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Chapter 5

Information, correlations, and more

5.1 Quantum information formulations

Quantum information science has experienced enormous developments during
the last thirty years. I do not cover this wide and fascinating field in these notes, but
shall only discuss briefly some relations with the question of the formalism. Indeed
quantum information theory led to new points of view and to new uses and applica-
tions of quantum theory. This renewal is considered by some authors as a real change
of paradigm, and referred to as “the second quantum revolution”.

From what I know, the interest in the relations between Information Theory and
Quantum Physics started really in the 1970’s, from the confluence of several ques-
tions and new results. Let me quote a few.

— This period experienced a better understanding of the relations and of the con-
flicts between General Relativity and Quantum Mechanics: the theoretical dis-
covery of the Bekenstein-Hawking quantum entropy for black holes, the black
hole evaporation (information) paradox, the more general Unruh e↵ect and
quantum thermodynamical aspects of gravity and of events horizons (withmore
recently many developments in quantum gravity and string theories, such as
“Holographic gravity”, “Entropic Gravity”, etc.).

— The ongoing discussions on the various interpretations of the quantum formal-
ism, themeaning of quantummeasurement processes, and whether a quantum
state represent the “reality”, or some “element of reality” on a quantum sys-
tem, or simply the observer’s information on the quantum system, experienced
a revival through the development of the concept of decoherence.

— The 1970’s saw of course the theoretical and experimental developments of
quantum computing. A standard reference is the book by Nielsen and Chuang
[NC10]. This field started from the realization that quantum entanglement and
quantum correlations can be used as a resource for performing calculations
and the transmission of information in a more e�cient way than when using
classical correlations with classical channels.

— This led for instance to the famous “It from Bit” idea (or aphorism) of J. A.
Wheeler (see e.g. in [Zur90]) and others (see for instance the book by Deutsch
[Deu97], or talks by Fuchs [Fuc01, Fuc02]). Roughly speaking this amounts to re-
verse the famous statement of Laudauer “Information is Physics” into “Physics
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92 CHAPTER 5. INFORMATION, CORRELATIONS, AND MORE

is Information”, and to state that Information is the good starting point to un-
derstand the nature of the physical world and of the physical laws.

This point of view that Quantum Physics has to be considered from the point of view
of Information has been developed and advocated by several authors in the area of
quantum gravity and quantum cosmology. Here I shall just mention some old or recent
attempts to use this point of view to discuss the formalism of “standard” quantum
physics, not taking into account the issues of quantum gravity.

In the quantum-information-inspired approaches a basic concept is that of “de-
vice”, or “operation”, which represents the most general manipulation on a quantum
system. In a very oversimplified presentation 1, such a device is a “black box” with
both a quantum input system A and quantum output system B, and with a set I of
classical settings i 2 I and a set O of classical responses o 2 O . The outputs do not
need to be yes/no answers to a set of compatible quantum observables (orthonormal
basis in the standard formalism) but may be more general (for instance associated to
a POVM). The input and output systems A and B may be di↵erent, and may be multi-
partite systems, e.g. may consist in collections of independent subsystems A = [

”
A”,

B = [
”
B‘.

This general concept of device encompass the standard concepts of state and of
e↵ect. A state corresponds to the preparation of a quantum system S in a definite
state; there is no input A = ;, the setting i specify the state, there is no response,
and B = S is the system. An e↵ect, corresponds to a destructive measurement on a
quantum system S; the input A = S is the system, there are no output B = ;, no settings
i , and the response set O is the set of possible output measurements o. This concept
of device contains also the general concept of a quantum channel ; then A = B , there
are no settings or responses.

A B

I

O

B

I

A

0

Figure 5.1: A general device, a state and an e↵ect

Probabilities p(i |o) are associated to the combination of a state and an e↵ect, this
correspond to the standard concept of probability of observing some outcome o when
making a measurement on a quantum state (prepared according to i).

General information processing quantumdevices are constructed by building causal
circuits out of these devices used as building blocks, thus constructing complicated
apparatus out of simple ones. An information theoretic formalism is obtained by
choosing axioms on the properties of such devices (states and e↵ects) and opera-
tional rules to combine these devices and circuits and the associated probabilities,

1. slightly more general than in some presentations
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5.1. QUANTUM INFORMATION FORMULATIONS 93

0

Figure 5.2: Probabilities are associated to a couple state-e↵ect

thus obtaining for instance what is called in [CDP11] an “operational probabilistic the-
ory”. This framework is also called “generalized probabilistic theories”, where “prepa-
rations”, “transformations” and “measurements” replace the concepts of state, chan-
nel and e↵ect.

This kind of approach is mainly considered for finite dimensional theories (which
in the quantum case correspond to finite dimensional Hilbert spaces), both because
it seems problematic to formulate them properly in the infinite dimensional case, and
because systems with a finite number of distinct orthogonal pure states are those that
are usually considered in quantum information science.

This approach leads to a pictorial formulation of quantum information processing.
It shares similarities with the “quantum pictorialism" logic formalism, rather based on
category theory, and presented for instance in [Coe10].

It can also be viewed as an operational and informational extension of the older
“convex set approach” (developed notably by G. Ludwig, see [Lud85] and [Aul01],[BC81]
for details). This later approach, which is also related to the quantum logic approach,
puts more emphasis on the concept of states than on the concept of observables in
quantum mechanics.

I shall not discuss much further these quantum information-theoretic approaches,
since I di not know much about information theory and quantum information. Let me
just highlight the recent attempts of Hardy [Har01, Har11] and those of Chiribella,
D’Ariano & Perinotti [CDP10, CDP11] ( see [Bru11] for a short presentation of this last
formulation). Another proposal is that of Masanes and Müller [MM11].

In [CDP11] the standard complex Hilbert space formalism of QM is derived from
six informational principles: Causality, Perfect Distinguishability, Ideal Compression,
Local Distinguishability, Pure Conditioning and Purification Principle. The first two
principles are not very di↵erent from the principles of other formulations (causality
is defined in a standard sense, and distinguishability is related to the concept of dif-
ferentiating states by measurements). The third one is related to the existence of re-
versiblemaximally e�cient compression schemes for states. The four and the fifth are
about the properties of bipartite states and for instance the possibility to performing
local tomography and the e↵ect of separate “atomic” measurements on such states.
The last one, “purification principle”, distinguishes quantum mechanics from classi-
cal mechanics, and states that any mixed state of some system S may be obtained
from a pure state of a larger composite system S +S 0. See [Bru11] for a discussion of
the relation of this purification principle with the discussions of the “Heisenberg cut”
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94 CHAPTER 5. INFORMATION, CORRELATIONS, AND MORE

between the system measured and the measurement device (see Heisenberg’s 1935
reply to EPR in [CB]). Of course this is related to previous discussions by von Neumann
in [vN32].

In [MM11] a set of five informational axioms on the properties of physics states al-
low to derive the formalism of quantum (and of classical) mechanics. This approach
shares elements with [Har01, Har11], but the fifth axiom is simpler. Again the exis-
tence of reversible continuous transformations between states (axiom 4’) is a very im-
portant feature to obtain by geometrical argument the standard Hilbert space struc-
ture for (finite dimensional) quantum mechanics.

5.2 Quantum correlations

The world of quantum correlations is richer, more subtle and more interesting
than the world of classical correlations. Most of the puzzling features and appar-
ent paradoxes of quantum physics come from the properties of these correlations,
especially for entangled states. Entanglement is probably the distinctive feature of
quantum mechanics, and is a consequence of the superposition principle when con-
sidering quantum states for composite systems. Here I discuss briefly some basic
aspects. Entanglement describes the particular quantum correlations between two
quantum systems which (for instance after some interactions) are in a non separable
pure state, so that each of them considered separately, is not in a pure state anymore.
Without going into history, let me remind that if the terminology “entanglement” (“Ver-
schränkung”) was introduced in the quantum context by E. Schrödinger in 1935 (when
discussing the famous EPR paper). However the mathematical concept is older and
goes back to the modern formulation of quantum mechanics. For instance, some pe-
culiar features of entanglement and its consequences have been discussed already
around the 30’ in relation with the theory of quantum measurement by Heisenberg,
von Neumann, Mott, etc. Examples of interesting entangled many particles states
are provided by the Stater determinant for many fermion states, by the famous Bethe
ansatz for the ground state of the spin 1/2 quantum chain, etc.

5.2.1 Entropic inequalities

von Neumann entropy: The di↵erence between classical and quantum correlations is
already visible when considering the properties of the von Neumann entropy of states
of composite systems. Remember that the von Neumann entropy of a mixed state of
a system A, given by a density matrix ‚A, is given by

S(‚A) = �tr(‚A log‚A) (5.2.1)

In quantum statistical physics, the log is usually the natural logarithm

log = loge = ln (5.2.2)

while in quantum information, the log is taken to be the binary logarithm

log = log2 (5.2.3)
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5.2. QUANTUM CORRELATIONS 95

The entropy measures the amount of “lack of information" that we have on the state
of the system. But in quantum physics, at variance with classical physics, one must
be very careful about the meaning of “lack of information”, since one cannot speak
about the precise state of a system before making measurements. So the entropy
could (and should) rather be viewed as a measure of the number of independent mea-
surements we canmake on the system before having extracted all the information, i.e.
the amount of information we can extract of the system. It can be shown also that the
entropy give the maximum information capacity of a quantum channel that we can
build out of the system. See [NC10] for a good introduction to quantum information
and in particular on entropy viewed from the information theory point of view.

When no ambiguity exists on the state ‚A of the system A, I shall use the notations

SA = S(A) = S(‚A) (5.2.4)

The von Neumann entropy shares many properties of the classical entropy. It has
the same convexity properties

S[›‚+ (1�›)‚0] � ›S[‚] + (1�›)S[‚0] , 0  ›  1 (5.2.5)

It is minimal S = 0 for systems in a pure state and maximal for systems in a equiparti-
tion state S = log(N) if ‚ = 1

N1N . It is extensive for systems in separate states.

Relative entropy: The relative entropy (of a state ‚ w.r.t. another state „ for the same
system) is defined as in classical statistics (Kullback-Leibler entropy) as

S(‚k„) = tr(‚ log‚)� tr(‚ log„) (5.2.6)

with the same convexity properties.
The di↵erences with the classical entropy arise for composite systems. For such a

system AB , composed of two subsystems A and B , a general mixed state is given by a
density matrix ‚AB onHAB =HA ⌦HB . The reduced density matrices for A and B are

‚A = trB (‚AB ) , ‚B = trA(‚AB ) (5.2.7)

This corresponds to the notion of marginal distribution w.r.t. A and B of the general
probability distribution of states for AB in classical statistics. Now if one considers

S(AB ) = �tr(‚AB log‚AB ) , S(A) = �tr(‚A log‚A) , S(B ) = �tr(‚B log‚B )
(5.2.8)

one has the following definitions.

Conditional entropy: The conditional entropy S(A|B) (the entropy of A conditional to
B in the composite system AB ) is

S(A|B ) = S(AB )� S(B ) (5.2.9)

The conditional entropy S(A|B ) corresponds to the remaining uncertainty (lack of in-
formation) on A if B is known.
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96 CHAPTER 5. INFORMATION, CORRELATIONS, AND MORE

Mutual information: The mutual information (shared by A and B in the composite
system AB )

S(A : B ) = S(A) + S(B )� S(AB ) (5.2.10)

Subadditivity: The entropy satisfies the general inequalities (triangular inequalities)

|S(A)� S(B )|  S(AB )  S(A) + S(B ) (5.2.11)

The rightmost inequality S(AB )  S(A)+S(B ) is already valid for classical systems, but
the leftmost is quantum. Indeed for classical systems the classical entropy Hcl satisfy
only the much stronger lower bound

max(Hcl(A),Hcl(B ))  Hcl(AB ) (5.2.12)

Subadditivity implies that if AB is in a pure entangled state, S(A) = S(B ). It also
implies that the mutual information in a bipartite system is always positive

S(A : B ) � 0 (5.2.13)

In the classical case the conditional entropy is always positive Hcl(A|B ) � 0. In the
quantum case the conditional entropymay be negative S(A|B ) < 0 if the entanglement
between A and B is large enough. This is a crucial feature of quantum mechanics. If
S(A|B ) < 0 it means that A and B share information resources (through entanglement)
which get lost if one gets information on B only (through a measurement on B for
instance).

Strong subadditivity: Let us consider a tripartite systems ABC . The entropy satisfies
another very interesting inequality

S(A) + S(B )  S(AC) + S(BC) (5.2.14)

It is equivalent to (this is the usual form)

S(ABC) + S(C)  S(AC) + S(BC) (5.2.15)

Note that 5.2.14 is also true for the classical entropy, but then for simple reasons. In
the quantum case it is a non trivial inequality.

The strong subadditivity inequality implies the triangle inequality for tripartite sys-
tems

S(AC)  S(AB ) + S(BC) (5.2.16)

so the entropic inequalities can be represented graphically as in fig. 5.3
The strong subadditivity inequality has important consequences for conditional

entropy and mutual information (see [NC10]). Consider a tripartite composite system
ABC . It implies for instance

S(C |A) + S(C |B ) � 0 (5.2.17)

and
S(A|BC)  S(A|B ) (5.2.18)
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Figure 5.3: Entropic inequalities: the length of the line “X” is the von Neumann entropy
S(X). The tetrahedron has to be “oblate", the sum AC+BC (fat red lines) is always �
the sum A+B (fat blue lines).

whichmeans that conditioning A to a part of the external subsystem (here C inside BC)
increase the information we have on the system (here A). One has also for the mutual
information

S(A : B )  S(A : BC) (5.2.19)

Thismeans that discarding a part of amultipartite quantum system (here C) increases
the mutual information (here between A and the rest of the system). This last inequal-
ity is very important. It implies for instance that if one has a composite system AB ,
performing some quantum operation on B without touching to A cannot increase the
mutual information between A and the rest of the system.

Let us mention other subadditivity inequalities for tri- or quadri-partite systems.

S(AB |CD )  S(A|C) + S(B |D ) (5.2.20)
S(AB |C)  S(A|C) + S(B |C) (5.2.21)
S(A|BC)  S(A|B ) + S(A|C) (5.2.22)

5.2.2 Bipartite correlations

The specific properties of quantum correlations between two causally separated
systems are known to disagree with what one would expect from a “classical picture”
of quantum theory, where the quantum probabilistics features come just from some
lack of knowledge of underlying “elements of reality”. I shall come back later on the
very serious problems with the “hidden variables” formulations of quantum mechan-
ics. But let us discuss already some of the properties of these quantum correlations
in the simple case of a bipartite system.

I shall discuss briefly one famous and important result: the Tsirelson bound. The
general context is that of the discussion of non-locality issues and of Bell’s [Bel64]
and CHSH inequalities [CHSH69] in bipartite systems. However, since these last in-
equalities are more of relevance when discussing hidden variables models, I postpone
their discussion to the next section 5.3.

This presentation is standard and simply taken from [Lal12].

5.2.2.a - The Tsirelson bound

The two spin system: Consider a simple bipartite system consisting of two spins 1/2,
or q-bits 1 and 2. If two observers (Alice A and Bob B) make independent measure-
ments of respectively the value of the spin 1 along some direction ~n1 (a unit vector in
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3D space) and of the spin 2 along ~n2, at each measurement they get results (with a
correct normalization) +1 or �1. Now let us compare the results of four experiments,
depending whether A choose to measure the spin 1 along a first direction ~a or a sec-
ond direction ~a0, and wether B chose (independently) to measure the spin 2 along a
first direction ~b or a second direction ~b0. Let us call the corresponding observables A,
A0, B, B0, and by extension the results of the corresponding measurements in a single
experiment A and A0 for the first spin, B and B 0 for the second spin.

spin 1 along ~a ! A = ±1 ; spin 1 along ~a0 ! A0 = ±1 (5.2.23)

spin 2 along ~b ! B = ±1 ; spin 2 along ~b0 ! B 0 = ±1 (5.2.24)

Now consider the following combination M of products of observables, hence of
products of results of experiments

M = AB �AB 0 +A0B +A0B 0 (5.2.25)

and consider the expectation value hMiË of M for a given quantum state |Ëi of the two
spins system. In practice this means that we prepare the spins in state |Ëi, chose ran-
domly (with equal probabilities) one of the four observables, and to test localityA and
B may be causally deconnected, and choose independently (with equal probabilities)
one of their own two observables, i.e. spin directions. Then they make their mea-
surements. The experiment is repeated a large number of time and the right average
combination M of the results of the measurements is calculated afterwards.

A simple explicit calculation shows the following inequality, known as the Tsirelson
bound [Cir80]

Tsirelson bound: For any state and any choice orientations ~a, ~a0, ~b and ~b0, one has

|hMi|  2
p
2 (5.2.26)

while, as discussed later, “classically”, i.e. for theories where the correlations are
described by contextually-local hidden variables attached to each subsystem, one has
the famous Bell-CHSH bound

h|M |i“classical00  2. (5.2.27)

The Tsirelson bound is saturated if the state |Ëi for the two spin is the singlet

|Ëi = |singleti = 1p
2
(| "i⌦ | #i � | #i⌦ | "i) (5.2.28)

and the directions for ~a, ~a0, ~b and ~b0 are coplanar, and such that ~a ? ~a0, ~b ? ~b0, and
the angle between ~a and ~b is ·/4, as depicted on 5.4.
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Figure 5.4: Spin directions for saturating the Tsirelson bound and maximal violation of
the Bell-CHSH inequality

5.2.2.b - Popescu-Rohrlich boxes

Beyond the Tsirelson bound ? Interesting questions arise when one consider what
could happen if there are “super-strong correlations” between the two spins (or in
general between two subsystems) that violate the Tsirelson bound. Indeed, the only
mathematical bound on M for general correlations is obviously |hMi|  4. Such hypo-
thetical systems are considers in the theory of quantum information and are denoted
Popescu-Rohrlich boxes [PR94] . With the notations of the previously considered 2 spin
system, BR-boxes consist in a collection of probabilities P(A,B |a,b) for the outputs A
and B of the two subsystems, the input or settings a and b being fixed. The (a,b) cor-
respond to the settings I and the (A,B ) to the outputs O of fig. 5.1 of the quantum
information section. In our case we can take for the first spin

a = 1 ! chose orientation ~a , a = �1 ! chose orientation ~a0 (5.2.29)

and for the second spin

b = 1 ! chose orientation ~b , b = �1 ! chose orientation ~b0 (5.2.30)

The possible outputs being always A = ±1 and B = ±1.
The fact that the P(A,B |a,b) are probabilities means that

0  P(A,B |a,b)  1 ,
º

A,B

P(A,B |a,b) = 1 for a,b fixed (5.2.31)

Non signalling: If the settings a and b and the outputs A and B are relative to two
causally separated parts of the system, corresponding to manipulations by two in-
dependent agents (Alice and Bob), enforcing causality means that Bob cannot guess
which setting (a or a0) Alice has chosen from his choice of setting (b and b0) and his
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a

A B

b

Figure 5.5: a Popescu-Rohrlich box

output (B or B ), without knowing Alices’ output A. The same holds for Alice with re-
spect to Bob. This requirement is enforced by the non-signaling conditions

º

A

P(A,B |a,b) =
º

A

P(A,B |a0,b) (5.2.32)

º

B

P(A,B |a,b) =
º

B

P(A,B |a,b0) (5.2.33)

A remarkable fact is that there are choices of probabilities which respect the non-
signaling condition (hence causality) but violate the Tsirelson bound and even sat-
urate the absolute bound |hMi| = 4 . Such hypothetical devices would allow to use
“super-strong correlations” (also dubbed “super-quantum correlations”) to manipu-
late and transmit information in a more e�cient way that quantum systems (in the
standard way of quantum information protocols, by sharing some initially prepared
bipartite quantum system and exchanges of classical information) [BBL+06] [vD05]
[PPK+09] . However, besides these very intriguing features of “trivial communication
complexity", such devices are problematic. In particular it seems that no interesting
dynamics can be defined on such systems [GMCD10].

Before concluding the discussion on the nature of quantum correlations, it is of
course important to discuss their “non-local” nature and some of the issues related to
the EPR-paradox and the attempts to explain theses correlations by hidden variables
models. I discuss some of theses questions, in particular Bell inequalities, in the next
section 5.3. A summary will be made afterwards in 5.4.

5.3 Hidden variables, contextuality and local realism

5.3.1 Hidden variables and “elements of reality”

In this section I discuss briefly some features of quantum correlations which are im-
portant when discussing the possibility that the quantum probabilities may still have,
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to some extent, a “classical interpretation” by reflecting our ignorance of inaccessi-
ble “sub-quantum” degrees of freedom or “elements of reality” of quantum systems,
which could behave in a more classical and deterministic way. In particular a ques-
tion is: which general constraints on the properties of such degrees of freedom are
enforced by quantum mechanics?

This is the general idea of the “hidden variables” program and of the search of
explicit hidden variable models. These ideas go back to the birth of quantummechan-
ics, and were in particular proposed by L. de Broglie in his first “pilot wave model”, but
they were dismissed bymost physicist after the famous 1927 Solvay Congress and the
tremendous advances of quantum physics in the 1930’s. Despite the discussions that
followed the EPR paper of 1935, hidden variables models underwent a revival only in
the 1960’s, from the works of D. Bohm, and mostly from the work of J. Bell, and the
subsequent experimental developments that started in the 1970’s.

Let me state first that I am not going to review in details or advocate hidden vari-
able models. This section will illustrate the very strong constraints that the quantum
formalism enforces on the basic idea. For more in-depth analysis and some incisive
criticism see for instance [Per95] and [STr07].

Inmost discussions about realism and locality, see for instance [Per95] and [Lal12],
the Bell’s inequality and the issues of non-locality are discussed before the question
of “contextuality” (the concept will be explained below). I choose in these notes to
discuss first contextuality, since I think it is a more general issue that puts the other
problems in perspective, andI shall discuss the Bell’s inequalities and some hidden
variable ideas after.

The basic idea of hidden variables is that the quantum states (the |Ëi’s) of a quan-
tum system S could be described by some ensembles of (partially or totally) hidden
variables v. These hidden variables v belong to some set (probability space) V, with
some unknown statistics and possibly some unknown dynamics. Each v (an element
of the set V) represents an instance of a possibly infinite collection of these more fun-
damental sub-quantum variables. The specific outcome a (a real number) of a mea-
surement operation of a physical observable A is supposed to be determined by the
actual hidden variable v.

observable A + h.v. v
measurement�! outcome a = function(A,v) (5.3.1)

In these schemes, the quantum undeterminism is not fundamental. It is assumed
to come from our lack of knowledge about the exact state of the hidden variables. In
other word, the pure quantum states |Ëi of the system should correspond to some
classical probability distributions pË(v) on V . Note that the outcome of a measure-
ment may depend not only on the choice of the observable that is measured, but also
on the choice and the details of the measurement apparatus. This is usually denoted
the “context” of the measurement. One might expect that, if the idea of hidden vari-
able makes sense, the influence of the (partially unknown) context may be taken into
account through the hidden variables themselves. This notion of “context of a mea-
surement” and of “contextuality” is a very important one (it is basically the whole
point in the discussion of hidden variables) and it will be discussed more in the next
sections. Finally the measurement process should be amenable to a description in
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this framework, taking into e↵ect the possible (deterministic) back reaction of a mea-
surement operation on the the hidden variables v.

A very simple class of hidden variable models has been discussed by J. von Neu-
mann in his 1932 book [vN32, vN55]. The hidden variables (the element of reality)
are assumed to be in one to one correspondence with the possible outcomes a of all
the observables A of the system. v = {outcomes of observables}. Denoting by f (A,v)
the well determined outcome a of a measurement of the observable A (one speaks of
“dispersion free” variables) this function must then satisfy the addition law

C = A + B =) c = a+ b i.e f (C ,v) = f (A,v) + f (B ,v) (5.3.2)

As argued in [vN32, vN55], this is clearly inconsistent with quantum mechanics. In-
deed if A and B do not commute, the possible outcomes of C (the eigenvalues of the
operator C) are not in general sums of outcomes of A and B (sums of eigenvalues of
A and B ), since A and B do not have common eigenvectors. See [Bub10] for a detailed
discussion of the argument and of its historical significance.

5.3.2 Context free hidden variables

More general hidden variable models have been rediscussed a few decades later,
especially by and after J. Bell. Let me first present the class of models called (in the
modern terminology) “context free” or “noncontextual” hidden variables models. The
idea is that one should consider only the correlations between results of measure-
ments on a given system for sets of commuting observables. Indeed only such mea-
surements can be performed independently and in any possible order (on a single
realization of the system), and without changing the statistics of the outcomes. Any
such given set of observables can be thought as a set of classical observables, but of
course this classical picture is not consistent from one set to another.

Thus the idea is still that a hidden variable v assigns to any observable A a definite
outcome a = f (A,v) as in 5.3.1. This assumption is often called “value definiteness”
(VD). To be compatible with quantum mechanics, the outcome a must be one of the
eigenvalues of the operator A. To a given pure quantum state Ë corresponds a prob-
ability distribution pË(v) over the probability space V. It is such that the quantum ex-
pectation value of any observable corresponds to the probabilistic expectation of the
corresponding outcome over the hidden variable distribution

hË|A|Ëi =
Z

V
pË(v) f (A,v) (5.3.3)

However the too strong constraint 5.3.2 should be replaced by the more realis-
tic constraint, valid only for the set of outcomes {f (A,v)} for compatible observables
(commuting operators)

If A1 and A2 commute, then

8

>

>

>

>

<

>

>

>

>

:

f (A1 +A2,v) = f (A1,v) + f (A2,v)
and

f (A1A2,v) = f (A1,v)f (A2,v)
(5.3.4)
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Moreover, these conditions are extended to any family F = {Ai , i = 1,2, · · · } of commut-
ing operators.

The models are context-free or non contextual. The term “context free” means
that the outcome a for the measurement of the first observable A1 is supposed to be
independent of the choice of the other compatible observable A2. In other word, the
outcome of a measurement depends only of the choice of observable and of the state
of the hidden variable, but not of the “context” of the measurement, that is of the
other quantities measured at the same time.

Here I presented purely deterministic hidden variable models. We shall discuss the
possibility that a is a random variable (with a probability law fixed by v) later.

5.3.3 Gleason’s theorem and contextuality

5.3.3.a - Gleason’s theorem excludes general context-free models

These kind of models seemsmore realistic. However, they are immediatly excluded
by Gleason’s theorem [Gle57]. This was already observed and discussed by J. Bell in
[Bel66]. Indeed, if to any v is associated a function fv, defined over the set of observ-
ables by

fv ; A! fv(A) = f (A,v) (5.3.5)

which satisfy the consistency conditions 5.3.4, this condition is true in particular for
any family of commuting projectors {Pi }, whose outcome in 0 or 1

P projector such that P = P† = P2 =) fv(P) = 0 or 1 (5.3.6)

In particular, this is true for the family of projectors {Pi } onto the vector of any or-
thonormal basis {~ei } of the Hilbert space H of the system. This means simply that
defining the function f on the unit vectors ~e by

f (~e) = fv(P~e) , P~e = |~eih~e| (5.3.7)

(remember that v is considered fixed), this function must satisfy for any orthonormal
basis

{~ei } orthonormal basis =)
º

i

f (~ei ) = 1 (5.3.8)

while we have for any unit vector

f (~e) = 0 or 1 (5.3.9)

This contradicts strongly Gleason’s theorem (see 4.4.2), as soon as the Hilbert space
of the systemH has dimension dim(H) � 3. Indeed, 5.3.8 means that the function f is
a frame function (in the sense of Gleason), hence is continuous, while 5.3.9 (following
from the fact that f is function on the projectors) means that f cannot be a continuous
function. So

dim(H) � 3 =) no context-free deterministic hidden variable model
is compatible with quantum mechanics (5.3.10)
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5.3.3.b - The special case of n = 2

Gleason’s theorem does not apply to the case dim(H) = n = 2. It is in fact quite easy
to construct a context-free hidden variable model that describes all the observable of
the 2-level system (the q-Bit). Here is a variant of a model by J. Bell. Any pure state
|Ëi can be represented as a vector ~n = (sin(⁄)cos(Ô),sin(⁄)sin(Ô),cos(⁄)) of the unit
2-sphere in 3 dimensions through the Bloch sphere representation

|~ni = cos(⁄/2)|"i+ sin(⁄/2)eiÔ|#i (5.3.11)

The algebra of observables is generated by the Pauli matrices and any self-adjoint
physical operator A can be written as

A = ”1+ ~‘ · ~„ , ~„ = („x ,„y ,„z) (5.3.12)

~‘ · ~„ is the traceless part of the operator A, with ~‘ = (‘x ,‘y ,‘z) a real vector. One has

h~n|~‘·~„|~ni = ~‘ · ~n (5.3.13)

so that the eigenvalues and eigenvectors of A are

a± = ”± |~‘| , |Ë±i = |~n±i , ~n± = ±~‘/ |~‘| (5.3.14)

One can take as hidden variables the unit vectors ~v

V = S2 , v = ~v |~v| = 1 (5.3.15)

with the outcomes

f (A,~v) =

8

>

>

<

>

>

:

”+ |~‘| if ~‘ · ~v � 0,
”� |~‘| if ~‘ · ~v < 0.

(5.3.16)

and for the probability distribution associated to the pure quantum state |~ni the dis-
tribution on the sphere with support on the

p~n(~v) =
1
·

8

>

>

<

>

>

:

~n · ~v if ~n · ~v � 0,
0 if ~n · ~v < 0.

(5.3.17)

5.3.3.c - Probabilistic models = quantum mechanics

One may consider also partially deterministic hidden variable models, where to a
hidden variable instance v is attached a probability law p( ;v) defined as the probability
that the outcome of a measurement of the observable A is a

v ! p(a|A;v) = probability that measurement of A! a (5.3.18)

so that the expectation value of A with respect to the law p( ;v) and the quantum
expectation value are

E[A|v] =
Z

da a p(a|A;v) , hË|A|Ëi =
Z

V
pË(v) E[A|v] (5.3.19)
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For such a model to be context-free, it must satisfy E[F (A)|v] =
R

da F (a) p(a|A;v).
Then using Gleason’s theorem again, it is easy to shown that the only consistent and
minimal realization is to take for hidden variable the state vector itself (therefore there
is no sub-quantum classical indeterminism), and for the probability law the law that is
given by the Born rule itself (full quantum indeterminism)

v = Ë , p(a|A;Ë) = hË|÷(a1�A)|Ëi (5.3.20)

Gleason’s theorem is a very serious problem for the idea of hidden variables. It
excludes the hypothesis that the values of all the possible observables of a quantum
system are unknown to us but preexist the act of observation. Such a concept is (I
think) often called the “strong realism hypothesis”.

However, some remaining possibilities may still be considered, that correspond to
a weaker notion of realism, for instance:

1. There are still context-free hidden variables, but they describe only some spe-
cific subset of the quantum correlations, not all of them.

2. There are hidden variables, but they are fully contextual.

I now discuss two famous cases where the first option has been explored, but appears
to be still problematic. The second option raises also very serious questions, that will
be shortly discussed in 5.4.

5.3.4 The Kochen-Specker theorem

The first option is related to the idea that some subsets of the correlations of a
quantum system have a special status, being related to some special explicit “ele-
ments of reality” (the “be-ables” or “maybe-ables” in the terminology of J. Bell), in
contrast to the ordinary observables which are just “observ-ables”. Thus a question is
whether for a given quantum system there are some finite families of non commuting
observables which can be associated to context-free hidden variables.

In fact the problems with non-contextual hidden variable models have been shown
to arise already for very small such subsets of observables, first by S. Kochen and E.
Specker [KS67] and by J. Bell in [Bel66]. This is the content of the Kochen-Specker
theorem. This theorem provides in fact examples of finite families of unit vectors E =
{~ei } in a Hilbert Space H (over R or C) of finite dimension (dim(H) = n), such that it is
impossible to find any frame function such that

f (~ei ) = 0 or 1 and (~ei1 , · · · , ~ein ) orthonormal basis =)
n

º

a=1

f (~eia) = 1 (5.3.21)

The original example of [KS67] involves a set with 117 projectors in a 3 dimensional
Hilbert space, that generates the group of symmetry of a 3d polyhedra and is a very
nice example of non-trivial 3d geometry. Simpler examples in dimension n = 3 and n =
4 with a smaller number of projectors have been provided by several authors (Mermin,
Babello, Peres, Penrose). I refer to [Lal12] for details and I shall not discuss more these
examples and their significance. But all these examples show that the non–contextual
character of quantum correlations is a fundamental feature of quantum mechanics.
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5.3.5 The Bell-CHSH inequalities and local realism

5.3.5.a - The local realism hypothesis

Another important example, where the relations between contextuality and locality
are discussed, is the situation of the so-called Einstein-Poldovski-Rosen (EPR) paradox.
It was first considered by J. Bell in in his famous 1964 paper [Bel64]. Consider a
bipartite system S that consists of two causally independent subsystems S1 and S2,
for instance a pair of time-like separated photons in a Bell-like experiment. We are
interested in the correlations between the result of independent measurements on
S1 and S2. If A is some observable for the system S1 and B some observable for the
system S2, this pair of observables is compatible, since A and B , (or more exactly A⌦1
and 1⌦ B ) commute. Thus in quantum mechanics the result of a measurement on S1
should depend on the state of the whole system S and of the choice of the observable
A, but it should not depend on the measurement made on S2. In other word, the result
of a measurement on S1 might depend on the local context of S1 but it should not
depend on the context of S2.

Following J. Bell, let us assume that some hidden variables model (some “elements
of reality”) underly the bipartite system S , and that, in the spirit of the argument by
EPR, this model is local in the sense that it is S1-versus-S2 context free. This means
that the “sub-quantum” state of the whole system S is assumed to be described by
some hidden variable v. The result a of the measurement of A on S1 is determined (or
obeys a probabilistic law) that depends on the hidden variable v, on the observable A
chosen, and possibly of the local context of the measurement on S1, but not on the
local context of the measurement done on S2. Similarly, the result b of the measure-
ment of B on S2 is depends on the hidden variable v, on the observable B chosen, and
possibly of the local context for S2, but not on the local context for S1.

For a purely deterministic (dispersion free) hidden variable model with such a con-
straint of locality, this means that a hidden variable v assigns determined outputs a
and b to the measurements of A and B (respectively on S1 and S2)

v ! a = f1(A,v) , b = f2(B ,v) (5.3.22)

For a partially deterministic local hidden variable model, a hidden variable v assigns
independent probability distributions for the outcomes a and b of the measurements
of A and B (respectively on S1 and S2)

v ! p1(a|A;v) , p2(b|B ;v) (5.3.23)

Since in general we have seen that on a single subsystem no context-free hidden vari-
able model is compatible with quantummechanics, in general A and B must be under-
stood as

A = measured observable + local context for S1 (5.3.24)

B = measured observable + local context for S2 (5.3.25)

A notable exception (in fact the only one) is the situation where the subsystems S1
and S2 are 2-level quantum systems (qBits, spins 1/2, photons with two polarization
states. In this case we may forget about the local contexts and take 5.3.22 at face

François David, 2014 Draft Lecture Notes – April 2014



5.3. HIDDEN VARIABLES, CONTEXTUALITY AND LOCAL REALISM 107

value. They will not change the argument leading to the Bell-CHSH inequalities any-
way.

In any case, hidden variables models for a bipartite system that assign outcome
to separate measurements on the two subparts according to 5.3.22 or 5.3.23 are de-
noted usually “local hidden variable models”. I tend to find this denomination a bit
misleading, since for such models the “hidden variables” are in general still contex-
tual. The denomination “local” indicates that the output of a measurement is as-
sumed to depend on the hidden variable only through the local context of this mea-
surement. This is the hypothesis of “local realism”. One might perhaps rather call it
the hypothesis of "local contextuality", since it defines “locally-contextual-only hidden
variables models", or “hidden variables models that satisfy contextual local realism”.
Since the denominations "local realism" and “local hidden variable models” are stan-
dard I shall use them.

5.3.5.b - The Bell-CSHS inequality

Let me now recall the derivation of the famous Bell-CHSH inequality. In a general
local hidden variable model, a quantum state Ë of S corresponds to some probability
distribution qË(v) over the hidden variables v. qË(v) represent our ignorance about the
“elements of reality” of the system. If this description is correct, the probability for the
pair of outcomes (A,B )! (a,b) in the state Ë is given by the famous representation

pË(a,b|A,B ) =
º

v

qË(v)p1(a|A;v)p2(b|B ;v)) (5.3.26)

with p1 and p2 the outcome probabilities as in 5.3.23 It is this peculiar form which im-
plies the famous Bell and BHSH inequalities on the correlations between observables
on the two causally independent subsystems. If we consider for observables for S1
(respectively S2) two (not necessarily commuting) projectors P1 and P 01 (respectively
Q2 and Q 02), with outcome 0 or 1, and take for observables

A = 2P1 �1 A0 = 2P 01 �1 B = 2Q1 �1 B 0 = 2Q 01 �1 (5.3.27)

The outcomes a, a0, b and b0 are �1 or 1. Let us (the experimentalist) perform a series
of experiments on an ensemble of independently prepared instances of the bipartite
system S , choosing randomly with equal probabilities 1/4 to measure (A,B ), (A0,B ),
(A,B 0) or (A0,B 0), and combine the results to compute the average

hMi = hABi � hAB 0i+ hA0Bi+ hA0B 0i (5.3.28)

The same argument than the argument used in 5.2.2 when discussing the Tsirelson’s
bound, using the general inequality

a,a0,b,b0 2 [�1,1] =) a(b � b0) + a0(b + b0) 2 [�2,2] (5.3.29)

and the fact that for the hidden variable model the outcomes a, a0, b and b0 are a priori
well defined for each instance of v so that one can use 5.3.26 implies the Bell-CSHS
inequality

�2  hMi  2 (5.3.30)
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For a bipartite quantummechanical state that consists of two q-Bits, this inequality is
known to be violated for some simple quantum states, in particular the fully entangled
single state |Ëi = (1/

p
2)(|1i⌦ |0i� |0i⌦ |1i) and some adequate choice of observables.

Indeed hMi is known to saturate the Tsirelon’s bound |hMi|  2
p
2 for such states.

From the quantum mechanics point of view, the reason for the violation of the
bound 5.3.30 is simple. Assuming that all quantum states give probabilities of the form
expected from the general local hidden variablemodel 5.3.26 and that the subsystems
probabilities p1(a|A;v) and p2(b|B ;v) obey the quantum rules and are representable by
density matrices for the subsystems (this is the maximal assumption allowed by local
contextuality) means that any quantum state (mixed or pure) È of the whole system
could be represented by a density matrix of the form

‚È =
º

v

qÈ(v) (‚1(v)⌦ ‚2(v)) (5.3.31)

where qÈ(v) � 0 is a density probability over V and ‚1(v) and ‚2(v) density matrices
relative to the subsystems S1 and S2. Such mixed states for a bipartite system are
called separable states. But its is well known that not all mixed states of a bipartite
systems are separable, in particular pure entangled states are not separable. In fact
finding a criteria for characterizing separate states of a general bipartite or multipar-
tite quantum system is a very interesting problem in quantum information.

I am not going to discuss the many and very interesting generalizations and vari-
ants of Bell inequalities (for instance the spectacular GHZ example for tripartite sys-
tems) and the possible consequences and tests of contextuality. I will not review ei-
ther all the experimental tests of violations of Bell-like inequalities in various con-
texts, starting from the first experiments by Clauser, and those by Aspect et al., up
to the most recent ones, that have basically closed all the possible loopholes in the
hypothesis leading to the Bell-like inequalities. All the experimental results are in full
agreement with the predictions of standard Quantum Mechanics and more precisely
of Quantum Electro Dynamics. See for instance [Lal12] for a recent and very complete
review.

5.3.6 Contextual models

Let me discuss briefly the last possibility: relax completely the requirement of non-
contextuality and consider fully contextual hidden variable models.

5.3.6.a - Bell’s simple model

Full contextuality for a hidden variable model amounts to assume that the output
a for the measurement of an observable A is determined by the full context of the
measurement, i.e. all the other compatible measurements and operations that are
performed independently on the system. Let me consider the simple case of a finite
dimensional Hilbert space. One can reduce the situation to the case where all these
operations are ideal projective measurements, and thus consider as “the context” a
complete family 2 of compatible projectorsP = {Pi }i=1,K onto orthogonal subspaces Ei

2. In some discussions the context may include additional parameters (not included into the hidden
variables) like the details of the apparatus used, etc.
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so that
PiPj = ÷i j Pi , 1 =

º

i

Pi i.e. H =
M

i

Ei , Ei ? Ej (5.3.32)

The projectors are not necessarily of rank 1 (projector onto pure states) so that K 
n = dim(H).

context := {Pj }j=1,K =P (5.3.33)

Then the output ai = 0,1 of ameasurement of some Pi 2P is determined by the hidden
variable v through a function that depends on all the Pj ’s, not only on Pi .

ai = f (Pi |{Pj };v) = fi (P ;v) (5.3.34)

The only constraint is that

fi (P ;v) = 0,1 ,
º

i

fi (P ;v) = 1 (5.3.35)

and that, if a quantum pure state |Ëi corresponds to a hidden variable distribution pË,
one has

hË|Pi |Ëi =
Z

V
pË(v) fi (P ;v) (5.3.36)

The l.h.s. corresponds to the Born rule and should be independent on the context, i.e.
of the choice of the others Pj ’s, j , i .

As noticed by J. Bell in [Bel66], this is trivial to satisfy. Just take as hidden variable
the quantum state vector itself, |Ëi, plus a uniformly distributed real random variable
X 2 [0,1].

v = (|Ëi,X) (5.3.37)

From the probabilities qj = qj (P ; |Ëi) = hË|Pj |Ëi of getting aj = 1 in the state |Ëi (given
by Born’s rule), one can decompose the interval [0,1[ into the successive disjoint in-
tervals I| = [Xj�1,Xj [ with Xj =

¥

k=1,j
qk. The output functions are defined as

ai = fi (P ;v) =

8

>

>

<

>

>

:

1 if X 2 Ii = [Xi�1,Xi [,
0 otherwise.

(5.3.38)

and the probability distribution for a quantum state |Êi is the Dirac distribution on the
space of quantum states (the projective hyperplane in H) times the uniform distribu-
tion over [0,1[ for X

Z

V
p|Êi(v) =

Z

|Ëi
÷(|Ëi, |Êi)

Z 1

0
dX (5.3.39)

Thus one reobtains easily the standard output quantum probabilities

pi = hÊ|Pi |Êi (5.3.40)

from the principle “Born rule in, Born rule out”.
This model is very simple indeed, and was considered by J. Bell as too trivial and

not physical. Indeed it amounts to standard quantum mechanics itself. The random
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variable X has no particular physical or “‘ontological” status. It is just introduced
to give an explicit representation of the quantum probabilities as probabilities on an
abstract classical probability space. In a mathematical langage,X implements the
Kolmogorov extension theorem, which states that any abstract probabilistic process
– provided it satisfies some obvious self-consistency conditions – can be represented
on some explicit probability space “ . But on the other hand this model is so generic
(well, one has to extend it to infinite dimensional Hilbert spaces, see below) that one
may suspect that any contextual hidden variable model might be reduced to this one,
if one wants to keep it fully compatible with quantum mechanics.

5.3.6.b - The de Broglie-Bohm pilot-wave model

This is a more elaborate model which contains the dynamics of the Schrôodinger
equation. It was first proposed by L. de Broglie, and rediscovered and developed by D.
Bohm. Let me recall the model for the simple and standard example of a non relativis-
tic particle in a scalar potential U . In position space and in the Schrödinger picture a
pure quantum state |Ëi is given by the wave function Ë = Ë(~q, t). The basic idea is that
the continuity equation for the probability density ‚ and the probability current ~j

Å‚
Åt

+ ~r ·~j = 0 (5.3.41)

with

‚ = |Ë|2 , ~j =
i~
2m

(Ë~rË̄� Ë̄~rË) (5.3.42)

can be rewritten as the flow equation for the density distribution ‚̃ = ‚̃(~q, t) of particles
driven by a vector field ~V = ~V(~q, t) that derives from the wave function itself

Å‚̃
Åt

+ ~r(~V ‚̃) with ~V =
~j
‚
=

~

m
~r(arg(Ë)) = i~

2m

0

B

B

B

B

@

~rË̄
Ë̄
�
~rË
Ë

1

C

C

C

C

A

(5.3.43)

Thus a hidden variable model consists in taking as sub-quantum degrees of freedom
(hidden variable) the wave function itself Ë = Ë(~q, t) (the “pilot wave”) and the position
vector ~x = ~x(t) of a “real” particle, that will be the observable degree of freedom.

v = (Ë,~x) (5.3.44)

The particle behaves as a passive scalar carried along the time dependent flow ~V . The
vector flow ~V is given by the gradient of the phase of the wave function Ë, that obeys
the Schrödinger equation (U = U(~q) is the external scalar potential)

i~
ÅË
Åt

= � ~

2

2m
…Ë+UË (5.3.45)

The dynamics for ~x is
d~x
dt

= ~V(~x, t) (5.3.46)
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and the initial probability distribution ‚̃Ë(~x, t = 0) for the particle in position space, that
corresponds to the ensemble that describe a quantum state |Ëi, has to be taken equal
to the probability density function given by the Born rule

‚̃Ë(~x, t) = |Ë(~x, t)|2 at t = 0 (5.3.47)

It is easy to see that this relation (relating the probability distribution for the particle
~x to the pilot wave function Ë) stays valid at all times t, if the dynamics of the hid-
den variable v is given by the Schrödinger equation 5.3.45 for Ë and the pilot wave
equation 5.3.46 for ~x.

With these notations for a contextual hidden variable theory, the de Broglie-Bohm
theory describes the observables of position of the quantum particle. Thus the “con-
text” is the set of projections over position eigenstates

Context = Q = {P~q = |~qih~q|; ~q 2 Rd } (5.3.48)

The output rule is (the hidden variable being v = (Ë,~x))

f (P~q |Q;v) = ÷(~x � ~q) (5.3.49)

and the probability distribution associated to a quantum state |Êi is
pÊ(v) = pÊ(Ë,~x) = ÷(Ê,Ë) |Ë(~x)|2 (5.3.50)

One has indeed for any function A of the position operator ~Q

hÊ|A( ~Q)|Êi =
Z

Ë,~x
pÊ(Ë,~x)A(~x) (5.3.51)

The interesting property of the model is that its dynamics reproduces the average
quantumdynamics. Thismeans that the expectation value of themomentumoperator
P on a state |Êi is given by the probabilistic average of the classical momentum ~p =m~̇x
of the “classical” particle

hÊ|~P |Êi =m
Z

Ë,~x
pÊ(Ë,~x) ~̇x (5.3.52)

The model can be trivially extended to more that one particle. Then the pilot wave
functionË(~x1,~x2, · · · ) depends on the position vectors of all the particles, and takes into
account the non-local correlations between the positions of the “classical” particles
resulting from entanglement.

For a single particle in d=1 dimension, the de Broglie-Bohm model is in fact equiv-
alent to the simple Bell’s model discussed in the previous section. Indeed instead of
the hidden variable x (the position of the particle), one can consider the variable X

X =
Z x

�1
dy |Ë(y)|2 (5.3.53)

and switch to the hidden variables u

v = (Ë,x) ! u = (Ë,X) (5.3.54)

For any quantum state the variable X is now uniformly distributed on the interval [0,1]
and it has no dynamics

pÊ(Ë,X) = ÷(Ê,Ë)1 , Ẋ = 0 (5.3.55)
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5.3.6.c - Stochastic models and Nelson stochastic mechanics

A question often discussed for these models is whether there is a good reason to
take as initial distribution ‚̃Ê for the position ~x the quantum probability distribution
|Ê|2. Indeed, the evolution process for Ë and ~x and the evolution equation 5.3.43 are
valid for ‚̃ , |Ê|2 as well.

One solution is to modify the evolution equation for ~x by adding some random-
ness, so that the general evolution equation for ‚̃ contains a di↵usion term and a
drift term, in such a way that any initial distribution ‚̃ relax irreversibly towards the
quantum probability distribution ‚̃Ê = |Ê|2 at large time. The asymptotic equilibrium
dynamics at large time, although non-deterministic, is physically indistinguishable for
the deterministic model, as far as position observables are concerned.

In such models, the evolution equation for x becomes a stochastic equation of the
form

dx = V dt +D dt + fldBt (5.3.56)

where V is the driving term of the original model, D is a drift term, dBt a Brownian
process, and fl a di↵usion constant (it may depend on x). The drift term D is adjusted
to the di↵usion term so that the evolution equation takes the form (for fl independent
of x and t)

Å‚̃
Åt

+ ~r(~VÊ ‚̃) + fl‚Ê…(‚̃/‚Ê) (5.3.57)

It is clear that the dynamics is now irreversible, and that it should relax towards the
distribution where the di↵usion term …(‚̃/‚Ê) vanishes, namely the quantum probabil-
ity distribution ‚̃ = ‚Ê = |Ê|2.

These kind of models have been proposed by D. Bohm and his collaborators, who
looked for physical models where the dynamics of the particles and the di↵usion pro-
cess was the result of some non-trivial microscopic sub-quantum dynamics, resulting
in short time relaxation towards the equilibrium quantum distribution.

A particular case is the so-called stochastic quantum mechanics proposed by E.
Nelson [Nel66]. It amounts to a stochastic dynamics of the form 5.3.56, with a special
choice for the di↵usion coe�cient

fl =
~

2m
(5.3.58)

This particular choice has some advantages. For a free particle (external potential
U = 0), the dynamics of the particle is a Brownian process with some characteristics
and statistics similar to those of the trajectories in the Feynman path integral formu-
lation. The momenta of the particle p = mq̇ becomes a stochastic variable with short
time correlations of a white noise, with the right variance in order to reproduce as a
statistical law the Heisenerg uncertainty relations, etc.

Othermechanisms thatmight produce relaxation of a general distribution function
towards the quantum one have been suggested, based on the idea of coarse graining
over microscopic sub-quantum degrees of freedom and of the notion of e↵ective wave
functions. See [Val91a, Val91b] for a simple version, and [DuGZ92] for another more
detailed formulation and for details.
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5.3.6.d - An adiabatic argument

Finally, let me indicate another argument [Dav14] that justifies the choice of the
quantum distribution measure ‚Ê = |Ê|2 as hidden variable distribution ‚̃. Let me start
from a given quantum state Ê0, and to simplify take it to be an energy eigenstate
of a time symmetric Hamiltonian H of the quantum system, so that the dynamics of
the position hidden variable ~x is trivial (~̇x = 0). Now let me perturbs adiabatically the
dynamics along a cycle in the space of Hamiltonians, starting and ending at H

H! H(t) = H + ◊÷H(t◊) (5.3.59)

with ÷H(0) = ÷H(1) = 0, as done in the computation of the Berry phase. In the adiabatic
limit ◊ ! after one cycle (T = 1/◊) one ends in the same quantum state Ê0 (up to a
phase, including the Berry phase, of course). But one can also study the adiabatic
dynamics of the particle ~x(t) and argue that it is non trivial after one cycle, namely

~x(0)! ~x(T = 1/◊) , ~x(0) (5.3.60)

The final position depends of the adiabatic cycle. Therefore, with the exception of the
one dimensional case d = 1, adiabatic transformations mix the particle positions and
the quantum distribution measure ‚Ê = |Ê|2 is the only probability distribution ‚̃ that
is invariant under arbitrary adiabatic cyclic transformations, and hence natural under
general unitary Hamiltonian evolutions.

5.3.6.e - The problems with contextual models

Of course the main feature of these models is that they are contextual. They are
appropriate, and indeed equivalent to standard quantum mechanics, as long as one
wants to describe the properties of a quantum system that depend (at a given time) of
a given family of compatible observables. In the pilot-wave models these observables
(the context) are the position observables, and these models single out the space of
positions of the particles (the configuration space) as playing a specific role.

The original pilot wave model manages to treat also (some aspects of) the single
momentum operator P , but none of these contextual models will succeed in treating
simultaneously, together with the position operators Q , Q2, Q3, etc. all the momen-
tum operators P , P2, P3, etc. and the combinations of P ’s and Q ’s, in particular the
energy operator (the Hamiltonian) H. This impossibility is ensured by the no-go theo-
rems that we discussed (Gleason’s theorem, Kochen-Specker’s theorem, etc.).

It is indeed possible to construct a hidden variable model that deals with the P , P2,
P3, etc. but it will be uncorrelated (and ontologically incompatible) with the model for
the Q , Q2, Q3, etc. In order to construct a consistent hidden variable model, one must
first know which physical quantities one is going to measure, and the description of
the possible outputs of your measurements in terms of preexisting actual values for
the hidden variables will depend on this choice! In the pilot wave model, the position
x’s variables can be considered as the subsets of hidden variables that you can ac-
tually observe, the remaining wave function Ë, i.e. the pilot wave, being actually the
really hidden variable that you cannot observe. This description is valid (and some-
time quite sensible and useful for physics or chemistry), but only in the context of posi-
tion observables. To give a firm ontological status to these x variable (namely, stating
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that they are “element of reality” that preexists the measurements and determine the
results of the measurement) is not really possible.

It is sometimes advocated that the position observables have a special status and
should be considered as really more fundamental. But I think that this point of view is
di�cult to defend, especially in high energy physics and in quantum field theory, where
the position ~x as well as the time t are not – and cannot be – physical observables!

Finally let me mention that this issue of contextuality and of hidden variables has
been also discussed for quantum measurement processes. See for instance [DGZ04].
One has to associate also hidden variables to the measurement apparatus, in order
to construct a hidden variable model for quantum measurements. However, in fact
one has to introduce hidden variables common to the measurement system and the
measurement apparatus, and to assume that there are preexisting variables that cor-
relates the choice of the observed quantity by the observer and the results of the
measurements. In particular, this means that the basic independence assumption
in deriving the Bell inequalities – namely that the two observer can choose indepen-
dently whatever they measure – is violated. The former – there are elements of reality
that “exist” but always conspire to reproduce the results of quantum mechanics – is
often denoted “superdeterminism”. I shall not discuss more this point here, but for
many physicists superdeterminism leads to formidable philosophical problems and to
no predictive powers.

5.4 Summary discussion on quantum correlations

Let me now try to summarize what can be learnt from the last two sections on
quantum correlations and the notions of contextuality and non-locality.

The significance and the consequences of Bell’s inequalities and their extensions,
and of the Kochen-Specker-like theorem’s for quantum theory have been enormously
discussed, and some debates are still going on. It is not the purpose of these notes to
review and summarize all these discussions that took place at the physics level and
at the philosophical level. Let me just try to make some simple remarks.

5.4.0.f - Locality and realism

As discussed in section 5.3, the assumption of context-free value definiteness is
clearly not tenable, from Gleason’s theorem. This means that one must be very care-
ful when discussing quantum physics about correlations between results of measure-
ments. To quote a famous statement by Y. Peres: “Unperformed experiments have no
results” [Per78].

Trying to assign some special ontological status to a (finite and in practice small)
number of observables to avoid the consequence of the Kochen-Specker theoremmay
be envisioned, but raises other problems. For instance, if one wants to keep the main
axioms of QM, and non-contextuality, by using a finite number of observables, one
would expect the quantum logic formalism would lead to QM on a finite division ring (a
Galois field), but it is known that this is not possible (see the discussion in 4.3.2). Note
however that relaxing some basic physical assumptions like reversibility and unitarity
has been considered for instance in [tH07].
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It is also clear that non-local quantum correlations are present in non-separable
quantum states, highlighted by the violations of Bell’s and CHSH-like inequalities (and
their numerous and interesting variants). They represent some of the most non-
classical and counter-intuitive features of quantum physics. In connexion with the
discussions of the “EPR-paradox”, this non-local aspect of quantum physics has been
often – and are still sometimes –presented as a contradiction between the principles
of quantum mechanics and those of special relativity. This is of course not correct.

The concept of local realism, which is incompatible with quantum mechanics and
known to be excluded by experiments, is indeed di↵erent from the concept of locality
used in relativistic quantum field theory. As discussed in 5.3.5, local realism corre-
sponds to the property of “local contextuality” for hidden variable models. This idea
was advocated by Einstein and assumed to hold by Einstein, Poldovski and Rosen in
their EPR 1935 paper. It means that two causally independent systems can be as-
signed separate and individual (but locally contextual) hidden variables (“elements of
reality”) and that classical correlations between these local hidden variables are suf-
ficient to explain the quantum correlations between the two systems when they are
entangled.

Locality in quantum field theory is something di↵erent, and corresponds to the
concepts of local events (localized in space and time) and of the causal relations be-
tween these events as related to the geometry of space-time), in particular of there
independence for space-separated points. This is the concept of locality and causal-
ity as formulated by A. Einstein in 1905 in the theory of special relativity, and then
extended to general relativity. These requirements of causality and locality are nec-
essary in quantum theory in order to formulate consistent relativistic quantum field
theories, as briefly presented in 3.8. They are constraints on the observables (the
operators) of the quantum theory, rather than constraints on the (tentative hidden
variable description of the) quantum states. They imply that no information (causal
e↵ects) can propagate faster than light, and thus imply the “non-signaling” property
of quantum information science. This is the reason why EPR-like experiments and
the violations of Bell-like inequalities should not be considered as a signal of some
“spooky-at-a-distance physical action” at work in quantum operations over entangled
multipartite systems.

locality in QFT , local realism

In section 5.3 I discussed also the status of fully contextual models, that would
correspond to some form of “non-local contextual realism”, and explained why they
are in fact quite problematic. I shall come back shortly to these issues in 5.6, when
discussing the relations between the formalisms and the interpretations.

5.4.0.g - Chance and correlations

Now let me return to the quantum correlations discussed in 5.2. Contrary to clas-
sical physics, in quantum physics there is an irreducible quantum indeterminism and
uncertainty in the description of a quantum system. Not all the physical observables
can be characterized uniquely and independently at the same time. This essential
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feature reflects itself in the Heisenberg uncertainty principle, and can be formulated
for instance as N. Bohr’s “complementarity principle”.

However, contrary to what could be expected, this does not mean that a quan-
tum system is always more uncertain or “fuzzy” than a classical system. Indeed, the
quantum correlations may very well be stronger than the corresponding classical cor-
relations, when considering bipartites or multipartite systems. This is exemplified for
instance by the quantum entropic inequalities 5.2.11 and 5.2.14 when compared to
their classical analog, the entropic bound 5.2.12, and by the Tsirelson bound 5.2.26
compared to the B-CHSH inequality 5.3.30. Indeed, thanks to entanglement, quantum
systems may be more correlated than what is expected classically when one assumes
that correlations come only from classical, local and non-contextual “elements of re-
ality” shared by the systems.

Nevertheless, the quantum correlations are still strongly controlled by the physi-
cal principles that we have discussed in the presentation of the formalisms, causality,
reversibility and locality (in the causal sense), or by the information principle formu-
lations shortly discussed in 5.1. The “super-strong” correlations (that can be build
for instance using the Popescu-Rohrlich boxes discussed in 5.2.2) raise problems and
it has not been possible to implement them in a physical theory. This can be repre-
sented by the little drawing of Fig. 5.6, where the set of quantum correlations (the red
square) is shown to be larger than the set of classical correlations, but smaller that
the set of all logically possible correlations.

Classical
Local

Non-contextual

Quantum

N
on-localCo
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Causal?

??

?

Figure 5.6: Schematic of the worlds of classical correlations, quantum correlations
and “super-strong” unphysical correlations

This simple drawing illustrates why the theoretical works by J. Bell and its succes-
sors, besides their importance for our theoretical and philosophical understanding of
what is and what is not quantum mechanics, turned out to have a significant and long
term impact in science and technology. They played an important role in the rise of
quantum information science, since they showed that, using quantum correlations
and entanglement, it is possible to transmit and manipulate information, perform cal-
culations and search processes, etc. in ways which are impossible by classical means,
or which are much more e�cient.
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5.5 Measurements

5.5.1 What are the questions?

Up to now I have not discussed much the question of quantum measurements. I
simply took the standard point of view that (at least in principle) ideal projective mea-
surements are feasible and one should look at the properties of the outcomes. The
question is of course highly more complex. In this section I just recall some basic
points about quantum measurements.

The meaning of the measurement operations is at the core of quantum physics. It
was considered as such from the very beginning. See for instance the proceedings of
the famous Solvay 1927 Congress [BV12], and the 1983 review by Wheeler and Zurek
[WZ83]. Many great minds have thought about the so called “measurement problem”
and the domain has been revived in the last decades by the experimental progresses,
which allows now to manipulate simple quantum system and implement e↵ectively
ideal measurements.

On one hand, quantummeasurements represent one of themost puzzling features
of quantum physics. They are non-deterministic processes (quantum mechanics pre-
dicts only probabilities for outcomes of measurements). They are irreversible pro-
cesses (the phenomenon of the “wave-function collapse”). They reveal the irreducible
uncertainty of quantum physics (the uncertainty relations). Thismakes quantummea-
surements very di↵erent from “ideal classical measurements”.

On the other hand, quantum theory is the first physical theory that addresses se-
riously the problem of the interactions between the observed system (the object) and
themeasurement apparatus (the observer). Indeed in classical physics the observer is
considered as a spectator, able to register the state of the real world (hence to have its
own state modified by the observation), but without perturbing the observed system
in any way. Quantum physics shows that this assumption is not tenable. Moreover,
it seems to provide a logically satisfying answer 3 to the basic question: what are the
minimal constraints put on the results of physical measurements by the basic physical
principles 4.

It is often stated that the main problem about quantum measurement is the prob-
lem of the uniqueness of the outcome. For instance, why do we observe a spin 1/2
(i.e. a q-bit) in the state |"i or in the state |#i when we start in a superposition |Ëi =
”|"i+ ‘|#i? However by definition a measurement is a process which gives one single
classical outcome (out of several possible). Thus in my opinion the real questions,
related to the question of the “projection postulate”, are: (1) Why do repeated ideal
measurements should give always the same answer? (2) Why is it not possible to
“measure” the full quantum state |Ëi of a q-bit by a single measurement operation,
but only its projection onto some reference frame axis?

Again, the discussion that follows is very sketchy and superficial. A good recent ref-
erence, both on the history of the “quantum measurement problem”, a detailed study
of explicit dynamical models for quantum measurements, and a complete bibliogra-
phy, is the research and review article [ABN12].

3. If not satisfying every minds, every times...
4. Well... as long as gravity is not taken into account!
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5.5.2 The von Neumann paradigm

The general framework to discuss quantummeasurements in the context of quan-
tum theory is provided by J. von Neumann in his 1932 book [vN32, vN55]. Let me
present it on the simple example of the q-bit.

But before, let me insist already on the fact that this discussion will not provide
a derivation of the principle of quantum mechanics (existence of projective measure-
ments, probabilistic features and Born rule), but rather a self-consistency argument of
compatibility between the axioms of QM about measurements and what QM predicts
about measurement devices.

An ideal measurement involves the interaction between the quantum system S
(here a q-bit) and a measurement apparatusM which is a macroscopic object. The
idea is thatM must be treated as a quantum object, like S . An ideal non destructive
measurement on S that does not change the orthogonal states |"i and |#i of S (thus
corresponding to a measurement of the spin along the z axis, Sz), correspond to in-
troducing for a finite (short) time an interaction between S andM, and to start from
a well chosen initial state |Ii forM. The interaction and the dynamics ofM must be
such that, if one starts from an initial separable state where S is in a superposition
state

|Ëi = ” |"i+ ‘ |#i (5.5.1)

after the measurement (interaction) the whole system (object+apparatus) is in an en-
tangled state

|Ëi ⌦ |Ii ! ” |"i⌦ |F+i+ ‘ |#i⌦ |F�i (5.5.2)

The crucial point is that the final states |F+i and |F�i forMmust be orthogonal 5

hF+|F�i = 0 (5.5.3)

Of course this particular evolution 5.5.1 is unitary for any choice of |Ëi, since it trans-
forms a pure state into a pure state.

|Ëi ⌦ |Ii ! ” |"i⌦ |F+i+ ‘ |#i⌦ |F�i (5.5.4)

One can argue that this is su�cient to show that the process has all the char-
acteristic expected from an ideal measurement, within the quantum formalism itself.
Indeed, using the Born rule, this is consistent with the fact that the state ”|"i is ob-
served with probability p+ = |”|2 and the state ”|#i with probability p� = |‘|2. Indeed
the reduced density matriices both for the system S and for the systemM (projected
onto the two pointer states) is that of a completely mixed state

‚S =
 

p+ 0
0 p�

!

(5.5.5)

For instance, as discussed in [vN32][vN55], if one is in the situation where the ob-
serverO, really observe themeasurement apparatusM, not the system S directly, the
argument can be repeated as

|Ëi ⌦ |Ii ⌦ |Oi ! ” |"i⌦ |F+i ⌦ |O+i+ ‘ |#i⌦ |F�i ⌦ |O�i (5.5.6)

5. as already pointed out in [vN32]
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and it does not matter if one puts the fiducial separation between object and observer
between S and M + O or between S +M and O. This argument being repeated ad
infinitum.

A related argument is that once ameasurement has been performed, if we repeat it
using for instance another copyM0 of the measurement apparatus, after the second
measurement we obtain

|Ëi ⌦ |Ii ⌦ |I 0i ! ” |"i⌦ |F+i ⌦ |F 0+i+ ‘ |#i⌦ |F�i ⌦ |F 0�i (5.5.7)

so that we never observe both |"i and |#i in a successive series of measurements
(hence the measurement is really a projective measurements). The arguments holds
also if the outcome of the first measurement is stored on some classical memory de-
vice D and the measurement apparatus reinitialized to |Ii. This kind of argument can
be found already in [Mot29].

The discussion here is clearly outrageously oversimplified and very sketchy. For a
precise discussion, one must distinguish among the degrees of freedom of the mea-
surement apparatus M the (often still macroscopic) variables which really register
the state of the observed system, the so called pointer states, from the other (numer-
ous) microscopic degrees of freedom ofM, which are present anyway sinceM is a
macroscopic object, and which are required both for ensuring decoherence (see next
section) and to induce dissipation, so that the pointer states become stable and store
in a e�cient way the information about the result of the measurement. One must also
take into account the coupling of the system S and of the measurement apparatusM
to the environment E .

5.5.3 Decoherence, ergodicity and mixing

As already emphasized, the crucial point is that starting from the same initial state
|Ii, the possible final pointer states for the measurement apparatus, |F+i and |F�i, are
orthogonal. This is now a well defined dynamical problem, which can be studied using
the theory of quantum dynamics for closed and open systems. The fact that M is
macroscopic, i.e. that its Hilbert space of states in very big, is essential, and the crucial
concept is decoherence (in a general sense).

The precise concept and denomination of quantum decoherence was introduced
in the 70’s (especially by Zeh) and developed and popularized in the 80’s (see the
reviews [JZK+03], [Zur03]). But the basic idea seems much older and for our purpose
one can probably go back to the end of the 20’ and to von Neumann’s quantum ergodic
theorem [vN29] (see [vN10] for the english translation and [GLM+10] for historical and
physical perspective).

One starts from the simple geometrical remark [vN29] that if |e1i and |e2i are two
random unit vectors in a N dimensional Hilbert space H (real or complex), their aver-
age “overlap” (squared scalar product) is of order

|he1|e2i|2 '
1
N

, N = dim(H) (5.5.8)

hence it is very small, and for all practical purpose equal to 0, if N is very large. Re-
member that for a quantum system made out of M similar subsystems, N / (N0)M , N0
being the number of accessible quantum states for each subsystem.
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A simple idealized model to obtain a dynamics of the form 5.5.4 for S +M is to as-
sume that both S andM have no intrinsic dynamics and that the evolution during the
interaction/measurement time interval is given by a interaction Hamiltonian (acting
on the Hilbert spaceH =HS ⌦HM of S +M) of the form

Hint = |"ih"|⌦H+ + |#ih#|⌦H� (5.5.9)

where H+ and H� are two di↵erent Hamiltonians (operators) acting on HM. It is clear
that if the interaction between S andM takes place during a finite time t, and is then
switched o↵, the final state of the system is an entangled one of the form 5.5.4, with

|F+i = e
t
i~H+ |Ii , |F�i = e

t
i~H� |Ii (5.5.10)

so that
hF+|F�i = hI |e�

t
i~H+ · e t

i~H� |Ii (5.5.11)

It is quite easy to see that if H+ and H� are not (too much) correlated (in a sense that
I do not make more precise), the final states |F+i and |F�i are quite uncorrelated with
respect to each others and with the initial state |Ii after a very short time, and may be
considered as random states inHM, so that

|hF+|F�i|2 '
1

dim(HM)
⌧⌧ 1 (5.5.12)

so that for all practical purpose, we may assume that

hF+|F�i = 0 (5.5.13)

This is the basis of the general phenomenon of decoherence. The interaction between
the observed system and the measurement apparatus has induced a decoherence
between the states | "i and | #i of S , but also a decoherence between the pointer
states |F+i and |F�i ofM.

Moreover, the larger dim(HM), the smaller the “decoherence time” beyond which
hF+|F�i ' 0 is (and it is often in practice too small to be observable), and the larger (in
practice infinitely larger) the “quantum Poincaré recurrence time” (where one might
expect to get again |hF+|F�i| ' 1) is.

Of course, as already mentionned, this is just the first step in the discussion of the
dynamics of a quantum measurement. One has in particular to check and to explain
how, and under which conditions, the pointer states are quantum microstates which
correspond to macroscopic classical-like macrostates, which can be manipulated, ob-
served, stored in an e�cient way. At that stage, I just paraphrase J. von Neumann (in
the famous chapter VI “Der Meßprozeß” of [vN32])

“Die weitere Frage (...) soll uns dagegen nicht beschäftigen.”

Decoherence is a typical quantum phenomenon. It explains how, in most situations
and systems, quantum correlations in small (or big) multipartite systems are “washed
out" and disappear through the interaction of the system with other systems, with
its environment or its microscopic internal degrees of freedom. Standard references
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on decoherence and the general problem of the quantum to classical transitions are
[Zur90] and[Sch07].

However, the underlying mechanism for decoherence has a well know classical
analog: it is the (quite generic) phenomenon of ergodicity, or more precisely the mix-
ing property of classical dynamical systems. I refer to textbooks such as [AA68] and
[LL92] for precise mathematical definitions, proofs and details. Again I give here an
oversimplified presentation.

Let us consider a classical Hamiltonian system. One considers its dynamics on
(a fixed energy slice H = E of) the phase space “ , assumed to have a finite volume
V = fi(“ ) normalized to V = 1, where fi is the Liouville measure. We denote T the
volume preserving map “ ! “ corresponding to the integration of the Hamiltonian
flow during some reference time t0. Tk is the iterated map (evolution during time
t = kt0). This discrete time dynamical mapping given by T is said to have the weak
mixing property if for any two (measurable) subsets A and B of “ one has

lim
n!1

1
n

n�1
º

k=0

fi(B \ TkA) = fi(B )fi(A) (5.5.14)

The (weak) mixing properties means (roughly speaking) that, if we take a random point
a in phase space, its iterations ak = Tka are at large time and “on the average” uni-
formly distributed on phase space, with a probability fi(B )/fi(“ ) to be contained inside
any subset B 2 “ . See fig. 5.7

 

A
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Figure 5.7: Graphical representation of the mixing property (very crude)

Weak mixing is one of the weakest form of “ergodicity” (in a loose sense, there is a
precise mathematical concept of ergodicity).

Now in semiclassical quantization (for instance using Bohr-Sommerfeld quantiza-
tion rules) if a classical system hasM independent degrees of freedom (hence its clas-
sical phase space “ has dimension 2M), the “quantum element of phase space” ÷“
has volume ÷V = fi(÷“ ) = hM with h = 2·~ the Planck’s constant. If the phase space is
compact with volume fi(“ ) <1 the number of “independent quantum states” accessi-
ble to the system is of order N = fi(“ )/fi(÷“ ) and should correspond to the dimension
of the Hilbert space N = dim(H). In this crude semiclassical picture, if we consider
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two pure quantum states |ai and |bi and associate to them two minimal semiclassi-
cal subsets A and B of the semiclassical phase space “ , of quantum volume ÷V , the
semiclassical volume fi(A \ B ) corresponds to the overlap between the two quantum
pure states through

fi(A\ B ) ' 1
N
|ha|bi|2 (5.5.15)

More generally if we associate to any (non minimal) subset A of “ a mixed state given
by a quantum density matrix ‚A we have the semiclassical correspondence

fi(A\ B )
fi(A)fi(B )

' N tr(‚A ‚B ) (5.5.16)

With this semiclassical picture in mind (Warning! It does not work for all states, only
for states which have a semiclassical interpretation! But pointer states usually do.)
the measurement/interaction process discussed above has a simple semiclassical in-
terpretation, illustrated on fig. 5.8.
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Figure 5.8: Crude semiclassical and quantum pictures of the decoherence process
5.5.10-5.5.12

The big systemM starts from an initial state |Ii described by a semiclassical ele-
ment I . If the system S is in the state | "i,M evolves to a state |F+i corresponding to
F+. If it is in the state | "i,M evolves to a state |F�i corresponding to F�. For well cho-
sen, but quite generic Hamiltonians H+ and H�, the dynamics is mixing, so that, while
fi(F+) = fi(F�) = 1/N, typically one has fi(F+ \ F�) = fi(F+)fi(F�) = 1/N2 ⌧ 1/N. Thus it is
enough for the quantum dynamics generated by H+ and H� to have a quantum analog
the classical property of mixing, which is quite generic, to “explain” why the two final
states |F+i and |F�i are generically (almost) orthogonal.

5.5.4 Discussion

As already stated, the points that I tried to discuss in this section represent only
a small subset of the questions about measurements in quantum mechanics. Again,
I refer for instance to [ABN12] and [Lal12] (among many other reviews) for a serious
discussion and bibliography.
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I have not discussed more realistic measurement processes, in particular the so
called “indirect measurements procedures”, where the observations on the system
are performed through successive interactions with other quantum systems (the probes)
which are so devised as to perturb as less as possible the observed system, followed
by stronger direct (in general destructive) measurements of the state of the probes.
Another class of processes is the “weak measurements”, which are a series of mea-
surements that perturb weakly the measured system, combined with some adequate
postselection process in order to define the “weak value” of an observable. Suchmea-
surement processes, as well as many interesting questions and experiments in quan-
tum physics, quantum information sciences, etc. are described by the general formal-
ism of POVM’s (Positive Operator Valued Measure). I do not discuss these questions
here.

In any case, important aspects of quantum measurements belong to the general
class of problems of the emergence and the meaning of irreversibility out of reversible
microscopic laws in physics (quantum as well as classical). See for instance [HPMZ96].

The quantum formalism as it is presented in these lectures starts (amongst other
things) from explicit assumptions on the properties of measurements. The best one
can hope is to show that the quantum formalism is consistent: the characteristics and
behavior of (highly idealized) physical measurement devices, constructed and oper-
ated according to the laws of quantum mechanics, should be consistent with the ini-
tials axioms.

One must be careful however, when trying to justify or rederive some of the ax-
ioms of quantum mechanics from the behavior of measurement apparatus and their
interactions with the observed system and the rest of the world, not to make circular
reasoning.

5.6 Formalisms, interpretations and alternatives to quan-
tum mechanics

5.6.1 What about interpretations?

In these notes I have been careful up to now not to discuss the interpretation issues
of quantum mechanics. There are at least two reasons.

Firstly, I do not feel qualified enough to review and discuss all the interpretations
of quantum mechanics that have been proposed and all the philosophical questions
raised by quantum physics since its birth. This does not mean that I consider these
question to be unimportant (nor that I never think about these).

Secondly, these lecture notes are focused on the presentation of themathematical
formalism of “standard quantummechanics”, and on the main approaches to present
and justify physically the formalism. The point of view chosen is that of most physi-
cists, chemists, mathematicians, computer scientists, engineers, etc who study or
exploit the ressources of the quantum world. This “operational point of view” con-
sists in considering quantum mechanics as a theoretical framework that provides
rules to compute the probabilities to obtain a given result/response when measur-
ing/manipulating a quantum system as a function of its state. The concepts of “ob-
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servables”, “states” and “probabilities” being defined within the principles of the for-
malisms considered.

Of course this point of view may be already considered as a interpretational prej-
udice. So let me nevertheless come back to these issues of interpretations and try to
make a few simple – and probably naïve – remarks.

As already explained in the introduction, I find the presentation and the discussion
about the “interpretations of quantum mechanics” a bit confusing (even in some ex-
cellent reviews and textbooks) because they mix three di↵erent levels and topics: (i)
the formalisations (mathematical formulations) of standard quantum theory, (ii) the
various interpretations of the formalisms and of their principles for quantum theory,
(iii) alternate theories, that try to obviate or solve in di↵erent ways some of the ques-
tions raised by quantum mechanics, but which are di↵erent physical theories of the
quantum world, leading to di↵erent predictions than standard quantum mechanics in
some regimes. These di↵erent concepts are usually presented at the same level, and
denoted generically “interpretations of quantum mechanics”, although in my opinion
they may be quite di↵erent things.

5.6.2 Formalisms

Formulations such as the “canonical formalism”, the path integral formalism, the
algebraic and the quantum logic formalisms are in my opinion di↵erent mathematical
representations of the same physical theory (or rather of the same physical frame-
work in which one formulates the physical laws and physical models, in the same
sense that classical physics is the framework for the physical laws of classical mod-
els). Their starting principles might be di↵erent, but they will lead to the same results
or equivalent ones at the end. These di↵erent representations have their pros and
cons, with di↵erent levels of mathematical rigor and of operability. However it is ex-
pected that they are not contradictory within their common domains of validity. Even if
a real mathematician can claim – for instance – that no consistent quantum field the-
ory has been rigorously constructed yet in 4 dimensional Minkowski space time, most
physicists believe that this goal will be reached one day. Perhaps this will be done using
the algebraic formalism, with some path integral and renormalization group. Perhaps
somemore powerful mathematical formalism will have to be used, quite di↵erent from
the formalisms that we know at the moment.

5.6.3 Interpretations

Interpretations of quantum mechanics, such as the “Copenhagen interpretation”
or the “many-worlds interpretation”, are something slightly di↵erent. They do not
challenge the present standard mathematical formulations of the theory, but rather
insist on a particular point of view or a particular formulation of quantum mechan-
ics as the best suited or the preferable one to consider and study quantum systems,
and the quantum world, and they incorporate some more thoughts on the meaning
of these principles. Thus in my opinion, rather than being formalizations of quantum
mechanics, they should be considered as di↵erent and particular choices of points of
view and of philosophical options to think about quantum mechanics and practice it.
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This does not mean that I am a conscious adept of post-modern relativism...
Let me first discuss the example of the so-called “Copenhagen Interpretation”. Re-

member however that there is no clear cut definition of what “The Copenhagen In-
terpretation” is. Although they exist since the birth of quantum mechanics, the term
“Copenhagen interpretation” was introduced only in 1955 by Heisenberg. I refer to the
paper by Howard [How04] for an historical and critical review of the history, uses and
misuses of the concept. There are various points of view “from Copenhagen”, some
purely frequentists (quantum mechanics should apply to ensembles of systems only),
some based on amore Bayesian concept and use of probabilities (quantummechanics
may be applied to single non-repeatable experiments on a single system). All this class
of interpretations insist anyway on the fact that quantum mechanics deals only with
the result of experiments and make predictions for the results of these experiments,
not on some non-accessible underlying “reality”. The presence of an “observer” (that
does not need to be a conscious being) is thus important, either as a principle, or
through theories of measurement processes or decoherence. Therefore I think the
various Copenhagen interpretations may be considered as

Copenhagen = “quantum mechanics from a pragmatist point of view”

where “pragmatism” should be understood in the philosophical sense of pragmatism.
Indeed these interpretations seems to be the most used (explicitly or implicitly) in ex-
perimental quantum physics and its applications.

At the other extreme one finds the “Many Worlds Interpretations”. Again there are
many variants, starting from the original proposal of Everett, its revised version by
Wheeler and its presentation by B. Dewitt, who coined the term “many worlds” (see
[DG73] for references), to the most recent views (see for instance [Deu97]). The basic
idea (as far as I understand) is to take seriously the concept of “the wave function of
the universe” as the underlying concept of quantum mechanics, without reference to
the observer, and to reinterpret or rederive the probabilistic features of quantum me-
chanics (in particular the Born rule and the projection postulate) as “relative” to some
parts of this universal wave function, corresponding to some specific state of the ob-
server for instance. From what I have seen, it seems that most proponents of the MW
interpretations (but not all) agree on the fact that it does not allow to prove ab initio
the Born law of probabilities. However, the MW point of view is often used in the field
of cosmology and of quantum gravity and quantum cosmology, where the concept of
“wave function of the universe” has to be tackled (for instance to discuss theWheeler-
DeWitt equation). It is also quite popular in some quantum information circles. I am
not going to review or discuss more these interpretations, and refer to the recent pro-
ceedings+discussion book [SBKW10], which contains a modern presentation of the
subject, and stimulating (and often contradictory) discussions and points of view by
proponents and opponents. The role given to a (in practice unobservable) universal
wave function that represents some “underlying reality” (but not in the sense of Ein-
stein or Bell), while keeping the mathematical apparatus of quantum mechanics, is
the central point for these interpretations. Therefore I think that most Many Worlds
Interpretations may be considered as

MW = “quantum mechanics from a realist point of view”
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Again, here realism is to be understood in its philosophical sense.
There is a whole spectrum of proposed interpretations that lie between these two

main classes. Let me mention the “coherent history formulations" that insist on the
fact that on should discuss and formulate quantummechanics only in terms of “coher-
ent histories”, namely coherent semiclassical processes that admit some semiclassi-
cal description (the existence of such histories being justified by models of decoher-
ence and coarse graining processes). I refer to [Gri02] for details and references. This
approach is also used in quantum gravity and quantum cosmology.

Another class of interpretations are the “modal interpretations” that try to make
ontologically consistent the hidden variable theories based on pilot wave models by
assigning a “modal status of reality” to the classical variables (such as the position of
the particles driven by the wave function) so as tomake them consistent with standard
quantum mechanics. See [LD14] for a review of theses approaches.

There are many other (often overlapping) classes of interpretations that do not
challenge in fact the mathematical formalism of quantum mechanics. A probably
naïve and amateurish way to consider this “many-interpretations world of quantum
mechanics” is to rather consider them as various point of view, from di↵erent philo-
sophical perspectives, of the quantum formalism. Quantum mechanics is an impres-
sive, beautiful and quite self consistent theoretical framework to describe physical
phenomena, and it deserves several vistas to be appreciated and understood in its
full majesty!

5.6.4 Alternatives

The interpretations that rely on the mathematical formulations of standard quan-
tum mechanics should be clearly distinguished from another class of proposals to
explain quantum physics that rely on modifications of the principles of quantum me-
chanics, and are thus di↵erent physical theories. These modified or alternative quan-
tum theories deviate from “standard” quantum mechanics and should be experimen-
tally falsifiable (and sometimes are already falsified).

This is the case of the various hidden-variables proposals, such as the de Broglie-
Bohm pilot wave theories. It is often stated that the later formulations are equivalent
to standard quantum mechanics, and fall into the previous category of interpreta-
tions. As discussed in section 5.3.6, this is correct only in the restricted context of
position observables (for the simple case of non-relativistic particles), and generaly
when dealing with a specified family of compatible observables, since these hidden
variable models are contextual. However giving an ontological status to the position
variable x of the particle driven by the pilot wave Ë, by considering x as an element
of reality that can be related to what is observed, changes in my opinion the status
of this model. It is now a di↵erent theoretical model than quantum mechanics, since
some observables of quantum mechanics, like the impulsion p, are not described by
this model, while the velocity of the particle ẋ is a di↵erent variable that cannot be
directly described by quantum mechanics.

This is also the case for the class of models known as “collapse models”. See
[GRW85, GRW86] for the first models. In these models the quantum dynamics is mod-
ified by non-linear terms so that the evolution of the wave functions is not unitary any
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more (while the probabilities are conserved of course), and the “collapse of the wave
function” becomes now a dynamical phenomenon. These models are somehow phe-
nomenological, since the origin of these non-linear dynamical e↵ects is quite ad hoc,
they may be for instance justified by some quantum gravity e↵ects. They predict a
breakdown of the law of quantummechanics for the evolution of quantum coherences
and for decoherence phenomenon at large times, large distances, or in particular for
big quantum systems (for instance large molecules or atomic clusters). Hence they
can in principle be tested experimentally. At the present day, despite the impressive
experimental progresses in the control of quantum coherences, quantum measure-
ments, study of decoherence phenomenon, manipulation of information in quantum
systems, no such violations of the predictions of standardQM and of unitary dynamics
have been observed.

5.7 What about gravity?

Another really important issue that I do not discuss in these lecture notes is quan-
tum gravity. Again just a few simple remarks.

It is clear that the principles of quantummechanics are challenged by the question
of quantizing gravity. The challenges are not only technical. General relativity (GR) is
indeed a non-renormalizable theory, and from that point of view a first and natural
idea is to consider it as an e↵ective low energy theory. After all, history tells us that
in the development of nuclear and particle physics there has been several times (in
the 30’, the 40’, the 60’...) theoretical false alarms and clashes between experiments
and theory. Each time this led many great minds to question the principles of quan-
tummechanics themselves. However further development and understandings of the
standard formalism (and experiments of course) allowed to solve these problems, so
that quantum mechanics came out unscathed and even stronger. Since the 1970’s
and the construction of the standard model of strong and electroweak interactions
the principles of quantum mechanics are not challenged any more.

However with gravity the situation is di↵erent. For instance the discovery of the
Bekenstein-Hawking entropy of black holes, of the Hawking radiation, and of the “in-
formation paradox” shows that fundamental questions remain to be understood about
the relation between quantum mechanics and the GR concepts of space and time.
Indeed even the most advanced quantum theories available, quantum field theories
such as non-abelian gauge theories the standard model, its supersymmetric and/or
grand unified extensions, still rely on the special relativity concept of space-time, or to
some extend to the dynamical but still classical concept of curved space-time of GR. It
is clear that a quantum theory of space time will deeply modify, and even abolish, the
classical concept of space-time as we are used to. Let me stress two important points.

Firstly, the presently most advanced attempts to build a quantum theory incorpo-
rating gravity, namely string theory and its modern extensions, as well as the alterna-
tive approaches to build a quantum theory of space-time such as loop quantumgravity
(LQG) and spin-foam models (SF), rely mostly on the quantum formalism as we know
it, but change the fundamental degrees of freedom (drastically and quite widely for
string theories, in a more conservative way for LQG/SF). The fact that string theories
o↵ers some serious hints of solutions of the information paradox, and some explicit
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solutions and ideas, like holography and AdS/CFT dualities, for viewing space-time as
emergent, is a very encouraging fact.

Secondly, in the two formalisms presented here, the algebraic formalism and the
quantum logic formulations, it should be noted that space and time (as continuous
entities) play a secondary role with respect to the concept of causality and local-
ity/separability. I hope this is clear in the way I choose to present the algebraic for-
malism in section 3 and quantum logic in section 4. Of course space-time is essential
for constructing physical theories out of the formalism. But the fact that it is the
causal relations and the causal independence between physical measurement opera-
tions that are essential for the formulation of the theory is inmy opinion a very encour-
aging signal that quantum theory may go beyond the classical concept of space-time.

Nevertheless, it may very well happens that (for instance) the information paradox
is not solved by a sensible quantum theory of gravity, or that the concepts of causality
and separability have to be rejected. Indeed one might imagine that no repeatable
measurements are possible in a quantum theory of gravity, or that space being an
“emergent” concept two separate sub-ensembles-of-degrees-of-freedom may never
be considered as really causally independent. Then one might expect that the basic
principles of quantum mechanics will not survive (and, according to the common lore,
should be replaced by something even more bizarre and inexplicable...).
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