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Abstract: In this paper, we rigorously construct Liouville Quantum Field Theory on
the Riemann sphere introduced in the 1981 seminal work by Polyakov. We establish
some of its fundamental properties like conformal covariance under PSL2(C)-action,
Seiberg bounds, KPZ scaling laws, KPZ formula and the Weyl anomaly formula. We
also make precise conjectures about the relationship of the theory to scaling limits of
random planar maps conformally embedded onto the sphere.

1. Introduction

The two dimensional Liouville Quantum Field Theory (Liouville QFT for short, or also
LQG1 as a short-cut for Liouville Quantum Gravity as is now usual in the mathematics
literature) was introduced by Polyakov [50] as a model for quantizing the bosonic string
in the conformal gauge and gravity in two space-time dimensions. Liouville QFT is one
of the most important two dimensional Conformal Field Theories (CFT).

Classical Liouville theory is a theory of Riemannian metrics g on a two dimensional
surface !. One considers metrics g = eγ X ĝ where ĝ is some fixed smooth “reference”
metric, X : ! → R is a deterministic function and γ is a real parameter. The Liouville
action functional is then defined as

S(X, ĝ) := 1
4π

∫

!

(
|∂ ĝ X |2 + QRĝX + 4πµeγ X )

λĝ, (1.1)

where ∂ ĝ , Rĝ and λĝ respectively stand for the gradient, Ricci scalar curvature and
volume form in the metric ĝ. The parameter µ > 0 is the analog of a“cosmological

A. Kupiainen: Supported by the Academy of Finland.
1 Not to be confused with Loop Quantum Gravity, another approach to quantize gravity in 3 and 4 dimen-

sions.
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constant” in two dimensional gravity and Q is a real parameter. For the particular
value

Q = 2
γ

this action functional is conformally invariant. This means that if we choose a complex
coordinate z so that the metric is given as ĝ = dz2 then (1.1) is invariant under the
simultaneous change of coordinates z = f (w) and shift in the field

X = X ′ ◦ f + Q log | f ′|. (1.2)

In that case its extrema are given by solutions of the classical Liouville equation

Reγ X ĝ = −2πµγ 2.

Such solutions define metrics eγ X ĝ with constant negative curvature and lead to the
uniformisation theorem of Riemann surfaces.

In the quantum (or probabilistic) Liouville theory the field X becomes a random field
with law given heuristically in terms of a functional integral

E[F(X)] = Z−1
∫

F(X)e−S(X,ĝ)DX, (1.3)

where Z is a normalization constant and DX stands for a formal uniform measure on
some space of maps X : ! → R. We stress that for µ > 0 this field is non Gaussian
whereas for µ = 0 it is Gaussian, in which case it is known under the name Gaussian
Free Field (GFF), free referring to the fact that the field is “free” of interactions (here
the term 4πµ eγ X ). The aim of this paper is to make rigorous sense of the heuristic
expression (1.3) and study its properties.

The quantum Liouville theory is a Conformal Field Theory. This means that we
expect there to be a sense in which the random field X is invariant under the confor-
mal transformations (1.2) (see Sect. 3.2), however with a renormalized value of the Q
parameter

Q = 2
γ

+
γ

2
.

Note that Q is invariant under γ → 4/γ and in the standard branch of Liouville theory,
the parameter γ belongs to the interval ]0, 2] (see Sect. 4 for discussion of γ ! 2).
Conformal Field Theories are characterized by the central charge c ∈ R that reflects
the way the theory reacts to changes of the background metric (see Sect. 3.5). For
the Liouville quantum theory, the central charge is c = 1 + 6Q2: thus it can range
continuously in the interval [25,+∞[ and this is one of the interesting features of this
theory.

Since its introduction, Liouville QFT has been and is still much studied in theoretical
physics, in the context of integrable systems and conformal field theories, of string
theories, of quantum gravity, for its relation with randommatrix models and topological
gravity (see [49] for a review), and more recently in the context of its relations with 4
dimensional supersymmetric gauge theories and the AGT conjecture [1].

Liouville theory has also recently raisedmuch interest in mathematics and theoretical
physics in the (slightly different) context of probability theory and random geometry,



Liouville Quantum Gravity on the Riemann Sphere

where the conjectured link between large planarmaps andLQG is intensively studied (see
Sect. 5.3 for a discussion on this point). Up to now such studies have exclusively focused
on the incarnation of the Liouville theory as a free field theory where the parameter µ
is set to zero:2 see for instance [24,53] and the review [29]. Within this framework, the
Liouville measure eγ Xλĝ is formally the exponential of the GFF and is mathematically
defined via Kahane’s theory of Gaussian multiplicative chaos [38] for γ ∈]0, 2[. It is
then possible to study in depth the properties of the measure in relation with SLE curves
or geometrical objects in the plane that can be constructed out of the GFF [4,21,25,
60]. In particular, in this geometrical and probabilistic context, a precise mathematical
formulation of the KPZ scaling relations can be given [5,24,53].

Let us also mention that defining a random metric is an important open problem in
the field and steps towards this problem have been achieved in [12,48] in the special
case γ = √

8/3: recall that for this value of γ (and in the context µ = 0) the work [48]
constructs a random growth process that is conjectured to be the growth of balls of a
metric space formally corresponding to the “tangent plane” of LQG. This metric space
is supposed to correspond to the conformal embedding in the plane of the so-called
Brownian plane, recently constructed in [13]. Also, as originally suggested in [16],
one can define rigorously the associated diffusion process called Liouville Brownian
motion [30] (see also [7] for a construction starting from one point). This has led to
further understanding of the geometry of (µ = 0) LQG via heat kernel techniques, see
[3,8,31,46,54] for recent progresses.

Treating the Liouville theory as a GFF (thus setting µ = 0) is justified in some cases.
It was used in the physics literature in the original derivation of KPZ exponents (see
the seminal work [39] and also [15,18] for the framework considered here) and it is the
basis ofmany formal calculations [17,34,35] of the correlation functions of the Liouville
theory, i.e., expectations of product of vertex operators, which are random fields of the
form

Vα(x) = eαX (x) (1.4)

(properly renormalized, see Sect. 2.3). Indeed, if one performs a formal expansion of
the interaction term 4πµeγ X in the formula (1.3) in powers ofµ one ends up computing
expectation values in the GFF of products of fields (1.4) integrated over their location,
which may be calculated in closed form [20]. Such calculations lead in particular to
the famous DOZZ formula for the 3-point correlation functions of Liouville theory on
the sphere [19,64] (see Sect. 5.1 for further explanations). Thanks to these calculations,
many checks have been done between the results of Liouville theory for the correlation
functions and corresponding calculations using random matrix models and integrable
hierarchies [49].

Nevertheless, for many questions, the “interaction” exponential term has to be taken
into account. This is for instance the case for the open string (Liouville theory in the
disk) where the negative curvature metric and the boundary conditions play an essential
role. The purpose of this paper is precisely to define the full Liouville theory for all
µ > 0 in the simple case of the theory defined on the Riemann sphere S2 (the theory in
the disk can be defined along the same lines but details of the construction will appear
elsewhere). The small scale properties of Liouville field theory are relatively simple: a
simple normal ordering renders the interaction term well defined for γ < 2. However,

2 In the mathematics literature, one speaks of critical LQG when µ = 0, though the terminology is
misleading because non critical LQG, which is the object of this work, is also a CFT.
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the theory has unconventional properties in large scales due to a neutral direction (“zero
mode”) in the integral (1.3).

Main results of the paper. We will construct the general k-point correlation functions
of vertex operators (1.4) on the sphere satisfying the so called Seiberg bounds [57]:

k∑

i=1

αi > 2Q and αi < Q, ∀i. (1.5)

This is the content of Theorem 3.2 which establishes convergence and non triviality of
the correlation functions under assumption (1.5) (we also call the correlation functions
partition functions). We denote these correlation functions '

(ziαi )i
γ ,µ (ĝ, 1) when working

in a backgroundmetric ĝ.Wewill also study the conformal invariance andµ-dependence
of these correlation functions and study the associated Liouvillemeasure. The conformal
invariance property is the content of Theorem 3.5 and is called the KPZ formula in the
physics literature: it states that if ψ is a Mobiüs transform of the sphere then

'(ψ(zi ),αi )i
γ ,µ (ĝ, 1) =

∏

i

|ψ ′(zi )|−2)αi '(zi ,αi )i
γ ,µ (ĝ, 1) (KPZ formula)

where )αi = αi
2 (Q − αi

2 ). In particular, we establish the well known KPZ scaling laws
(see [37,39,49]) on the µ-dependence: this is the content of Theorem 3.4 which states

'(zi ,αi )i
γ ,µ (ĝ, 1) = µ

2Q−∑
i αi

γ '
(zi ,αi )i
γ ,1 (ĝ, 1) (KPZ scaling laws)

Finally we determine the way the correlations behave under conformal changes of
metrics eϕ ĝ (for appropriate ϕ), known as theWeyl anomaly formula (see [9–11,22,50]
for early references on the scale andWeyl anomalies in the physics literature and [51,56]
on related mathematical works) thereby recovering cL = 1 + 6Q2 as the central charge
of the Liouville theory: this is the content of Theorem 3.11 which states that

'(zi ,αi )i
γ ,µ (eϕ ĝ, 1) = exp

( cL
96π

( ∫

R2
|∂ ĝϕ|2 dλ

+
∫

R2
2Rĝϕ dλĝ

))
'(ziαi )i

γ ,µ (ĝ, F) (Weyl anomaly)

Finally, we discuss possible approaches of the γ ! 2 branches of LQG and formulate
precise conjectures on the relationship between LQG and scaling limits of planar maps.

Our results should not appear as a surprise for theoretical physicists as we recover
(in a rigorous setting) many known properties of LQG but they are the first rigorous
probabilistic results about the full Liouville theory (on the sphere), as it was introduced
by Polyakov in his 1981 seminal paper [50].

2. Background

2.1. Metrics on R2. The sphere S2 can be mapped by stereographic projection to the
plane which we view both as R2 and as C. Given a Riemannian metric on R2 we will
denote by ∂g the gradient, △g the Laplace–Beltrami operator, Rg = −△g ln

√
det g the

Ricci scalar curvature and λg the volume (or area) form in the metric g. When no index
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is given, this means that the object has to be understood in terms of the usual Euclidean
metric on the plane (i.e. ∂ , △, R and λ).

We take as the background metric in (1.1) the spherical metric on S2 which becomes
on R2 and on C

ĝ = 4
(1 + |x |2)2 dx

2 = 2
(1 + z̄z)2

(dz ⊗ dz̄ + dz̄ ⊗ dz).

Its Ricci scalar curvature is Rĝ = 2 (its Gaussian curvature is 1) and the volume
∫
R2 λĝ =

4π .
We let C̄(R2) stand for the space of continuous functions on R2 admitting a finite

limit at infinity. In the same way, C̄k(R2) for k ! 1 stands for the space of k-times
differentiable functions onR2 such that all the derivatives up to order k belong to C̄(R2).
We say a metric g = g(x)dx2 is conformally equivalent to ĝ if

g(x) = eϕ(x)ĝ(x)

with ϕ ∈ C̄2(R2) such that
∫
R2 |∂ϕ|2 dλ < ∞. We often identify the metrics g with

their densities g(x) (or g(z)) with respect to the Euclidean metric. The curvature Rg can
be obtained from the curvature relation

Rg = e−ϕ
(
Rĝ − )ĝϕ

)
. (2.1)

In what follows, we will denote by mg(h) the mean value of h in the metric g, that is

mg(h) =
1

λg(R2)

∫

R2
h dλg. (2.2)

Given any metric g conformally equivalent to the spherical metric, one can consider
the Sobolev space H1(R2, g), which is the closure of C̄∞(R2)with respect to the Hilbert
norm

∫

R2
h2 dλg +

∫

R2
|∂gh|2 dλg (2.3)

Note that the Dirichlet energy is independent of the metric:
∫

R2
|∂gh|2 dλg =

∫

R2
|∂h|2 dλ. (2.4)

2.2. Gaussian free fields. The purpose of this section is to give a precise meaning to
the expression (1.3) in the absence of the µ and Q terms i.e. we want to give a precise
meaning to the measure formally given by

exp
(

− 1
4π

∫

R2
|∂g X |2λg

)
DX (2.5)

where g is any metric conformally equivalent to the spherical one and DX stands for a
“uniform measure” on some space of X : R2 → R. Obviously (2.5) should be defined
in terms of a Gaussian measure. However, there is an important twist in that we want to
include in the integration domain the constant functions for which the exponent in (2.5)
vanishes. Thismeans that the resultingmeasure will not be a probabilitymeasure. Before
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giving the precise mathematical definition, we choose to explain first the motivations
for the forthcoming definitions.

Heuristic explanation. By (2.4) the density in (2.5) is independent of g and so one
can recognize it as a formal density for the Gaussian Free Field (GFF) i.e. a centered
Gaussian field with covariance structure

E[X (x)X (y)] = ln
1

|x − y| (2.6)

(for references to such log-correlated fields see [21,27,32,59]). This field is defined only
up to a constant. One way to fix the constant is to consider its restriction to the space of
test functions f with vanishing mean

∫
R2 f dλ = 0 (see [27]). This is not the approach

that we will develop here. Given a metric g conformally equivalent to ĝ, we will rather
consider a field Xg conditioned on having vanishing mean in the metric g. Heuristically,
we have

Xg = X − mg(X). (2.7)

The constant has thus been fixed by imposing the condition
∫

Xg dλg = 0. (2.8)

(In fact, this condition is arbitrary and plays no role since later we will consider Xg + c
where c will be integrated against the Lebesgue measure). Though this description is
not rigorous as the field X does not exist as a function, each field Xg is perfectly defined
through its covariance which is explicitly given by

Gg(x, y) := E[Xg(x)Xg(y)] (2.9)

= ln
1

|x − y| − mg(ln
1

|x − ·| ) − mg(ln
1

|y − ·| ) + θg,

with

θg := 1
λg(R2)2

∫∫

R2×R2
ln

1
|z − z′|λg(dz)λg(dz′). (2.10)

To be precise, the above definition should be understood as the kernel of the covariance
of the field Xg integrated against appropriate test functions. It is then plain to check that
Xg is a Gaussian Free Field with vanishing λg-mean on the sphere. ⊓-

Therefore we introduce the following definition

Definition 2.1. For each metric g conformally equivalent to ĝ, we consider a Gaussian
Free Field Xg with vanishing λg-mean on the sphere, that is a centered Gaussian random
distribution with covariance kernel given by the Green function Gg of the problem

△gu = −2π f on R2,

∫

R2
u dλg = 0

i.e.

u =
∫

Gg(·, z) f (z)λg(dz) := Gg f. (2.11)
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By a straightforward adaptation of [21,59] one can show that Xg lives almost surely
in the dual space H−1(R2, g) of H1(R2, g), and this space does not depend on the choice
of the metric g in the conformal equivalence class of ĝ. We state the following classical
result on the Green function Gg (see the appendix for a short proof)

Proposition 2.2 (Conformal covariance). Let ψ be a Möbius transform of the sphere
and consider the metric gψ (z) = |ψ ′(z)|2g(ψ(z)). We have

Ggψ (x, y) = Gg(ψ(x),ψ(y)).

Furthermore, a simple check of covariance structure with the help of (2.9) entails

Proposition 2.3 (Rule for changingmetrics). Let the metrics g, g′ be conformally equiv-
alent to the spherical metric. Then we have the following equality in law

Xg − mg′(Xg)
law= Xg′ .

Specializing to the round metric, let us register the explicit formula (which is a
consequence of (2.9), corollary B.1 in the appendix and the fact that θĝ = − 1

2 )

Gĝ(z, z
′) = ln

1
|z − z′| − 1

4
(ln ĝ(z) + ln ĝ(z′)) + ln 2 − 1

2
(2.12)

and the transformation rule under Möbius maps

Gĝ(ψ(z),ψ(z′)) = Geφ ĝ(z, z
′) = Gĝ(z, z

′) − 1
4
(φ(z) + φ(z′)) (2.13)

where eφ = ĝψ/ĝ (see Appendix).
All these GFFs Xg (g conformally equivalent to ĝ) may be thought of as centerings

in λg-mean of the same field. They all differ by a constant. To absorb the dependence on
the constant, we tensorize the lawPg of the field Xg with the Lebesgue measure dc onR
andwe consider the image of themeasurePg⊗dc under themapping (Xg, c) .→ Xg+c.
Thismeasurewill be understood as the “law” (it is not finite) of the field X corresponding
to the action (2.5). This measure is invariant under the shift X → X +a for any constant
a ∈ R and is independent on the choice of g conformally equivalent to ĝ.

To sum up, in what follows, we will formally understand the measure (2.5) as the
image of the product measure P ⊗ dc on H−1(R2, ĝ) × R by the mapping (Xg, c) .→
Xg + c, where dc is the Lebesgue measure on R and Xg has the law of a GFF Xg with
vanishing λg-mean, no matter the choice of the metric g conformally equivalent to ĝ.

2.3. Gaussian multiplicative chaos. Next we turn to the interaction term
∫
eγ X dλĝ in

Eq. (1.1). Since X is distribution valued this is not a priori defined. As is well known
it can be defined by first regularizing X and then renormalizing and taking limits. This
leads to the theory of Gaussian multiplicative chaos [38].

In what follows, we need to introduce some cut-off approximation of the GFF Xg
for any metric g conformally equivalent to the spherical metric. Natural cut-off approx-
imations can be defined via convolution. We need that these cut-off approximations be
definedwith respect to a fixed backgroundmetric: we consider Euclidean circle averages
of the field because they facilitate some computations (especially Proposition 2.5 below)
but we could consider ball averages, convolutions with a smooth function or white noise
decompositions of the GFF as well.
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Definition 2.4 (Circle average regularizations of the free field). We consider the field
Xg,ϵ

Xg,ϵ(x) =
1
2π

∫ 2π

0
Xg(x + ϵeiθ ) dθ .

Proposition 2.5. We claim (recall (2.10))

1. limϵ→0 E[Xĝ,ϵ(x)2] + ln ϵ + 1
2 ln ĝ(x) = ln 2 − 1

2 uniformly on R2.
2. Letψ be a Möbius transform of the sphere. Denote by (Xĝ ◦ψ)ϵ the ϵ-circle average

of the field Xĝ ◦ ψ . Then

lim
ϵ→0

E[(Xĝ ◦ ψ)ϵ(x)2] +
1
2
ln ĝ(ψ(x)) + ln |ψ ′(x)| + ln ϵ = ln 2 − 1

2

uniformly on R2.

Proof. To prove the first statement results, apply the ϵ-circle average regularization to
the Green function expression (2.12). This yields

E[Xĝ,ϵ(x)
2] = ln

1
ϵ
+

1
(2π)2

∫ 2π

0

∫ 2π

0
ln

1
|eiθ − eiθ ′ | dθdθ ′

−1
2
ln ĝ(x) + ln 2 − 1

2
+ o(1)

where o(1) is with respect to ϵ.
Now, we use

∫ 2π

0

∫ 2π

0
ln

1
|eiθ − eiθ ′ | dθdθ ′ = 0.

which yields the claim
Concerning the second statement, thanks to relations (2.12) and (2.13), observe that

we have

E[(Xĝ ◦ ψ)ϵ(x)2] = ln
1
ϵ
+

1
(2π)2

∫ 2π

0

∫ 2π

0
ln

1
|eiθ − eiθ ′ | dθdθ ′

−1
2
ln(|ψ ′(x)|2 ĝ(ψ(x))) + ln 2 − 1

2
+ o(1)

where o(1) is with respect to ϵ. We conclude similarly as the previous case. ⊓-
Define now the measure

Mγ ,ϵ := ϵ
γ 2
2 eγ (Xĝ,ϵ+Q/2 ln ĝ) dλ. (2.14)

Proposition 2.6. For γ ∈ [0, 2[, the following limit exists in probability

Mγ = lim
ϵ→0

Mγ ,ϵ = e
γ 2
2 (ln 2− 1

2 ) lim
ϵ→0

eγ Xĝ,ϵ− γ 2
2 E[X2

ĝ,ϵ ] dλĝ

in the sense of weak convergence of measures. This limiting measure is non trivial and
is a (up to a multiplicative constant) Gaussian multiplicative chaos of the field Xĝ with
respect to the measure λĝ .
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Proof. This results from standard tools of the general theory of Gaussian multiplicative
chaos (see [52] and references therein) and Proposition 2.5. We also stress that all these
methods were recently unified in a powerful framework in [58]. ⊓-

The following proposition summarizes the behavior of this measure under Möbius
transformations:

Proposition 2.7. Let f ∈ C̄(R2) and ψ be a Möbius transformation of the sphere. Then

(Xĝ,

∫

R2
f dMγ )

law= (F(Xĝ ◦ ψ−1 − mĝψ
(Xĝ)), e

−γmĝψ (Xĝ)
∫

R2
f ◦ ψeγ Q

2 φdMγ )

where ĝψ = |ψ ′|2 ĝ ◦ ψ and eφ = ĝψ/ĝ.

Proof. We have
∫

f ϵ
γ 2
2 eγ (Xĝ,ϵ+Q/2 ln ĝ)dλ =

∫
f ◦ ψ ϵ

γ 2
2 eγ (Xĝ,ϵ◦ψ+Q/2 ln ĝ◦ψ)|ψ ′|2 dλ

=
∫

f ◦ ψ (
ϵ

|ψ ′| )
γ 2
2 eγ (Xĝ,ϵ◦ψ+Q/2 ln ĝ)eγ Q

2 φ dλ.

Let ψ(z) = az+b
cz+d where ad − bc = 1. Then ψ ′(z) = (cz + d)−2 and

φ(z) = 2(ln(1 + |z|2) − ln(|az + b|2 + |cz + d|2)

is in C(R2). Let η > 0. Using Proposition 2.5 we get that on the set Aη := B(0, 1
η )\

B(− d
c , η)

lim
ϵ→0

E[Xĝ,ϵ(ψ(z))2] − E[(Xĝ ◦ ψ) ϵ
|ψ ′(z)|

(z)2] = 0.

We may then use the results of [58] to conclude that the measures

(
ϵ

|ψ ′| )
γ 2
2 eγ (Xĝ,ϵ◦ψ+Q/2 ln ĝ) dλ

and

ϵ
γ 2
2 eγ (Xĝ◦ψ)ϵ+Q/2 ln ĝ) dλ

converge in probability to the same random measure on Aη. By Proposition 2.5

E

∫

Ac
η

(
ϵ

|ψ ′| )
γ 2
2 eγ (Xĝ,ϵ◦ψ+Q/2 ln ĝ)λ " C

∫

Ac
η

(ĝ/ĝψ )
γ 2
4 λĝ = C

∫

Ac
η

e− γ 2
4 φλĝ → 0

(2.15)

as η → 0. By Propositions 2.2 and 2.3, Xĝ ◦ ψ is equal in law with Xĝ − mĝψ
(Xĝ)

yielding the claim. ⊓-
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3. Liouville Quantum Gravity on the Sphere

In the previous section we have given a meaning to the Gaussian part (2.5) of the
functional integral (1.3) as well as for the µ term. Since the Gaussian measure we have
constructed is not a finite measure one has to be careful which functionals F in (1.3)
are integrable. Thus before giving the precise definition for (1.3) we discuss this point
heuristically. It turns out to lead to the first condition in (1.5).

As is well known for physicists the partition function i.e. the integral in (1.3) with
F = 1 is expected to diverge due to the integral over the constant mode c (recall that it is
distributed as theLebesguemeasure). Let us therefore consider the toymodel (sometimes
called themini-superspace approximation) where X is replaced by the constant function
c and DX by the Lebesgue measure dc. By the Gauss–Bonnet theorem

∫
! Rgλg =

8π(1 − g) where g is the genus of !. Therefore the partition function of the toy model
becomes

∫

R
e−2Q(1−g)c−µeγ c

dc.

This integral diverges (as c → −∞) if g " 1. Consider next F to be a product of vertex
operators (1.4). From Sect. 2.3 we know these require renormalization but proceeding
within the context of the toy model they are given by eαi c and including them to our toy
model we end up with the integral

∫

R
e(

∑
i αi−2Q(1−g))c−µeγ c

dc (3.1)

which is finite (for g = 0) provided the first Seiberg bound in (1.5) holds.
The divergence of the partition function has a geometric flavor. Recall that the ex-

trema of the Liouville action functional (1.1) are given by metrics of constant negative
curvature. On the sphere and torus no such smooth metrics exist: indeed, it is well known
that negative curvature metrics on the sphere must have conical singularities (see [62]).
Inserting vertex operators corresponds to adding conical singularities to the metric via
the Girsanov transform as we will now discuss.

With these motivations we will now give the formal definition of the functional
integral (1.3) in the presence of the vertex operators eαi X (zi ). Let g = eϕ ĝ be a metric
conformally equivalent to the spherical metric in the sense of Sect. 2.1 and let F be a
continuous bounded functional on H−1(R2, ĝ). We define

'(ziαi )i
γ ,µ (g, F; ϵ)

:= e
1

96π
∫
R2 |∂ ĝϕ|2+2Rĝϕ dλĝ

∫

R
E

[
F(c + Xg + Q/2 ln g)

∏

i

ϵ
α2i
2 eαi (c+Xg,ϵ+Q/2 ln g)(zi )

× exp
(

− Q
4π

∫

R2
Rg(c + Xg) dλg − µϵ

γ 2
2

∫

R2
eγ (c+Xg,ϵ+Q/2 ln g) dλ

)]
dc.

(3.2)

and we want to inquire when the limit

lim
ϵ→0

'(ziαi )i
γ ,µ (g, F; ϵ) =: '(ziαi )i

γ ,µ (g, F)

exists.
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Remark 3.1. We include the additional factor e
1

96π
∫
R2 |∂ ĝϕ|2+2Rĝϕ dλĝ to conform to the

physics conventions. Indeed the formal expression (1.3) differs from (3.2) in that in the
latter we use a normalized expectation for the Free Field. Thus to get (1.3) we would
need to multiply by the Free Field partition function z(g). The latter is not uniquely
defined but its variation with metric is:

z(eϕ ĝ) = e
1

96π
∫
R2 |∂ ĝϕ|2+2Rĝϕ dλĝ z(ĝ)

see [21,32]. This additional factor makes the Weyl anomaly formula conform with the
standard one in Conformal Field Theory. We note also that the translation by Q/2 ln g
in the argument of F is necessary for conformal invariance (Sect. 3.2).

We start by considering the round metric, g = ĝ. We first handle the curvature term.
Since Rĝ = 2 and Xĝ has vanishing λĝ-mean we obtain

'(ziαi )i
γ ,µ (ĝ, F; ϵ)

=
∫

R
e−2Qc E

[
F(c + Xĝ + Q/2 ln ĝ)

∏

i

ϵ
α2i
2 eαi (c+Xĝ,ϵ+Q/2 ln ĝ)(zi )

× exp
(

− µϵ
γ 2
2

∫

R2
eγ (c+Xĝ,ϵ+Q/2 ln ĝ) dλ

)]
dc. (3.3)

Now we handle the insertions operators eαi Xĝ,ϵ(zi ). In view of Proposition 2.5, we
can write (with the Landau notation)

ϵ
α2i
2 eαi Xĝ,ϵ(zi ) = e

α2i
2 (θĝ+ln 2)ĝ(zi )−

α2i
4 eαi Xĝ,ϵ(zi )−

α2i
2 E[Xĝ,ϵ(zi )

2](1 + o(1)). (3.4)

Note that the o(1) term is deterministic as it just comes from the normalization of
variances. Then, by applying the Girsanov transform and setting

Hĝ,ϵ(x) =
∑

i

αi

∫ 2π

0
Gĝ(zi + ϵeiθ , x)

dθ

2π
, (3.5)

we obtain

'(ziαi )i
γ ,µ (ĝ, F; ϵ) = eCϵ(z)

( ∏

i

ĝ(zi )−
α2i
4 + Q

2 αi
)

×
∫

R
e
(∑

i αi−2Q
)
c E

[
F(c + Xĝ + Hĝ,ϵ + Q/2 ln ĝ)(1 + o(1))

× exp
(

− µeγ cϵ
γ 2
2

∫

R2
eγ (Xĝ,ϵ+Hĝ,ϵ+Q/2 ln ĝ) dλ

)]
dc, (3.6)

with

lim
ϵ→0

Cϵ(z) =
1
2

∑

i ̸= j

αiα j Gĝ(zi , z j ) +
θĝ + ln 2

2

∑

i

α2
i := C(z). (3.7)

In the next subsection we study under what conditions the limit of (3.6) exists.
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3.1. Seiberg bounds and KPZ scaling laws. We will first study the convergence of the
partition function'

(ziαi )i
γ ,µ (ĝ, 1; ϵ). We show that a necessary and sufficient condition for

the Liouville partition function to have a non trivial limit is the validity of the Seiberg
bounds given in Eq. (1.5).

It is in fact easy to see that the first Seiberg bound is a necessary condition even for
the existence of the regularized theory. Indeed, let

Zϵ := ϵ
γ 2
2

∫

R2
eγ (Xĝ,ϵ+Hĝ,ϵ+Q/2 ln ĝ) dλ. (3.8)

Note that |Hĝ,ϵ(z)| " Cϵ since G(zi , z) tends to a constant as |z| → ∞ (one can also
notice that due the circle regularization, |Hĝ,ϵ(z)| remains bounded when z → zi ).
Hence from Proposition 2.6 we infer E[Zϵ] < ∞ and thus Zϵ < ∞ P-almost surely.
Hence we can find Aϵ > 0 such that P(Zϵ " Aϵ) > 0 and then

'(ziαi )i
γ ,µ (ĝ, 1, ϵ) !

(∏

i

ĝ(zi )−
α2i
4 + Q

2 αi
)
eCϵ(z)

×
∫ 0

−∞
e
(∑

i αi−2Q
)
ce−µeγ c AϵP(Zϵ " Aϵ) dc = +∞

if the first condition in (1.5) fails to hold. We will see shortly that the second condition
αi < Q is needed to ensure that the integral in (3.8) does not blow up in the neighborhood
of the places of insertions (zi )i as ϵ → 0.

Finally, we mention that the bounds (1.5) show that the number of vertex operator
insertions must be at least 3 in order to have well defined correlation functions of the
Liouville theory on the sphere. This conforms with the fact (see [62]) that on the sphere
one must insert at least three conical singularities in order to construct a metric with
negative curvature. We claim

Theorem 3.2 (Convergence of the partition function). Let
∑

i αi > 2Q. Then the limit

lim
ϵ→0

'(ziαi )i
γ ,µ (ĝ, 1; ϵ) := '(ziαi )i

γ ,µ (ĝ, 1)

exists. The limit is nonzero if αi < Q for all i whereas it vanishes identically if αi ! Q
for some i. More generally, if F is some bounded continuous functional on H−1(R2, ĝ)
then

lim
ϵ→0

'(ziαi )i
γ ,µ (ĝ, F; ϵ) := '(ziαi )i

γ ,µ (ĝ, F)

exists provided that αi < Q for all i .

Proof. We will suppose that Lemma 3.3 below holds in this proof. Equation (3.6) gives
for F = 1

'(ziαi )i
γ ,µ (ĝ, 1, ϵ)

=
∏

i

ĝ(zi )−
α2i
4 + Q

2 αi eC(z)(1 + o(1))E
[ ∫

R
ec(

∑
i αi−2Q) exp

(
− µeγ c Zϵ

)
dc

]
.
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By making the change of variables u = µeγ c Zϵ in (3.6), we compute

E
[ ∫

R
ec(

∑
i αi−2Q) exp

(
− µeγ c Zϵ

)
dc

]

= µ

∑
i αi−2Q

γ

γ
/

(
γ −1(

∑

i

αi − 2Q)
)
E

[ 1

Z

∑
i αi−2Q

γ
ϵ

]
(3.9)

where / is the standard / function. The claim then follows from the following Lemma
3.3.

Now, we suppose that for all i we have αi < Q and we consider F some bounded
continuous functional on H−1. By making the change of variable u = µeγ c Zϵ in (3.6),
we get

E
[ ∫

R
ec(

∑
i αi−2Q)F(c + Xĝ + Hĝ,ϵ + Q/2 ln ĝ) exp

(
− µeγ c Zϵ

)
dc

]

= µ

∑
i αi−2Q

γ

γ

∫ ∞

0
E

[ F(Xĝ + Hĝ,ϵ + Q/2 ln ĝ + ln u−lnµ−ln Zϵ
γ )

Z

∑
i αi−2Q

γ
ϵ

]
u

∑
i αi−2Q

γ e−udu

Since Hĝ,ϵ converges in H−1(R2, ĝ) to

Hĝ(x) =
∑

i

αi Gĝ(zi , x) (3.10)

and Zϵ converges to Z0 defined in Lemma 3.3 below, we get almost sure convergence
of

F(Xĝ + Hĝ,ϵ + Q/2 ln ĝ + ln u−lnµ−ln Zϵ
γ )

Z

∑
i αi−2Q

γ
ϵ

towards

F(Xĝ + Hĝ + Q/2 ln ĝ + ln u−lnµ−ln Z0
γ )

Z

∑
i αi−2Q

γ

0

.

Now since F is bounded and supϵ E[ 1

Z
2

∑
i αi−2Q

γ
ϵ

] < ∞ (cf. Lemma 3.3 below) the

above convergence is in fact also in averagewith respect toE[.]. Finally, we can conclude
that

µ

∑
i αi−2Q

γ

γ

∫ ∞

0
E

[ F(Xĝ + Hĝ,ϵ + Q/2 ln ĝ + ln u−lnµ−ln Zϵ
γ )

Z

∑
i αi−2Q

γ
ϵ

]
u

∑
i αi−2Q

γ e−udu

converges as ϵ goes to 0 to

µ

∑
i αi−2Q

γ

γ

∫ ∞

0
E

[ F(Xĝ + Hĝ + Q/2 ln ĝ + ln u−lnµ−ln Z0
γ )

Z

∑
i αi−2Q

γ

0

]
u

∑
i αi−2Q

γ e−udu
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by the dominated convergence theorem (with respect to themeasure du). This establishes
the convergence of '

(ziαi )i
γ ,µ (ĝ, F; ϵ) towards

eC(z)
( ∏

i

ĝ(zi )−
α2i
4 + Q

2 αi
)µ

∑
i αi−2Q

γ

γ

×
∫ ∞

0
E

[ F(Xĝ + Hĝ + Q/2 ln ĝ + ln u−lnµ−ln Z0
γ )

Z

∑
i αi−2Q

γ

0

]
u

∑
i αi−2Q

γ e−udu

where C(z) is defined by (3.7). ⊓-
Lemma 3.3. Let s < 0. If αi < Q for all i then

lim
ϵ→0

E[Zs
ϵ] = E[Zs

0]

where

Z0 =
∫

R2
eγ Hĝ(x)Mγ (dx) (3.11)

and the limit is nontrivial: 0 < EZs
0 < ∞.

If αi ! Q for some i ∈ {1, . . . , p} then
lim
ϵ→0

EZs
ϵ = 0.

As a corollary of the relation (3.9), we obtain a rigorous derivation of the KPZ scaling
laws (see [37,39,49] for physics references)

Theorem 3.4 (KPZ scaling laws). We have the following exact scaling relation for the
Liouville partition function with insertions (zi ,αi )i

'(ziαi )i
γ ,µ (ĝ, 1) = µ

2Q−∑
i αi

γ '
(ziαi )i
γ ,1 (ĝ, 1)

where

'
(ziαi )i
γ ,1 (ĝ, 1) = eC(z)

( ∏

i

ĝ(zi ))αi

)
γ −1/

(
γ −1(

∑

i

αi − 2Q)
)
E

[ 1

Z

∑
i αi−2Q

γ

0

]

and we defined

)α = α

2

(
Q − α

2

)
(3.12)

and C(z) is defined by (3.7). Moreover

'(ziαi )i
γ ,µ (ĝ, F) = eC(z)

∏

i

ĝ(zi ))αi

∫

R
e
(∑

i αi−2Q
)
c E

[
F(c + Xĝ + Hĝ + Q/2 ln ĝ) exp

(
− µeγ c Z0

)]
dc.

(3.13)
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Proof of Lemma 3.3. Note first that EZs
ϵ < ∞ for all ϵ ! 0. Indeed, recalling (2.14)

Zϵ =
∫

R2
eγ Hĝ,ϵ(z)Mγ ,ϵ(dx).

Take any non empty ball B that contains no zi . Then

E[Zs
ϵ] " AsE[Mγ ,ϵ(B)s]

where A = C minz∈B 4eγ Hĝ (z)

(1+|z|2)2 . It is a standard fact in Gaussian multiplicative chaos
theory (see [52, Th 2.12] again) that the random variable Mγ ,ϵ(B) possesses negative
moments of all orders for γ ∈ [0, 2[.

Let now αi < Q for all i . Let us consider the set Ar = ∪i B(zi , r) and write

Zϵ =
∫

Ar
eγ Hĝ,ϵ(z)Mγ ,ϵ(dx) +

∫

Ac
r

eγ Hĝ,ϵ(z)Mγ ,ϵ(dx) := Zr,ϵ + Zc
r,ϵ .

Since Hĝ,ϵ converge uniformly on Ac
r to a continuous limit the limit

lim
ϵ→0

Zc
r,ϵ =

∫

Ac
r

eγ H ˆg,ϵ(z)Mγ (dx) := Zc
r,0 (3.14)

exists in probability by Proposition 2.6.
By applying Chebyshev’s inequality to Lemma A.1 in the appendix, for some α,β >

0 we have

sup
ϵ>0

P(Zr,ϵ > rα) " Crβ

Let χr = 1Zr,ϵ>rα . We get by the Cauchy–Schwarz inequality

|E[((Zr,ϵ + Zc
r,ϵ)

s − (Zc
r,ϵ)

s)χr ]| " 2(E(χr )E(Zc
r,ϵ)

2s)1/2 " Crβ/2(E(Zc
r,ϵ)

2s)1/2

and using |(a + b)s − bs | " Cabs−1 (indeed (a + b)s − bs = saxs−1 for x ∈ [b, a + b])

|E((Zr,ϵ + Zc
r,ϵ)

s − (Zc
r,ϵ)

s)(1 − χr )| " CrαE(Zc
r,ϵ)

s−1.

Since E(Zc
r,ϵ)

s " E(Zc
1,ϵ)

s and the latter stays bounded as ϵ → 0 we conclude

|E[(Zϵ)
s − (Zc

r,ϵ)
s)]| " C(rα + rβ)

for all ϵ " r . In particular, for ϵ = 0 this gives

lim
r→0

E[(Zc
r,0)

s] = E[Zs
0]. (3.15)

Since E[(Zc
r,ϵ)

s] < ∞ for all ϵ ! 0 and by (3.14) Zc
r,ϵ converges in probability to Zc

r,0
as ϵ → 0 we have limϵ→0 E[(Zc

r,ϵ)
s] = E[(Zc

r,0)
s]. From (3.15) we then conclude our

claim limϵ→0 E[(Zϵ)
s] = E[(Z0)

s].
For later purpose let us remark that from lemma A.1 (applied with α = 0) that for

all δ > 0 there exists some random variable Cδ(ω) < ∞ such that

Mγ (B(0,
1
2k

)) " Cδ(ω)2−k(2+ γ 2
2 −δ)
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This easily leads to

sup
ϵ>0

∫

B(0,r)
eγ Hĝ,ϵ(z)Mγ (dx) → 0 (3.16)

in probability as r → 0.
Let us now prove the second part of the lemma. Without loss of generality, we may

assume that α1 ! Q and z1 = 0. It suffices to prove for Z1,ϵ that

lim
ϵ→0

E[Zs
1,ϵ] = 0 (3.17)

In order to show this, we introduce the white noise cutoff (X̃ϵ)ϵ of Xĝ . More precisely,
the family (X̃ϵ)ϵ is a family of Gaussian processes defined as follows. Consider the heat
kernel (pt (·, ·))t ! 0 of the Laplacian △ĝ on R2. Let W be a white noise distributed on
R+ × R2 with intensity dt ⊗ λĝ(dy). Then

X̃ϵ(x) =
1√
2π

∫ ∞

ϵ2

(
pt/2(x, y) − 1

λĝ(R2)

)
W (dt, dy).

The correlation structure of the family (X̃ϵ)ϵ>0 is given by

E[X̃ϵ(x)X̃ϵ′(x ′)] = 1
2π

∫ ∞

(ϵ∧ϵ′)2

(
pt (x, x ′) − 1

λĝ(R2)

)
dt. (3.18)

For ϵ > 0, we define the random measure

M̃γ ,ϵ := eγ X̃ϵ− γ 2
2 E[(X̃ϵ(x))2] dλĝ

and M̃γ := limϵ→0 M̃γ ,ϵ , which has the same law as Mγ (see [52, Thm 3.7]). Observe
that we may assume that the field Xĝ is defined by

Xĝ(x) =
1√
2π

∫ ∞

0

(
pt/2(x, y) − 1

λĝ(R2)

)
W (dt, dy)

in order to have a GFF coupled with its white noise approximation (Xr )r . This assump-
tion does not change the law of the couple (Xĝ,Mγ ), see [52]. The covariance of the
field Xĝ,ϵ is comparable to the one of X̃ϵ . Indeed, uniformly in ϵ,

E[X̃ϵ(x)X̃ϵ(y)] " C + E[Xϵ(x)Xϵ(y)]

Hence, by Kahane convexity [38] (or [52, Thm 2.1]) we get

E[Zs
1,ϵ] " CE[Z̃ s

1,ϵ].

Next, we bound

Z̃1,ϵ ! c
n∑

k=1

2αγ k M̃γ ,ϵ(Ak) ! c max
k " n

2(2+γ 2/2)k M̃γ ,ϵ(Ak) (3.19)
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where Ak is the annulus with radi 2−k and 2−k+1 and we recall that ϵ = 2−n and
αγ ! 2 + γ 2/2. Thanks to the covariance structure (3.18), we may then decompose, for
r = 2−k (and ϵ < r ),

M̃γ ,ϵ(dz) = eγ X̃r (z)− γ 2
2 E[X̃r (z)2]r2M̂γ ,ϵ,r (dz/r) (3.20)

where the measure M̂γ ,ϵ,r is independent of the sigma-field {X̃u(x); u ! r, x ∈ R2} and
has the law

M̂γ ,ϵ,r (dz) = eγ (X̃ϵ−X̃r )(r z)− γ 2
2 E[(X̃ϵ−X̃r )(r z)2] dz.

We can rewrite (3.20) as

M̃γ ,ϵ(dz)

= eγ X̃r (0)− γ 2
2 E[(X̃r (0))2]eγ (X̃r (z)−X̃r (0))− γ 2

2 (E[(X̃r (z))2]−E[(X̃r (0))2])r2M̂γ ,ϵ,r (dz/r)
(3.21)

to get

M̃γ ,ϵ(Ak) ! r2eγ X̃r (0)− γ 2
2 E[(X̃r (0))2]eminz∈B(0,1) Yr (z)M̂γ ,ϵ,r (A1) (3.22)

with Yr (z) = γ (X̃r (r z)− X̃r (0))− γ 2

2 (E[(X̃r (r z))2]−E[(X̃r (0))2]). Now we want to
determine the behavior of all the terms involved in the above right-hand side.

By using in turnDoob’s inequality and thenKahane convexity [38] (or [52, Thm2.1]),
we get

E[sup
ϵ<r

M̂γ ,ϵ,r (A1)
−q ] " cqE[M̂γ ,0,r (A1)

−q ] " E[Mγ (A1)
−q ] " Cq . (3.23)

uniformly in r " 1. Hence, for all a > 0

P(sup
ϵ<r

M̂γ ,ϵ,r (A1) " n−1) " Can−a . (3.24)

Next, we estimate the min in (3.22). The key point is to observe that the Gaussian
process Yr does not fluctuate too much in such a way that its minimum possesses a
Gaussian left tail distribution. To prove this, we write Yr (z) = E[Yr (z)] + Y ′

r (z) and we
note that using the covariance structure of (X̃r )r we get for all z ∈ B(0, 1)

|EYr (z)| =
γ 2

2
|E[(X̃r (r z))2] − E[(X̃r (0))2]| " C

and for all z, z′ ∈ B(0, 1),

E[(Y ′
r (z) − Y ′

r (z
′))2] " C |z − z′|,

uniformly in r " 1. Using for example [43, Thm. 7.1, Eq. (7.4)], one can then deduce

∀x ! 1, sup
r

P( min
z∈B(0,1)

γYr (z) " − x) " Ce−cx2

for some constants C, c > 0. Hence, for all a > 0

P(eminz∈B(0,1) Yr (z) " n−1) " Can−a . (3.25)



F. David, A. Kupiainen, R. Rhodes, V. Vargas

Combining (3.22), (3.24) and (3.25) with (3.19) we conclude

P(Z̃1,ϵ < n−1) " P(max
k " n

eγ X̃2−k (0) " n3) + Cn−a .

Since the law of the path t .→ X̃t (0) is that of Brownian motion at time − ln t the first
term on the RHS tends to zero as n → ∞ and (3.17) follows. ⊓-

3.2. Conformal covariance, KPZ formula and Liouville field. In what follows, we as-
sume that the bounds (1.5) hold and we will study how the n-point correlation functions
'

(ziαi )i
γ ,µ (ĝ, F) transform under conformal reparametrization of the sphere. The KPZ

formula describes precisely the rule for these transformations. We claim [recall (3.12)]

Theorem 3.5 (Field theoretic KPZ formula). Letψ be aMöbius transform of the sphere.
Then

'(ψ(zi ),αi )i
γ ,µ (ĝ, 1) =

∏

i

|ψ ′(zi )|−2)αi '(zi ,αi )i
γ ,µ (ĝ, 1).

Let us now define the law of the Liouville field on the sphere.

Definition 3.6. (Liouville field) We define a probability law P
γ ,µ

(zi ,αi )i ,ĝ
on H−1(R2, ĝ)

(with expectation E
γ ,µ

(zi ,αi )i ,ĝ
) by

E
γ ,µ

(zi ,αi )i ,ĝ
[F(φ)] = '

(ziαi )i
γ ,µ (ĝ, F)

'
(ziαi )i
γ ,µ (ĝ, 1)

,

for all bounded continuous functional on H−1(R2, ĝ).

We have the following result about the behaviour of the Liouville field under the
Möbius transforms of the sphere

Theorem 3.7. Let ψ be a Möbius transform of the sphere. The law of the Liouville field
φ under Pγ ,µ

(zi ,αi )i ,ĝ
is the same as that of φ ◦ ψ + Q ln |ψ ′| under Pγ ,µ

(ψ(zi ),αi )i ,ĝ
.

Proof of Theorems 3.5 and 3.7. We start from the relation (3.13). Let

Hψ
ĝ (z) =

∑

i

αi Gĝ(ψ(zi ), z).

We apply Proposition 2.7 to f = eγ Hψ
ĝ,ϵ . By (3.16) we can take the limit ϵ → 0 to get

'(ψ(zi ),αi )i
γ ,µ (ĝ, F) = eC(ψ(z))

∏

i

ĝ(ψ(zi )))αi

×
∫

R
escE

[
F(c + Xĝ ◦ ψ−1 − mĝψ

(Xĝ) + Hψ
ĝ + Q/2 ln ĝ)

× exp
(
− µeγ (c−mĝψ (Xĝ))

∫
eγ (Hψ

ĝ ◦ψ+ Q
2 φ)dMγ

)
] dc.
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where we denoted s = ∑
i αi − 2Q. Next, use the shift invariance of the Lebesgue

measure (we make the change of variables c = c′ + mĝψ
(Xĝ)) to get

'(ψ(zi )αi )i
γ ,µ (ĝ, F) = eC(ψ(z))

∏

i

ĝ(ψ(zi )))αi

×
∫

R
escE

[
esmĝψ (Xĝ)F(c + Xĝ ◦ ψ−1 + Hĝ,ψ + Q/2 ln ĝ)

× exp
(
− µeγ c

∫
eγ (Hĝ,ψ◦ψ+ Q

2 φ)dMγ

)]
dc. (3.26)

Now we apply the Girsanov transform to the term esmĝψ (Xĝ) where mĝψ
(Xĝ) = 1

4π∫
Xĝeφdλĝ and eφ = |ψ ′|2 ĝ◦ψ

ĝ . This has the effect of shifting the law of the field Xĝ ,
which becomes

Xĝ +
s
4π

Gĝe
φ .

The variance of this Girsanov transform is s2Dψ where

Dψ = 1
4π

mĝ(e
φGĝe

φ) = 1
(4π)2

∫

R2

∫

R2
Gĝ(z, z

′)λgψ (dz)λgψ (dz
′), (3.27)

i.e. the whole partition function will be multiplied by e
s2
2 Dψ .

Plugging in the shifted field to (3.26) we need to compute Hĝ,ψ ◦ψ + s
4π Gĝeφ . First,

using (2.13) for (Hψ
ĝ ◦ ψ)(z) = ∑

i αi Gĝ(ψ(z),ψ(zi )) we get

Hψ
ĝ ◦ ψ = Hĝ −

∑
αi

4
φ(z) − 1

4

∑

i

αiφ(zi ).

Next, to compute Gĝeφ note that both metrics ĝ and ĝψ = eφ ĝ have Ricci curvature 2.
Hence from (2.1) we infer eφ = 1 − 1

2)ĝφ and thus

1
4π

Gĝe
φ = 1

4
(φ − mĝ(φ)). (3.28)

Combining we get

Hĝ,ψ ◦ ψ +
s
4π

Gĝe
φ = Hĝ − Q

2
φ(z) − 1

4

∑

i

αiφ(zi ) − s
4
mĝ(φ).

Thus (3.26) becomes

'(ψ(zi )αi )i
γ ,µ (ĝ, F) = eC(ψ(z))

(∏

i

ĝ(ψ(zi )))αi

)

×
∫

R
escE

[
F

(
c′ + (Xĝ + Hĝ + Q/2(ln ĝ − ln |ψ ′|2)) ◦ ψ−1)

× exp
(
− µeγ c′

∫
eγ HĝdMγ

)]
dc e

s2
2 Dψ .
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where

c′ = c − s
4
mĝ(φ) − 1

4

∑

i

αiφ(zi ).

By a shift in the c-integral we get

'(ψ(zi )αi )i
γ ,µ (ĝ, F) = eC(ψ(z))

∏

i

ĝ(ψ(zi )))αi

×
∫

R
escE

[
F

(
c + (Xĝ + Hĝ + Q/2(ln ĝ − ln |ψ ′|2)) ◦ ψ−1)

× exp
(
− µeγ c

∫
eγ HĝdMγ

)]
dc e

s
4

∑
i αiφ(zi )e

s2
2 (Dψ+ 1

2mĝ(φ))

(3.29)

Combining (3.7) with (2.13) we have

C(ψ(z)) = C(z) − 1
8

∑

i ̸= j

αiα j (φ(zi ) + φ(z j ))

= C(z) −
∑

i αi

4

∑

j

α jφ(z j ) +
1
4

∑

i

α2
i φ(zi ).

Since |ψ ′(zi )|2ĝ(ψ(zi )) = eφ(zi )ĝ(zi ) and )αi = − 1
4αiαi +

Q
2 αi we conclude

eC(ψ(z))
∏

i

ĝ(ψ(zi )))αi e
s
4

∑
i αiφ(zi ) = eC(z)

∏

i

(|ψ ′(zi )|−2 ĝ(zi )))αi .

The proof is completed by the identity

Dψ = −1
2
mĝ(φ) (3.30)

proven in the appendix. ⊓-

3.3. The Liouvillemeasure. Here, we study the Liouvillemeasure Z(·), the law ofwhich
is defined for all Borel sets A1, . . . , Ak ⊂ R2 by

E
γ ,µ

(zi ,αi )i ,ĝ
[F(Z(A1), . . . , Z(Ak))]

= ('γ ,µ(zi ,αi )i (ĝ, 1))−1 lim
ϵ→0

∫

R
E

[
F((eγ cϵ

γ 2
2

∫

A j

eγ (Xĝ,ϵ+Q/2 ln ĝ) dλ) j )

×
∏

i

ϵ
α2i
2 eαi (c+Xĝ,ϵ+Q/2 ln ĝ)(zi )

× exp
(

− Q
4π

∫

R2
Rĝ(c + Xĝ) dλĝ − µeγ cϵ

γ 2
2

∫

R2
eγ (Xĝ,ϵ+Q/2 ln ĝ) dλ

)]
dc.

We will see in the proof of Proposition 3.8 below that this defines indeed a random
measure.
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In what follows, we call Z0(·) the measure defined under P by

Z0(A) :=
∫

A
eγ Hĝ dMγ

so that Z0 in (3.11) is Z0(R2). We have:

Proposition 3.8. Under Pγ ,µ

(zi ,αi )i ,ĝ
, the Liouville measure is given for all A1, . . . , Ak by

E
γ ,µ

(zi ,αi )i ,ĝ
[F(Z(A1), . . . , Z(Ak))]

=
∫ ∞
0 E

[
F

(
y Z0(A1)
Z0(R2)

, . . . , y Z0(Ak )
Z0(R2)

)
Z0(R2)

−
∑

i αi−2Q
γ

]
e−µy y

∑
i αi−2Q

γ −1dy

µ
2Q−∑

i αi
γ /(

∑
i αi−2Q

γ )E
[
Z0(R2)

−
∑

i αi−2Q
γ

] . (3.31)

In particular,

1. the volume of the space Z(R2) follows the Gamma distribution /
(∑

i αi−2Q
γ , µ

)
,

meaning

∀F ∈Cb(R+), E
γ ,µ

(zi ,αi )i ,ĝ
[F(Z(R2))]= µ

∑
i αi−2Q

γ

/
(∑

i αi−2Q
γ

)
∫ ∞

0
F(y)y

∑
i αi−2Q

γ −1e−µy dy.

2. the law of the random measure Z(·) conditionally on Z(R2) = A is given by

E
γ ,µ

(zi ,αi )i ,ĝ
[F(Z(·))|Z(R2) = A)] =

E
[
F

(
A Z0(·)

Z0(R2)

)
Z0(R2)

−
∑

i αi−2Q
γ

]

E
[
Z0(R2)

−
∑

i αi−2Q
γ

] (3.32)

for any continuous bounded functional F on the space of finite measures equipped with
the topology of weak convergence.
3. Under Pγ ,µ

(zi ,αi )i ,ĝ
, the law of the random measure Z(·)/A conditioned on Z(R2) = A

does not depend on A and is explicitly given by

E
γ ,µ

(zi ,αi )i ,ĝ
[F(Z(·)/A)|Z(R2) = A)] =

E
[
F

( Z0(·)
Z0(R2)

)
Z0(R2)

−
∑

i αi−2Q
γ

]

E
[
Z0(R2)

−
∑

i αi−2Q
γ

] .

Proof. Taking the limit ϵ → 0 in the relation (3.6) gives

E
γ ,µ

(zi ,αi )i ,ĝ
[F(Z(A1), . . . , Z(Ak))]

= ('
γ ,µ
(zi ,αi )i

(ĝ, 1))−1
(∏

i

ĝ(zi )−
α2i
4 + Q

2 αi
)
eC(ĝ)

×
∫

R
e
(∑

i αi−2Q
)
c E

[
F(eγ c Z0(A1), . . . , eγ c Z0(Ak)) exp

(
− µeγ c Z0(R2)

)]
dc.

Finally, let us make the change of variables eγ c Z0(R2) = y to complete the proof of
(3.31). Finally, one can see that (3.31) defines indeed a randommeasure. The collection of
random variables (Z(A))A underPγ ,µ

(zi ,αi )i ,ĝ
where A ranges through Borel sets satisfies:
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• for all disjoint A1, A2, we have almost surely Z(A1 ∪ A2) = Z(A1) + Z(A2).
• for any bounded sequence (An)n ! 1 decreasing to ∅, we have almost surely Z(An)

→
n→∞ 0.

By theorem6.1.VI in [14], there exists a version of (Z(A))A that is a randommeasure.
⊓-

Remark 3.9. The law of the volume of the sphere Z(R2) given above is precisely what
one expects to get from scaling limits of planar maps, see Sect. 5.3.

3.4. The unit volume Liouville measure. In the previous section, we introduced the Li-
ouville measure Z and the unit volume Liouville measure; i.e. the law of Z conditionally
on Z(R2) = 1 given by (3.32) with A = 1. These measures exist provided the Seiberg
bounds (1.5) hold. Recall that the first Seiberg bound in (1.5) is a consequence of the
integration over the constant mode c: this bound entails that the partition function does
not diverge when c → −∞. This condition on the constant mode c disappears when
conditioning Z to have unit volume: indeed, this conditioning amounts to fixing the
value of c. Therefore, it is natural to expect that the unit volume measure can be defined
on a larger set of (zi ,αi ); indeed,we have the following:

Lemma 3.10. Suppose that for all i , we have αi < Q. The random variable Z0(R2) has
a moment of order 2Q−∑

i αi
γ if and only if

Q −
∑

i αi

2
<

2
γ

∧ min
i
(Q − αi ) (3.33)

In particular, under these conditions, the unit volume measure given by (3.32) is well
defined.

Proof. Set p = 2Q−∑
i αi

γ in this proof. Since Z0(R2) has negative moments, we will

suppose that p > 0. It is rather straightforward to see that Z0(R2) has a moment of order
p if and only if

E[Mγ (R2\∪ j B(z j , 1))p] < ∞, E[
∫

B(z j ,1)

1
|x |α jγ

Mγ (dx))p] < ∞, ∀ j,

where B(z j , 1) are Euclidean balls of radius 1 and center z j . By standard results in
Gaussian multiplicative chaos theory (see [52] for instance), the first quantity is finite
if and only if p < 4

γ 2 and by Lemma A.1, the second quantities are finite if and only

if p < 4
γ 2 ∧ 2

γ min j (Q − α j ). More precisely, Lemma A.1 provides the if part but the
only if part can derived along similar lines as the proof of Lemma A.1. Indeed, one can
show that if E[

∫
B(z j ,1)

1
|x |α j γ Mγ (dx))p] < ∞ then, by comparison with an exact scale

invariant kernel (see Proof of A.1), there exists C > 0 such that for all r < 1

E[
∫

B(z j ,r)

1
|x |α jγ

Mγ (dx))p] ! Cr ξ(p)−γα j p.

Therefore, one must have ξ(p) − γα j p > 0, i.e. p < 2
γ (Q − α j ): this yields the only

if part. ⊓-
Therefore, we can define the unit volume Liouville measure under the condition of

the above lemma.
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3.5. Changes of conformal metrics, Weyl anomaly and central charge. In this section,
we want to study how the Liouville partition function (3.2) depends on the background
metric g conformally equivalent to the spherical metric in the sense of Sect. 2.1, say
g = eϕ ĝ.

By making the change of variables c → c − mĝ(Xg) in (3.2) and using Proposition
2.3, we can and will replace Xg by Xĝ in the expression (3.2).

Now we apply the Girsanov transform to the curvature term e− Q
4π

∫
R2 Rg Xĝ dλg . Since

by (2.1) Rgλg = (Rĝ − )ĝϕ)λĝ this has the effect of shifting the field Xĝ by

− Q
4π

Gĝ(Rĝ − )ĝϕ) = −Q
2
(ϕ − mĝ(ϕ))

where we used GĝRĝ = 0 (since Rĝ is constant).
ThisGirsanov transformhas also the effect ofmultiplying thewhole partition function

by the exponential of

Q2

32π2

∫∫

R2×R2
Rg(z)Gĝ(z, z

′)Rg(z′) λg(dz)λg(dz′)

= Q2

16π

∫

R2
Rg(ϕ − mĝ(ϕ)) dλg

= Q2

16π

∫

R2
(Rĝ − △ĝϕ)(ϕ − mĝ(ϕ)) dλĝ (use (2.1))

= Q2

16π

∫

R2
|∂ ĝϕ|2 dλĝ.

Therefore, by making the change of variables c → c + Q/2mĝ(ϕ) to get rid of the
constant mĝ(ϕ) in the expectation, we get

'(ziαi )i
γ ,µ (g, F) = e

1
96π

∫
R2 |∂ ĝϕ|2+2Rĝϕ dλĝ+

Q2
16π

∫
R2 |∂ ĝϕ|2 dλĝ+Q2mĝ(ϕ)

× lim
ϵ→0

∫

R
E

[
F(Xĝ + c + Q/2 ln ĝ)

∏

i

ϵ
α2i
2 eαi (c+Xĝ,ϵ+Q/2 ln ĝ)(zi )

× exp
(

− Q
4π

∫

R2
Rgc dλg − µeγ vϵ

γ 2
2

∫

R2
eγ Xĝ,ϵ+Q/2 ln ĝ dλ

)]
dc.

(3.34)

Now we observe that the Gauss–Bonnet theorem entails
∫

R2
Rgc dλg =

∫

R2
Rĝc dλĝ

because c is a constant. Therefore, using Q2mĝ(ϕ) = 6Q2

96π

∫
R2 2Rĝϕ dλĝ ,

'(ziαi )i
γ ,µ (g, F) (3.35)

= e
1+6Q2
96π

∫
R2 |∂ ĝϕ|2+2Rĝϕ dλĝ lim

ϵ→0

∫

R
E

[
F(Xĝ + c + Q/2 ln ĝ)

∏

i

ϵ
α2i
2 eαi (c+Xĝ,ϵ+Q/2 ln ĝ)(zi )
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× exp
(

− Q
4π

∫

R2
Rĝ(c + Xĝ) dλĝ − µeγ cϵ

γ 2
2

∫

R2
eγ Xĝ,ϵ+Q/2 ln ĝ dλ

)]
dc

= e
1+6Q2
96π

∫
R2 |∂ ĝϕ|2+2Rĝϕ dλĝ'(ziαi )i

γ ,µ (ĝ, F). (3.36)

We can rewrite the above relation in a more classical physics language

Theorem 3.11. (Weyl anomaly and central charge)

1. We have the so-called Weyl anomaly

'(ziαi )i
γ ,µ (eϕ ĝ, F) = exp

( cL
96π

( ∫

R2
|∂ϕ|2 dλ +

∫

R2
2Rĝϕ dλĝ

))
'(ziαi )i

γ ,µ (ĝ, F)

where

cL = 1 + 6Q2

is the central charge of the Liouville theory.
2. The law of the Liouville field φ under Pγ ,µ

(zi ,αi )i ,g
is independent of the metric g in the

conformal equivalence class of ĝ.

Notice that the above theorem can be reformulated as a Polyakov–Ray–Singer formula
for LQG, see [50,51,56] for more on this topic.

4. About the γ ! 2 Branches of Liouville Quantum Gravity

Here we discuss various situations that may arise in the study of the case γ ! 2. We
want this discussion to be very concise, so we just give the results as well as references
in order to find the tools required to carry out the computations in full details. Yet, we
stress that the computations consist in following verbatim the strategy of this paper. In
what follows, we will only give the partition function in the round metric as the Weyl
anomaly then gives in a straightforward manner the partition function for any metric
conformally equivalent to the spherical metric.

4.1. The case γ = 2 or string theory. The case γ = 2 corresponds to Q = 2 and is
very important in string theory, see the excellent review [40] as well as the original paper
[50]. In this case one needs an additional renormalization for the multiplicative chaos in
order to get a nontrivial limit. In [26,28] it was proven that the measure3

√
2/π(− ln ϵ)1/2ϵ2e2Xĝ,ϵ+2 ln ĝ dλ(x) (4.1)

converges in probability to a nontrivial limit M ′(dx) given by

M ′(dx) = (2E[X2
ĝ] − Xĝ)e

γ Xĝ− γ 2
2 E[X2

ĝ] λĝ(dx).

Note the additional (− ln ϵ)1/2 renormalization in (4.1) compared to (2.14).

3 The
√
2/π term appears in relation with the results in [28] to make the γ = 2 case appear as a suitable

limit of the γ < 2 case, see Conjecture 1 below.
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The partition function of LQG is then the limit

'
(ziαi )i
2,µ (ĝ, F) (4.2)

= lim
ϵ→0

∫

R
E

[
F(Xĝ + c + ln ĝ)

∏

i

ϵ
α2i
2 eαi (c+Xĝ,ϵ+ln ĝ)(zi )

× exp
(

− 1
2π

∫

R2
Rĝ(c + Xĝ,ϵ) dλĝ − µ

√
2/πe2c(− ln ϵ)1/2ϵ2

∫

R2
e2Xĝ,ϵ+2 ln ĝ dλ

)]
dc.

After carrying the same computations than in (3.6) and taking the limit ϵ → 0, we get

'
(ziαi )i
2,µ (ĝ, F) =

( ∏

i

ĝ(zi )−
α2i
4 +αi

)
eC(z)

∫

R
e
(∑

i αi−4
)
c E

[
F(c−θĝ + Xĝ + Hĝ+ln ĝ)

× exp
(

− µe2c
∫

R2
e2Hĝ(x)ĝ(x)M ′(dx)

)]
dc, (4.3)

and C(z) defined as in (3.7). One can check as in Sect. 3.5 that this partition function is
conformally invariant. The convergence of probability of the renormalizedmeasure (4.1)
has been investigated in [26,28] when Xĝ,ϵ is a white noise decomposition of the field
Xĝ , which can also be taken as a definition of the regularized field. Convergence in law
of the circle average based regularization measure is carried out via the smooth Gaussian
approximations introduced in [52]. Establishing the Seiberg bounds needs some extra
care and can be handled via the conditioning techniques used in [55].

4.2. Freezing in LQG. For γ > 2 and Q = 2, one can define

'(ziαi )i
γ ,µ (ĝ, F)

= lim
ϵ→0

∫

R
E

[
F(Xĝ + c + ln ĝ)

∏

i

ϵ
α2i
2 eαi (c+Xĝ,ϵ+ln ĝ)(zi )

× exp
(

− 1
2π

∫

R2
Rĝ(c + Xĝ) dλĝ − µeγ cϵ2γ−2

∫

R2
eγ Xĝ,ϵ+γ ln ĝ dλ

)]
dc.

(4.4)

Here we choose to use a white noise regularization of the field Xĝ to stick to the frame-
work in [45]. Notice the unusual power of ϵ in order to non-trivially renormalize the
interaction term, which gets dominated by the near extrema of the field Xg,ϵ . Under this
framework, the convergence in law of the random measures

(− ln ϵ)
3γ
4 ϵ2γ−2eγ Xĝ,ϵdx → M ′

2
γ

(dx)

is established in [45], where M ′
2
γ

(dx) is a random measure characterized by

E[e
M ′

2
γ
( f )

] = E[e−cγ
∫
R2 f (x)

2
γ ĝ−1(x)M ′(dx)].

Hence the convergence in law in the sense of weak convergence of measures

(− ln ϵ)
3γ
4 ϵ2γ−2eγ Xĝ,ϵ+γ ln ĝ dλ → ĝγ (x)M ′

α(dx).
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We deduce

'(ziαi )i
γ ,µ (ĝ, F)

=
( ∏

i

ĝ(zi )−
α2i
4 +αi

)
eC(z)

∫

R
e
(∑

i αi−4
)
c E

[
F(c − γ

2
θĝ + Xĝ + Hĝ + ln ĝ)

× exp
(

− µeγ c
∫

R2
eγ Hĝ(x)ĝ(x)M ′

2
γ

(dx)
)]

dc,

=
(∏

i

ĝ(zi )−
α2i
4 +αi

)
eC(z)

∫

R
e
(∑

i αi−4
)
c E

[
F(c − γ

2
θĝ + Xĝ + Hĝ + ln ĝ)

× exp
(

− cγµ
2
γ e2c

∫

R2
e2Hĝ(x)ĝ(x)M ′(dx)

)]
dc, (4.5)

with C(z) given by 3.7. Up to the unusual shape of the cosmological constant, this is
exactly the same partition function as in the critical case γ = 2. The difference is here the
law of the Liouville measure M ′

2
γ

(dx), which can be seen as a α = 2
γ -stable transform

of the derivative martingale M ′ and is now purely atomic (see [45] for further details).

4.3. Duality of LQG . The basic tools in order to carry out the following computations
can be found in [6]. Define the dual partition function for γ̄ > 2 and Q = 2

γ̄ + γ̄
2 as

'̄
(ziαi )i
γ̄ ,µ (ĝ, F)

= lim
ϵ→0

∫

R
E

[
F(Xĝ + c + Q/2 ln ĝ)

∏

i

ϵ
α2i
2 eαi (c+Xĝ,ϵ+Q/2 ln ĝ)(zi )

× exp
(

− Q
4π

∫

R2
Rĝ(c + Xĝ) dλĝ − µeγ̄ cϵ2

∫

R2
eγ̄ Xĝ,ϵ+γ̄ Q/2 ln ĝ dλα

)]
dc

(4.6)

where λα is a α-stable Poisson measure with spatial intensity λ and α = 4/γ̄ 2. We get

'̄
(ziαi )i
γ̄ ,µ (ĝ, F)

=
( ∏

i

ĝ(zi )−
α2i
4 + Q

2 αi
)
eC(z)

∫

R
e
(∑

i αi−2Q
)
c E

[
F(c − γ̄

2
θĝ + Xĝ + Hĝ +

Q
2
ln ĝ)

× exp
(

− µeγ̄ c
∫

R2
eγ̄ Hĝ(x)ĝ

γ̄
4 (x) S′

α(dx)
)]

dc (4.7)

with C(z) defined as usual and S′
α(dx) is a stable Poisson random measure with spatial

intensity eγ Xg− γ 2
2 E[X2

g] dλ. By computing the expectation we get

'̄
(ziαi )i
γ̄ ,µ (ĝ, 1)

=
( ∏

i

ĝ(zi )−
α2i
4 + Q

2 αi
)
eC(z)

∫

R
e
(∑

i αi−2Q
)
c
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× E
[
exp

(
− µ

γ 2
4
4/(1 − γ 2/4)

γ 2 eγ c
∫

R2
eγ Hĝ eγ Xg− γ 2

2 E[X2
g]ĝ dλ

)]
dc

= µ
2Q−∑

i αi
γ̄

µ
2Q−∑

i αi
γ

(4/(1 − γ 2/4)
γ 2

) 2Q−∑
i αi

γ
'(ziαi )i

γ ,µ (ĝ, 1). (4.8)

with γ = 4/γ̄ . Observe that this is an ad-hoc construction of duality (see also [23]).
The very problem to fully justify the duality of LQG is to find a proper analytic

continuation from γ < 2 to γ > 2 of the partition of LQG, i.e. the function

γ .→ '(ziαi )i
γ ,µ (ĝ, 1).

First observe that this mapping goes to ∞ as γ → 2 and it is necessary to get rid of the
pole at γ = 2. This analytic continuation is required to compare our construction for
gamma > 2 to the predictions and the results of CFT and of the study of the Liouville
QFT by conformal bootstrap (DOZZ formula, etc.).

We make the following conjecture

Conjecture 1. The function

γ .→
(4/(1 − γ 2/4)

γ 2

) 2Q−∑
i αi

γ
'(ziαi )i

γ ,µ (ĝ, 1)

is an analytic function of γ ∈]0, 2[, which admits an analytic extension for γ ! 2
given by '̄

(ziαi )i
γ ,µ (ĝ, 1). Furthermore, this extension at γ = 2 is the partition function

'
(ziαi )i
2,µ (ĝ, 1) of the critical case.

We do not know how to establish analyticity but we stress that the above function is
continuous on ]0,+∞[.

5. Perspectives and Conjectures

In this section, we give a brief overview of perspectives and open problems linked to
this work.

5.1. The DOZZ formula. One of the interesting features of LQG is that it is a non mini-
mal CFT but nevertheless physicists have conjectured exact formulas for the three point
correlation function of the theory. This correlation function is very important because
(in theory) one can compute all correlation functions of LQG from the knowledge of
the three point function. In LQG, the three point function is quite amazingly supposed
to have a completely explicit form, the celebrated DOZZ formula [19,61,64].

More precisely, let z1, z2, z3 ∈ R2 and α1,α2,α3 be three points satisfying the
Seiberg bounds (1.5). Applying the Möbius transformation rule (3.4) for the map ψ that
takes (z1, z2, z3) to (0, 1,∞) we get after some calculation

'(zi ,αi )i
γ ,µ (ĝ, 1) = |z1 − z2|2)12 |z2 − z3|2)23 |z1 − z3|2)13Cγ (α1,α2,α3)

wherewedenoted)12 = )α3−)α1−)α2 and similarly for)13 and)23. The coefficient
is given by (recall s = ∑3

i=1 αi − 2Q)

Cγ (α1,α2,α3) = e
1
4 (s

2+2Qs)+2 ln 2)(α1)γ −1µ−s/γ /(s/γ )E Z−s/γ
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and

Z =
∫

|z|−α1γ |z − 1|−α2γ ĝ(z)−
γ
4

∑3
i=1 αi Mγ (dz).

The DOZZ formula is a conjecture on an exact expression forCγ (α1,α2,α3). It is based
on the observation thatE Z−s/γ can be computed in closed form if−s/γ = n, a positive
integer. We have

E Zn =
∫

eγ 2 ∑
i< j Gĝ(zi ,z j )

n∏

i=1

|zi |−α1γ |zi − 1|−α2γ ĝ(zi )
− γ

4
∑3

j=1 α j λĝ(dzi ).

Using (2.12) this becomes

E Zn = e−γ 2 n2−n
4

∫ ∏

i< j

|zi − z j |−γ 2
n∏

i=1

|zi |−α1γ |zi − 1|−α2γ λ(dzi ),

an expression that does not depend on the background metric ĝ. This Coulomb gas
integral can be computed in closed form and leads to an expression which can be cast in
a form where n enters as a parameter allowing a formal extension of the formula to the
negative real axis. This leads to the DOZZ formula for Cγ (α1,α2,α3). We will not state
it here explicitly as it is quite complicated and involves introducing numerous special
functions.

Proving the DOZZ formula seems at this time difficult. Note for instance that for
given γ only a finite number of positive moments of Z exist so one can not attempt
to solve a moment problem. In the semiclassical γ → 0 limit we want to point to an
interesting recent approach to the DOZZ formula by performing deformation of the
integration contour in function space [37].

5.2. The semi-classical limit. The semiclassical limit of LQG is the study of the con-
centration phenomena of the Liouville field around the extrema of the Liouville action
for small γ , see [37,49]. After a suitable rescaling of the parameters µ and (αi )i , that is

µγ 2 = 5, αi =
χi

γ
(5.1)

for some fixed constants 5 > 0 and weights (χi )i satisfying χi < 2 and
∑

i χi > 4, the
Liouville field γφ should converge in law towards U + ln ĝ, where U is the solution of
the classical Liouville equation with sources

△ĝU − Rĝ = 2π5eU − 2π
∑

i

χiδzi , with
∫

R2
eU dλĝ =

∑
i χi − 4
5

, (5.2)

hence the name of the theory “Liouville quantum gravity”. The reader may consult [41]
for some partial results in the “toy model” situation where the zero modes have been
turned off.

5.3. Relation with discretized 2d quantum gravity. In this section we will present some
precise conjectures on the connection of our results to the work on discrete models of 2d
gravity, randoms surfaces and random maps (related but less precise conjectures appear
also in [60]).
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The standard way to discretize 2d quantum gravity coupled to matter fields is to
consider a statistical mechanics model (corresponding to a conformal field theory with
central charge cm) defined on a random lattice (or random map), corresponding to the
random metric, for instance a random triangulation of the sphere. We formulate below
precise mathematical conjectures on the relationship of LQG to that setup.

Let TN be the set of triangulations of S2 with N faces and TN ,3 be the set of triangu-
lations with N faces and 3 marked faces or points (called roots).

Next consider a model of statistical physics (matter field) that can be defined on every
T ∈ TN . The list of such models contains pure gravity (no matter field), Ising model
(a spin ±1 on each triangle or vertex), the multicritical discrete spin models (which
correspond to the discrete series of the minimal CFT with 1/2 ≤ cm < 1), the O(N )
dilute and dense loop models with 0 ≤ N < 2, the q = 3 or q = 4 Potts models and
discrete models associated to minimal or rational conformal field theories with central
charge cm such that −2 < cm ≤ 1). We refer to [42] for a review and references.

For T ∈ TN , define the partition function of the matter field on T

Zm(T,β) =
∑

CT

W (CT ,β)

as a sum of configurations CT (defined as ensemble of some local or geometric discrete
degrees of freedom) over T with positive local Boltzmann weights W (CT ,β). These
Boltzmannweights dependon someparameters denotedβ and these parameters are tuned
to their critical point βc such that the statistical model coupled to gravity is critical. At
this point, the triangulation T has no marked points. Call ZN the partition function at
criticality for triangulations of size N

ZN =
∑

T∈TN ,3

Zm(T,βc), (5.3)

where we extend in a straightforward manner the above definition of Zm(T,βc) to
triangulations T with marked points (the marked points play no role in the definition of
Zm(T,βc)). It is expected that ZN diverges as N goes to infinity as

ZN ∼ N 3−(2−γs )−1eµ
m
c N (1 + o(1)) (5.4)

withµm
c some critical “cosmological constant” or “fugacity” that depends on the critical

model considered, and the string exponent γs can be explicitly expressed in terms of the
central charge cm of the CFT for the matter field through the relations

2 − γs =
2Q
γ

for Q = 2/γ + γ /2 =
√
(25 − cm)/6. (5.5)

There is plenty of evidence for this result for large classes of statisticalmodels on random
discrete lattices, by exact combinatorial methods or by random matrix techniques (see
[2,42] for reviews), that covers the interval γ ∈ [

√
2, 2] in Sect. 5.5. For a recent proof

in the context of FK models on planar maps see [36].
Therefore, for µ̄ > µm

c , the full partition function of the system of triangulations
weighted by a matter field

Zµ̄ =
∑

N

e−µ̄N ZN (5.6)
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converges andwe can sample a random triangulation according to this partition function.
We are interested in the regime where the system samples preferably the triangulations
with a large number of faces. Notice that for −2 < cm " 1, we have

√
2 < γ " 2

and therefore −1 < γs " 0. From (5.4), we see that the closer µ̄ is to µm
c , the larger

the number of triangles of the random triangulation (with 3 marked points) is and for
µ ∼ µm

c , the size of the typical area diverges. Therefore, we are interested in the limit
µ̄ → µm

c in the following regime: we assume that µ̄ depends on a parameter a > 0 such
that

µ = µm
c + µa2 (5.7)

where µ is a fixed positive constant.
Let us now explain how to embed a triangulation T ∈ TN ,3 with three marked points

onto the sphere S2 and define a randommeasure on S2 out of it. Following [33] (see also
[12, section 2.2]), we can equip such a triangulation with a conformal structure (where
each face has the geometry of an equilateral triangle). The uniformization theorem
tells us that we can then conformally map the triangulation onto the sphere S2 and the
conformal map is unique if we pick three distinct points x1, x2, x3 on the sphere S2 and
demand the map to send the three marked points to x1, x2, x3. We denote by νT,a the
corresponding deterministic measure on the sphere where each triangle of the sphere
is given a volume a2. Concretely, the uniformization provides for each face t ∈ T a
conformal map ψt : ) → S2 where ) is an equilateral triangle of volume 1 (in fact, the
maps ψt can be glued together to produce a uniformizing map ψ defined on T ). Then
νT,a(dz) = a2|(ψ−1

t )′(z)|2dz on the image triangle ψt ()). In particular, the volume of
the total space S2 is Na2. Now, we consider the random measure νa,µ defined by

Ea,µ[F(νa,µ)] =
1
Za

∑

N

e−(µ−µm
c )N

∑

T∈TN ,3

F(νT,a),

for positive bounded functions F where Za is a normalization constant. We denote by
Pa,µ the probability law associated to Ea,µ.

We can now state a precise mathematical conjecture:

Conjecture 2. Under Pa,µ and under the relation (5.7), the family of random measures
(νa,µ)a>0 converges in law as a → 0 in the space of Radon measures equipped with
the topology of weak convergence towards the law of the Liouville measure of LQG with
parameter γ given by (5.5), cosmological constant µ and vertex operators at the points
x1, x2, x3 with weights αi = γ for all i .

Note that νa,µ(S2) converges in law underPa,µ as a → 0 towards a /(
∑

i αi−2Q
γ , µ)

distribution with parameter γ , µ and αi = γ for all i , which corresponds precisely to
the law of the volume of the space for LQG with these parameters (see Sect. 3.3).

Example 1 Pure gravity cm = 0, γ =
√

8
3 .

Pure gravity corresponds to the case when no matter field is put on the triangulation,
inwhich case Zm(T,β) =

∑
CT

W (CT ,β) = 1 for all T . ZN thus stands for the cardinal
of TN ,3 and it is known mathematically since Tutte [63] that

ZN ∼ N 3− 5
2−1eµ

m
c N (1 + o(1)) (5.8)
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as N goes to infinity. Notice that 3 =
∑3

i=1 αi
γ where αi = γ for all i and 5

2 = 2Q
γ for

γ =
√

8
3 .

One can check that νa,µ(S2) converges in law underPa,µ as a → 0 towards a/( 12 , µ)

distribution with parameter γ =
√

8
3 , µ and αi = γ for all i . Indeed, we have thanks to

(5.8)

Ea,µ[F(νa,µ)] =
1
Za

∑

N

e−(µ−µm
c )N

∑

T∈TN ,3

F(νT,a(S2))

= 1
∑

N e−µa2N ZN

∑

N

e−µa2N ZN F(a2N )

× →
a→0

∫ ∞

0
F(x)x−1/2e−µxdx

Example 2 Ising model cm = 1
2 , γ =

√
3.

According to the physics literature (see [2]), the partition function of the Ising model
on triangulations at criticality Z Is

N [corresponding to (5.3)] should diverge as

N 3− 7
3−1eµ

Is
c N (1 + o(1)) (5.9)

as N goes to infinity (note that the critical temperature is different on the random lattice

models from the regular lattice). Once again, notice that 3 =
∑3

i=1 αi
γ where αi = γ for

all i and 7
3 = 2Q

γ for γ =
√
3. Assuming conjecture (5.9), one could show along the

same lines as Example 1 that νa,µ(S2) converges in law under Pa,µ as a → 0 towards a
/( 23 , µ) distribution (however, in this case and in contrast to Example 1, the asymptotic
(5.9) is still conjectural from the mathematical point of view).

Finally, let us also mention that we could state similar conjectures to Conjecture 2
in the context of fixed volume planar maps. In this context, one samples the map of
size N proportionally to the partition function (5.3) such that it has a fixed volume
A = a2N and then lets N go to infinity (with a2 = A

N ). The limiting measures will
then be (conjecturally) given by the Liouville measure of LQG conditioned to have fixed
volume A.

5.3.1. Conjecturewith general vertex operators. Finally onemay askwhat is the relation
between the general vertex operators Vα(x) = exp (αX (x)) (with α < Q) that we
consider in this paper, the Liouville measure given by (3.31) with more than 3 points
xi and some αi ̸= γ , and local observables in discrete 2 dimensional gravity. Since
the 3 original Vγ (x) correspond to fixing through conformal invariance the points on
S2, hence to the local density of vertices of the triangulation T through the conformal
mapping onto the sphere, it is natural to consider the local density moment defined as
follows. In addition to the points x1, x2, x3 (to which the centers of the marked faces of
the triangulation T are sent), we consider additional fixed points xi with i > 3 on the
sphere, around which a small discDxi ,ϵi centered at xi with radius ϵi is drawn. Then we
consider the number of vertices Nxi ,ϵi (T ) of the triangulation T mapped inside the disk
Dxi ,ϵi . We consider the random measure defined for all positive bounded functions F as
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Ea,µ,(ϵi )i [F(νa,µ,(ϵi )i )]

= 1
Za,(ϵi )

∑

N

e−(µ−µm
c )N

∑

T∈TN ,3

∏

i>3

ϵ
2)i
i (a2Nxi ,ϵi (T ))

αi
γ F(νT,a),

where Za,(ϵi )i is a normalization constant, )i = αi
2 (Q − αi

2 ) the conformal weight (see
next sections).We denote byPa,µ,(ϵi )i the probability law associated toEa,µ,(ϵi )i . Notice
that we have included the renormalization terms a2 and ϵ

2)i
i although they cancel with

the same terms in Za,(ϵi )i . However, they are needed if one were to consider the limit
for the partition function Za,(ϵi )i . Recall that the Liouville measure (with general vertex
insertions) is defined by expression (3.31). We can now state our conjecture:

Conjecture 3. Under Pa,µ,(ϵi )i and under the relation (5.7), the family of random mea-
sures (νa,µ,(ϵi )i )a>0 converges in law as a → 0 and then as ϵi → 0 in the space of
Radon measures equipped with the topology of weak convergence towards the law of
the Liouville measure of LQG with parameter γ given by (5.5), cosmological constant
µ and vertex operators at the points x1, x2, x3 with weights αi = γ for all i " 3 and
vertex operators at the points xi with weights αi for i > 3.

5.3.2. Relation with the Brownian map. It is natural to ask if, in Conjecture 2, one
can reinforce the convergence of measures to a convergence in the space of random
metric spaces (equipped with a natural volume form). More precisely, in the case of
pure gravity cm = 0, consider the Riemannian metric defined on each image triangle
ψt ()) ⊂ S2 of the uniformization by a|(ψ−1

t )′(z)|2dz2 (hence the lengths of the edges
of the image triangles are

√
a). Let dT,a be the corresponding distance function on S2

and da,µ̄ the random metric on S2 defined analogously to the random measure νa,µ̄.
Then, it is widely believed that the metric space (equipped with a volume measure)
(S2, da,µ̄, νa,µ̄) converges in law as a → 0 towards a metric space (S2, d, ν), where ν

is the LQG measure of Conjecture 2. If this is the case, then the space (S2, d, ν) should
be related to the Brownian map equipped with its volume measure (see [44,47]): more
precisely, for all fixed A > 0, both metric spaces should be isometric (up to some global
constant) once conditioned to have same volume A. The isometry should also send the
Brownian map volume measure to the measure ν.

A. A Moment Estimate on Gaussian Multiplicative Chaos

Recall that Xĝ,ϵ is a circle average of the GFF with vanishing mean on the Riemann
sphere. We introduce the structure function

ξ(p) = (2 +
γ 2

2
)p − γ 2

2
p2 (A.1)

Recall that Q = γ
2 + 2

γ . We have the follownig moment estimate:

Lemma A.1. Let z ∈ R2 and α < Q. For all p > 0, we have

sup
ϵ>0

E[(
∫

B(z,1)

1
(|x − z| + ϵ)α

Mγ ,ϵ(dx))p] < ∞
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if and only if p < 4
γ 2 ∧ 2

γ (Q−α). If p < 4
γ 2 ∧ 2

γ (Q−α) then there exist some constant
C > 0 such that for all r

sup
ϵ>0

E[(
∫

B(z,1)

1
(|x − z| + ϵ)α

Mγ ,ϵ(dx))p] " Cr ξ(p)−αγ p (A.2)

Proof. There is no loss in generality in considering the case z = 0. Consider the log-
correlated field X with exact scale invariant covariance E[X (x)X (y)] = ln+ 1

|x−y| . One
can construct a cut-off approximation Xϵ to X such that for all λ < 1, (Xλϵ(λx))|x | " 1
(Law)= (Xϵ(x))|x | " 1 + 7λ where 7λ is an independent centered Gaussian variable with
variance ln 1

λ (see [52] for instance). By Kahane’s convexity inequalities (see [52] for
instance), it is enough to show the above lemma with Mγ ,ϵ replaced by the measures
M̄γ ,ϵ associated to the fields Xϵ (observe that since we are working in a compact ball,
the metric tensor ĝ can be bounded). Recall that if p < 4

γ 2 then it is standard in Gaussian
multiplicative chaos theory that there exists some constant C > 0 such that

sup
ϵ

E[M̄γ ,ϵ(B(0, 1))p] " C.

Now, we have for all p ∈ [1, 4
γ 2 [

E[(
∫

B(0,1)

1
(|x | + ϵ)γα j

eγ Xϵ(x)− γ 2
2 E[Xϵ(x)2]dx)p]1/p

" E[(
∫

B(0, 12 )

1
(|x | + ϵ)γα j

eγ Xϵ(x)− γ 2
2 E[Xϵ(x)2]dx)p]1/p

+ E[(
∫

1
2 " |z j | " 1

1
(|x | + ϵ)γα j

eγ Xϵ(x)− γ 2
2 E[Xϵ(x)2]dx)p]1/p

" E[(
∫

B(0, 12 )

1
(|x | + ϵ)γα j

eγ Xϵ(x)− γ 2
2 E[Xϵ(x)2]dx)p]1/p + C

" E[(eγ7λ− γ 2
2 ln 1

λ

∫

B(0,1)

1
(|x | + 2ϵ)γα j

eγ X2ϵ(x)− γ 2
2 E[X2ϵ(x)2]dx)p]1/p + C

" 1

2
ξ(p)
p −γα

E[(
∫

B(0,1)

1
(|x | + 2ϵ)γα j

eγ X2ϵ(x)− γ 2
2 E[X2ϵ(x)2]dx)p]1/p + C, (A.3)

whereC is form line to line a constant independent from everything. Hence, we conclude
that

E

[
(

∫

B(0,1)

1
(|x | + ϵ)γα j

eγ Xϵ(x)− γ 2
2 E[Xϵ(x)2])p

]
dx (A.4)

is bounded independently of ϵ if ξ(p) − γαp > 0 which is equivalent to the condition
p < 2

γ (Q − α). This is clear for ϵ an inverse power of 2 by applying recursively (A.3):

indeed, if ϵn = 1
2n and un = E

[
(
∫
B(0,1)

1
(|x |+ϵn)

γα j e
γ Xϵn (x)− γ 2

2 E[Xϵn (x)
2])p

]
then we

have un+1 " 2− ξ(p)
p +γαun + C and therefore un " C+u0

1−2− ξ(p)
p +γα

. Otherwise, if ϵ belongs
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to a segment [ 1
2n ,

1
2n−1 ] then from Kahane’s convexity inequalities one can bound up to

some global multiplicative constant the expectation in (A.4) by the same quantity with
ϵ replaced by 1

2n .
If p < 1, we get along the same lines as previously and by using the subadditivity of

x .→ x p that there exists C > 0 such that

E[(
∫

B(0,1)

1
(|x | + ϵ)γα j

eγ Xϵ(x)− γ 2
2 E[Xϵ(x)2]dx)p]

" 1
2ξ(p)−γα

E[(
∫

B(0,1)

1
(|x | + 2ϵ)γα j

eγ X2ϵ(x)− γ 2
2 E[X2ϵ(x)2]dx)p] + C.

We conclude similarly.
Now we prove the second part of the lemma. If ϵ > r then

E[(
∫

B(0,r)

1
(|x | + ϵ)γα

eγ Xϵ(x)− γ 2
2 E[Xϵ(x)2]dx)p]

" E[epγ supx∈B(0,r) Xϵ(x)]e−p γ 2
2 ln 1

r r2−αγ " Cr ξ(p)−αγ p

If ϵ " r then we have

E[(
∫

B(0,r)

1
(|x | + ϵ)γα

eγ Xϵ(x)− γ 2
2 E[Xϵ(x)2]dx)p]

" E[e
pγ7r− pγ 2

2 ln 1
r

rαγ p (

∫

B(0,1)

1
(|x | + ϵ/r)γα

eγ Xϵ/r (x)− γ 2
2 E[Xϵ/r (x)2]dx)p]

" Cr ξ(p)−αγ p

⊓-

B. Möbius Transform Relations

In this section, we gather a few relations concerningMöbius transforms and their behav-
ior with respect to Green functions. Recall that the set of automorphisms of the Riemann
sphere can be described in terms of the Möbius transforms

ψ(z) = az + b
cz + d

, a, b, c, d ∈ C and ad − bc ̸= 0.

Such a function preserves the cross ratios: for all distinct points z1, z2, z3, z4 ∈ C

(z1 − z3)(z2 − z4)
(z2 − z3)(z1 − z4)

= (ψ(z1) − ψ(z3))(ψ(z2) − ψ(z4))
(ψ(z2) − ψ(z3))(ψ(z1) − ψ(z4))

. (B.1)

Recall that gψ stands for the metric |ψ ′|2ĝ ◦ ψ .

Proof of Proposition 2.2. We can rewrite the expression (2.9) with g = gψ in a con-
densed way

Ggψ (x, y) =
1

(4π)2

∫∫

R2×R2
ln

|x − z||y − z′|
|x − y||z − z′| λgψ (dz)λgψ (dz

′).



Liouville Quantum Gravity on the Riemann Sphere

By making a change of variables and use (B.1), we get

Ggψ (x, y) =
1

(4π)2

∫∫

R2×R2
ln

|x − ψ−1(z)||y − ψ−1(z′)|
|x − y||ψ−1(z) − ψ−1(z′)| λĝ(dz)λĝ(dz

′).

= 1
(4π)2

∫∫

R2×R2
ln

|ψ(x) − z||ψ(y) − z′|
|ψ(x) − ψ(y)||z − z′| λĝ(dz)λĝ(dz

′).

This is exactly the expression of Gĝ(ψ(x),ψ(y)). ⊓-

Corollary B.1. We have the following relations for all Möbius transforms ψ

−2mĝ(ln
1

|x − ·| ) = − 1
2
ln ĝ(x) + ln 2 (B.2)

−2mgψ (ln
1

|x − ·| ) + θgψ = − 1
2
ln ĝ(ψ(x)) − ln |ψ ′(x)| + θĝ + ln 2. (B.3)

In particular (2.12) holds.

Proof. We use the following relation
∫

R2
ln |x − ·|λ|ψ ′|2 ĝ(ψ) = 2π(ln(|ax + b|2 + |cx + d|2) − ln(|a|2 + |c|2)). (B.4)

The proof of this identity is based on the fact that both sides have the same Laplacian
and the difference of both functions goes to 0 as |x | goes to infinity.

The first relation is a straightforward consequence of (B.4) withψ(z) = z. One could
use (B.4) as well to prove the second but another way (which we follow below) is to use
(B.1). Write

− 2mgψ (ln
1

|x − ·| ) + θgψ

= 1
(4π)2

∫

R2

∫

R2
ln

|x − z||x − z′|
|z − z′| λgψ (dz)λgψ (dz

′)

= 1
(4π)2

∫

R2

∫

R2
ln

|x − ψ−1(z)||x − ψ−1(z′)|
|ψ−1(z) − ψ−1(z′)| λĝ(dz)λĝ(dz

′)

Observe that the mapping (x, y) .→ 1
(4π)2

∫
R2

∫
R2 ln

|x−ψ−1(z)||y−ψ−1(z′)|
|ψ−1(z)−ψ−1(z′)| λĝ(dz)λĝ(dz′)

is a continuous function so that we can write

− 2mgψ (ln
1

|x − ·| ) + θgψ

= lim
y→x

1
(4π)2

∫

R2

∫

R2
ln

|x − ψ−1(z)||y − ψ−1(z′)|
|ψ−1(z) − ψ−1(z′)| λĝ(dz)λĝ(dz

′)

= lim
y→x

( 1
(4π)2

∫

R2

∫

R2
ln

|x − ψ−1(z)||y − ψ−1(z′)|
|x − y||ψ−1(z) − ψ−1(z′)|λĝ(dz)λĝ(dz

′) + ln |x − y|
)
.

Now we can use the invariance of cross-products with respect to Möbius transforms to
get
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− 2mgψ (ln
1

|x − ·| ) + θgψ

= lim
y→x

( 1
(4π)2

∫

R2

∫

R2
ln

|ψ(x) − z||ψ(y) − z′|
|ψ(x) − ψ(y)||z − z′|λĝ(dz)λĝ(dz

′) + ln |x − y|
)

= lim
y→x

( 1
(4π)2

∫

R2

∫

R2
ln

|ψ(x)−z||ψ(y)−z′|
|z−z′| λĝ(dz)λĝ(dz

′)−ln
|ψ(x)−ψ(y)|

|x − y|
)

= −2mĝ(ln
1

|ψ(x) − ·| ) + θĝ − ln |ψ ′(x)|.

We complete the proof thanks to (B.2). ⊓-
Lemma B.2. The relations (2.13) and (3.30) hold.

Proof. Using the relation (B.4), we have

Gĝ(ψ(x),ψ(z))

= ln
1

|x − z| +
1
2
(ln(|ax + b|2 + |cx + d|2) − ln(|a|2 + |c|2))

+
1
2
(ln(|az + b|2 + |cz + d|2) − ln(|a|2 + |c|2))

− 1
4π

∫

R2

1
2
(ln(|au + b|2 + |cu + d|2) − ln(|a|2 + |c|2))λgψ (du)

= ln
1

|x − z| +
1
2
ln(|ax + b|2 + |cx + d|2)

+
1
2
ln(|az + b|2 + |cz + d|2) − 1

2
ln(|a|2 + |c|2)

− 1
4π

∫

R2

1
2
ln(|au + b|2 + |cu + d|2)λgψ (du).

After integrating, we get that
∫

R2
Gĝ(ψ(x),ψ(z))ĝ(z)dz

= −2π ln(1 + |x |2) + 2π ln(|ax + b|2 + |cx + d|2)

+
1
2

∫

R2
ln(|az + b|2 + |cz + d|2)λĝ(dz) − 2π ln(|a|2 + |c|2)

− 1
2

∫

R2
ln(|au + b|2 + |cu + d|2)λgψ (du).

At this stage, we will suppose that ad − bc = 1. Hence, we have

− 1
2

∫

R2
ln(|au + b|2 + |cu + d|2)λgψ (du)

= 1
2

∫

R2
ln(|ψ ′(u)|2 ĝ(ψ(u)))λgψ (du)

= 1
2

∫

R2
ln(ĝ(v))λĝ(dv) +

1
2

∫

R2
ln(|ψ ′(u)|2)λgψ (du)

= 1
2

∫

R2
ln(ĝ(v))λĝ(dv) −

∫

R2
ln |cu + d|λgψ (du).
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Now, we introduce the function

G(x) =
∫

R2
ln |cx + d − cu − d|λgψ (du) = 4π ln |c| +

∫

R2
ln |x − u|λgψ (du).

By using equation (B.4), we get that

G(x) = 4π ln |c| + 2π(ln(|ax + b|2 + |cx + d|2) − ln(|a|2 + |c|2))
Hence, we get that

∫

R2
ln |cu + d|λgψ (du) = G(−d

c
)

= 4π ln |c| − 4π ln |c| − 2π ln(|a|2 + |c|2) = −2π ln(|a|2 + |c|2).
At the end, we get

∫

R2
Gĝ(ψ(x),ψ(z))λĝ(dz)

= −2π ln(1 + |x |2) + 2π ln(|ax + b|2 + |cx + d|2)

+
1
2

∫

R2
ln(|az + b|2 + |cz + d|2)λĝ(dz) − 2π ln(|a|2 + |c|2)

+
1
2

∫

R2
ln(ĝ(v))λĝ(dv) + 2π ln(|a|2 + |c|2)

= −π ln
gψ (x)
ĝ(x)

− πmĝ(ln
gψ (x)
ĝ(x)

) = −πφ(x) − πmĝ(φ)

which implies that

1
(4π)2

∫

R2

∫

R2
Gĝ(ψ(x),ψ(z))λĝ(dx)λĝ(dz) = −1

2
mĝ(φ). (B.5)

Recall now that Xĝ ◦ ψ equals in law Xĝ − mgψ (Xĝ) so that

Gĝ(ψ(x),ψ(z)) = Gĝ(x, y) − 1
4π

((Gĝe
φ)(x) + (Gĝe

φ)(y)) + Dψ

where Dψ = 1
4π mĝ(eφGĝeφ). Using (3.28) this becomes

Dψ = 1
4π

(mgψ (φ) − mĝ(φ)) (B.6)

and the applying (3.28) again we get

Gĝ(ψ(x),ψ(z)) = Gĝ(x, y) − 1
4
(φ(x) + φ(y)) +

1
2
(mĝ(φ) + mgψ (φ)).

(B.5) implies

−1
2
mĝ(φ) =

1
2
mgψ (φ)

which yields (2.13) and combining with (B.6) we also get (3.30). ⊓-
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