the instability of the Liouville potential on the sphere. More precisely, the divergence comes from the
summation over the zero modes (recall that they are distributed as the Lebesgue measure). By using the
Gauss-Bonnet theorem, it is plain to check that the contribution of the zero modes basically reduces to the
following diverging integral (the divergence occurs at ¢ — —o0) called mini-superspace approximation

(see [34])
/672@67#6% de.
R

This divergence has a geometric flavor: if one computes the saddle point of the Liouville action (1.8), we
guess that the field X, if it exists, should concentrate on the solution of the classical Liouville equation on
the sphere with negative curvature. Such an equation has no solution and it is well known that one must
insert conical singularities in the shape of the sphere to make it support a metric with negative curvature
(see [60]). From the probabilistic angle, conical singularities can be understood via Girsanov transforms as
p-point correlation functions of the vertex operators: more precisely, one can choose p points z1,...,z, on

31n the flat metric (1.1), this curvature term is hidden in the boundary condition on the field X at infinity, X (z) ~ —QIn |z,
hence the name of ”background charge at infinity”. See [34] for instance.



the sphere and a4, ... o, € R (with additional constraints that we will precise later) and make sense of the
following partition function

/eZi aiX(z)e=Su(Xd0) DX, (1.10)
When focusing on the zero mode contribution, we get the following mini-superspace approximation of (1.10)

/ (s im2Q)e—pe™ g (1.11)
R

We will establish that the whole partition function makes sense if and only if the weights (o), satisfy the
so-called Seiberg bounds [54]

Y ai>2Q, and o <Q Vi (1.12)

One can notice that the first condition comes from the contribution of the zero modes and ensures that
the integral (1.11) converges. The second part is related to Gaussian multiplicative theory and ensures that
the Liouville measure (i.e. the term [ e7* d); in (1.8)) does not blow up under the effect of the insertions.
Furthermore, it is straightforward to see from (1.12) that we must at least consider three insertions in order
to make sense of (1.10).

Once we have achieved the construction of the Liouville action, we establish the main properties of such
a theory. In particular, we establish the well known KPZ scaling laws (see [36, 46, 34]) about the p-
scaling properties of the partition function (1.10), the KPZ formula which quantifies the way the partition
function (1.10) changes under the action of Mébius transforms of the sphere [36, 14, 46, 34] and finally we
determine the way the partition function of LQG behaves under conformal changes of metrics, known as
the Weyl anomaly formula (see [9, 11, 10, 21, 47] for early references on the scale and Weyl anomalies in
the physics literature and [48, 53] on related mathematical work) thereby recovering ¢y, = 1 + 6Q? as the
central charge of the Liouville theory. Finally, we discuss possible approaches of the v > 2 branches of LQG.

2 Background

Throughout the paper, given a metric tensor g on R2, we will denote by @9 the gradient, A4 the Laplace-
Beltrami operator, R; = —/\41n g the Ricci scalar curvature and A, the volume form in the metric g. When
no index is given, this means that the object has to be understood in terms of the usual Euclidean metric
(i.e. 9, A, R and ).

C(R2?) stands for the space of continuous functions on R? admitting a finite limit at infinity. In the
same way, C*(R2) for k > 1 stands for the space of k-times differentiable functions on R? such that all the
derivatives up to order k belong to C'(R?).

2.1 Metrics on the sphere R?

The Riemann sphere can be mapped onto the whole plane R? via stereographic projection. The correspond-
ing spherical metric on R? then reads
4
G=——da?.
S CEAFRE
Its Ricci scalar curvature is 2 (its Gaussian curvature is 1) and its volume 4.

More generally, we say a metric g = g(z)dz? is conformally equivalent to § if g(z) = e“"(’”)f](x) with
¢ € C*(R?) such that [;, [0p]* d\ < co. Its curvature Ry can be obtained from the curvature relation

Rg = ef‘p(R_@ — A@QD) (21)

In what follows, we will denote by mgy(h) the mean value of h in the metric g, that is

my(h) = ﬁ /R hd),. (2.2)



Given any metric g conformally equivalent to the spherical metric, one can consider the Sobolev space
H(R?, g), which is the closure of C°°(R2) with respect to the Hilbert-norm

/h2dAg+/ |OR|? dA. (2.3)
R2 R2

The topological dual of H(R?, g) will be denoted by H~!(R?, g) and it does not depend on g.

2.2 Log-correlated field and Gaussian free fields

Here we introduce the various free fields that we will use throughout the paper. They are all based on the
notion of log-correlated field (LGF) (see [25]) and related Gaussian Free Fields (GFF) (see [20, 30, 56]).

The purpose of this section is to give a precise meaning to the measure on the space of functions
corresponding to the ”probability density”

exp ( - i /R 2 |89X(x)|2)\g(dx))DX (2.4)

where ¢ is any metric conformally equivalent to the spherical one and DX stands for the ”uniform measure”
on the space of functions X : R? — R. Though we could give straight away the mathematical definition, we
choose to explain first the motivations for the forthcoming definitions.

We stress that the conformal invariance of the Dirichlet energy entails that the action in (2.4) does not
depend on the metric chosen among a fixed conformal class of metrics and that the corresponding random
field X must be invariant under all the automorphisms of the sphere, i.e. the Mobius transforms. It is then
easy to convince oneself that this action must correspond to the LGF, i.e. a centered Gaussian field with

covariance structure 1

lz =yl
The point is that this field is defined only up to a constant. One way to define this field is to consider
its restriction to the space of test functions f with vanishing mean [, fd\ = 0 (see [25]). This is not the
approach that we will develop here. Given a metric g conformally equivalent to that of the sphere, we will
rather consider this field conditioned on having vanishing mean in the metric g, call it X,. Formally, X
can be understood as

E[X (2)X (y)] = In (2.5)

Xy=X —my(X). (2.6)
The constant has thus been fixed by imposing the condition

/Xg dA, = 0. (2.7)

Though this description is not rigorous as the field X does not exist as a function, each field X is perfectly
defined on the space of test functions and its covariance structure can be explicitly given

Gy(z,y) = B[Xy(2) X,(y)] (2.8)
1 1 1
=In P mg(In o |) mg(ln " |)+6‘g,
with . )
6‘g = W /‘/R2><R2 In m)\q(dZ))\q(dZ ) (29)

It is then plain to check that X, is a Gaussian Free Field with vanishing Aj-mean on the sphere, that is a
Gaussian random distribution with covariance kernel given by the Green function G of the problem

Agu=—=21f onR? /ud/\g:()
R2



i.e.

u= /Gg(-, 2)f(2)Ag(dz) = Gy f. (2.10)

Furthermore, X, lives almost surely in the dual space H~*(R2, g) of H*(R?, g), see [20, 56], and this space
does not depend on the choice of the metric g in the conformal equivalence class of §. We state the following
classical result on the Green function G, (see the appendix for a short proof)

Proposition 2.1. (Conformal covariance) Let 1) be a Mdbius transform of the sphere and consider the
metric gy = |’ (x)|?g(¢(z))dz? on the sphere. We have

Gy (2,y) = Gy(¥(2), ¥(y)).
Furthermore, a simple check of covariance structure with the help of (2.8) entails

Proposition 2.2. (Rule for changing metrics) For every metrics g,g9 conformally equivalent to the
spherical metric, we have the following equality in law

law
Xg—mg(Xy) = Xg.

Specializing to the round metric, let us register the explicit formula

1 1

~ ! — - @
Gy(z,2)=1n T 4(

Ing(z) + ng(=)) — % (2.11)
and the transformation rule under M&bius maps
/ ! ! 1 !
G?]("/J(Z)vw(z )) = Ge¢g}(zvz ) = G?](sz ) - Z(¢(2) + ¢(2 )) (2'12)

where e? = §,,/§ (see Appendix).

All these GFFs X, (g conformally equivalent to §) may be thought of as centerings in Aj-mean of the
same LGF. They all differ by a constant. To absorb the dependence on the constant, we tensorize the law
P of the field X, (whatever the metric g) with the Lebesgue measure dc on R and we consider the image of
the measure P ® dc under the mapping (X, ¢) — X, + c¢. This measure will be understood as the "law” (it
is not finite) of the field X corresponding to the action (2.4). In particular, this measure will be invariant
under the shifts X — X + a for any constant a € R. This also ensures that the choice of the metric g to fix
the constant for the LGF, yielding the GFF X, is irrelevant as it will be absorbed by the shift invariance
of the Lebesgue measure.

To sum up, in what follows, we will formally understand the measure (2.4) as the image of the product
measure P ® dec on H~}(R?, §) x R by the mapping (X, ¢) = X, + ¢, where dc is the Lebesgue measure on
R and X, has the law of a GFF X, with vanishing A;-mean, no matter the choice of the metric g.

2.3 (Gaussian multiplicative chaos

In what follows, we need to introduce some cut-off approximation of the GFF X, for any metric g confor-
mally equivalent to the spherical metric. Natural cut-off approximations can be defined via convolution. We
need that these cut-off approximations be defined with respect to a fixed background metric: we consider
Euclidean circle averages of the field because they facilitate some computations (especially Proposition 2.4
below) but we could consider ball averages, convolutions with a smooth function or white noise decomposi-
tions of the GFF as well.

Definition 2.3. (Circle average regularizations of the free field) We consider the field X,

1 2T

Xgelx) = Py ; Xg(:c—i-eew) do.



Proposition 2.4. We claim (recall (2.9))
1. lime0 B[X g c(2)?] + In€e + 3 In§(z) = 65 + In2 uniformly on R2.
2. Let v be a Mobius transform of the sphere. Denote by (Xg01). the e-circle average of the field Xz o01).

Then 1
lim E[(X5 0 P)e(x)?] + 5 ng(4(z)) +1n [¢'(z)] +Ine= 05 +1In2

uniformly on R2.

Proof. To prove the first statement results, apply the e-circle average regularization to the Green function

Gj in (2.8) and use
27 2 1
o Jo e — et

Defining f(z) := 2mg(In ﬁ) and letting f. be the circle average of f we then get that E[X; (z)?] +
1

fe(x) + In e converges uniformly to 6;. Then use (A.2) ie. f(x) = 3Ing(x) —In2 to get the claim.
Concerning the second statement, observe that X o9 is a GFF with vanishing mean in the metric
gy = |Y'|?g o ¢ (see Proposition 2.1). Therefore, the Green function of this GFF is given by (2.8) with

g = gy. The same argument as the first item shows that

limn (ELX; o 6, (@)?] + f2(x) + In©) = 0,
uniformly on R? where f¥ is the circle average of f¥(z) = 2my, (In ﬁ) By (A.3)
L.
¥ (x) = 5 Ing(¢(x)) + b4, +In|¢' (z)] — 05 —In2
which yields the claim. O

Define now the measure )
M, =7 XactQ/2ng) gy (2.13)

Proposition 2.5. For v € [0,2[, the following limit exists in probability

M, = lim M, . = e 7%+ 2 Jjm X0~ T BXG I g
e—0 ’ e—0 :

in the sense of weak convergence of measures. This limiting measure is non trivial and is a (up to a multi-
plicative constant) Gaussian multiplicative chaos of the field Xy with respect to the measure \;.

Proof. This results from standard tools of the general theory of Gaussian multiplicative chaos (see [49] and
references therein) and Proposition 2.4. We also stress that all these methods were recently unified in a
powerful framework in [55]. O

The following Proposition summarizes the behavior of this measure under Mobius transformations:

Proposition 2.6. Let F be a bounded continuous function on H=*(R?,§), f € C(R2) and v be a Mdbius
transformation of the sphere. Then

(F(X;), / JaMy) " (F(Xg 007" —mg, (Xp),e ") | foyerFoan,)

where Gy = [¥|2g o) and e® = G/ 3.
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Proof. We have
/fege'y(Xg,eJrQ/ﬂn@)d/\ - /f 01 egev(Xg,eoerQ/ﬂn@OdJ)|1//|2 d\

= /fc”/) (Well)ée'y(xé,eodj‘f’Q/zlng 872¢d)\

Let ¢(z) = az+b where ad — be = 1. Then ¢/'(z) = (cz + d)~2 and
#(2) = 2(n(1 + |2?) — In(|az + b + |cz + d|?)

is in C(R2). Let 1 > 0. Using Proposition 2.4 we get that on the set A, := B(0, ) \ B(—4%,n)

lim B[Xg,e(v(2))°] — B[(Xg 09) = (2)°] = 0.

e—0 rAe)]

We may then use the results of [55] to conclude that the measures

e )gev(Xg,eow+Q/21n 9 d\
and

5V (Xg00)+Q/21n9) g

converge in probability to the same random measure on A,. By Proposition 2.4

2 N 2
E/ (Well)%ev(xg,eowﬁ@/?lng))\ < C'/ (g/gw)% G = O/ e—%¢Ag =0 (2.14)
Ag ¢

c
n

as ) — 0. By Propositions 2.1 and 2.2, X 01 is equal in law with X; —mg, (X;) yielding the claim. |

3 Liouville Quantum Gravity on the sphere

We will now give the formal definition of the functional integral (1.9) in the presence of the vertex operators
e®X(2) Let g = e¥§ be a metric conformally equivalent to the spherical metric in the sense of Section 2.1
and let F be a continuous bounded functional on H~*(R?, §). We define

{70 (g, Fe) (3.1)

—eaox Juz 1070°+2R 0 d; /

E[F(c + X+ Q/2Ing) = Feou(et Xy +Q/21ng) (=)
R

i

2
exp ( — Q/ Ry(c+ Xg)dX, — ME% / eV(e+Xg,c+Q/2Ing) d/\)} de
4 R2 R2

and want to inquire when the limit lim._,o H(ZIO”)I(Q7 Fie)= H(Z"O”)l(g, F) exists.

Remark 3.1. We include the additional factor et Juz 1070 +2Ra0dNg 4 conform to the physics conventions.
Indeed the formal expression (1.9) differs from (3.1) in that in the latter we use a normalized expectation
for the Free Field. Thus to get (1.9) we would need to multiply by the Free Field partition function z(g).
The latter is not uniquely defined but its variation with metric is:

2(e9§) = e Jaz 1970 +2Rgp d 4 (5

see [20, 30]. This additional factor makes the Weyl anomaly formula conform with the standard one in
Conformal Field Theory. We note also that the translation by Q/2Ing in the argument of F is necessary
for conformal invariance (Section 3.2).

11



We start by considering the round metric, g = §. We first handle the curvature term. Since R; = 2 and
Xy has vanishing Ag-mean we obtain

50 (g, Fie) (3.2)

Y
ag N
:/ e 2R [F(c + X5+ Q/2Ing) [[ e exiletXoctQ/2malz)
R ;

3

exp ( - /Leé / eV (c+X5.c+Q/2Ing) d)\)} dce.
R2

Now we handle the insertions operators e**Xs.<(¥) In view of Proposition 2.4, we can write (with the
Landau notation)

2 2
&4 &4 _ 24

o?
e i Xg.e(2:) — eT’“(ngLan)g(Zi) S eOtng,e(Zi)*TIE[Xg,e(Zi)Q](1 4 0(1)) (33)

M)

Note that the o(1) term is deterministic as it just comes from the normalization of variances. Then, by
applying the Girsanov transform and setting

2
o . df
Hy e = i Gy(z 19, = 3.4
belr) =S [ Gyt )y, (3.4
we obtain
C "‘12 Q
M50 (3, Fy ) = e ([T a(z) = F+8 ) (3.5)
/e(Ziai—2Q)CE{F(C+X§+H@)E—|—Q/21n§)(1—|—0(1))
R
2 ~
X exp ( — uewe% / eV (Xg.c+Hy c+Q/2In g) d)\)] de,
Rz
with
1 0, +1n2
lim Ce(2) =5 ; aio;Gy(2i, 2j) + ngTn Zi:a? = C(a). (3.6)

In the next subsection we study under what conditions the limit in (3.5) exists.

3.1 Seiberg bounds and KPZ scaling laws

Since Hj . converges in H1(R?, §) to
Hy(z) = ZaiGQ(zi, x) (3.7)

it suffices to study the convergence of the partition function H(f,’;f‘i)i(g, 1;¢). We show that a necessary

and sufficient condition for the Liouville partition function to have a non trivial limit is the validity of the
so-called Seiberg bounds (see [54, 46, 34])

> a;>2Q and Vi, a<Q. (3.8)

The first inequality controls the ¢ — —oo divergence of the integral over the zero modes ¢ € R and is
necessary even for the regularized theory to exist. Indeed, let

Z. = x| e KatHe+Q/2109) gy (3.9)

12



Note that |Hy ((2)| < C. since G(z;,z) tends to constant as |z| — co. Hence from Proposition 2.5 we infer
E[Z.] < oo and thus Z, < co P-almost surely. Hence we can find A > 0 such that P(Z. < A) > 0 and then

2

o 0 c
H(Zio‘i (g,1,¢) (Hg (zi)” o ) Cé(z)/ e(zi ‘3”_269)%*“8W AIP(ZE < A)de = +o0

if the first condition in (3.8) fails to hold. The condition «; < @ is needed to ensure that the integral in
(3.9) does not blow up in the neighborhood of the places of insertions (z;); as € — 0.

Finally, we mention that the bounds (3.8) show that the number of insertions must be at least 3 in order
to have well defined correlation functions of the Liouville theory on the sphere. This has a strong geometric
flavor (see [60]): on the sphere one must at least insert three conical singularities in order to construct a
metric with negative curvature (notice that the saddle points of the Liouville action are precisely these
metrics). We claim

Theorem 3.2. (Convergence of the partition function) Let ), a; > 2Q. Then the limit
lim TG0 (g, 15 ¢) o= T30 (g, 1)

exists. The limit is nonzero if a; < Q for all i whereas it vanishes identically if a; > Q for some i.

Proof. Eq. (3.5) gives for F =1

200 )i [ A ~ 706_? QO{' VA c O — c
50 (9.1,6) = [J o)~ % 48001+ o()B[ [ 02 exp (= perz,) e

As remarked above, Z. > 0 almost surely. By making the change of variables u = pe’°Z, in (3.5), we
compute

2o —2Q

E[/}Rec(zl’ @i —2Q) exp ( — ,ue'VCZE) dc] = ,ui ( Zal —2Q ) [ = al—m} (3.10)

where T is the standard I' function. The claim follows from the following Lemma. O

Lemma 3.3. Let s < 0. If a; < Q for all ¢ then
lim (2] = BIZ]

where

20:/ Y H @ N (d) (3.11)
R2

and the limit is nontrivial: 0 < BZ§ < oo.
If a; > Q for some i € {1,...,p} then
lin% EZ: =0.
€E—

As a corollary of the relation (3.10), we obtain a rigorous derivation of the KPZ scaling laws (see
[36, 46, 34] for physics references)

Theorem 3.4. (KPZ scaling laws) We have the following exact scaling relation for the Liouville partition
function with insertions (z;, «;);

ws)s A 2Q- ZZ‘” zlaz ifA
(g, 1) = p i (3,1)

where

I @.1) = @ (Tat) > )7 (‘IZ%—%?) [ o]

; Y
' Zy
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and we defined

o o
A =2(@-9) .12)

and C(z) is defined by (3.6). Moreover
04 (g, F) = ¢©@ [T gz (3.13)

/ e(zio‘i*QQ)cE[F(c—k X;+H;+Q/2Ing)exp ( - ue"cZo)} dc.
R

Proof of Lemma 3.3. Note first that EZ? < oo for all € > 0. Indeed, recalling (2.13)
Z. = / e Hac G\ (da).
R2

Take any non empty ball B that contains no z;. Then
E[Z?] < A°E[M, (B)*]

46’YHQ (2)

(4]

2.12] again) that the random variable M, (B) possesses negative moments of all orders for v € [0, 2][.
Let now «; < @ for all i. Let us consider the set A, = U;B(z;,7) and write

where A = C'min,cp It is a standard fact in Gaussian multiplicative chaos theory (see [49, Th

Z. :/A eng,é(z)M%E(dI) +/A eng,e(z)Mw(dI) = Zpe+ 2L

c
r

Since Hy . converge uniformly on AZ to a continuous limit the limit

lim Z¢, = / O HicD £ (de) = 28, (3.14)
e—0 Ac :
exists in probability by Proposition 2.5.

We study next the r-dependence of Z, .. Without loss of generality, we may take e = 27" and r =27
with n > m and A, = B(0,r). Then, dividing B(0,7) to dyadic annuli 27%~1 < |2| < 27% and noting that
eVHa.«(z) < 09272k on such annulus we get

Zpe= / Mo N (dz) < C Y 27°F M, (By) (3.15)
B(0,r) p—
where By, = B(0,27%).

The distribution of M, ((By) is easiest to study using the white noise cutoff (Xc)c of X;. More precisely,

the family (X,). is a family of Gaussian processes defined as follows. Consider the heat kernel (pq(-,-))¢ >0
of the Laplacian A; on R?. Let W be a white noise distributed on R x R? with intensity dt ® \;(dy). Then

Re) = <= [, (alo) = ) Wt )

The correlation structure of the family (X.).>¢ is given by

o0

E[X. ()Xo (z')] = % /(m/)z (pe(z,2") — Ag@)) dt. (3.16)

For € > 0, we define the random measure

M, = X TEIE@) gy
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and M7 = lim,_,o Mme, which has the same law as M., (see [49, Thm 3.7]). The covariance of the field X
is comparable to the one of X.. Indeed, uniformly in €,

E[X(2)X(y)] < C + E[Xc(2)Xc(y)]
and so by Kahane’s convexity inequality (see [35]) we get, for ¢ € (0,1)

E[M, «(Bk)?] < CE[My,(Bg)?]-

We have the relation .
sup B[M, (By)?] < €27 k@ (3.17)

for all ¢ < % where £(q) = (2 + l;) - V;q? Indeed, the family (]T/[/.%E(Bk))€ is a martingale so that, by

Jensen, it suffices to prove that the limit M7 satisfies such a bound. This latter fact is standard, see [49, Th
2.14] for instance.
Therefore by Tchebychev

P(Z..>R) < CysR™1 Z 9~ k(@) glvatdlak < ¢ s R—ag—mE(0)—a(ya+)
k=m

provided (ya + 8)g < &(g). This holds for ¢ and § small enough since a < Q i.e. ya < 2+ l; Hence, for
some «, 3 > 0
P(Zpe>1) <CrP VYe>0

where we noted that the same argument covers also the ¢ = 0 case.
Let xp =1z, .>pe. We get by Schwartz

E[((Zre + 270" = (Z5.) W]l < 2Ex-E(Z5)*)V2 < CrP 2 (E(Z])%) 2
and using |(a + b)* — b*| < Cab*~!
IB((Zre + 270" = (Z5)°)(1 = xo)| < CroB(Z7 )"~
Since E(Z;.)® < E(Z{.)® and the latter stays bounded as ¢ — 0 we conclude
E((Ze) = (Z7)°)]| < O +17)
for all € < 7. In particular, for € = 0 this gives
liy B{(25,)°) = ELZ3]. (.19

Since E[(Z¢,)®] < oo for all € > 0 and by (3.14) Z¢_ converges in probability to Z¢, as € — 0 we have

lime 0 E[(Z¢,)*] = E[(ZE,)*]. From (3.18) we then conclude our claim lim,_ E[(Z.)*] = E[(Z)*].
For later purpose let us remark that from (3.17) we get

2
M, (By) < Csw)2 K+ =9

where Cs(w) < oo almost surely. This easily leads to

sup/ Hac IV (dx) — 0 (3.19)
e>0 -

in probability as r — 0.
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Let us now prove the second part of the lemma. Without loss of generality, we may assume that oy > @
and z; = 0. It suffices to prove for the Z; . defined in (3.15) that

lim E[Z] ] =0 (3.20)
By Kahane convexity [35] (or [49, Thm 2.1]) we get
E[Z].] < CE[Z} ],

Next, we bound

Zye> cZTWka(Ak) cglam(?ﬂ IDFM, (Ag) (3.21)
k=1 s

k+1

where Ay is the annulus with radi 2% and 2~ and we recall that € = 27" and ay > 2 ++2/2 . We may

then decompose, for r = 27% (and € < r),

~ 2 ~ -
M, (dz) = X B G20 (dz)r) (3.22)

where the measure M\%E,T is independent of the sigma-field {X,,(z);u > r,z € R?} and has the law

o~

M, (dz) = KX - FB((R=K)(2)%] g,

We can rewrite (3.22) as

~ 2 = > —
- o(dz) = KO- T (0)%)7(Ke ()~ Ko ()= (BIK (DB OD*D,2 7] (dz/r) (3.23)

to get

M, (A > 2 KO- 5 BK )] gminccnon e TE.  (Ay) (3.24)

with ¥;(2) = (X, (rz) — X,(0)) — Z(E[(X,(r2))2] — E[(X,(0))?]). Now we want to determine the behavior
of all the terms involved in the above right-hand side.

By using in turn Doob’s inequality and then Kahane convexity [35] (or [49, Thm 2.1]), we get

Efsup M, .- (A1) ™) < ¢ B[M,,0,-(A1) ™) < E[M, (41) ™) < Cy. (3.25)

e<r

uniformly in r < 1. Hence, for all a > 0

P(sup ]TJ\%E)T(Al) < n_l) < Cyn™ . (3.26)

e<r

Next, we estimate the min in (3.24). The key point is to observe that the Gaussian process Y,. does not
fluctuate too much in such a way that its minimum possesses a Gaussian left tail distribution. To prove
this, we write Y,.(z) = E[Y;(2)] + Y,/(z) and we note that using the covariance structure of (X, ), we get for

all z € B(0,1)
IEY: (2)| = %IE[()NQ(TZ)F] — E[(X,(0)*)| < C

and for all z, 2’ € B(0,1),
E[(Y/(2) - Y/()*] < Oz = 2],

uniformly in » < 1. Using for example [40, Thm. 7.1, Eq. (7.4)], one can then deduce

2
VI 2 1; Sup]P min )’I z g X g Oe o

16



for some constants C,c > 0. Hence, for all a > 0
P(e™imzenon Yr(2) < =1y < Cun, (3.27)
Combining (3.24), (3.26) and (3.27) with (3.21) we conclude

]P(ZLE <n) < ]P(Izngx e X1 (0) < n®) + Cn=.

Since the law of the path ¢t — )N(t(O) is that of Brownian motion at time —Int the first term on the RHS
tends to zero as n — oo and (3.20) follows. O

3.2 Conformal covariance, KPZ formula and Liouville field

In what follows, we assume that the bounds (3.8) hold and we will study how the n-point correlation func-

tions H(z’o”)’ (9, F') transform under conformal reparametrization of the sphere. The KPZ formula describes
precisely the rule for these transformations. More precisely, let 1 : R2 — R? be a conformal automorphism
of the whole sphere, i.e. a M6bius transform. We claim (recall (3.12))

Theorem 3.5. (Field theoretic KPZ formula) Let ¢ be a Mébius transform of the sphere. Then

R |

Let us now define the law of the Liouville field on the sphere.

Definition 3.6. (Liouville field) We define a probability law P7
EV M ) by

(zi,ai)i,9

(z o)y O H~YR?, §) (with expectation

B F (@) =

for all bounded continuous functional on H~*(R?, g).

We have the following result about the behaviour of the Liouville field under the Mobius transforms of
the sphere

Theorem 3.7. Let ¢ be a Mobius transform of the sphere. The law of the Liouwville field ¢ under P)*

(Z'HOM)M‘]
is the same as that of ¢ o + QIn Y| under ]szm o)ird

Proof of Theorems 3.5 and 3.7. We start from the relation (3.13). Let

= Z a;Gy(Y(2i), 2).
We apply Proposition 2.6 to f = eTHie . By (3.19) we can take the limit € — 0 to get

TC02: (g, F) = 00D [T alwz)> / B [F(c+ X5 097 = my, (X;) + HY +Q/21ng)

exp (— pe(e7may (Xs)) /e’Y(Hgoer%“b)de)] de.

where we denoted s = ), a; — 2Q). Next, use the shift invariance of the Lebesgue measure (we make the
change of variables ¢ = ¢’ +my,, (X3)) to get

H(%lgzi)al) (g, F ¥(2)) Hg i / e*IE [esmgw (Xg)F(c + X;o0 4 H;y+Q/2Ing) (3.28)
R

exp ( — ue”c/eV(Hﬁ’”oer%‘i’)de)} de.
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Now we apply the Girsanov transform to the term ¢*™#X9) where my, (X3) = 1= [ Xze?d); and e? =
W. This has the effect of shifting the law of the field X4, which becomes

S
Xg + EGQS#

The variance of this Girsanov transform is 52D¢ where
1
Dy = qu(e Gye?) = (a2 /11@2 . Gy(z,2")Ag, (dz)Ng, (d2), (3.29)

i.e. the whole partition function will be multiplied by e%D V.

Plugging in the shifted field to (3.28) we need to compute Hy 0 ¢ + ﬁGQe‘z’. First, using (2.12) for
(ng o) (2) = >, aiGy(¥(2),1(z)) we get

HY oy = Hy ~ Z20() — 13 ais(z).

Next, to compute Ge? note that both metrics § and g, = e?§ have Ricci curvature 2. Hence from (2.1) we
infer e? =1 — %Aggf) and thus

= Cae? = (6~ my(6). (3.30)
Combining we get
Hg7w01/)+iGg€ = H, ——¢ ——Zowﬁ zi) — 7mg(9).
Thus (3.28) becomes
Y0201 (3, ) = €0 ( [Tot )Ae) /R B[ F (¢ + (X5 + Hy + Q/2(ng — n[e'2)) 0 47

exp (— pe* /evHﬁde)] dc eSTD”.

where

1
d=c—= —Z;ai(bzl
By a shift in the c-integral we get
I{p(=ei (g F) = O =) Hg Aoy / eSCIE[F(c+ (Xg+ Hy +Q/2(Ing —In|¢'|?)) o
R
exp (— ue'yc/e'yHngv)] de f Ti @i9(20) o 5 (Dutma(9) (3.31)

Combining (3.6) with (2.12) we have

C4(a)) = O(a) — £ 3 0y (9(z0) + 6(21)) = Ca) ~ 2203 aj6(25) + 1 3 0F0(z1).

i#]

Since [¢'(2;)[29(¢(2:)) = e?G)§(2;) and A,, = — Loy + %ai we conclude
CW(2) ng(zi))%ie% Yiad(z) — Cz) H(|¢/(zi)|72g(zi))%i_

The proof is completed by the identity
Dy = —5my(¢) (3.32)

proven in the appendix. O
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3.3 The Liouville measure

Here, we study the Liouville measure Z(-), the law of which is defined for all Borel sets A1, --- , Ay, C R? by
E’(Yz)ﬁai)i,g[F(Z(Al)v o, Z(Ay))]

2 R a2
0, (e1,00)0. D) limy [ B[P(@e [ 0@ g ) [T eederorarmae)
e—0 Jp A ;

72 a
exp ( - Q/ Ry(c+ X5)d\g — pe®es / ¢V Xa.c+Q/2Ing) d)\)} de.

R2

In what follows, we call Zy(-) the measure defined under P by
Zo(A) ::/ e"Ha dM,
A

so that Zp in (3.11) is Zo(R?). We have:

Proposition 3.8. Under ]Pzéiai)i,g’ the Liouville measure is given for all Ay,--- , Ay by
o) Zo(A Zo(A 2 —2Q o ] O‘i*QQ_l
EYH F(Z(A A))] = ) E{F(y%’ yZO((Rg)))ZO(RQ) ! }e My dy
V(A Z(A)] = N

T (B2 R 7y (R2) ]

(3.33)
In particular,

1) the volume of the space Z(R?) follows the Gamma distribution F(M, u), meaning

2 —2Q

5 o0 i —2Q .
VF € Cy(Ry), EJF, [F(Z(R)] = [ FyyT ey,
1) s F(Zlal QQ) o

2) the law of the random measure Z(-) conditionally on Z(R?) = A is given by

F(ALLL) Zo(R?) =5
E?Z:Laz)zﬁ[F(Z()”Z(Rz) = A)] = [ ( 2 )) O(Z 3 Q ]
e ]E[ZO(RQ) 7}

for any continuous bounded functional F' on the space of finite measures equipped with the topology of weak
convergence.

3) Under IP?Z“O[ .5 the law of the random measure Z(-)/A conditioned on Z(R?) = A does not depend on
A and is explicitly given by
M
- ) E{F(ZO(()))ZO(R% }
ELE, SIP(Z6)/4)|Z(R2) = 4)) = —
]E[ZO(RQ)_ : }

Proof. Taking the limit € — 0 in the relation (3.5) gives
E(VZ’Z%)“Q[F(Z(AQ, T Z(Ak))]
. ,a_? Q. 5
= (I e 9 (Hg ) T 1)60(9)
/ e(zi oi=2Q)e E [F(eWcZo(/h), e, €7°Zo(Ag)) exp ( — ue”cZo(R2))] de.
R

Finally, let us make the change of variables e7°Zy(R?) = y to complete the proof. O
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3.4 Changes of conformal metrics, Weyl anomaly and central charge

In this section, we want to study how the Liouville partition function (3.1) depends on the background
metric g conformally equivalent to the spherical metric in the sense of Section 2.1, say g = e¥g.

By making the change of variables y — y — m4(X,) in (3.1) and using Proposition 2.2, we can and will
replace X, by X in the expression (3.1).

Now we apply the Girsanov transform to the curvature term e~ 4% Ji2 RaXa dAs | Since by (2.1) RgAg =
(R — Azp)A; this has the effect of shifting the field X by

Q Q
— 5 Ca(Bs = Bgp) = = (¢ —my ()
where we used Gz R; = 0 (since Ry is constant).

This Girsanov transform has also the effect of multiplying the whole partition function by the exponential
of

2
33271.2 /~/R2XR2 R, (2)Gy(2,2" )Ry (2") Ag(d2) Ny (d2")
Q2

“T67 [, TP = male))dAg

2
:1% /R (Rg — Dgp) (o —my(p))dAg  (use (2.1))

2 ~
~Z [ 109 ar,

Therefore, by making the change of variables ¢ — ¢+ Q/2mg(p) to get rid of the constant my(¢) in the
expectation, we get,

nyzz‘ai)i(g, F) —evor J2 10901 +2R50 A+ = fy2 107¢1% dXg+Q%ms (¢) (3.34)

a2 .
lim | B[F(X;+c+Q/2mng) [ ¥ enletXoct@/zma)
e—0 R

2

Q v L2 X;.e4+Q/21n 3
exp ( —— | RgcdAg — pue’e? €T o g d)\)] de.
47 R2 ’ R2

Now we observe that the Gauss-Bonnet theorem entails

/Rgcd/\g:/ Rgcd)\g
R2 R2

because c is a constant. Therefore, using Q*my(¢) = % Jzz 2Ry dXg,

) (g, F) (3.35)
2 ~ a? ~
e 0012 s iy R [F(X; + c+ Q/2mg) [[ ¥ emtetXorarmao
2 ~
exp ( L / Ry(c+ X5) dhg — pere™ / eV Xa+Q/2Ing d/\)} de
47 R2 R2
—eBRE fea 1076 H2Ra e D (10001 (5 7). (3.36)

We can rewrite the above relation in a more classical physics language

Theorem 3.9. (Weyl anomaly and central charge)
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1. We have the so-called Weyl anomaly

(ziovi)i (L, 7 _ ‘L 2 . . (zici)i (g
I i(e®g, F) = exp (9677(/11@ |0 d)\—l—/R2 2Rggod)\g))ﬂ,y# (g, F)

where
Cr, = 1+ 6Q2

is the central charge of the Liouville theory.

2. The law of the Liouville field ¢ under IPzz’fai)i g i independent of the metric g in the conformal
equivalence class of g.

Notice that the above theorem can be reformulated as a Polyakov-Ray-Singer formula for LQG,
see [48] and [47, 53] for more on this topic.

4 About the v > 2 branches of Liouville Quantum Gravity

Here we discuss various situations that may arise in the study of the case v > 2. We want this discussion to
be very concise, so we just give the results as well as references in order to find the tools required to carry
out the computations in full details. Yet, we stress that the computations consist in following verbatim the
strategy of this paper. In what follows, we will only give the partition function in the round metric as the
Weyl anomaly then gives straightforwardly the partition function for any metric conformally equivalent to
the spherical metric.

4.1 The case v = 2 or string theory

The case v = 2 corresponds to @ = 2 and is very important in string theory, see the excellent review [37]
as well as the original paper [47]. The partition function of LQG is then the limit

5 (6, F) (4.1)
a2 R
= lim RE[F<Xg+c+1ng>Heiem<c+><§,e+lng><zn
1 .
exp ( - —/ Ry(c+ X;.0) dNg — pn/2/me*(— In 6)1/262/ e*Xo.+2Ing d)\)} de.
27 R2 R2

Notice the additional square root (—Ine)/? in order to get a non trivial renormalized interaction term®.
After carrying the same computations than in (3.5) and taking the limit € — 0, we get

af e .
155 (5, F) =(TL otz o) ec® / (B[R~ 0,4+ X, + Hy+1ng)  (42)

X exp ( — pe* /11&2 eQHg(x)g(x)M’(dx))] de,

where the measure M’(dz) is defined by
72
M'(dz) = (2E[X2] — X;)e?Xo T BXG) \ (dx)

and C(z) defined as in (3.6). One can check as in subsection 3.5 that this partition function is conformally
invariant. The convergence of probability of the renormalized measure (—In 6)1/ 2¢2 fR2 e?Xa.c+2Ind g) has
been investigated in [24, 26] when X . is a white noise decomposition of the field X, which can also be
taken as a definition of the regularized field. Convergence in law of of the circle average based regularization
measure is carried out via the smooth Gaussian approximations introduced in [49]. Establishing the Seiberg
bounds needs some extra care and can be handled via the conditioning techniques used in [52].

4The /2/7 term appears in relation with the results in [26] to make the v = 2 case appear as a suitable limit of the v < 2
case, see Conjecture 3 below.
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4.2 Freezing in LQG

For v > 2 and @ = 2, one can define

a% a;(c g ng)(z
1 (g, F) = lim R]E[F(X@—Fc—i—lnﬁ)HeTe (X, +In g) (=) (4.3)

1
exp ( ~ 5 /2 Ry(c+ X5)dAs — /w”céz”_z/
R

v R2

X079 4)) | de.

Here we choose to use a white noise regularization of the field X; to stick to the framework in [42]. Notice
the unusual power of € in order to non-trivially renormalize the interaction term, which gets dominated by
the near extrema of the field X, .. Under this framework, the convergence in law of the random measures

(—Ine) T 727 Xocdy — M} (dw)
vy

is established in [42], where M} (dz) is a random measure characterized by
vy

MY (f) 2
2

| = Ele=¢ e £@)7 97 @M (do)),

Ele
Hence the convergence in law in the sense of weak convergence of measures
(—In e)%eh*ze'yx@*#“ng d\ — g7 (z) M (dz).
We deduce
m{zedi(g, F) (4.4)

a? -
:(Hg(zi)7f+ai)ec(z)/e(ziaﬁ@cE F(c—%@g—l—Xg—FHg—l—lng)
i R -

X exp ( — uevc/2 eHa@) g ) M’% (dw)) de,
R i

OC? r /y
:(Hg(zi)—7+ai)60(z)/Re(ziai—ﬁl)cE-F(C_§9§+Xg+Hé+lng)

X exp ( — c.ylu%e2c /R2 o) () M'(d:z:))} de,

with C(z) given by 3.6. Up to the unusual shape of the cosmological constant, this is exactly the same
partition function as in the critical case v = 2. The difference is here the law of the Liouville measure
MY, (dz), which can be seen as a o = %—stable transform of the derivative martingale M’ and is now purely

atomic (see [42] for further details).

4.3 Duality of LQG

The basic tools in order to carry out the following computations can be found in [6]. Define the dual partition
function for 4 > 2 and @ = % +3 as

i) (g, F) = lim

a2 R
lim | E[F(X; +c+Q/2mg) [T e ¥ eosletXote/2ma

3

exp(—%/ Rg(c—l—Xg)d)\;]—ue%ez/
R2

7I R2

X0 T92/210 4 ) | de (4.5)
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where ), is a a-stable Poisson measure with spatial intensity A\ and a = 4/52. We get

ﬁ%‘fLal)l (Q,F) (46)

X exp ( — ueﬁc/ eTHa(®) g7 (z) S(;(dx))] de

2
with C(z) defined as usual and S, (dx) is a stable Poisson random measure with spatial intensity ¢~ T EX]]

By computing the expectation we get

ﬁ%’ff”i(g,l) :(Hg(zi)*TJr%ai)eC(z)/l%e(ziar%;?)c

%

A2
x E[exp ( _ u% MQW/ eng(w)geng—gE[Xﬁ] d/\)} de
R2

72
2Q-3%; o 2Q-%; a;
P AD(1 - 2 ) e
= 2Q*Ziﬂi( '72 ) ’ Hg’vl 1)1(951)' (47)
Bl

1
Observe that this is an ad-hoc construction of duality (see also [22]). The very problem to fully justifies the
duality of LQG is to find a proper analytic continuation of the partition of LQG, i.e. the function

v e T (g, 1),

First observe that this mapping goes to co as v — 2 and it is necessary to get rid of the pole at v = 2. We
make the following conjecture

Conjecture 3. The function

AT(1 — A2 /4) 2o
o ()T g
Y
is an analytic function of v €]0,2[, which admits an analytic extension for v = 2 given by ﬁ(fjf“”i(g, 1).

(zicvi)s

o (g,1) of the critical case.

Furthermore, this extension at v = 2 is the partition function 11

We do not know how to establish analyticity but we stress that the above function is continuous on
10, 4+o0].

5 Perspectives

In this section, we give a brief overview of perspectives and open problems linked to this work.

The DOZZ formula

One of the interesting features of LQG is that it is a non minimal CFT but nevertheless physicists have
conjectured exact formulas for the three point correlation function of the theory. This correlation function is
very important because (in theory) one can compute all correlation functions of LQG from the knowledge of
the three point function. In LQG, the three point function is quite amazingly supposed to have a completely
explicit form, the celebrated DOZZ formula [18, 58, 61].

More precisely, let z1, 22,23 € R? and a1, az,as be three points satisfying the Seiberg bounds (3.8).
Applying the Mobius transformation rule (3.4) for the map v that takes (z1, 22, 23) to (0,1, 00) we get after
some calculation

(Z’i7ai)i

(oo)i(g,1) = |21 — 2|22 |20 — 23222321 — 23?2130, (a1, a2, v3)
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where we denoted A1y = A,; — A, — Aq, and similarly for Ajs and Ags. The coefficient is given by (recall

s=0 ;o —20Q)
Oy, az, ag) = e +2Q9) 422001, =1 =s/1] (5 /1 )E 77/

and
2= [z = 1) S, a),

The DOZZ formula is a conjecture on an exact expression for C, (o, a2, a3). It is based on the observation
that E Z~%/7 can be computed in closed form if —s/~v =n, a positive integer. We have

EZ" = /e’y2 2icj Galzinz)) H |z:|~ 7|2 — 1|_aﬂg(zi)7% PRACY Az (dzi).

=1

Using (2.11) this becomes

. n
B 2" = 2 /H j2i = 277 T 140 s — 11707 A (d=0),
=1

i<j

an expression that does not depend on the background metric §. This Coulomb gas integral can be computed
in closed form and leads to an expression which can be cast in a form where n enters as a parameter allowing a
formal extension of the formula to the negative real axis. This leads to the DOZZ formula for C (a1, a2, as).
We will not state it here explicitly as it is quite complicated and involves introducing numerous special
functions.

Proving the DOZZ formula seems at this time difficult. Note for instance that for given v only a finite
number of positive moments of Z exist so one can not attempt to solve a moment problem. In the semiclas-
sical v — 0 limit we want to point to an interesting recent approach to the DOZZ formula by performing
deformation of the integration contour in function space [34].

The semi-classical limit

The semiclassical limit of LQG is the study of the concentration phenomena of the Liouville field around
the extrema of the Liouville action for small -y, see [46, 34]. After a suitable rescaling of the parameters u
and (a;);, that is

i =A, a;= A (5.1)

Y

for some fixed constants A > 0 and weights (x;); satisfying x; < 2 and >, x; > 4, the Liouville field v¢
should converge in law towards U + In g, where U is the solution of the classical Liouville equation with
sources

: Zl Xi—4
AU — Ry = o2rAeV — 271';)@5%., with /}R2 eV drg = =

(5.2)
hence the name of the theory ”Liouville quantum gravity”. The reader may consult [38] for some partial
results in the "toy model” situation where the zero modes have been turned off.

A Mobius transform relations

In this section, we gather a few relations concerning Mobius transforms and their behavior with respect to
Green functions. Recall that the set of automorphisms of the Riemann sphere can be described in terms of

the Mobius transforms
az+b

P(z) = g “bhedeCandad—be#0.
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Such a function preserves the cross ratios: for all distinct points 21, 22, 23,24 € C

(21 — 23)(22 — 24) _ ((21) —(23)) ((22) —P(z4)) (A.1)

(22 — z3)(21 — 24)  (¥(22) — ¥(23))(Y(21) — ¥(24))
Recall that gy stands for the metric [¢|%g o 4.

Proof of Proposition 2.1. We can rewrite the expression (2.8) with g = gy in a condensed way

1 |z — z]ly — 2|
Goulous) = 7z [ T e A ()2, ).
By making a change of variables and use (A.1), we get
1 [z =y (2)lly — v (Z)] /
Gy, (z,y :—// In Ag(dz) Mg (dz").
w0 =7 ) oo NN 022 (=)
x) — 2l[¢(y) — 2| /
3 5(dz").
T o G 1 0l

This is exactly the expression of G(¢(x), ¥ (y)). O

Corollary A.1. We have the following relations for all Mobius transforms ¢

1 1
—2mg(ln ——)=—-Ing(z) +In2 (A.2)
|z —-| 2
1 1
g, (0 ) By = = 3 () ~ o)+ 65 + (4.3)
In particular (2.11) holds.
Proof. We use the following relation
/ In |z — | A 250y = 27 (In(jaz + b]* + ez + df*) — In(lal® + |c[*)). (A4)
R2

The proof of this identity is based on the fact that both sides have the same Laplacian and the difference
of both functions goes to 0 as |z| goes to infinity.

The first relation is a straightforward consequence of (A.4) with ¢(z) = z. One could use (A.4) as well
to prove the second but another way (which we follow below) is to use (A.1). Write

1 x—z||x—z| ,
-2 In = dz)A,, (d
mgw( | |)+ 9y 47T /]I@w/]R? |Z—Z/| w( Z) gw( Z)

Ix— )III ()]
. (2) —9=1(2)

Observe that the mapping (z,y) — (4;)2 Jr2 Jpe In |m7|$:11((z))||y T g‘ )‘)\ 5(dz)X\3(d2") is a continuous func-

tion so that we can write

N (d2) g (d=)

R2

—2my,, (In )+9

w—wlwmy LGOI
1(2’) ’(/J 1( /)| )\g(d )Ag(d )
( —1

. oyl ) e
"3ﬁm(<4w>2jé2jﬁ2l T T ) + ks )
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Now we can use the invariance of cross-products with respect to Mobius transforms to get

1
2mgw(ln|x |)+9<1w
() — Z||¢( )= 7| /
_1}1_% g R2 OEOIE /|)\ 3(dz)Ag(dz") + In|z — y|)
|1/1 ) — Z||1/)( ) =7l / [(x) = (y)|
= lim . ) ) vl
ylﬁz /R? /R? |z—z’| Ag(dz)As(dz") — In P )
—2my —In Y’ (z
We complete the proof thanks to (A.2).
Lemma A.2. The relations (2.12) and (3.32) hold.
Proof. Using the relation (A.4), we have
Gy (¢ (@), 9(2))
1 1
=In |$ p 5(1n(|a3: + b2 + |ex + d*) — In(|a)® + |¢|*))
+ 5(1n(|a2 + 0% + |ez + d|?) — In(Jal® + |c]*))
1 1
- — —(In(|aw + b)* + |cu + d)*) — In(|a|® + |c|2)))\g¢ (du)
47 R2 2
1 1 1 1
=In T + B In(|az + b]* + |cx + d|?) + 3 In(Jaz + b|? + |ez +d|*) — 3 In(|al* + |c[*)

1 1
I ). In(|au + b* + |cu + d|*) g, (du).

After integrating, we get that
/ Gy(¥(x),9(2))g(2)dz = = 2rIn(1 + [2[*) + 2 In(Jaz + b + |ez + d|*)+
R2
1
B / In(jaz + b|* + |ez + d|*) Ny (d2) — 2w In(|al? + |c¢|?)
R2
1
~3 / In(|au + b|* + |cu + d|*)Ag,, (du).
R2
At this stage, we will suppose that ad — bc = 1. Hence, we have
1 2 2
~3 In(|au 4 b]* + |cu + d[*) Ay, (du)
R2
1 .
= 5 [0 P ()
1 . 1
=5 [ m@E)x () + 5 [ Il @A, ()
1
= —/ In(g(v))Ag(dv) —/ In |cu + d| Ay, (du).
2 R2 R2
Now, we introduce the function

G(x):/ ln|cx+d—cu—d|)\g¢(du):47Tln|c|—|—/ In |z — ulAy, (du).
R2 R?
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By using equation (A.4), we get that
G(z) = 4r1n|c| + 2n(In(|az + b|? + |cz + d|?) — In(Ja|* + |c[*))
Hence, we get that
d
/ In |cu + d|Ag, (du) = G(—=) = drIn|c| — ArIn|c| — 27 In(|al® + |¢[*) = =27 In(|a|® + |c[*).
R2 c

At the end, we get

. Gy(1h(x), ¥(2))Ag(d2)
= —2rln(1 + |2?) + 27 In(|az + b|* + |ex + d|?)

1
+ B / In(|Jaz + b|* + |ez + d|*) Ny (dz) — 2w In(|a|? + |c¢|?)
R2

+ % /]R? In(g(v))Ag(dv) + 2w In(|al® + |c[?)

= —T Ilg (x)—wmA Ilgw(x) = —TTO\T) — Ty
which implies that
1 1
i L [ o e () = ~m(9), (A5)

Recall now that X; o equals in law X3 —my, (X3) so that

G ((2),¥(2)) = Gy(w,y) — ﬁ((%ed’)(z) +(Gge?)(y)) + Dy

where Dy = ;=mg(e?Gge?). Using (3.30) this becomes
Dy = —
and the applying (3.30) again we get

Gal(@), ¥(2)) = Gyl y) — 1(6(x) + 6(0) + 3 (my(6) + my, (6))

(A.5) implies

1 1
_§m@(¢) = imgw (¢)
which yields (2.12) and combining with (A.6) we also get (3.32). O
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