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Chapter 3

The algebraic quantum formalism

3.1 Introduction

3.1.1 Observables as operators

The physical observables of a quantum system are represented by the symmetric
(self-adjoint) operators on the Hilbert space of pure states of the system (see 2.3.1
and in 2.3.3). They thus generate (by addition and multiplication) the set of all (not
necessary symmetric) operators on the Hilbert space. This set forms an associative
but non-commutative complex algebra of operators.

We have also seen that the mixed states È (density matrices) correspond to the
positive normalized linear forms on this algebra of operators, that associate to a self-
adjoint operator the expectation value of the corresponding observable on the state
È.

Finally in 2.3.3 we have already seen that it is of interest to consider the set of
“bounded operators” B(H) over some Hilbert space H. We also mentioned that in
classical mechanics, the set of smooth functions (i.e. the set of classical observables)
over the phase space of a classical system form in general a Poisson algebra, i.e. a
commutative algebra equipped with a Poisson bracket.

In this section I shall present and discuss the “algebraic approach” of quantumme-
chanics. This formulation of the principles of quantum mechanics relies precisely on
the mathematical theory of algebras of operators, and is a formalisation of the above
considerations. It can be viewed as an extension and as a mathematically rigorous
formulation of the “canonical formalism”. Of course the idea of “non-commutative
observables” goes back to the “matrix mechanics” initiated by Heisenberg and was
a crucial element in the elaboration the canonical formalism itself. As we shall see,
in the algebraic formulation one focuses on the abstract structure of the set of ob-
servables and of the set of states of a system, and on the rules that must satisfy the
probabilities associated to measurements of observables over states. The explicit re-
alization of these (observables, states and probabilities) as an algebra of operators
acting on an Hilbert space representing the pure states of the system, as well as the
explicit form of the probabilities as given by the Born rule, can be deduced from some
more abstract, but still mostly physical axioms.
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42 CHAPTER 3. THE ALGEBRAIC QUANTUM FORMALISM

3.1.2 Operator algebras

Let me first recall briefly which kind of operator algebras play a role in quantum
mechanics. The Hilbert space H is a complex vector state, embodied with a scalar
product (a sesquiinear form) (Ë,Ê)! hË|Êi = Ë ·Ê which is linear in Ê and antilinear
on Ë, symmetric, positive and non degenerate. This defines the standard norm on H,
||Ë||2 = Ë ·Ë. To be a Hilbert space, the vector space H has to be complete under this
norm, namely any Cauchy sequence of Ën, n 2 N has a limit. Apart from the finite di-
mensional Hilbert spaces, the simplest and most useful Hilbert space is the separable
Hilbert space, that admits a denumbrable orthonormal basis (i.e. a complete basis of
orthonormal vectors labelled by the integers en, n 2 N, hen |emi = ÷n,m).

Among the linear operators acting on the Hilbert space H, an interesting class is
the algebra of bounded operators B(H). An operator A 2 GL(H) is bounded if its sup-
norm is finite. The norm of an operator is defined as

||A||2 = sup
Ë2H⇤

hAË|AËi
hË|Ëi < 1 (3.1.1)

In quantum mechanics many physical observables, starting with the position op-
erator, the momentum operator and the energy operator (the Hamiltonian), as well
as the number of particles operator in quantum field theories, are not bounded op-
erators. They may however be reconstructed from the bounded operators, within the
theory of rigged Hilbert spaces (see for instance [BLOT90]).

The norm of an operator A corresponds to the diameter of its spectrum. The spec-
trum of A, spec(A), is the set of z 2 C such that the operator A� z is not invertible, this
is the infinite dimensional generalization of the set of eigenvalues of a matrix. So the
norm ||A|| is roughly speaking the sup of the modulus of the eigenvalues of A.

This norm has many interesting property. Firstly it is indeed a norm, such that

||›1A1 +›2A2||  |›1| ||A1||+ |›2| ||A2|| (3.1.2)

and B(H) is complete under this norm. Moreover for products of operators it satisfy
the inequality

||AB ||  ||A|| ||B || (3.1.3)

that makes this algebra of operators a Banach algebra. But it satisfies also the non-
trivial identity (A† is the adjoint of A)

||A†A|| = ||A||2 = ||A†||2 (3.1.4)

that makes it a C⇤-algebra. C⇤-algebras have many interesting properties and are at
the basis of the mathematical theory of operator algebras. They were introduced by
Gelfand (under a di↵erent name). Note here that, although B(H) is a complex algebra,
the “C” in the denomination is not for “complex” but rather for “compact” (the unit
sphere for the norm is compact) and the “⇤” is for the adjoint conjugation †, which is
rather denoted ⇤ in the mathematical literature.

For a finite dimensional Hilbert stateH = Cn, the corresponding complex C⇤-algebra
is the standard algebra of n ⇥ n complex matrices M(n,C). Reciprocally, any simple fi-
nite dimensional complex C⇤-algebra can be represented as a M(n,C) matrix algebra,
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3.1. INTRODUCTION 43

and this representation is unique. The situation is more interesting (both mathemat-
ically and also for physics) in the infinite dimensional case. There exists C⇤-algebras
(i.e. subalgebras A ⇢ B(H) that satisfy the above conditions) that cannot be repre-
sented as the algebra of bounded operators of some “smaller” Hilbert spaceH0. More-
over such C⇤-algebras may have several inequivalent irreducible representations over
a Hilbert space. A simple example will be given with application to one dimensional
quantum mechanics later.

The mathematical theory of operator algebras was initiated by F. J. Murray and J.
von Neumann in the end of the 1930’s. One of J. von Neumann’s motivations was pre-
cisely to formulate more precisely the mathematics of quantum mechanics, in cases
where the canonical formalism and the concept of “wave function” is not su�cient
or well defined. A very interesting and useful subclass of C⇤-algebras is the class of
the so-called W⇤-algebras or von Neumann algebras. They are very important both in
mathematics and for the mathematical proper formulation of quantum field theories.
They will be presented and discussed (a little bit) in section 3.7.

Finally a very important property of these operator algebra will be used in this
chapter. Although C⇤-algebras are usually defined and studied as algebras of oper-
ators actng on a Hilbert spaceH, they can be also defined in an abstract way, without
reference to an underlying Hilbert space. In this approach, a C⇤-algebra is an abstract
associative complex algebra A, together with a conjugation ⇤ (acting as the standard
conjugation A ! A† for operators, and a norm || · || satisfying the same properties of
the sup-norm that I discussed above. So

abstract C⇤-algebra = (A, ⇤ , || · ||) (3.1.5)

The two approach are equivalent, a famous mathematical result – the GNS construc-
tion – shows that one can reconstruct all the representations of the algebra as al-
gebras of operators acting on a Hilbert space from its abstract definition and from
its states (in the sense of quantum mixed states, i.e. positive linear normalized forms)
that can be constructed on the abstract algebra. Thus the Hilbert space of pure states
of a quantum system can be “reconstructed” from the observables of the system.

Standard references on operator algebras in the mathematical litterature are the
books by J. Dixmier (1981, 1982) [Dix69], by Sakai (1971) [Sak71], and by P. de la
Harpe and V. Jones (1995) [dlHJ95].

3.1.3 The algebraic approach

Let me know present the algebraic formulation and what I am going to do in this
chapter. In the algebraic formulation, quantummechanics is still constructed from the
classical concepts of observables and states, but one makes the assumption that the
observables are not commuting objects. They will generate an associative but non-
commutative algebra. The properties of this algebra of observables, and the dynamics
allowed by the theory, turns out to be quite constrained, in particular by enforcing
causality, locality and unitarity in order to obtain physical theories consistent with
special relativity (quantum field theories). The adequate mathematical object to treat
quantum field theories in a mathematically consistent way is indeed the theory of
algebras of operators, in particular C⇤ and W⇤-algebras, and of their representations.
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44 CHAPTER 3. THE ALGEBRAIC QUANTUM FORMALISM

As we already explained, the mathematical theory of operator algebras started in
the 1930’s and was developed in the 1940’s and 1950’s, up to now. It is still a major
and expanding field of mathematics. Its applications for quantum physics, in partic-
ular for quantum field theory and quantum statistical mechanics, were notably initi-
ated by Segal in the end of the 1940’s [Seg47b] and further developed by the creation
of axiomatic quantum field theory (the Wightman’s axioms) [SA00] and shortly after
through the development of algebraic quantum field theory [HK64](the Haag-Kastler-
Ruelle theory) in the 1960’s.

The standard and excellent reference on the algebraic and axiomatic approaches
to quantum field theory is the book by R. Haag, Local Quantum Physics, especially
the second edition (1996) [Haa96]. Another good, but older, reference is the book by
N. N. Bogoliubov; A. A. Logunov, A.I. Oksak and I.T. Todorov (1975, 1990) [BLOT90].
Another useful reference on axiomatic QFT is the famous book by R. F. Streater and
A. S. Wightman (1964, 1989) [SA00] . Besides the mathematical references on op-
erator algebras given above, some mathematical references more oriented towards
mathematical physics and theoretical physics are the books by Bratteli and Robin-
son(1979) [BR02] (for statistical physics) and the books by A. Connes (1994) [Con94]
and A. Connes and M. Marcolli [CM07] (for high energy physics, quantum gravity and
string theory).

In this chapter my goal is to give a brief and heuristic presentation of the algebraic
formulation of quantum theory. So I shall try to introduce more or less precisely the
mathematical concepts, but with no attempts at mathematical rigor and precision in
the derivations. In contrast with the usual (and useful) mathematical presentations,
where the axioms and the principles are first stated and then discussed and applied,
I shall try to motivate these axioms by logical and physical considerations, and “re-
construct” the algebraic formalism step by step, trying to precise at which steps the
di↵erent physical principles that we expect/assume for a sensible physical theory en-
ter in the game. Of peculiar importance are the principles of causality, of reversibility
and of locality (both to ensure relativistic invariance and to enforce the fact that one
can causally separate domains in space-time and decompose an extended physical
system into its subparts).

Such a presentation is somehow original, and I hope that it will be useful. A particu-
lar feature of this approach is that I start from the concept of observables and states of
a physical system, and try to reconstruct and justify the mathematical structure (why
an algebra? why a conjugation? why a sup-norm that makes the set generated by
the physical observables a C⇤-algebra? etc..) . It then appears at that first stage that
the natural structure that emerges is the structure of real C⇤-algebras (i.e. algebras
build on the field of real numbers R, not necessarily on the field of complex numbers
C). Fortunately there is a mathematical theory of real C⇤-algebras (less developped
than the theory of complex C⇤-algebras since the former ones are less interesting,
and for many problems equivalent to the latter ones), that can be used as well. The
only good reference on real C⇤-algebras I am aware of is the monograph by Goodearl
(1982) [Goo82], and I shall refer to it.

It is only at the second stage that I shall explain which physical requirements (ba-
sically these are the requirements of locality and of causal separability) enforce the
use of complex algebras and of the standard complex Hilbert space formalism.
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3.2. THE ALGEBRA OF OBSERVABLES 45

3.2 The algebra of observables

3.2.1 The mathematical principles

A quantum system is described by its observables, its states and a causal involu-
tion acting on the observables and enforcing constraints on the states. Rather than
discussing the physics concepts behind these terms, let me first give the mathemati-
cal axioms and motivate them physically after.

3.2.1.a - Observables

The physical observables of the system generate a real associative unital algebra
A (whose elements will still be denoted “observables” ) . A is a linear vector space

a, b 2A ›, fi 2 R ›a+fib 2 A
with an associative product (distributive w.r.t the addition)

a, b, c 2A ab 2 A (ab)c = a(bc) (3.2.1)

and a multiplicative unity element 1 such that

1a = a1 = a , 8 a 2A (3.2.2)

I shall precise later what is meant by “physical observables”.

3.2.1.b - The ⇤-conjugation

There is an involution ? on A (denoted conjugation). It is an anti-automorphism
whose square is the identity. This means that

(›a+fib)? = ›a? +fib? (3.2.3)

and
(a⇤)⇤ = a (ab)? = b?a? (3.2.4)

3.2.1.c - States

Each state Ô associates to an observable a its expectation value Ô(a) 2 R in the
state Ô. The states satisfy

Ô(›a+fib) = ›Ô(a) +fiÔ(b) (3.2.5)

and
Ô(a?) = Ô(a) Ô(1) = 1 Ô(a?a) � 0 (3.2.6)

The set of states is denoted E . It is natural to assume that it allows to discriminate
between observables, i.e.

8 a , b 2A (and , 0),9 Ô 2 E such that Ô(a) , Ô(b) (3.2.7)

For the unfamiliar reader the symbol 8means “for all” and 9means “there exists”.
I do not discuss the concepts of time and dynamics at that stage. This will be done

later. I first discuss the relation between these “axioms” and the physical concepts of
causality, reversibility and probabilities.
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46 CHAPTER 3. THE ALGEBRAIC QUANTUM FORMALISM

3.2.2 Physical discussion

3.2.2.a - Observables and causality

In quantum physics, the concept of physical observable corresponds both to an
operation on the system (measurement) and to the response on the system (result on
the measure), but I shall not elaborate further. I already discussed why in classical
physics observables form a real commutative algebra. The removal of the commuta-
tivity assumption is the simplest modification imaginable compatible with the uncer-
tainty principle (Heisenberg 1925).

Keeping the mathematical structure of an associative but non commutative alge-
bra reflects the assumption that there is still some concept of “causal ordering” be-
tween observables (not necessarily physical), in a formal but loose sense. Indeed the
multiplication and its associativity means that we can “combine” successive observ-
ables, e.g. ab ' (b then a), in a linear process such that ((c then b) then a) ' (c then
(b then a)). This “combination” is di↵erent from the concept of “successive measure-
ment".

Without commutativity the existence of an addition law is already a non trivial
fact, it means that we can “combine” two non compatible observations into a new
one whose mean value is always the sum of the first two mean values.

These operations of addition andmutiplication of observables are in fact more nat-
ural in the context of relativistic theories, via the analyticity properties of correlation
functions and the short time and short distance expansions.

3.2.2.b - The ⇤-conjugation and reversibility

The existence of the involution (or conjugation) ⇤ is the second and very important
feature of quantum physics. It implies that although the observables do not commute,
there is no favored arrow of time (or causal ordering) in the formulation of a physical
theory. To any causal description of a system in term of a set of observables {a, b, . . .}
corresponds an equivalent “anti-causal” description it terms of conjugate observables
{a⇤, b⇤, . . .}. In other word the properties of the ⇤ conjugation amount to assuming mi-
croscopic reversibility. Again although there is no precise concept of time or dynamics
yet, the involution ⇤ must not be confused with the time reversal operator T (which
may or may not be a symmetry of the dynamics).

3.2.2.c - States, mesurements and probabilities

The states Ô are the simple generalisation of the classical concept of statistic (or
probabilistic) states describing our knowledge of a system through the expectation
value of the outcome of measurements for each possible observables. At that stage
I do not assume anything about whether there are states such that all the values of
the observables can be determined or not. Thus a state can be viewed also as the
characterization of all the information which can be extracted from a system through
a measurement process (this is the point of view often taken in quantum information
theory). I do not consider how states are prepared, nor how the measurements are
performed (this is the object of the subpart of quantum theory known as the theory
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3.2. THE ALGEBRA OF OBSERVABLES 47

of quantum measurement) and just look at the consistency requirements on the out-
come of measurements.

The “expectation value” Ô(a) of an observable a has not been defined precisely
either at that stage. In statistics the expectation of an observable can be considered
as well as given by the average of the outcome of measurements a over many re-
alisations of the system in the same state (frequentist point of view) or as the sum
over the possible outcomes ai times the plausibility for the outcomes in a given state
(Bayesian point of view). As already done in 2.5.2, and we shall see in the discussion
of the algebraic formalism and of the quantum logic formalism, discussing the role of
reversibility amounts to treat simultaneously the statistics for predictions (which can
be done using the frequentist point of view) and the statistics for retrodictions (which
is better done using the Bayesian point of view). Therefore in my opinion both point
of views have to be considered on a same footing, and are somehow unified, in the
quantum formalism.

The linearity of the states considered as function over the observables Eq. 3.2.5
follows from (or is equivalent to) the assumptions that the observables form a linear
vector space on R. The very important condition in 3.2.6

Ô(a⇤) = Ô(a)

for any a follows from the assumption of reversibility discussed above. If it was not
satisfied, there would be observables that would allow to favor one causal ordering,
irrespective of the possible dynamics and of the possible states of the system.

The positivity condition Ô(a⇤a) � 0 ensures that the states have a probabilistic in-
terpretation, so that on any state the expectation value of a positive observable is
positive, and that there are no negative probabilities, in other word it will ensure uni-
tarity. It is the simplest consistent positivity condition compatible with reversibility,
and in fact the only possible without assuming more structure on the observables. Of
course the condition Ô(1) = 1 is the normalisation condition for probabilities.

3.2.3 Physical observables and pure states

Three important concepts follow from the mathematical principles assumed in
3.2.1, and tentatively justified physically in 3.2.2.

3.2.3.a - Physical (symmetric) observables:

An observable a 2 A is denoted symmetric (self adjoint, or self-conjugate) if a⇤ =
a. Symmetric observables correspond to the physical observables, which are actu-
ally measurable. Observable such that a⇤ = �a are denoted skew-symmetric (anti-
symmetric or anti-conjugate). They do not correspond to physical observables since
for such observables Ô(a) = 0 but they must be included formalism in order to have a
consistent algebraic structure.

3.2.3.b - Pure states:

The set of states E is a convex subset of the set of real linear forms onA (the dual
ofA). Indeed if Ô1 et Ô2 are two states and 0  x  1, Ô = xÔ1+(1�x)Ô2 is also a state.
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This corresponds to the fact that any statistical mixture of two statistical mixtures is
a statistical mixture. The extremal points in E , i.e. the states which cannot be written
as a statistical mixture of two di↵erents states in E , are called the pure states. Non
pure states are called mixed states. If a system is in a pure state one cannot get more
information from this system than the information that what we have already.

3.2.3.c - Bounded observables

I just need to impose two additional technical and natural assumptions: (i) for any
observable a , 0, there is a state Ô such that Ô(a⇤a) > 0, if this is not the case, the
observable a is indistinguishable from the observable 0 (which is always false); (ii)
supÔ2E Ô(a⇤a) <1, i.e. I restrict A to the algebra of bounded observables, this will be
enough to characterize the system.

3.3 The C⇤-algebra of observables

The involution ⇤ et the existence of the states Ô 2 E on A strongly constrain the
structure of the algebra of observables and of its representations. Indeed this allows
to associate toA a unique norm k ·k with some specific properties. This normmakesA
a C⇤-algebra, and more precisely a real abstract C⇤-algebra. This structure justifies
the standard representation of quantum mechanics where pure states are elements
of an Hilbert space and physical observables are self-adjoint operators.

3.3.1 The norm on observables, A is a Banach algebra

Let us consider the function a! ||a|| from A! R+ defined by

||a||2 = sup
statesÔ2E

Ô(a?a) (3.3.1)

We have assumed that ||a|| <1, 8a 2A and that ||a|| = 0 () a = 0 (this is equivalent
to a , 0 =) 9Ô 2 E such that Ô(a⇤a) , 0). It is easy to show that || · || is a norm on A,
such that

||›a|| = |›| ||a|| , ||a+b||  ||a||+ ||b|| , ||ab||  ||a|| ||b|| (3.3.2)

If A is not closed for this norm, we can take its completion A. The algebra of observ-
ables is therefore a real Banach algebra.

Derivation:
The first identity in 3.3.2 comes from the definition and the linearity of states. Tak-

ing c = xa + (1 � x)b and using the positivity of Ô(c⇤c) � 0 for any x 2 R one obtains
Schwartz inequality Ô(a⇤b)2 = Ô(a⇤b)Ô(b⇤a)  Ô(a⇤a)Ô(b⇤b), 8a, b 2 A. This implies
the second inequality. The third inequality comes from the fact that if Ô 2 E and b 2A
are such that Ô(b⇤b) > 0, then Ôb defined by Ôb(a) =

Ô(b⇤ab)
Ô(b⇤b) is also a state for A. Then

||ab||2 = supÔÔ(b⇤a⇤ab) = supÔ (Ôb(a⇤a)Ô(b⇤b))  supËË(a⇤a) · supÔÔ(b⇤b) = ||a||2 ||b||2.
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3.3.2 The observables form a real C⇤-algebra

Moreover the norm satisfies the two non-trivial properties.

||a⇤a|| = ||a||2 = ||a⇤||2 (3.3.3)

and
1+a⇤a is invertible 8a 2A (3.3.4)

These two properties are equivalent to state that A is a real C⇤-algebra. The first
condition 3.3.3 is sometimes called the C⇤ condition. It has already been discussed
for complex algebras. The second condition 3.3.4 is specific to real algebras. For
a discussion of the definition of real C⇤-algebras and of their properties, that will be
used below, I refer to the by Goodearl [Goo82].

Derivation:
One has ||a⇤a||  ||a|| ||a⇤||. Schwartz inequality implies thatÔ(a⇤a)2  Ô

⇣

(a⇤a)2
⌘

Ô(1),
hence ||a||2  ||a⇤a||. This implies (3.3.3).

To obtain (3.3.4), notice that if 1 + a⇤a is not inversible, there is a b , 0 such that
(1 + a⇤a)b = 0, hence b⇤b + (ab)⇤(ab) = 0. Since there is a state Ô such that Ô(b⇤b) , 0,
either Ô(b⇤b) < 0 or Ô((ab)⇤(ab) < 0, this contradicts the positivity of states.

The full consequences of the fact that A is a real C⇤-algebra will be discussed in
next subsection. Before this let me introduce first the concept of spectrum of an ob-
servable.

3.3.3 Spectrum of observables and results of measurements

Here I discuss in a slightly more precise way the relationship between the spectrum
of observables and results of measurements. The spectrum 1 of an element a 2 A is
defined as

SpC(a) = {z 2 C : (z �a) not inversible in the complexified algebra AC of A} .

The spectral radius of a is defined as

rC(a) = sup(|z|; z 2 SpC(a))

For a real C⇤-algebra it is known that the norm || · || defined by 3.3.1 is

||a||2 = rC(a⇤a)

Moreover the spectrum of any physical observable (symetric) is real

a = a⇤ =) SpC(a) ⇢ R

and for any a, the product a⇤a is a symmetric positive element of A, i.e. its spectrum
is real and positive

SpC(a⇤a) ⇢ R+

1. The exact definition of the spectrum is slightly di↵erent for a general real Banach algebra.
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Finally, for any (continuous) real function F R! R and any a 2 A one can define the
observable F (a). Now consider a physical observable a. Physically, measuring F (a)
amounts to measure a and when we get the real number A as the result of the mea-
surement, return F (A) as a result of the measure of F (a) (this is fully consistent with
the algebraic definition of F (a) since F (a) commutes with a). Then it can be shown
easily that the spectrum of F (a) is the image by F of the spectrum of a, i.e.

SpC(F (a)) = F (SpC(a))

In particular, assuming that the spectrum is a discrete set of points, let us choose for
F the function

F [a] = 1/(z1�a)
For any state Ô, the expectation value of this observable on the state Ô is

EÔ(z) = Ô(1/(z1�a)

and is an analytic function of z away from the points of the spectrum SpC(a)). Assum-
ing that the singularity at each zp is a single pole, the residue of EÔ(z) at zp is nothing
but

ReszpEÔ = Ô(÷(a� zp1))
= probabiliy to obtain zp when measuring a on the state Ô (3.3.5)

with ÷(z) the Dirac distribution.
This implies that for any physical observable a, its spectrum is the set of all the

possible real numbers zp returned by a measurement of a. This is one of the most
important axioms of the standard formulation of quantum mechanics, and we see
that it is a consequence of the axioms in this formulation. Of course the probability
to get a given value zp (an element of the spectrum) depends on the state Ô of the
system, and it is given by 3.3.5 which is nothing but the Born rule, as obtained from
this abstract definiton of the states.

3.3.4 Complex C⇤-algebras

The theory of operator algebras (C⇤-algebras and W⇤-algebras) and their applica-
tions almost exclusively deal with complex algebras, i.e. algebras over C. In the case
of quantum physics we shall see a bit later why quantummechanics and quantum field
theories must be represented by complex C⇤-algebras. I give here some mathematical
definitions.

Abstract complex C⇤-algebras and complex states Ê are defined as in 3.2.1. A com-
plex C⇤-algebra A is a complex associative involutive algebra. The involution is now
anti-linear

(›a+fib)? = ›̄a? + fīb? ›, fi 2 C

z̄ denotes the complex conjugate of a complex number z. A is equipped with a norm
a! ||a|| which still satisfy the C⇤ condition 3.3.3,

||a⇤a|| = ||a||2 = ||a⇤||2 (3.3.6)
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and it is closed under this norm. The condition 3.3.4 is not necessary any more (it
follows from 3.3.6 for complex algebras).

The states are defined now as the complex linear forms Ê onA which satisfy

Ê(a⇤) = Ê(a) Ê(1) = 1 Ê(a⇤a) � 0 (3.3.7)

Every complex C⇤-algebraA can be considered as a real C⇤-algebraAR (by considering
i =
p
�1 as an element i of the center of AR) but the reverse is not true in general. For

instance the algebra of 2⇥2 real matricesM2(R) is not a complex algebra.
However if a real algebra AR has an element (denoted i) in its center C that is

isomorphic to
p
�1, i.e. i is such that

i⇤ = �i , i2 = �1 , ia = ai 8 a 2AR (3.3.8)

then the algebraAR is isomorphic to a complex algebraAC =A. One identifies x1+ yi
with the complex scalar z = x + iy. The conjugation ⇤, which is linear on AR, is now
anti-linear on AC. One can associate to each a 2AR its real and imaginary part

Re(a) =
a+a⇤

2
, Im(a) = i

a⇤ �a
2

(3.3.9)

and write it in AC
a = Re(a) + i Im(a) (3.3.10)

To any real state (and in fact to any real linear form) ÔR on HR one associates the
complex state (the complex linear form) ÊC on AC defined as

ÊC(a) = ÔR(Re(a)) + iÔR(Im(a)) (3.3.11)

It has the expected properties for a complex state on the complex algebraA.

3.4 The GNS construction, operators and Hilbert spaces

General theorems show that abstract C⇤-algebras can always be represented as
algebra of operators on some Hilbert space. This is the main reason why pure states
are always represented by vectors in a Hilbert space and observables as operators.
Let me briefly consider how this works.

3.4.1 Finite dimensional algebra of observables

Let me first consider the case of finite dimensional algebras, which corresponds to
quantum system with a finite number of independent quantum states. This is the case
considered in general in quantum information theory.

If A is a finite dimensional real algebra, one can show by purely algebraic meth-
ods that A is a direct sum of matrix algebras over R, C or H (the quaternions). See
[Goo82] for details. The idea is to show that the C⇤-algebra conditions implies that
the real algebra A is semi-simple (it cannot have a nilpotent two-sided ideal) and to
use the Artin-Wedderburn theorem. One can even relax the positivity condition on

IPhT 2014 The formalisms of quantum mechanics



52 CHAPTER 3. THE ALGEBRAIC QUANTUM FORMALISM

states that Ô(a⇤a) � 0 for all a 2 A, and replace it by the weaker positivity condition
thatÔ(a2) � 0 only for physical symmetric observables such that a = a⇤, which is phys-
ically somewhat more satisfactory (F. David unpublished, probably known in the math
litterature...). This is physically more satisfactory in my opinion, since at that stage
it is not completely obvious that any positive physical observable car be represented
as the square of a physical observable). The conclusion is that any finite dimensional
real C⇤-algebra is a direct sum of matrix algebras, of the form

A =
M

i

Mni (Ki ) Ki = R, C, H (3.4.1)

The index i label the components of the center of the algebra. Any observable reads

a = �iai , ai 2Ai = Mni (Ki )

The multiplication corresponds to the standard matrix multiplication and the involu-
tion ⇤ to the standard conjugation (transposition, transposition+complex conjugation
and transposition+conjugation respectively for real, complex and quaternionic matri-
ces). One thus recovers the familiar matrix ensembles of random matrix theory.

Any state È can be written as

È(a) =
º

i

pi tr(‚iai ) pi � 0,
º

i

pi = 1

and the ‚i ’s some symmetric positive normalised matrices in each Ai

‚i 2Ai = Mni (Ki ) , ‚i = ‚⇤i , tr(‚i ) = 1 , ‚i � 0

The algebra of observables is indeed a subalgebra of the algebra of operators on a
finite dimensional real Hilbert space H =

L

i K
ni
i (C and H being considered as 2 di-

mensional and 4 dimensional real vector spaces respectively). But it is not necessarily
the whole algebra L(H). The system corresponds to a disjoint collection of standard
quantum systems described by their Hilbert space Hi ' K

�ni
i and their algebra of ob-

servablesAi . This decomposition is (with a bit of abuse of language) a decomposition
into “superselection sectors” 2. The ‚i are the quantum density matrices correspond-
ing to the state. The pi ’s correspond to the classical probability to be in a given sector,
i.e. in a state described by (Ai ,Hi ).

A pure state is (the projection onto a) single vector |Ëii in a single sector Hi . Lin-
ear superpositions of pure states in di↵erent sectors |Ëi =¥

i ci |Ëii do notmake sense,
since they do not belong to the representation ofA. No observable a inA allows to dis-
criminate between the seemingly-pure-state |ËihË| and themixed state

¥

i |ci |2|ËiihËi |.
Thus the di↵erent sectors can be viewed as describing completely independent sys-
tems with no quantum correlations, in other word really parallel universes with no
possible interaction or communication between them.

2. See below for a more precise definition and discussion. For many authors the term of superselec-
tion sectors is reserved to infinite dimensional algebras which do have inequivalent representations.
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3.4.2 Infinite dimensional real algebra of observables

This result generalizes to the case of infinite dimensional real C⇤-algebras, but it
is much more di�cult to prove, analysis and topology enter in the game and the fact
that the algebra is closed under the norm is crucial (for a physicist this is a natural
requirement).

Theorem (Ingelstam NN [Ing64, Goo82]): For any real C⇤-algebra, there exists a real
Hilbert spaceH such thatA is isomorphic to a real symmetric closed real sub-algebra
of the algebra B(H) of bounded operators onH.

Now any real algebra of symmetric operators on a real Hilbert space H may be
extended (by standard complexification) into a complex algebra of self-adjoint oper-
ator on a Hilbert space HC on C and thus one can reduce the study of real algebra
to the study of complex algebra. In particular the theory of representations of real
C⇤-algebra is not really richer than that of complex C⇤-algebra and mathematicians
usually. I shall consider only the later case.

I will discuss later why in quantum physics one should restrict oneself also to com-
plex algebras. But note that in physics real (and quaternionic) algebra of observables
do appear as the subalgebra of observables of some system described by a complex
Hilbert space, subjected to some additional symmetry constraint (time reversal invari-
ance T for real algebra, time reversal and an additional SU(2) invariance for quater-
nionic algebras).

3.4.3 The complex case, the GNS construction

Let me discuss more the case of complex C⇤-algebras, since their representation
in term of Hilbert spaces are simpler to deal with. The famous GNS construction
(Gelfand-Naimark-Segal [GN43, Seg47a]) allows to construct the representations of
the algebra of observables in term of its pure states. It is interesting to see the basic
ideas, since they allow to understand how the Hilbert space of physical pure states
emerges from the abstract 3 concepts of observables and mixed states.

The idea is quite simple. To every state Ê we associate a representation of the
algebra A in a Hilbert space HÊ. This is done as follows. The state Ê allows to define
a bilinear form h | iÊ on A, considered as a vector space on C, through

ha|biÊ = Ê(a?b) (3.4.2)

This form is positive � 0 but is not strictly positive > 0, since there are in general
isotropic (or null) vectors such that ha|aiÊ = 0. Thus A, considered as a vector space
equipedwith this norm is only a pre-Hilbert space. However, thanks to the C⇤-condition,
the set IÊ of these null vectors form a linear subspace IÊ of A.

IÊ = {a 2A : ha|aiÊ = 0} (3.4.3)

3. in the mathematic sense: they are not defined with reference to a given representation such as
operators in Hilbert space, path integrals, etc.
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Taking the completion of the quotient space ofA by IÊ one obtains a vector spaceHÊ

HÊ =A/IÊ (3.4.4)

When there is no ambiguity, if a is an element of the algebra A (an observable), we
denote by |ai the corresponding vector in the Hilbert space HÊ, that is the equivalent
class of a inHÊ

|ai = {b 2A : b�a 2 IÊ} (3.4.5)

On this space HÊ the scalar product ha|bi is > 0 (and HÊ is closed) hence HÊ is a
Hilbert space.

The algebra A acts linearily on HÊ through the representation ·Ê (in the space of
bounded linear operators B(HÊ) onHÊ) defined as

·Ê(a)|bi = |abi (3.4.6)

If one considers the vector |‡Êi = |1i 2HÊ (the equivalence class of the operator iden-
tity 1 2A), it is of norm 1 and it is such that

Ê(a) = h‡Ê|·Ê(a)|‡Êi (3.4.7)

(this follows basically from the definition of the representation). Moreover this vec-
tor ‡Êi is cyclic, this means that the action of the operators on this vector allows to
recover the whole Hilbert spaceHÊ, more precisely

·Ê(A)|‡Êi =HÊ (3.4.8)

However this representation is in general neither faithful (di↵erent observables may
be represented by the same operator, i.e. the mapping ·Ê is not injective), nor ir-
reducible (HÊ has invariant subspaces). The most important result of the GNS con-
struction is the following theorem

Theorem (Gelfand-Naimark 43): The representation ·Ê is irreducible if and only if Ê
is a pure state.

The proof is standard and may be found in [dlHJ95] This theorem has far reaching
consequences. First it implies that the algebra of observables A has always a faithful
representation in some big Hilbert space H. Any irreducible representation · of A in
some Hilbert spaceH is unitarily equivalent to the GNS representation ·Ê constructed
from a unit vector |‡i 2H by considering the state

Ê(a) = h‡|·(a)|‡i

Equivalent pure states Two pure states Ê and Ë are equivalent if their GNS represen-
tations ·Ê and ·Ë are equivalent. Then Ê and Ë are unitarily equivalent, i.e. there
is a unitary element u of A (u⇤u = 1) such that Ê(a) = Ë(u⇤au) for any a. As a con-
sequence, to this pure state Ë (which is unitarily equivalent to Ê) is associated a unit
vector |Ëi = ·Ê(u)|‡Êi in the Hilbert spaceH =HÊ, and we have the representation

Ë(a) = hË|A|Ëi , A = ·Ê(a) (3.4.9)
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In other word, all pures states which are equivalent can be considered as projection
operators |ËihË| on some vector |Ëi in the same Hilbert space H. Any observable a is
represented by some bounded operator A and the expectation value of this observable
in the state Ë is given by the Born formula 3.4.9. Equivalent classes of equivalent pure
states are in one to one correspondence with the irreducible representations of the
algebra of observables A.

The standard explicit formulation of quantum mechanics in terms of operators,
state vectors and density matrices is thus recovered from the abstract formulation

3.5 Why complex algebras?

In the mathematical presentation of the formalism that I gave here, real algebras
play the essential role. However it is known that quantum physics must be described
by complex algebras. There are several arguments that point towards the necessity of
complex algebras, besides the fact that this actually works. Indeed one must still take
into account some essential physical features of the quantum word: time, dynamics
and locality.

3.5.1 Dynamics:

Firstly, if one wants the quantum system to have a “classical limit” corresponding
to a classical Hamiltonian system, one would like to have conjugate observables Pi ,Qi
whose classical limit are conjugate coordinates pi , qi with a correspondence between
the quantum commutators and the classical Poisson brackets

[Q ,P] ! i {p,q} (3.5.1)

Thus anti-symmetric operators must be in one to one correspondence with symmetric
ones. This is possible only if the algebra of operators is a complex one, i.e. if it contains
an i element in its center.

Another, but related, argument goes as follows: if one wants to have a time evolu-
tion group of inner automorphism acting on the operators and the states, it is given
by unitary evolution operators U(t) of the form

U(t) = exp(tA) , A = �A⇤ (3.5.2)

This corresponds to have an Hamiltonian dynamics with a physical observable corre-
sponding to a conserved energy, and given by a Schrödinger equation. This is possible
only if the algebra is complex, so that we can write

A = �iH (3.5.3)

There has been various attempts to construct realistic quantum theories of parti-
cles or fields based on strictly real Hilbert spaces, most notably by Stueckelberg and
his collaborators in the ’60. See [Stu60]. None of them is really satisfying.
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3.5.2 Locality and separability:

Another problemwith real algebras comes from the requirement of locality in quan-
tum field theory, and to the related concept of separability of subsystems. Space-time
locality will be discussed a bit more later on. But there is already a problem with real
algebras when one wants to characterize the properties of a composite system out of
those of its subconstituents. As far as I know, this was first pointed out by Araki, and
recovered by various people, for instance by Wooter in [Woo90] (see Auletta [Aul01]
page 174 10.1.3).

Let me consider a system S which consists of two separated subsystem S1 and
S2. Note that in QFT a subsystem is defined by its subalgebra of observables and
of states. These are for instance the “system” generated by the observables in two
causally separated regions. Then the algebra of observables A for the total system
1+2 is the tensor product of the two algebras A1 and A2

A =A1 ⌦A2 (3.5.4)

which means that A is generated by the linear combinations of the elements a of the
form a1 ⌦a2.

Let me now assume that the algebras of observablesA1 andA2 are (sub)algebras
of the algebra of operators on some real Hilbert spacesH1 andH2. The Hilbert space
of the whole system is the tensor product H =H1 ⌦H2. Observables are represented
by operators A, and physical (symmetric ) operators a = a⇤ correspond to symmetric
operators A = AT . Now it is easy to see that the physical (symetric) observables of the
whole system are generated by the products of pairs of observables(A1,A2) of the two
subsystems which are of the form

A1 ⌦A2 such that

8

>

>

>

>

<

>

>

>

>

:

A1 and A2 are both symmetric
or

A1 and A2 are both skew-symmetric
(3.5.5)

In both case the product is symmetric, but these two cases do not generate the same
observables. This is di↵erent from the case of algebras of operators on complex
Hilbert spaces, where all symmetric operators on H = H1 ⌦H2 are generated by the
tensor products of the form

A1 ⌦A2 such that A1 and A2 are symmetric (3.5.6)

In other word, if a quantum system is composed of two independent subsystems, and
the physics is described by a real Hilbert space, there are physical observables of
the big system which cannot be constructed out of the physical observables of the
two subsystems! This would turn into a problem with locality, since one could not
characterize the full quantum state of a composite system by combining the results
of separate independent measurements on its subparts. Note that this is also related
to the idea of quantum tomography.

3.5.3 Quaternionic Hilbert spaces:

There has been also serious attempts to build quantum theories (in particular of
fields) based on quaternionic Hilbert spaces, both in the ’60 and more recently by
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S. Adler [Adl95]. One idea was that the SU(2) symmetry associated to quaternions
could be related to the symmetries of the quark model and of some gauge interaction
models. These models are also problematic. In this case there are less physical ob-
servables for a composite system that those one can naively construct out of those of
the subsystems, in other word there are many non trivial constraints to be satisfied.
A far as I know, no satisfying theory based on H, consistent with locality and special
relativity, has been constructed.

3.6 Superselection sectors

3.6.1 Definition

In the general infinite dimensional complex case the decomposition of an algebra
of observablesA along its center Z(A) goes in a similar way as in the finite dimensional
case. One can write something like

A =
Z

c2A0
Ac (3.6.1)

where each Ac is a simple C⇤-algebra.
A very important di↵erence with the finite dimensional case is that an infinite di-

mensional C⇤-algebraA has in general many inequivalent irreducible representations
in a Hilbert space. Two di↵erent irreducible representations ·1 and ·2 of A in two
subspacesH1 andH2 of a Hilbert spaceH are generated by two unitarily inequivalent
pure states Ô1 and Ô2 of A. Each irreducible representation ·i and the associated
Hilbert space Hi is called a superselection sector. The great Hilbert space H gener-
ated by all the unitarily inequivalent pure states on A is the direct sum of all supers-
elections sectors. The operators in A do not mix the di↵erent superselection sectors.
It is however often very important to consider the operators in B(H) which mixes the
di↵erent superselection sectors of A while respecting the structure of the algebra A
(i.e. its symmetries). Such operators are called intertwinners.

3.6.2 A simple example: the particle on a circle

One of the simplest examples of superselection sector is the nonrelativistic parti-
cle on a one dimensional circle. Let us first consider the particle on a line. The two
conjugate operators Q and P obey the canonical commutation relations

[Q,P] = i (3.6.2)

They are unbounded, but their exponentials

U(k) = exp(ikQ) , V(x) = exp(ixQ) (3.6.3)

generates a C⇤-algebra. Now a famous theorem by Stone and von Neumann states
that all representations of their commutation relations are unitary equivalent. In other
word, there is only one way to quantize the particle on the line, given by canonical
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quantization and the standard representation of the operators acting on the Hilbert
space of functions on R.

Q = x , P =
1
i
Å
Åx

(3.6.4)

Now, if the particle is on a circle with radius 1, the position x becomes an angle
⁄ defined mod. 2·. The operator U(k) is defined only for integer momenta k = 2·n,
n 2 Z. The corresponding algebra of operators has now inequivalent irreducible rep-
resentations, indexed by a number – . Each representation ·– corresponds to the
representation of the Q and P operators acting on the Hilbert space H of functions
Ë(⁄) on the circle as

Q = ⁄ , P =
1
i
Å
Å⁄

+A , A =
–
2·

(3.6.5)

So each superselection sector describes the quantum dynamics of a particle with unit
charge e = 1 on a circle with a magnetic flux – . No global unitary transformation
(acting on the Hilbert space of periodic functions on the circle) can map one supers-
election sector onto another one. Indeed this would correspond to the unitary trans-
formation

Ë(⁄)! Ë(⁄)ei⁄…A (3.6.6)

and there is a topological obstruction if…A is not an integer. Here the di↵erent supers-
election sectors describe di↵erent “topological phases” of the same quantum system.

This is of course nothing but the famous Aharonov-Bohme↵ect [ES49][AB59]. Note
that this formulation of the Aharonov-Bohm e↵ect in the algebraic formalism does not
contradict the usual formulation in the standard formulation in term of a change of
boundary conditions for the wave-functions in real space.

3.6.3 General discussion

The notion of superselection sector was first introduced by Wick, Wightman and
Wigner in 1952. They observed (and proved) that is is meaningless in a quantum field
theory like QED to speak of the superposition of two states Ë1 and Ë2 with integer and
half integer total spin respectively, since a rotation by 2· changes by (�1) the relative
phase between these two states, but does not change anything physically. This appar-
ent paradox disappear when one realizes that this is a similar situation than above.
No physical observable allows to distinguish a linear superposition of two states in
di↵erent superselection sectors, such as |1 fermioni+ |1 bosoni from a statistical mix-
ture of these two states |1 fermionih1 fermion| and |1 bosonih1 boson|. Indeed, any
operator creating or destroying just one fermion is not a physical operator (bur rather
an intertwining operator), but of course an operator creating or destroying a pair of
fermions (or rather a pair fermion-antifermion) is physical.

The use of superselection sectors have been sometimes criticized in high energy
physics (see a discussion on its use in relation with continuous symmetries in [Wei05]).
Superselection sectors are nevertheless a very important feature of themathematical
formulation of quantum field theories, but they do have also physical significance.
One encounters superselection sectors in quantum systems with an infinite number
of states (non-relativistic or relativistic) as soon as
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— the system may be in di↵erent phases (for instance in a statistical quantum
system with spontatneous symmetry breaking);

— the system has global or local gauge symmetries and sectors with di↵erent
charges Qa (abelian or non abelian);

— the system contains fermions;
— the system exhibits di↵erent inequivalent topological sectors, this includes the

simple case of a particle on a ring discussed above (the Aharonov-Bohm e↵ect),
but also gauge theories with ⁄-vacua;

— more generally, at a mathematical level, a given QFT for di↵erent values of its
couplings or the masses of particle may corresponds to di↵erent superselec-
tion sectors of the same operator algebra (Haag’s theorem).

— superselection sectors have also been used to discuss measurements in quan-
tum mechanics and the quantum-to-classical transition.

Thus one should keep in mind that the abstract algebraic formalism contains as a
whole the di↵erent possible states, phases and dynamics of a quantum system, while
a given representation describes a subclass of states or of possible dynamics.

3.7 von Neumann algebras

A special class of C⇤-algebras, the so-called vonNeumann algebras orW⇤-algebras,
is of special interest in mathematics and for physical applications. As far as I know
these were the algebras of operators originally studied by Murray and von Neumann
(the ring of operators). Here I just give some definitions and somemotivations, without
details or applications.

3.7.1 Definitions

There are several equivalent definitions, I give here three classical definitions. The
first two refer to an explicit representation of the algebra as an algebra of operators
on aHilbert space, but the definition turns out to be independent of the representation.
The third one depends only on the abstract definition of the algebra.

Weak closure: A a unital ⇤- sub algebra of the algebra of bounded operators L(H)
on a complex Hilbert spaceH is a W⇤-algebra i↵ A is closed under the weak topology,
namely if for any sequence An in A, when all the individual matrix elements hx|An |yi
converge towards some matrix element Axy , this defines an operator in the algebra

8 x,y 2H hx|An |yi ! Axy =) A 2A such that hx|A|yi = Axy (3.7.1)

NB: The weak topology considered here can be replaced in the definition by stronger
topologies onL(H). In the particular case of commutative algebras, one can show that
W⇤-algebras correspond to the set of measurable functions L1(X) on some measur-
able space X, while C⇤-algebras corresponds to the set C0(Y) of continuous functions
on some Hausdor↵ space Y . Thus, as advocated by A. Connes, W⇤-algebras corre-
sponds to non-commutative measure theory, while C⇤-algebras to non-commutative
topology theory.
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The bicommutant theorem: A famous theorem by von Neumann states thatA ⇢ L(H)
is a W⇤-algebra i↵ it is a C⇤-algebra and it is equal to its bicommutant

A =A00 (3.7.2)

(the commutant A0 of A is the set of operators that commute with all the elements of
A, and the bicommutant is the commutant of the commutant).
NB: The equivalence of this “algebraic” definition with the previous “topological” or
“analytical” one illustrate the deep relation between algebra and analysis at work in
operator algebras and in quantum physics. It is often stated that this property means
that a W⇤-algebra A is a symmetry algebra (since A is the algebras of symmetries
of B = A0). But one can also view this as the fact that a W⇤-algebra is a “causally
complete” algebra of observables, in analogy with the notion of causally complete
domain (see the next section on algebraic quantum field theory).

The predual property It was shown by Sakai that W⇤-algebras can also be defined as
C⇤-algebras that have a predual, i.e. when considered as a Banach vector space, A is
the dual of another Banach vector space B (A = B?).
NB: This definition is unique up to isomorphisms, sinceB can be viewed as the set of all
(ultra weak) continuous linear functionals onA, which is generated by the positive nor-
mal linear functionals on A (i.e. the states) with adequate topology. So W⇤-algebras
are also algebras with special properties for their states.

3.7.2 Classification of factors

Let me say a few words on the famous classification of factors. Factors are W⇤-
algebras with trivial center C = C and any W⇤-algebra can be written as an integral
sum over factors. W⇤-algebra have the property that they are entirely determined by
their projectors elements (a projector is such that a = a⇤ = a2, and corresponds to or-
thogonal projections onto closed subspaces E ofH). The famous classification result
of Murray and von Neumann states that there are basically three di↵erent classes of
factors, depending on the properties of the projectors and on the existence of a trace.

Type I: A factor is of type I if there is a minimal projector E such that there is no other
projector F with 0 < F < E . Type I factors always corresponds to the whole algebra
of bounded operators L(H) on some (separable) Hilbert space H. Minimal projector
are projectors on pure states (vectors in H). This is the case usually considered by
“ordinary physicists”. They are denoted In if dim(H) = n (matrix algebra) and I1 if
dim(H) =1.

Type II: Type II factors have no minimal projectors, but finite projectors, i.e. any pro-
jector E can be decomposed into E = F +G where E , F and G are equivalent projectors.
The type II1 hyperfinite factor has a unique finite trace È (a state such that È(1) = 1
and È(aa⇤) = È(a⇤a)), while type II1 = II1 ⌦ I1. They play an important role in non-
relativistic statistical mechanics of infinite systems, the mathematics of integrable
systems and CFT.

François David, 2014 Draft Lecture Notes – April 2014



3.8. LOCALITY AND ALGEBRAIC QUANTUM FIELD THEORY 61

Type III: This is the most general class. Type III factors have no minimal projectors
and no trace. They are more complicated. Their classification was achieved by A.
Connes. These are the general algebras one must consider in relativistic quantum
field theories.

3.7.3 The Tomita-Takesaki theory

Let me say a few words on a important feature of von Neumann algebras, which
states that there is a natural “dynamical flow” on these algebras induced by the
states. This will be very sketchy and naive. We have seen that in “standard quantum
mechanics” (corresponding to a type I factor), the evolution operator U(t) = exp(�itH)
is well defined in the lower half plane Im(t)  0.

This correspondence “state$ dynamics” can be generalized to any von Neumann
algebra, even when the concept of density matrix and trace is not valid any more.
Tomita and Takesaki showed that to any state Ê on A (through the GNS construction
Ê(a) = h“ |a“ i where “ is a separating cyclic vector of the Hilbert space H) one can
associate a one parameter family of modular automorphisms „–

t : A! A, such that
„–
t (a) = …ita…�it , where … is positive selfadjoint modular operator in A. This group

depends on the choice of the state Ê only up to inner automorphisms, i.e. unitary
transformations ut such that „—

t (a) = ut„–
t (a)u�1t , with the 1-cocycle property us+t =

us„s(ut).
As advocated by A. Connes, this means that there is a “global dynamical flow” act-

ing on the von Neumann algebra A (modulo unitaries reflecting the choice of initial
state). This Tomita-Takesaki theory is a very important tool in the mathematical the-
ory of operator algebras. It has been speculated by some authors that there is a deep
connection between statistics and time (the so called “thermal time hypothesis”), with
consequences in quantum gravity. Without defending or discussing more this hypoth-
esis, let me just state that the theory comforts the point of view that operator algebras
have a strong link with causality.

3.8 Locality and algebraic quantum field theory

Up to now I have not really discussed the concepts of time and of dynamics, and
the role of relativistic invariance and locality in the quantum formalism. One should
remember that the concepts of causality and of reversibility are already incorporated
within the formalism from the start.

It is not really meaningful to discuss these issues if not in a fully relativistic frame-
work. This is the object of algebraic and axiomatic quantum field theory. Since I am not
a specialist I give only a very crude and very succinct account of this formalism and
refer to the excellent book by R. Haag [Haa96] for all the details and the mathematical
concepts.

3.8.1 Algebraic quantum field theory in a dash

In order to make the quantum formalism compatible with special relativity, one
needs three things.
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Locality: Firstly the observablesmust be built out of the local observables, i.e. the ob-
servables attached to bounded domains O of Minkovski space-time M = R1,d�1. They
corresponds to measurements made by actions on the system in a finite region of
space, during a finite interval of time. Therefore one associate to each domain O ⇢ M
a subalgebra A(O) of the algebra of observables.

O!A(O) ⇢A (3.8.1)

This algebra is such that is

A(O1 [O2) =A(O1)_A(O2) (3.8.2)

where _ means the union of the two subalgebras (the intersection of all subalgebras
containing both A(O1) and A(O2).

O
2O

1

Figure 3.1: The union of two domains

Note that this implies
O1 ⇢ O2 =) A(O1) ⇢A(O2) (3.8.3)

The local operators are obtained by taking the limit when a domain reduces to a point
(this is not a precise or rigorous definition, in particular in view of the UV divergences
of QFT and the renormalization problems).�

Caution, the observables of two disjoint domains are not independent if these do-
mains are not causally independent (see below) since they can be related by dynami-
cal/causal evolution.

1
O

2
O

Figure 3.2: For two causally separated domains, the associated observables must
commute
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Causality: Secondly causality and locality must be respected, this implies that phys-
ical local observables which are causally independent must always commute. Indeed
the result of measurements of causally independent observables is always indepen-
dent of the order in which they are performed, independently of the state of the sys-
tem. Were this not the case, the observables would not be independent and through
some measurement process information could be manipulated and transported at a
faster than light pace. If O1 and O2 are causally separated (i.e. any x1 � x2, x1 2 O1,
x2 2 O2 is space-like)) then any pair of operators A1 and A2 respectively in A(O1) and
A(O2) commutes

O1

W

V O2 , A1 2A(O1) , A2 2A(O2) =) [A1,A2] = 0 (3.8.4)

This is the crucial requirement to enforce locality in the quantum theory.
NB: As already discussed, in theories with fermion, fermionic field operators like Ë and
Ë̄ are not physical operators, since they intertwin di↵erent sectors (the bosonic and
the fermionic one) and hence the anticommutation of fermionic operators does not
contradict the above rule.

Causal completion: One needs also to assume causal completion, i.e.

A(O) =A(bO) (3.8.5)

where the domain bO is the causal completion of the domain O (bO is defined as the
set of points O00 which are causally separated from the points of O0, the set of points
causally separated from the points of O, see fig.3.3 for a self explanating illustration).

O

Figure 3.3: A domain O and its causal completion bO (in gray)

This implies in particular that the whole algebraA is the (inductive) limit of the subal-
gebras generated by an increasing sequence of bounded domains whose union is the
whole Minkovski space

Oi ⇢ Oj if i < j and
[

i

Oi = M4 =) lim
�!
A(Oi ) =A (3.8.6)

and also that it is equal to the algebra associated to “time slices” with arbitrary small
time width.

S◊ = {x = (t,~x) : t0 < t < T0 + ◊} (3.8.7)
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S

Figure 3.4: An arbitrary thin space-like slice of space-time is enough to generate the
algebra of observables A

This indicates also why one should concentrate on von Neumann algebras. The
set of local subalgebras L = {A(O) : O subdomains ofM} form an orthocomplemented
lattice of algebras (see the next chapter to see what this notion is) with interesting
properties.

Poincaré invariance: The Poincaré group P(1,d �1) = R1,d�1
oO(1,d �1) must act on

the space of local observables, so that it corresponds to a symmetry of the theory (the
theory must be covariant under translations in space and time and Lorentz transfor-
mations). When A is represented as an algebra of operators on a Hilbert space, the
action is usually represented by unitary 4 transformations U(a,À ) (a being a trans-
lation and À a Lorentz transformation). This implies in particular that the algebra
associated to the image of a domain by a Poincaré transformation is the image of the
algebra under the action of the Poincaré transformation.

U(a,À )A(O)U�1(a,À ) =A(ÀO + a) (3.8.8)

O’

O

Figure 3.5: The Poincaré group acts on the domains and on the associated algebras

The generator of time translations will be the Hamiltonian P0 = H, and time trans-
lations acting on observables corresponds to the dynamical evolution of the system
in the Heisenberg picture, in a given Lorentzian reference frame.

The vacuum state: Finally one needs to assume the existence (and the uniqueness, in
the absence of spontaneous symmetry breaking) of a special state, the vacuum state

4. Unitary with respect to the real algebra structure, i.e. unitary or antiunitary w.r.t. the complex
algebra structure.
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|“ i. The vacuum state must be invariant under the action of the Poincaré transforma-
tions, i.e. U(a,À )|“ i = |“ i. At least in the vacuum sector, the spectrum of P = (E , ~P)
(the generators of time and space translations) must lie in the future cone.

E2 � ~p2 > 0 , E > 0 (3.8.9)

This is required since the dynamics of the quantum states must respect causality. In
particular, the condition E > 0 (positivity of the energy) implies that dynamical evo-
lution is compatible with the modular automorphisms on the algebra of observables
constructed by the Tomita-Takesaki theory.

3.8.2 Axiomatic QFT

3.8.2.a - Wightman axioms

One approach to implement the program of algebraic local quantum field theory is
the so-called axiomatic field theory framework (Wightman&Gårding). Actually the ax-
iomatic field theory program was started before the algebraic one. In this formalism,
besides the axioms of local, AQFT, the local operators are realized as “local fields”.
These local fields – are represented as distributions (over space-time M) whose val-
ues, when applied to some C1 test function with compact support f (typically inside
some O) are operators a = h– ·fi. Local fields are thus “operator valued distributions”.
They must satisfy the Wightman’s axioms (see Streater and Wightman’s book [SA00]
and R. Haag’s book, again), which enforce causality, locality, Poincaré covariance, ex-
istence (and uniqueness) of the vacuum (and eventually in addition asymptotic com-
pleteness, i.e. existence of a scattering S-matrix).

3.8.2.b - CPT and spin-statistics theorems

The axiomatic framework is very important for the definition of quantum theories.
It is within this formalism that one can derive the general and fundamental properties
of relativistic quantum theories

— Reconstruction theorem: reconstruction of the Hilbert space of states from the
vacuum expectation values of product of local fields (the Wightman functions,
or correlation functions),

— Derivation of the analyticity properties of the correlation functions with respect
to space-time x = (t,~x) and impulsion p = (E ,~p) variables,

— Analyticity of the S matrix (an essential tool),
— The CPT theorem: locality, Lorentz invariance and unitarity imply CPT invari-

ance,
— The spin statistics theorem,
— Definition of quantum field theories in Euclidean time (Osterwalder-Schrader

axioms) and rigorous formulation of the mapping between Euclidean theories
and Lorentzian quantum theories.
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3.9 Discussion

I gave here a short introduction to the algebraic formulation of quantum mechan-
ics and quantum field theory. I did not aim at mathematical rigor nor completeness.
I have not mentioned recent developments and applications in the direction of gauge
theories, of two dimensional conformal field theories, of quantum field theory in non
trivial (but classical) gravitational background.

However I hope to have conveyed the idea that the “canonical structure of quan-
tum mechanics” – complex Hilbert space of states, algebra of operators, Born rule
for probabilities – is quite natural and is a representation of an underlying more ab-
stract structure: a real algebra of observables + states, consistent with the physical
concepts of causality, reversibility and locality/separability.
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