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Chapter 4

The quantum logic formalism

4.1 Introduction

4.1.1 Why an algebraic structure?

The quantum logic formalism is another interesting, albeit more abstract, way to
formulate quantum physics. The bonus of this approach is that one does not need to
start from the assumption that the set of observables of a physical system is embodied
with the algebraic structure of an associative unital algebra. As discussed in the previ-
ous section, this assumption that one can “add” and “multiply” observables is already
a highly non trivial one. This algebraic structure is natural in classical physics since
the observables form a commutative Poisson algebra, addition and multiplication of
observables reflect the action of adding and multiplying results of di↵erent measure-
ments (it is the Poisson bracket structure that is non trivial). In quantum physics these
addition and multiplication operations on observables versus results are not equiva-
lent anymore. Measuring the observable C = A + B does not amount to measure in-
dependently the observables A and B and simply add the results, since in general the
operators A and B do not commute, and cannot be measured independently. However
we have seen for instance that the GNS construction relates the algebra structure of
the observables to the Hilbert space structure of the pure states. In particular the su-
perposition principle for pure states is a consequence of the existence of an addition
law for the physical observables.

As will be explained in this chapter, in the quantum logic formulations the alge-
braic structure of the observables (the fact that they form an associative but non-
commutative algebra) comes out somehow naturally from more basic assumptions
one makes on the measurement operations, or tests, that on can make on physical
systems. In the algebraic formulation the Hilbert space of states is reconstructed
from the algebra structure of observables. Likewise in the quantum logic formulation
this algebraic structure for the observables and the Hilbert space structure for the
states can be derived (with some assumptions) from the possible symmetries that the
measurement operations must satisfy.
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68 CHAPTER 4. THE QUANTUM LOGIC FORMALISM

4.1.2 Measurements as “logical propositions”

The idea at the root of the quantum logic approach goes back to J. von Neu-
mann’s book [vN55, vN32] and the article by G. Birkho↵ 1 and J. von Neumann (again!)
[BvN36]. It starts from the remark that the observables given by projectors, i.e. oper-
ators P such that P2 = P = P†, correspond to propositions with YES or NO (i.e. TRUE
or FALSE) outcome in a logical system. An orthogonal projector P onto a linear sub-
space P ⇢H is indeed the operator associated to an observable that can take only the
values 1 (and always 1 if the state Ë 2 P is in the subspace P) or 0 (and always 0 if
the state Ë 2 P? belongs to the orthogonal subspace to P). Thus we can consider that
measuring the observable P is equivalent to perform a test on the system, or to check
the validity of a logical proposition p on the system.

P = orthogonal projector onto P $ proposition p (4.1.1)

If the result is 1 the proposition p is found to be TRUE, and if the result is 0 the propo-
sition p is found to be FALSE.

hË|P|Ëi = 1 =) p always TRUE on |Ëi (4.1.2)

The projector 1�P onto the orthogonal subspace P? is associated to the proposition
not p, meaning usually that p is false (assuming the law of excluded middle)

hË|P|Ëi = 0 =) p always FALSE on |Ëi (4.1.3)

so that

1�P = orthogonal projector onto P? $ proposition not p (4.1.4)

In classical logic the negation not is denoted in various ways

“not a” = ¬a , a0 , ā , ã , ⇠a (4.1.5)

I shall use the first two notations ¬a , a0.
Now if two projectors A and B (on two subspaces A and B ) commute, they cor-

respond to classically compatible observables A and B (which can be measured in-
dependently), and to a pair of propositions a and b of standard logic. The projector
C = AB = BA on the intersection of the two subspaces C = A \ B corresponds to the
proposition c = “a and b00 = a^ b. Similarly the projector D on the linear sum of the
two subspaces D = A + B corresponds to the proposition d=“a or b” =a_b.

A\ B $ a^b = aandb , A + B $ a_b = aorb (4.1.6)

Finally the fact that for subspaces A ⇢ B , i.e. for projectors AB = BA = A, is equivalent
to state that a implies b

A ⇢ B $ a =) b (4.1.7)

This is easily extended to a general (possibly infinite) set of commuting projectors.
Such a set generates a commuting algebra of observables A, which corresponds to

1. An eminent mathematician, not to be confused with his father, the famous G. D. Birkho↵ of the
ergodic theorem
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4.1. INTRODUCTION 69

the algebra of functions on some classical space X. The set of corresponding sub-
spaces, with the operations of linear sum, intersection and orthocomplementation
(+,\,?), is isomorphic to a Boolean algebra of propositions with (_,^,¬), or to the al-
gebra of characteristic functions on subsets of X. Indeed, this is just a reformulation
of “ordinary logic” 2 where characteristics functions of measurable sets (in a Borel
„-algebra over some set X) can be viewed as logical propositions. Classically all the
observables of some classical system (measurable functions over its phase space “ )
can be constructed out of the classical propositions on the system (the characteristic
functions of measurable subsets of “ ) .

Figure 4.1: The ^ as intersection and the _ as linear sum of subspaces in quantum
logic

In quantum mechanics all physical observables can be constructed out of projec-
tors. For general, not necessarily commuting projectors A and B on subspaces A and
B one still associate propositions a and b. The negation ¬a, the “and” (or “meet”)
a^b and the “or” (or “join”) a_b are still defined by the geometrical operations ?, \
and + on subspaces given by 4.1.6. The “implies” or =) is also defined by the ⇢ as in
4.1.7

However the fact that in a Hilbert space projectors do not necessarily commute
implies that the standard distributivity law of propositions

A^ (B _C) = (A^ B )_ (A^C) _ = or ^ = and (4.1.8)

does not hold. It is replaced by the weaker condition (A, B , C are the linear subspaces
associated to the projectors A, B, C)

A\ (B +C) � ((A\ B ) + (A\C)) (4.1.9)

which corresponds in terms of propositions (projectors) to

(a^b)_ (a^ c) =) a^ (b_ c) (4.1.10)

or equivalently
a_ (b^ c) =) (a_b)^ (a_ c) (4.1.11)

2. In a very loose sense, I am not discussing mathematical logic theory.

IPhT 2014 The formalisms of quantum mechanics



70 CHAPTER 4. THE QUANTUM LOGIC FORMALISM

A simple example is depicted on fig. 4.2. The vector space V in the plane (dim=2)
and the subspaces A, B and C are three di↵erent coplanar lines (dim=1). B + C = V ,
hence A\ (B +C) = A\ V = A, while A\ B = A\C = {0}; hence A\ B +A\C = {0}.

Figure 4.2: A simple example of non-distributivity

Therefore the set of projectors on a Hilbert space do not generate a Boolean alge-
bra, but a more complicated structure, called an orthomodular lattice.

4.1.3 The quantum logic approach

The purpose of the quantum logic approach is to try to understand what are the
minimal set of consistency requirements on the propositions/measurements opera-
tions, based on logical consistency (assuming that internal consistency has some-
thing to do with the physical world) and on physical requirements (in particular the
assumptions of causality, reversibility and locality) and what are the consequences of
these assumptions for the formulation of physical laws.

This approach was initiated by G. Birkho↵ and J. von Neumann (again!) in [BvN36].
It was (slowly) developped by physicists like G. Mackey [Mac63], J. M. Jauch [Jau68]
and notably by C. Piron [Pir64, Pir76], and by mathematicians like Varadarajan[Var85].
A good reference on the subject (not very recent but very valuable) is the book by E.
Beltrametti and G. Cassinelli [BC81]. It is my main reference and source of under-
standing

The terminology “quantum logic” for this approach is historical and is perhaps not
fully adequate, since it does not mean for most authors that a new kind of logic is nec-
essary to understand quantum physics. It is in fact not a “logic” in the mathematical
sense, and it relies on the standard logics used in mathematics and exact sciences. It
should rather be called “quantum propositional calculus” or “quantum propositional
geometry”, where the term “proposition” is to be understood as “test” or “projective
measurement” on a quantum system. The mathematics of orthocomplemented and
orthomodular lattices that underly the quantum logic formalism have applications in
various areas of mathematics, logic and computer sciences.

At that stage I should emphasize that the quantum logic formulation is of no real
use for real physical applications! Its formalism is quite heavy, and reduces for practi-
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4.2. A PRESENTATION OF THE PRINCIPLES 71

cal purposes to the standard formalism of Hilbert spaces and operator algebras, that
is better suited and e�cient for most if not all uses of the quantum formalism. Its
interest is rather when discussing the conceptual foundations.

The quantum logic approaches do not form a unified precise and consistent frame-
work like algebraic quantum field theory. It has several variants, most of them insist
on the concept and the properties of propositions (tests), but some older one rely-
ing more on the concept of states (in particular the so called convex set approaches).
Somemore recent formulations of quantum physics related somehow o quantum logic
and to quantum information science have some grandiose categorial formulations.

In this course I shall give a short and partial presentation of this approach, from
a personal point of view 3. I shall try to show where the physical concepts of causal-
ity, reversibility and locality play a role, in parallel to what I tried to do for the alge-
braic formalism. My presentation is a classical one based primarily on the concept of
propositions. It is also conservative since I not try to use a non-classical logic system
(whatever it means) but simply discuss in a classical logic framework the statements
which can be made on quantum systems and the measurement operations.

4.2 A presentation of the principles

4.2.1 Projective measurements as propositions

As explained above, in the standard formulation of quantummechanics, projectors
are associated to “ideal” projective measurements (“projective measurement “of the
first kind”, or “non-demolition” projective measurements). The fundamental property
of suchmeasurements is that if the system is already in an eigenstate of the projector,
for instance P|Ëi = |Ëi, then after measurement the state of the system is unchanged.
This means that successive measurements of P give always the same result (1 or
TRUE). Without going into a discussion of measurements in quantum physics, let me
stress that this is of course an idealisation of actual measurements. In general phys-
ical measurements are not ideal measurements, they may change in a non-minimal
way the state of the system. While one gains some information on the system, one
in general looses some other information, and measurements may and in general do
destroy part or the whole of the system studied. Such general measurements andma-
nipulation processes of a quantum systemmay be described by the general formalism
of POVM’s (Projective Operator Valued Measures).

In the following presentation, I assume that such ideal repeatable measurements
are in principle for all the observable properties of a quantum system. The formalism
discussed here will try to understand what is a natural and minimal set of physically
reasonable and logically consistent axioms for such measurements.

4.2.2 Causality, POSET’s and the lattice of propositions

Let me start from a set L of propositions or tests (associated to ideal measure-
ments) on a physical system, and from a set E of states (in a similar sense as in the

3. with the usual reservation on the lecturer’s qualifications

IPhT 2014 The formalisms of quantum mechanics



72 CHAPTER 4. THE QUANTUM LOGIC FORMALISM

algebraic formulation, to be made more precise along the discussion). On a given
state Ô 2 E the test (measurement) of the proposition a can give TRUE (i.e. YES or 1)
or FALSE (NO or 0). It gives TRUE with some probability. In this case one has extracted
information on the system, which is now (considered to be) in a state Ôa.

I note Ô(a) the probability that a is found TRUE, assuming that the system was in
state Ô before the test. I shall not discuss again at that stage what I mean exactly by
probability, and refer the previous discussions.

4.2.2.a - Causal order relation:

The first ingredient is to assume that there an order relation a � b between propo-
sitions. Here it will be defined by the causal relation

a � b () for any state Ê, if a is found true, then b will be found true (4.2.1)

Note that this definition is causal (or dynamical) from the start, as to be expected in
quantum physics. It is equivalent to

a � b () 8 Ê , Êa(b) = 1 (4.2.2)

One assumes that this causal relation has the usual properties of a partial order
relation. This amounts to enforce relations between states and propostions. First one
must have:

a � a (4.2.3)

This means that if a has been found true, the system is now in a state such that a will
always be found true. Second one assumes also that

a � b and b � c =) a � c (4.2.4)

This is true in particular when, if the system is in a state Ë such that b is always true,
then after measuring b, the system is still is the same state Ë. In other word, Ë(b) =
1 =) Ëb = Ë. This is the concept of repeatability discussed above.

These two properties makes � a preorder relation on L.
One also assumes that

a � b and b � a =) a = b (4.2.5)

This means that tests which give the same results on any states are indistinguishable.
This also means that one can identify a proposition a with the set of states such that
a is always found to be true (i.e. Ë(a) = 1). 4.2.5 makes � a partial order relation and
L a partially ordered set or POSET.

4.2.2.b - AND (meet ^):

The second ingredient is the notion of logical cunjunction AND. One assumes that
for any pair of test a and b, there is a unique greater proposition, denoted a^ b, such
that

a^ b � a and a^ b � b (4.2.6)

François David, 2014 Draft Lecture Notes – April 2014



4.2. A PRESENTATION OF THE PRINCIPLES 73

in other word, there is a unique a^ b such that

c � a and c � b =) c � a^ b

NB: This is a non trivial assumption, not a simple consequence of the previous ones.
It can be justified using the notion of filters (see Jauch [Jau68]) or using the notion of
questions associated to propositions (see Piron [Pir64]). Here to make the discussion
simpler I just present it as an assumption. On the other hand it is very di�cult to build
anything without this assumption. Note that 4.2.6 implies 4.2.5.

This definition extends to any set A of propositions
^

A =
^

{a 2A} = greatest c : c � a, 8a 2A (4.2.7)

I do not discuss if the set A is finite or countable.

4.2.2.c - Logical OR (join _):

From this we can infer the existence of a logical OR (by using Birkho↵ theorem)

a_ b =
^

{c : a � c and b � c} (4.2.8)

which extents to sets of propositions
_

A =
^

{b : a � b , 8a 2A} (4.2.9)

4.2.2.d - Trivial 1 and vacuous ; propositions:

It is natural to assume that there is a trivial proposition 1 that is always true

for any state Ê, 1 is always found to be true, i.e. Ê(1) = 1 (4.2.10)

and another “vacuous” proposition ; that is never true

for any state Ê, ; is never found to be true, i.e. Ê(;) = 0 (4.2.11)

Naturally one has
1 =

_

L and ; =
^

L (4.2.12)

With these assumptions and definitions the set of propositionsL has now the structure
of a complete lattice.

4.2.3 Reversibility and orthocomplementation

4.2.3.a - Negations a0 and 0a

I have not yet discussed what it is considered possible to do when a proposition is
found to be false. To do so one must introduce the seemingly simple notion of nega-
tion or complement. In classical logic this is rather easy. The subtle point is that for
quantum systems, where causality matters, there are two inequivalent ways to intro-
duce the negation. These two definitions becomes equivalent only if one assumes that
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74 CHAPTER 4. THE QUANTUM LOGIC FORMALISM

propositions on quantum systems share a property that I denote “causal reversibility”,
by analogy with what I did before, and that I am going to explain. If this property is sat-
isfied, one recovers the standard negation of propositions in classical logic, and ulti-
mately this will lead to the notion of orthogonality and of scalar product of standard
quantummechanics. Thus here again, as in the previous section, reversibility appears
to be one of the essential feature of the principles of quantum physics.

Negation - définition 1: To any proposition a one can associate its negation (or com-
plement proposition) a0 defined as

for any state Ê, if a is found to be true, then a0 will be found to be false (4.2.13)

a0 can be defined equivalently as

a0 =
_

{b such that on any state Ê, if a is found true, then b will be found false}
(4.2.14)

Negation - définition 2: It is important at that stage to realize that, because of the
causal ordering in the above definition of a0, there is an alternate but symmetric defi-
nition for the negation, that I denote 0a, which is given by

for any state Ê, if 0a is found to be true, then a will be found to be false (4.2.15)

or equivalently

0a =
_

{b ; such that on any state Ê , if b is found true, then a will be found false}
(4.2.16)

These two definitions are not equivalent, and from the axioms that we choose up to
now, each of them do not fulfill the properties of the negation in classical propositional
logic 4 .

¬(¬a)=a and ¬(a^ b)=¬a_¬b

These problems come from the fact that the definition for the causal order a � b does
not implies that b0 � a0, as in classical logic. Indeed the definition 4.2.1 for a � b
implies that for every state

if b is found false, then a was found false (4.2.17)

while b0 � a0 would mean

if b is found false, then a will be found false (4.2.18)

or equivalently
if a is found true, then b was found true (4.2.19)

4. The point discussed here is a priori not connected to the classical versus intuitionist logics debate.
Remember that we are not discussing a logical system.
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4.2.3.b - Causal reversibility and negation

In order to build a formalism consistent with what we know of quantum physics,
we need to enforce the condition that the causal order structure on propositions is
in fact independent of the choice of a causal arrow “if · · · , then · · · will be· · ·” versus
“if · · · , then · · · was · · ·” . This is nothing but the requirement of causal reversibility
that we discussed before, and it is enforced by the following simple but very important
condition.

Causal reversibility: One assumes that the negation a0 is such that

a � b () b0 � a0 (4.2.20)

With this assumption, it is easy to show that the usual properties of negation are
satisfied. The two alternate definitions of negation are now equivalent

a0 = 0a = ¬a (4.2.21)

and may be denoted by the standard logical symbol ¬. We then have

(a0)0 = a (4.2.22)

and
(a^ b)0 = a0 _ b0 (4.2.23)

as well as
; = 10 , ;0 = 1 (4.2.24)

and
a^ a0 = ; , a_ a0 = 1 (4.2.25)

A lattice L embodied with a complement ¬ with the properties 4.2.20-4.2.25 is
called an orthocomplemented complete lattice (in short OC lattice). For such a lat-
tice, the couple (a,a0) describes what is called a perfect measurement.

NB: Note that in Boolean logic, the implication! can be defined from the negation
¬. Indeed a! b means ¬a _ b. Here it is the negation ¬ which is defined out of the
implication �.

4.2.3.c - Orthogonality

With reversibility and complement, the set of propositions begins to have proper-
ties similar to the set of projections on linear subspaces of a Hilbert space 5. The com-
plement a0 of a proposition a is similar to the orthogonal subspace P? of a subspace
P . This analogy can be extended to the general concept of orthogonality.

5. One should be careful for infinite dimensional Hilbert spaces and general operator algebras. Pro-
jectors correspond in general to orthogonal projections on closed subspaces.
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Orthogonal propositions:

Two proposition a and b are orthogonal, if b � a0 (or equivalently a � b0). (4.2.26)

This is noted
a ? b (4.2.27)

Compatible propositions:
OC lattices contain also the concept of family of compatible propositions. A subset of
an OC lattice L is a sublattice L0 if it is stable under the operations ^, _ and 0 (hence
it is itself an OC lattice). To any subset S ⇢ L on can associate the sublattice LS
generated by S , defined as the smallest sublattice L0 of L which contains S .

A lattice is said to be Boolean if it satisfy the distributive law of classical logic

a^ (b _ c) = (a^ b)_ (a^ c)

A subset S of an OC lattice L is said to be a subset of compatible propositions if
the generated sublattice LS ⇢ L is Boolean.

Compatible propositions are the analog of commuting projectors, i.e. compatible
or commuting observables in standard quantum mechanics. For a set of compatible
propositions, one expects that the expectations of the outcomes YES or NO will satisfy
the rules of ordinary logic.

Orthogonal projection: The notion of orthogonal projection onto a subspace can be
also formulated in this framework as

projection of a onto b = –b(a) = b ^ (a_ b0) (4.2.28)

This projection operation is often called the Sasaki projection. Its dual (–b(a0))0 = b0 _
(a^ b) is called the Sasaki hook (b

S!a). It has the property that even if a � b, if for a

state Ë the Sasaki hook (a
S!b) is always true, then for this state Ë, if a is found true

then b will always be found true.

4.2.4 Subsystems of propositions and orthomodularity

4.2.4.a - What must replace distributivity?

The concept of orthocomplemented lattice of propositions is not su�cient to re-
construct a consistent quantum formalism. There are mathematical reasons and
physical reasons.

One reason is that if the distributive law A ^ ((B _ C) = (A ^ B )_ (A ^ C) is known
not to apply, assuming no restricted distributivity condition is not enough and leads to
too many possible structures. In particular in general a lattice with an orthocomple-
mentation ¬ may be endowed with other inequivalent orthocomplementations! This
is problematic for the physical interpretation of the complement as a! TRUE ()
a0 ! FALSE.
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Another problem is that in physics one is led to consider conditional states and
conditional propositions. In classical physics this would correspond to the restric-
tion to some subset “ 0 of the whole phase space “ of a physical system, or to the
projection “ ! “ 0. Such projections or restrictions are necessary if there are some
constraints on the states of the system, if one has access only to some subset of all
the physical observables of the system, or if one is interested only in the study of a
subsystem of a larger system. In particular such a separation of the degrees of free-
dom is very important when discussing locality: one is interested in the properties
of the system we can associate to (the observables measured in) a given interval of
space and time, as already discussed for algebraic QFT. It is also very important when
discussing e↵ective low energy theories: one wants to separate (project out) the (un-
observable) high energy degrees of freedom from the (observable) low energy degrees
of freedom. And of course this is crucial to discuss open quantum systems, quantum
measurement processes, decoherence processes, and the emergence of classical de-
grees of freedom and classical behaviors in quantum systems.

4.2.4.b - Sublattices and weak-modularity

In general a subsystem is defined from the observables (propositions) on the sys-
tem which satisfy some constraints. One can reduce the discussion to a single con-
straint a. If L is an orthocomplemented lattice and a a proposition of L, let me con-
sider the subset L<a of all propositions which imply a

L<a = {b 2 L : b � a} (4.2.29)

One may also consider the subset of propositions L>a of propositions implied by a

L>a = {b 2 L : a � b} = (L<a0 )0 (4.2.30)

Is this set of propositions L<a still an orthocomplemented lattice? let me take as order
relation �, _ and ^ in L<a the same than in L and as trivial and empty propositions
1<a = a, ;<a = ;. Now, given a proposition b 2 L<a, one must define what is its comple-
ment b0<a in L<a. A natural choice is

b0<a = b0 ^ a (4.2.31)

but in general with such a choice L<a is not an orthocomplemented lattice, since it is
easy to find for general AC lattices counterexamples such that one may have b_b0<a ,
a.

Weak-modularity: In order forL<a to be an orthocomplemented lattice (for any a 2 L),
the orthocomplemented lattice Lmust satisfy the weak-modularity condition

b � a =) (a^ b0)_ b = a (4.2.32)

This condition is also su�cient.

4.2.4.c - Orthomodular lattices

Orthomodularity: An OC lattice which satisfies the weak-modularity condition is said
to be an orthomodular lattice (or OM lattice) 6. Clearly if L is OM, for any a 2 L, L<a is

6. In French: treillis orthomodulaire, in German: Orthomodulare Verband.
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also OM, as well as L>a.

Equivalent definitions: Weak-modularity has several equivalent definitions. Here are
two interesting ones:

— a � b =) a and b are compatible.
— the orthocomplementation a! a0 is unique in L.

Irreducibility: For such lattices one can also define the concept of irreducibility. We
have seen that two elements a and b of L are compatible (or commute) if they gen-
erate a Boolean lattice. The center C of a lattice L is the set of a 2 L which commute
with all the elements of the lattice L. It is obviously a Boolean lattice. A lattice is
irrreducible if its center C is reduced to the trivial lattice C = {;,1}.

4.2.4.d - Weak-modularity versus modularity

NB: The (somewhat awkward) denomination “weak-modularity” is historical. Follow-
ing Birkho↵ and von Neumann the stronger “modularity” condition for lattices was
first considered. Modularity is defined as

a � b =) (a_ c)^ b = a_ (c^ b) (4.2.33)

Modularity is equivalent to weak modularity for finite depth lattices (as a particular
case the set of projectors on a finite dimensional Hilbert space for a modular lattice).
But modularity turned out to be inadequate for infinite depth lattices (corresponding
to the general theory of projectors in infinite dimensional Hilbert spaces). The theory
of modular lattices has links with some W⇤-algebras and the theory of “continuous
geometries” (see e.g. [vN60]).

4.2.5 Pure states and AC properties

Orthomodular (OM) lattices are a good starting point to consider the constraints
that we expect for the set of ideal measurements on a physical system, and therefore
to study how one can represent its states. In fact one still needs two more assump-
tions, which seem technical, but which are also very important (and quite natural from
the point of view of quantum information theory). They rely on the concept of atoms,
or minimal proposition, which are the analog for propositions of the concept of mini-
mal projectors on of pure states in the algebraic formalism.

4.2.5.a - Atoms

An element a of an OM lattice is said to be an atom if

b � a and b , a =) b = ; (4.2.34)

This means that a is a minimal non empty proposition; it is not possible to find another
proposition compatible with a which allows to obtain more information on the system
than the information obtained if a is found to be TRUE.
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Atoms are the analog of projectors on pure states in the standard quantum for-
malism (pure propositions). Indeed, if the system in in some state Ë, before the mea-
surement of a, if a is an atom and is found to be true, the system will be in a pure state
Ëa after the measure.

4.2.5.b - Atomic lattices

A lattice is said to be atomic if every non trivial proposition b , ; in L is such that
there is at least one atom a such that a � b (i.e. any proposition “contains” at least
one minimal non empty proposition). For an atomic OM lattice one can show that any
proposition b is then the union of its atoms (atomisticity).

4.2.5.c - Covering property

Finally one needs also the covering property. The formulation useful in the quan-
tum framework is as follows: An atomic lattice has the covering property if fora any
proposition a and any atom b not in the complement a0 of a, then the Sasaki projection
of b onto a, –a(b) = a^ (b _ a0), is still an atom.

The original definition of the covering property for atomic lattices according to
Birkho↵ is: for any b 2 L and any atom a 2 L such that a^ b = ;, a_ b covers b, i.e.
there is no c between b and a_ b such that b � c � a_ b.

This covering property is very important. It means that when reducing a “system”
(or rather a set of states) to a “subsystem” by some constraint (projection onto a), one
cannot get a non-minimal proposition on the subset out of a minimal one on the larger
set. This would mean that one could get more information out of a subsystem than
from the greater system. In other word, if a system is in a pure state, performing a
perfect measurement can only map it onto another pure state. Perfect measurements
cannot decrease the information on the system.

The covering property is in fact also related to the superposition principle. Indeed,
it implies that (for irreducible lattices) for any two di↵erence atoms a and b, there
must be a third atom c di↵erent from a and b such that c � a_b. Thus, in the weakest
possible sense (remember we have no addition law yet) c is a superposition of a and
b.

An atomistic lattive with the covering property is said to be an AC lattice. As men-
tionned before these properties can be formulated in term of the properties of the set
of states on the lattice rather than in term of the propositions. This is the object of the
convex set approach. I shall not discuss this here.

4.3 The geometry of orthomodular AC lattices

I have given one (possible and personal) presentation of the principles of the quan-
tum logic formalism. It took some time since I tried to explain both the mathematical
formalism and the underlying physical ideas. I now explain the main mathematical
result: the definition of the set of propositions (ideal measurements) on a quantum
system as an orthomodular AC lattice can be equivalently represented as the set of
orthogonal projections on some “generalized Hilbert space”.
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4.3.1 Prelude: the fundamental theorem of projective geometry

The idea is to extend a classical and beautiful theorem of geometry, the Veblen-
Young theorem. Any abstract projective geometry can be realized as the geometry of
the a�ne subspaces of some left-module (the analog of vector space) on a division
ring K (a division ring is a non-commutative generalization of a field like R or C). This
result is known as the “coordinatization of projective geometry”. Classical references
on geometry are the books by E. Artin Geometric Algebra [Art57], R. Baer Linear alge-
bra and projective geometry [Bae05]. More precisely, a geometry on a linear space is
simply defined by a set X whose elements x are called the points of X, and a set L of
lines Ñ of X (at that stage a line Ñ is simply a subset of X, so L is a subset of the set of
subsets of X).

Theorem: If the geometry (X,L) satisfies the following axioms:

1. Any line contains at least 3 points,

2. Two points lie in a unique line,

3. A line meeting two sides of triangle, not at a vertex of the triangle, meets the
third side also (Veblen’s axiom),

4. There are at least 4 points non coplanar (a plane is defined in the usual way
from lines),

then the corresponding geometry is the geometry of the a�ne subspaces of a left
module M on a division ring K (a division ring is a in general non-commutative field).

Discussion: The theoremhere is part of the Veblen-Young theorem, that encompasses
the cease when the 4th axiom is not satisfied. The first two axioms define a line geom-
etry structure such that lines are uniquely defined by the pairs of points, but with some
superposition principle. The third axiom is represented on Fig. 4.3. The fourth axiom is
necessary to exclude some special case of non-Desarguesian geometries, that are of
no relevance for our discussion.

Abstract projective geometries

Two points lie in a unique line

Any line contains at least 3 points

Veblen’s axiom

mardi 29 mai 12

Figure 4.3: Veblen’s axiom
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Let me recall that the division ring K (an associative algebra with an addition +,
a multiplication ⇥ and an inverse x ! x�1) is constructed out of the symmetries of
the geometry, i.e. of the automorphisms, or applications X ! X, L ! L, etc. which
preserve the geometry. Without giving any details, let me illustrate the case of the
standard real projective plane (where K = R). The field structure on R is obtained by
identifying R with a projective line Ñ which contains the three points 0, 1 and 1. The
“coordinate” x 2 R of a point X 2 Ñ is identified with the cross-ratio x = (X,1;0,1).
On Fig. 4.4 are depicted the geometrical construction of the addition X + Y and of the
multiplication X ⇥ Y of two points X and Y on a line Ñ.

Figure 4.4: Construction of + and ⇥ in the projective real plane

4.3.2 The projective geometry of orthomodular AC lattices

4.3.2.a - The coordinatization theorem

Similar “coordinatization” theorems hold for the orthomodular AC lattices that
have been introduced in the previous section. The last axioms AC (atomicity and cov-
ering) play a similar role as the axioms of abstract projective geometry, allowing to
define “points” (the atoms), lines, etc , with properties similar to the first 3 axioms
of linear spaces. The di↵erence with projective geometry is the existence of the or-
thocomplementation (the negation ¬) which allows to define an abstract notion of
orthogonality ?, and the specific property of weak-modularity (which allows to define
in a consistent way what are projections on closed subspaces). Let me first state the
main theorem

Theorem (Piron): Let L be a complete irreducible orthocomplemented AC lattice with
length > 3 (i.e. at least three 4 di↵erent levels of proposition ; � a � b � c � d � 1).
Then the “abstract” lattice L can be represented as the lattice L(V) of the closed
subspaces of a left-module 7 V on a division ring 8 K with a Hermitian form f . The ring
K, the module V and the form f have the following properties:

7. A module is the analog of a vector space, but on a ring instead of a (commutative) field
8. A division ring is the analog of a field, but without commutativity
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— The division ring K has an involution ⇤ such that (xy)⇤ = y⇤x⇤

— The vector space V has a non degenerate Hermitian (i.e. sesquilinear) form
f : V ⇥ V ! K

a,b 2 V , f (a,b) = ha|bi 2 K , ha|bi = hb|ai⇤ (4.3.1)

— The Hermitian form f defines an orthogonal projection and associates to each
linear subspace M of V its orthogonal M?.

M? = {b 2 v : hb|ai = 0 8a 2 M} (4.3.2)

— The closed subspaces of V are the subspaces M such that (M?)? = M.
— The Hermitian form is orthomodular, i.e. for any closed subspace, M? +M = V .
— The OM structure (� , ^ , 0) on the lattice L is isomorphic to the standard lattice

structure (✓ , \ ,?) (subspace of, intersection of, orthogonal complement of)
over the space L(V) of closed linear subspaces of V .

— Moreover, V and K are such that there is some element a of V with “norm” unity
f (a,a) = 1 (where 1 is the unit element of K).

I do not give the proof. I refer to the physics literature: ( [BC81] chapter 21, [Pir64,
Pir76], and to the original mathematical literature [BvN36] [MM71] [Var85].

Thus this theorem states that an OM AC lattice can be represented as the lattice of
orthogonal projections over the closed linear subspaces of some “generalized Hilbert
space” with a quadratic form defined over some non-commutative field K. This is very
suggestive of the fact that Hilbert spaces are not abstract and complicated mathe-
matical objects, much less natural from a physical point of view than the ordinary
numbers and functions of classical mechanics (this statement is still found in some
discussion and outreach presentations). On the contrary they are quite natural ob-
jects if one wants to describe ideal measurements in quantum physics. In particular
the algebra (the underlying ring K and the algebraic structure of the space V) come
out naturally from the symmetries of the lattice of propositions L.

4.3.2.b - Discussion: which division ring K?

The important theorem discussed before is very suggestive, but is not su�cient to
“derive” standard quantummechanics. The main question is which division algebra K
and which involution ⇤ and Hermitian form f are physically allowed? Can one construct
physical theories based on other rings than the usual K = C (or R or H)?

There is a large variety of division rings ! The simplest one are the finite division
rings (with a finite number of elements. The first Wedderburn theorem implies that any
finite K is a direct product of Galois fields Fp = Z/Zp (p prime). Beyond the standard
fields C, R and H, more complicated division rings are the rings of rational functions
F (X), and some are even larger (for instance the surreal numbers...), but still commu-
tatives,and some are also fully non-commutatives rings.

However, the requirements that K has an involution, and that V has a non degener-
ate hermitian form, so that L(V) is a OM lattice, put already very stringent constraints
on K. For instance, it is well known that finite fields like the Fp (p prime) do not work.
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Indeed, it is easy to see that the lattice L(V) of the linear subspaces of the finite di-
mensional subspaces of the n-dimensional vector space V = (Fp)n is not orthomodular
and cannot be equipped with a non-degenerate quadratic form! Check with p = n = 3!
But still many more exotic division rings K than the standard R, C (and H) are possible
at that stage .

4.3.3 Towards Hilbert spaces

There are several arguments that point towards the standard physical solution, V
must be a Hilbert space over R, C (or possibly H). However none of these arguments is
fully mathematically convincing, if most would satisfy a physicist. Remember that real
numbers are expected to occur in physical theory for two reasons. Firstly the lattice
structure is related to probabilities p, which are real numbers. Thus the continuous
structure of the real numbers should be contained in the abstract structure (this is
not really a very strong argument...) Secondly we look for a quantum theory that
must be compatible with the relativistic concept of space-time, where space and time
are described by continuous real variables (this is a experimental fact). Of course this
is correct as long as one does not try to quantize gravity.

We have not discussed yet precisely the structure of the states Ë, and which con-
straints they may enforce on the algebraic structure of propositions. Remember that
it is the set of states E which allows to discuss the partial order relation � on the set
of propositions L. Moreover states Ë assign probabilities Ë(a) 2 [0,1] to propositions
a, with the constraints that if a ? b, Ë(a_ b) = Ë(a) +Ë(b). Moreover the propositions
a 2 L (projective measurements) define via the Sasaki orthogonal projections ·a a set
of transformations L ! L, which form a so called Baer ⇤-semi group. On the same
time, propositions a 2 L define mappings Ë! Ëa on the states. Since, as in the alge-
braic formalism, convex linear combinations of states are states, E generate a linear
vector space E , and form a convex subset E ⇢ E . Thus there is more algebraic struc-
ture to discuss than what I explained up to now. I refer to [BC81], chapters 16-19, for
more details. I shall come back to states when discussing Gleason’s theorem in the
next section.

Assuming some “natural” continuity or completeness conditions for the states
leads to theorems stating that the division ring K must contain the field of real num-
bers R, hence is R, C or H, and that the involution ⇤ is continuous, hence corresponds
to the standard involution x⇤ = x, x⇤ = x̄ or x⇤ = x? respectively. See [BC81], chapter
21.3.

Another argument comes from an important theorem in the theory of orthomodu-
lar lattices, which holds for lattices of projections in infinite dimensional modules.

Solèr’s Theorem: (Solèr 1995) Let L = LK(V) be an irreducible OM AC lattice of com-
pact linear suspaces in a left-module V over a divison ring K, as discussed above. If
there is an infinite family {vi } of orthonormal vectors in V such that hvi |vji = ÷i j f with
some f 2 K then the division ring K can only be R, C or H.

The proof of this highly non trivial theorem is given in [Sol95]. It is discussed in
more details in [Hol95].
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The assumptions of the theorem state that there an infinite set ofmutually compat-
ible atoms {ai }i2I in L (commuting, or causally independent elementary propositions
ai ), and in addition that there is some particular symmetry between the generators
vi 2 V of the linear spaces (the lines or rays) of these propositions.

The first assumption is quite natural if we take into account space-time and locality
in quantum physics. Let me consider the case where the physical space in which the
system is defined to be infinite (flat) space or some regular lattice, so that it can be
separated into causally independent piecesO” (labelled by ” 2 À some infinite lattice).
See for instant Fig. 4.5. It is su�cient to have one single proposition a” relative to each
O” only (for instance “there is one particle inO””) to build an infinite family ofmutually
orthogonal propositions b” = a”^ (

V

‘,”¬a‘) in L. Out of the b”, thanks to the atomic
property (A), we can extract an infinite family of orthogonal atoms c”.

Figure 4.5: A string of causal diamonds (in space-time)

However this does not ensure the second assumption: the fact that the corre-
sponding vi 2 V are orthonormals. The group of space translations T must act as
a group of automorphism on the lattice of linear subspaces L = LK(V) (a group of au-
tomorphisms on a OC lattice L = LK(V) is a group of transformations which preserves
the OC lattice structure (� , ^ , 0) or equivalently (✓ , \ ,?)). There must correspond
an action (a representation) of the translation group T on the vector space V , and on
the underlying field K. If the action is trivial the conditions of Soler’s theorem are ful-
filled, but this is not ensured a priori. See for instance [GL12] for a recent discussion of
symmetries in orthomodular geometries. However I am not aware of a counterexam-
ple where a non standard orhomodular geometry (i.e. di↵erent from that of a Hilbert
space on C (or R) carries a representation of a “physical” symmetry group such as
the Poincaré or the Galilean group of space-time transformations (representations of
these groups should involve the field of real numbers R in some form).

From now on we assume that a quantum system may indeed be described by pro-
jectors in a real or complex Hilbert space.

One last remark. The coordinatization theorem depends crucially on the fact that
the OM lattice L is atomic, hence contain minimal propositions (atoms). They are the
analog of minimal projectors in the theory of operator algebras. Hence the formal-
ism discussed here is expected to be valid mathematically to describe only type I von
Neumann algebras. I shall not elaborate further.

4.4 Gleason’s theorem and the Born rule

4.4.1 States and probabilities

In the presentation of the formalism we have not put emphasis on the concept
of states, although states are central in the definition of the causality order relation
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� and of the orthocomplementation 0. We recall that to each state Ë and to each
proposition a is associated the probability Ë(a) for a to be found true on the state Ë.
In other word, states are probability measures on the set of propositions, compatible
with the causal structure. As already mentionned, the lattice structure of propositions
can be formulated from the properties of the states on L.

At that stage we have almost derived the standard mathematical formulation of
quantummechanics. Proposition (yes-no observables) are represented by othonormal
projectors on a Hilbert space H. Projectors on pure states corresponds to projectors
on one dimensional subspaces, or rays ofH so the concept of pure states is associated
to the vectors ofH.

Nevertheless it remains to understand which are the consistent physical states,
and what are the rules which determine the probabilities for a proposition a to be
true in a state Ë, in particular in a pure state. We remind that the states are in fact
characterized by these probability distributions a! Ë(a) on L. Thus states must form
a convex set of functions L ! [0,1] and by consistency with the OM structure of L
they must satisfy four conditions. These conditions define “quantum probabilities”

Quantum probabilities:

(1) Ë(a) 2 [0,1] (4.4.1)
(2) Ë(;) = 0 , Ë(1) = 1 (4.4.2)
(3) a , b =) 9Ë such that Ë(a) , Ë(b) (4.4.3)
(4) a ? b =) Ë(a_ b) = Ë(a) +Ë(b) (4.4.4)

Conditions (1) and (2) are the usual normalization conditions for probabilities. Condi-
tion (3)means that observables are distinguishable by their probabilities. Condition (4)
is simply the fact that if a and b are orthogonal, they generate a Boolean algebra, and
the associated probabilities must satisfy the usual sum rule. These conditions imply
in particular that for any state Ë, Ë(¬a) = 1�Ë(a), and that if a � b, then Ë(a)  Ë(b),
as we expect.

It remains to understand if and why all states Ë can be represented by density
matrices ‚Ë, and the probabilities for propositions a given by Ë(a) = tr(‚ËPa), where
Pa is the projector onto the linear -subspace associated to the proposition a. This is
a consequence of a very important theorem in operator algebras, Gleason’s theorem
[Gle57].

4.4.2 Gleason’s theorem

It is easy to see that to obtain quantum probabilities that satisfy the conditions
4.4.1- 4.4.4, it is su�cient to consider atomic propositions, i.e. projections onto 1 di-
mensional subspaces (rays) generated by vectors ~e = |ei (pure states) of the Hilbert
space H. Indeed, using 4.4.4, the probabilities for general projectors can be recon-
structed (by the usual sum rule) from the probabilities for projections on rays. Denot-
ing since there is no ambiguity for a state Ë the probability for the atomic proposition
e represented by the projection P~e onto a vector ~e = |~ei 2H as

Ë(e) = Ë(Pe) = Ë(~e) P~e = |~eih~e| = projector onto ~e (4.4.5)
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The rules 4.4.1- 4.4.4 reduces for atomic propositions to the conditions.

Quantum probabilities for projections on pure states: For any state Ë, the function
Ë(~e) considered as a function on the “unit sphere” of the rays over the Hilbert Space
H (the projective space) S =H⇤/K⇤ must satisfy

(1) Ë(~e) = Ë(›~e) for any › 2 K such that |›| = 1 (4.4.6)
(2) 0  Ë(~e)  1 (4.4.7)

(3) For any complete orthonormal basis ofH, {~ei }, one has
º

i

Ë(~ei ) = 1 (4.4.8)

Gleason’s theorem states the fundamental result that any such function is in one
to one correspondence with a density matrix.

Gleason’s theorem:
If the Hilbert spaceH over K = R or C is such that

dim(H) � 3 (4.4.9)

then any function Ë over the unit rays of H that satisfies the three conditions 4.4.6–
4.4.8 is of the form

Ë(~e) = (~e · ‚Ë · ~e) = h~e|‚Ë|~ei (4.4.10)

where ‚Ë is a positive quadratic form (a density matrix) overH with the expected prop-
erties for a density matrix

‚Ë = ‚†Ë , ‚Ë � 0 , tr(‚Ë) = 1 (4.4.11)

Reciprocally, any such quadratic form defines a function Ë with the three properties
4.4.6–4.4.8.

Gleason’s theorem is fundamental. As we shall discuss more a bit later, it implies
the Born rule. It is also very important when discussing (and excluding a very general
and most natural class of) hidden variables theories. So let us discuss it a bit more,
without going into the details of the proof.

4.4.3 Principle of the proof

The theorem is remarkable since there are non conditions on the regularity ormea-
surability of the function Ë. In the original derivation by Gleason [Gle57] he considers
real “frame functions” f of weight W overH⇤ =H\{0} such that

(1) f (~e) = f (›~e) for any › , 0 2 K (4.4.12)
(2) f is bounded (4.4.13)

(3) For any complete orthonormal basis ofH, {~ei },
º

i

f (~ei ) =W = constant

(4.4.14)
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and proves that such a function must be of the form 4.4.10

f (~e) = (~e·Q ·~e) , Q quadradic form such that tr(Q) =W (4.4.15)

It is easy to see that this is equivalent to the theorem as stated above, since one can
add constants and rescale the functions f to go from 4.4.12–4.4.14 to 4.4.6–4.4.8.
The original proof goes into three steps

1. Real Hilbert space, dim(H) = 3 and f a continuous frame function =) the
theorem
This is the easiest part, involving some group theory. Any frame function f is
a real function on the unit two dimensional sphere S2 and if continuous it is
square summable and can be decomposed into spherical harmonics

f (~n) =
º

l,m

fl,mY
m
l (⁄,Ô) (4.4.16)

The theorem amounts to show that if f is a frame function of weightW = 0, then
only the l = 2 components of this decomposition 4.4.16 are non zero. Some rep-
resentation theory (for the SO(3) rotation group) is enough. Any orthonormal
(oriented) basis (~e1, ~e2, ~e3) of R3 is obtained by applying a rotation R to the basis
(~ex , ~ey , ~ez). Thus one can write

f (~n1) + f (~n2) + f (~n3) =
º

l

º

m,m0
fl,m D (l)

m,m0 (R) V
(l)
m0 (4.4.17)

with the D (l)
m,m0 (R) theWigner D matrix for the rotation R, and the V (l)

m0 the compo-

nents of the vectors ~V (l) in the spin l representation of SO(3), with components

~V (l) = {V (l)
m } , V (l)

m = Yl,m(0,0) + Yl,m(·/2,0) + Yl,m(·/2,·/2) (4.4.18)

If f is a frame function of weight W = 0, the l.h.s. of 4.4.17 is zero for any
R 2 SO(3). This implies that for a given l, the coe�cients flm must vanish if the
vector ~V (l) , 0, but are undetermined if ~V (l) = 0. An explicit calculation shows
that indeed

~V (l)

8

>

>

<

>

>

:

, 0 if l , 2,
= 0 if l = 2.

(4.4.19)

This establishes the theorem in case (1).
2. Real Hilbert space, dim(H) = 3 and f any frame function =) f continuous.

This is the most non-trivial part: assuming that the function is bounded, the
constraint 4.4.14 is enough to imply that the function is continuous! It involves
a clever use of spherical geometry and of the frame identity

¥

i=1,2,3
f (~ei ) = W .

The basic idea is to start from the fact that since f is bounded, it has a lower
bound fmin which can be set to 0. Then for any ◊ > 0, take a vector ~n0 on the
sphere such that |f (~n0)� fmin | < ◊. It is possible to show that there is a neibour-
hoodO of ~n0 such that |f (~n1)�f (~n2)| < C ◊ for any ~n1 and ~n2 2 O. C is a universal
constant. It follows that the function f is continuous at its minimum! Then it is
possible, using rotations to show that the function f is continuous at any points
on the sphere.
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3. Generalize to dim(H) > 3 and to complex Hilbert spaces.
This last part is more standard and more algebraic. Any frame function f (~n)
defined on unit vectors ~n such that k~nk = 1 may be extended to a quadratic
function over vectors f (~v) = k~vk2f (~v/k~vk).
For a real Hilbert space with dimension d > 3, the points (1) and (2) implies
that the restriction of a frame function f (~n) to any 3 dimensional subspace is
a quadratic form f (~v) = (~v·Q ·~v). A simple and classical theorem by Jordan and
von Neumann shows that this is enough to define a global real quadratic form
Q on the whole Hilbert spaceH through the identity 2(~x·Q ·~y) = f (~x+~y)� f (~x�~y).
For complex Hilbert spaces, the derivation is a bit more subtle. One can first
apply the already obtained results to the restriction of frame functions over
real submanifolds of H (real submanifolds are real subspaces of H such that
(~x·~y) is always real). One can then extend the obtained real quadratic form
over the real submanifolds to a complex quadratic form onH.

4.4.4 The Born rule

The Born rule is a simple consequence of Gleason theorem. Indeed, any state (in
the general sense of statistical state) corresponds to a positive quadratic form (a den-
sity matrix) ‚. Given a minimal atomic proposition, which corresponds to a projector
P = |~aih~a| onto the ray corresponding to a single vector (pure state) |~ai, the probability
p for P of being true is

p = hPi = tr(‚P) = h~a|‚|~ai (4.4.20)

The space of states E is thus the space of (symmetric) positive density matrices with
unit trace

space of states = E = {‚ : ‚ = ‚†, ‚ � 0 , tr(‚) = 1} (4.4.21)

It is a convex set. Its extremal points, which cannot be written as a linear combination
of two di↵erent states, are the pure states of the system, and are the density matrices
of rank one, i. e. the density matrices which are themselves projectors onto a vector
|Ëi of the Hilbert space.

‚ = pure state =) ‚ = |ËihË| , kËk = 1 (4.4.22)

One thus derives the well known fact that the pure states are in one to one correspon-
dence with the vectors (well... the rays) of the Hilbert spaceH that was first introduced
from the basic observables of the theory, the elementary atomic propositions (the pro-
jectors P). Similarily, one recovers the simplest version of the Born rule: the probability
to “observe” a pure state |Ôi into the (non orthogonal) pure state |Ëi (to “project” |Ôi
onto |Ëi) is the square of the norm of the scalar product

p(Ô! Ë) = |hÔ|Ëi|2 (4.4.23)

4.4.5 Physical observables

One can easily reconstruct the set of all physical observables, and the whole al-
gebra of observables A of the system. I present the line of the argument, without any
attempt of mathematical rigor.
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Any ideal physical mesurement of some observable O consists in fact in taking a
family of mutually orthogonal propositions ai , i.e. of commuting symmetric projectors
Pi onH such that

P2
i = Pi , Pi = P ⇤i , PiPj = PjPi = 0 if i , j (4.4.24)

performing all the tests (the order is unimportant since the projectors commute) and
assigning a real number oi to the result of the measurement (the value of the observ-
able O ) if ai is found true (this occurs for at most one ai ) and zero otherwise. In fact
one should take an appropriate limit when the number of ai goes to infinity, but I shall
not discuss these important points of mathematical consistency. If you think about it,
this is true for any imaginable measurement (position, speed, spin, energy, etc.). The
resulting physical observable O is thus associated to the symmetric operator

O =
º

i

oi Pi (4.4.25)

This amounts to the spectral decomposition of symmetric operators in the theory of
algebras of operators.

Consider a system in a general state given by the density matrix ‚. From the gen-
eral rules of quantum probabilities, the probability to find the value oi for the mea-
surement of the observable O is simply the sum of the probabilities to find the system
in a eigenstate of O of eigenvalue oi , that is

p(O ! oi ) = tr(Pi‚) (4.4.26)

and for a pure state |Ôi it is simply

hÔ|Pi |Ôi = |hÔ|Ôii|2 , |Ôii =
1

kPi |Ôik
Pi |Ôi (4.4.27)

Again the Born rule! The expectation value for the result of the measurement of O in
a pure state Ëa is obviously

E[O ;Ë] = hOiË =
º

i

oi p(O ! oi ) =
º

i

oihË|Pi |Ëi = hË|O |Ëi (4.4.28)

This is the standard expression for expectation values of physical observables as di-
agonal matrix elements of the corresponding operators. Finally for general (mixed)
states one has obviousy

E[O ;‚] = hOi‚ =
º

i

oi p(O ! oi ) =
º

i

oi tr(Pi‚) = tr(O‚) (4.4.29)

We have seen that the pure states generate by convex combinations the convex set
E of all (mixed) statesË of the system. Similarily the symmetric operatorsO = O† gen-
erates (by operator multiplication and linear combinations) a C⇤-algebraA of bounded
operators B(H) on the Hilbert spaceH. States are normalized positive linear forms on
A and we are back to the standard algebraic formulation of quantum physics. The
physical observables generates an algebra of operators, hence an abstract algebra
of observables, as assumed in the algebraic formalism. We refer to the section about
the algebraic formalism for the arguments for preferring complex Hilbert spaces to
real or quaternionic ones.
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4.5 Discussion

This chapter was a sketchy and partial introduction to the quantum logic approach
for the formulation of the principle of quantummechanics. I hope to have shown its re-
lation with the algebraic formulation. It relies on the concepts of states and of observ-
ables as the algebraic formulation. However the observables are limited to the phys-
ical subset of yes/no proposition, corresponding to ideal projective measurements,
without assuming a priori some algebraic structure between non-compatible proposi-
tions (non-commuting observables in the algebraic framework). I explained how the
minimal set of axioms on these propositions and their actions on states, used in the
quantum logic approach, is related to the physical concepts of causality, reversibility
and separability/locality. The canonical algebraic structure of quantum mechanics
comes out from the symmetries of the “logical structure” of the lattice of propositions.
The propositions corresponding to ideal projective measurements are realized on or-
thogonal projections on a (possibly generalized) Hilbert space. Probabilities/states
are given by quadratic forms, and the Born rule follows from the logical structure of
quantum probabilities through Gleason’s theorem.

The quantum logic approach is of course not completely foolproof. We have seen
that the issue of the possible division ring K is not completely settled. The strong
assumptions of atomicity and covering are essential, but somehow restrictive com-
pared to the algebraic approach (type II and III von Neumann algebras). It is sometime
stated that it cannot treat properly the case of a system composed of two subsystems
since there is no concept of “‘tensorial product” of two OM-AC lattices as there is for
Hilbert spaces and operator algebras. Note however that one should in general al-
ways think about multipartite systems as parts of a bigger system, not the opposite!
Even in the algebraic formulation it is not known in the infinite dimensional case if two
commutting subalgebras A1 and A2 of a bigger C⇤-algebra A always correspond to
the decomposition of the Hilbert space H into a tensor product of two subspaces H1
andH2 (this is known as the Tsirelson conjecture).
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