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Chapter 2

The standard formulations of classical
and quantum mechanics

I first start by reminders of classical mechanics, probabilities and quantum me-
chanics, in their usual formulations in theoretical physics. This ismostly very standard
material. The last section on reversibility and probabilities in quantum mechanics is a
slightly more original presentation of these questions.

2.1 Classical mechanics

Classical mechanics can be formulated using the Lagrangian formulation or the
Hamiltonian formulation. They apply both to non relativistic systems of particles, to
fields (like the electromagnetic field) and to relativistic systems. They are valid for
closed non-dissipative systems. Macroscopic systems with dissipation, and more gen-
erally out of equilibrium open systems must be studied by the tools of statistical me-
chanics. This is still very active field of research, but out of the scope of this short
presentation.

The standard books on classical mechanics are the books by Landau & Lifshitz
[LL76] and the book by A. Arnold [AVW89].

2.1.1 The Lagrangian formulation

In the Lagrangian formulation, a classical (at this point non-relativistic) system is
described by its configuration space C (a Lagrangian manifold). A point q = {qi }i=1,N
of C describes an instantaneous configuration of the system. The N coordinates qi

label the N degrees of freedom (d.o.f.) of the system. The state of the system at
time t is given by its configuration q and its velocity q̇ = dq

dt in configuration space.
The dynamics is given by the equations of motion, that takes the form of the Euler-
Lagrange equations. They derive from the Lagrange function (the Lagrangian) L(q, q̇)
and read

d
dt

ÅL(q, q̇)
Åq̇(t)

=
ÅL(q, q̇)
Åq(t)

(2.1.1)
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Let us consider the simple textbook case of a non relativistic particle of massm in a
one dimensional space (a line). Its coordinate (position) is denoted q. It is submitted to
a conservative force which derives from a potential V(q). The potential is independent
of time. The velocity is q̇(t) = dq

dt . The dynamics of the particle is given by Newton’s
equation

mq̈(t) = � Å
Åq

V(q) (2.1.2)

which is obtained from the Lagrangian

L(q, q̇) =
m
2
q̇2 � V(q) (2.1.3)

The equation of motion derives from the least action principle. The action S[q] of
a general trajectory q = {q(t)} starting from q1 at time t1 and ending at q2 at time t2
is defined as the integral of the Lagrangian

S[q] =
Z tf

ti
dt L(q(t), q̇(t)) (2.1.4)

The classical trajectory qc, that satisfy the equations of motion, is the trajectory that
extremizes the action S under small variations that leaves the initial and final points
unmoved.

q(t) = qc(t) + ÷q(t) , ÷q(t1) = ÷q(t2) = 0 (2.1.5)

The stationarity condition

q(t) = qc(t) + ÷q(t) , ÷q(ti ) = ÷q(tf ) = 0 =) S[qc + ÷q] = S[qc] +O(÷q2) (2.1.6)

can be rewritten as the vanishing of the functional derivative of the action

÷S[q]
÷q(t)

= � d
dt

ÅL(q, q̇)
Åq̇(t)

+
ÅL(q, q̇)
Åq(t)

= 0 (2.1.7)

which leads to the Euler-Lagrange equations and to Newton’s equation 2.1.2.
The Lagrangian formalism is valid for most conservative physical systems. For N

particles in d dimensions the configuration space is N ⇥ d dimensional, and a con-
figuration is a d ⇥ N-dimensional vector q = {qi

a; i = 1,d , a = 1,N}. The formalism
is more generally valid for charged particles in an external magnetic field, for me-
chanical systems with constraints and submitted to external forces, for the classical
electromagnetic field and for general classical fields, provided that the dynamics is
reversible and non-dissipative (but the dynamics may be non-invariant under time re-
versal, think about the well known example of the motion of a charged particle in a
magnetic field). It applies also to relativistic systems and relativistic fields, and to the
space-time of general relativity as well (with a proper treatment of age symmetries, of
space and time and of Lorentz and di↵eomorphism invariance)

The Lagrangian formulation is especially well suited to discuss the role and con-
sequences of symmetries. For instance the relativistic scalar field (the classical Klein-
Gordon field) is described by a classical real field x ! Ê(x) in Minkowski space-time
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Figure 2.1: The least action principle: the classical trajectoire (full line) extremizes the
action. Under a variation (dashed line) ÷S = 0. The initial and final positions are kept
fixed.

x = (xfi) = (t,~x) 2 M1,3, with metric h = diag(�1,1,1,1), i.e. space-time line element
ds2 = �dt2 + d~x2. Its Lagrangian density L and its action S are

L(Ê,ÅÊ) = �1
2
ÅfiÊÅ

fiÊ� m2

2
Ê2 , S[Ê] =

Z

d4x L(Ê,ÅÊ) (2.1.8)

and are explicitly invariant under Lorentz and Poincaré transformations.
It is in this Lagrangian formalism that it is easy to prove the famous Noether’s the-

orem. This theorem states that to any symmetry (continuous group of invariance) of
the dynamics (the action) is associated a conserved charge (a conserved local current
for a field).

The “teleological aspect” of the least action principle (the trajectory is defined as
a function of its initial and final conditions) seemed for a long time mysterious and
had to wait for quantum mechanics and its path integral formulation by R. Feynman
to be fully understood. The Lagrangian formalism is thus well suited to discuss path
integral and functional integral quantization.

2.1.2 The Hamiltonian formulation

2.1.2.a - The phase space and the Hamiltonian

The Hamiltonian formulation is in general equivalent to the Lagrangian formula-
tion, but in fact slightly more general. It is well suited to discuss the relation be-
tween classical physics and the “canonical quantization” schemes. It allows to dis-
cuss in general the structure of the states and of the observables of a classical sys-
tem, without reference to a specific choice of configuration variables and of configu-
ration space.

For a classical system with n degrees of freedom, the set of possible states of the
system is its phase space “ . A state of the system is now a point x in the phase space
“ of the system. “ is a manifold with even dimension 2n. The evolution equations

IPhT 2014 The formalisms of quantum mechanics



8
CHAPTER 2. THE STANDARD FORMULATIONS OF CLASSICAL AND QUANTUM

MECHANICS

are flow equations (first order di↵erential equations in time) in the phase space, and
derive from the Hamiltonian function H(x).

For the particle in dimension d = 1 in a potential there is one degree of freedom,
n = 1, so that “ = R2 and dim(“ )=2. The two coordinates in phase space are the
position q et the momentum p of the particle.

x = (q,p) (2.1.9)

The Hamiltonian is

H(q,p) =
p2

2m
+ V(q) (2.1.10)

The equations of motion are the Hamilton equations

ṗ = �ÅH
Åq

, q̇ =
ÅH
Åp

(2.1.11)

The relation between the momentum and the velocity p = mq̇ is now a dynamical
relation. The dissymmetry between q and p comes in fact from the antisymmetric
Poisson bracket structure present in the phase space, this will be discussed a bit later.

The Hamilton equations derive also from a variational principle. To find the classi-
cal trajectory in phase space such that q(t1) = q1, q(t2) = q2 one has to extremize the
action functional (the “Hamiltonian action”) SH

SH [q,p] =
Z t2

t1
dt

⇣

p(t)q̇(t)�H(q(t),p(t))
⌘

(2.1.12)

with respect to variations of q(t) and of p(t), q(t) being fixed at the initial and final times
t = t1 et t2, but p(t) being left free at t = t1 and t2. Indeed, the functional derivatives of
SH are

÷SH
÷q(t)

= �ṗ(t)� ÅH
Åq

(q(t),p(t)) ,
÷SH
÷p(t)

= q̇(t)� ÅH
Åp

(q(t),p(t)) (2.1.13)

The change of variables (q, q̇)! (q,p), of the Lagrangian to the Hamiltonian L(q, q̇)!
H(q,p) and of the action functionals S[q, q̇]! SH [q,p] between the Lagrangian and
the Hamiltonian formalism correspond to a Legendre transformation with respect to
the velocity q̇. The velocity q̇ and the momentum p are conjugate variables. Indeed
one has the relation

p =
ÅL(q, q̇)

Åq̇
, H(q,p) = pq̇� L(q, q̇) (2.1.14)

2.1.2.b - Hamilton-Jacobi equation

For a classical trajectory qcl(t) solution of the equations of motion, the “Hamilto-
nian” action SH [qc,pc] and the Lagrangian action S[qc] are equal. This is not really
surprising, this is a property of the Legendre transformation.

Now let us fix the initial time t1 and the initial position q1 of the particle. This
classical action can be considered now as being a function of the final time t2 = t and
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Figure 2.2: The least action principle in phase space: The classical trajectory (full line)
extremizes the action SH [q,p]. The initial and final positions are fixed. The initial and
final momenta are free. Their actual value is given by the variational principle, and is
a function of the initial and final positions and of the initial and final times.

of the final position q(t2) = q2 = q of the particle. This function is called the Hamilton-
Jacobi action, or the Hamilton function (not to be confused with the Hamiltonian), and
let us denote it S (q, t) = SHJ(q, t) to be explicit (the initial conditions q(t1) = q1 being
implicit)

S (q, t) = SHJ(q, t) = S [qcl] with qcl classical solution such that q(t2) = q, t2 = t
and where t1 and q(t1) = q1 are kept fixed (2.1.15)

Using the equations of motion it is easy to see that the evolution with the final time
t of this function S (q, t) is given by the di↵erential equation

ÅS
Åt

= �H
 

q,
ÅS
Åq

!

(2.1.16)

with H the Hamiltonian function. This is is a first order di↵erential equation with re-
spect to the final time t. It is called the Hamilton-Jacobi equation.

From this equation on can show that (the initial conditions (t1,q1) being fixed) the
impulsion p and the total energy E of the particle, expressed as a function of its final
position q and of the final time t, are

E(q, t) = �ÅS
Åt

(q, t) , p(q, t) =
ÅS
Åq

(q, t) (2.1.17)

These equations extend to the case of systems with n degrees of freedom and of more
general Hamiltonians, positions and momenta being now n components vectors

q = {qi } , p = {pi } i = 1, · · · ,n (2.1.18)

The Hamilton-Jacobi equations are quite important, in particular in the context
of the semi-classical limit of quantum mechanics, where the Hamilton-Jacobi action
turns to be the “quantum phase” of the quantum particle.
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2.1.2.c - Symplectic manifolds

For the most general case (for example of classical systems with constraints), the
Hamiltonian formulation requires the formalism of symplectic geometry. The phase
space ⌦ of a system with n degrees of freedom is a manifold with an even dimension
N = 2n. It is not necessarily the Euclidean space RN . As we shall see it is only locally
like RN , but it may have a non trivial topology leading to interesting physical e↵ects.

Locally the phase space⌦ is described by local coordinates x = {xi , i = 1,2n}. Warn-
ing! now the 2n coordinates xi are coordinate in phase space, not some physical spa-
tial position coordinates in configuration space. Again in general such coordinates
systems are not global and must be patched together by some coordinate changes
(with properties to be defined later) to get a global description of the phase space.

The Hamiltonian dynamics requires a symplectic structure on “ . This symplectic
structure allows to define (or amounts to define) the Poisson brackets for the system.
“ is said to be a symplectic manifold if it is embodied with an antisymmetric 2-form
È (a degree 2 di↵erential form) which is non-degenerate and closed (dÈ = 0). This
means that to each point x 2 “ is associated (in the coordinate system {xi } the 2n⇥2n
antisymmetric matrix RN , that defines the 2-form

È(x) =
1
2
Èi j (x) dx

i ^ dxj (2.1.19)

We use here the standard notations of di↵erential geometry. dxi ^dxj is the antisym-
metric product (exterior product) of the two 1-forms dxi and dxj .

The matrix È(x) is antisymmetric and non-degenerate,

wi j (x) = �wji (x) , det(È) , 0 (2.1.20)

This implies that it is invertible. The form È is moreover closed. This means that its
exterior derivative dÈ is zero

dÈ(x) = 0 (2.1.21)

with
dÈ(x) =

1
3!

º

i ,j ,k

ÅiÈjk(x)dx
i ^ dxj ^ dxk (2.1.22)

In term of components this means

8 i1 < i2 < i3 , Åi1Èi2 i3 +Åi2Èi3 i1 +Åi3Èi1 i2 = 0

The fact that È is a di↵erential form means that under a local change of coordinates
x! x0 (in phase space) the components of the form change as

x! x0 , È = È(x)i j dx
i ^ dxj = È0(x0)i j dx

0 i ^ dx0 j

that is

È0(x0)i j = È(x)kl
Åxk

Åx0 i
Åxl

Åx0 j

The symplectic form allows an intrinsic definition of the Poisson brackets (see below).

François David, 2014 Draft Lecture Notes – April 2014



2.1. CLASSICAL MECHANICS 11

2.1.2.d - Simple example

For the simple case of a particule on a ligne, n = 1,⌦ = R2, x = (q,p), The symplectic
form is simply È = dq ^ dp. Its components are

È = (Èi j ) =
 

0 1
�1 0

!

(2.1.23)

For a particle in n dimensional space, the configuration space is Rn, the phase space
is ⌦ = R2n, with coordinates x = (qi ,pi ), and the symplectic form is È = 1

2
¥

i
dqi ^dpi . It

can be written as the block matrix

(Èi j ) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 1 0 0 · · ·
�1 0 0 0 · · ·

0 0 0 1 · · ·
0 0 �1 0 · · ·

...
...

...
...

. . .

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(2.1.24)

Darboux’s theorem states that for any symplectic manifold (“ ,È), it is always pos-
sible to find locally a coordinate systems such that the symplectic form takes the form
2.1.24. In such a Darboux coordinate system È is constant and is a direct sum of an-
tisymmetric symbols. The (qi ,pj ) are said to be local pairs of conjugate variables (the
generalization of the conjugate position and momentum variables).

The fact that locally the symplectic form may be written under this generic con-
stant form means that symplectic geometry is characterized by global invariants, not
by local ones. This is di↵erent from Riemaniann geometry, where the metric tensor
gi j cannot in general be written as a flat metric hi j = ÷i j , and where there are local
invariants, such as the scalar curvature R, and many others.

2.1.2.e - Observables, Poisson brackets

The observables of the system defined by a symplectic phase space (“ ,È) are iden-
tified with the “smooth” real functions from “ ! R (smooth means “su�ciently reg-
ular”, at least di↵erentiable and in general C1) real functions from “ ! R. The (ob-
served) value of an observable f for the system in the state x is simply the value of the
function f (x). Of course observables may depend also explicitly on the time t.

system in state x ! value of f = f (x) (2.1.25)

For two di↵erentiable functions (observables) f and g, their Poisson bracket {f ,g}È is
the function defined by

{f ,g}È(x) = Èi j (x) Åi f (x)Åj g(x) with Åi =
Å
Åxi

and wi j (x) =
⇣

w�1(x)
⌘

i j
(2.1.26)

the matrix elements of the inverse of the antisymmetric matrix È(x) (remember that
È is non degenerate, hence invertible). When no ambiguity is present, the subscript È
will be omitted in the Poisson bracket {f ,g}.
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In a canonical local coordinate system (Darboux coordinates) the Poisson bracket
takes the standard form

{f ,g} =
º

i

Åf
Åqi

Åg
Åpi
� Åf
Åpi

Åg
Åqi and {qi ,pj } = ÷i j (2.1.27)

The Poisson bracket is bi-linear, antisymmetric

{f ,g} = �{g, f } (2.1.28)

Since it involves only first order derivatives iit satisfies the Leibnitz rule (the Poisson
bracket acts as a derivation w.r.t to one of its term onto the other one)

{f ,gh} = {f ,g}h + g{f ,h} (2.1.29)

The fact that the symplectic form is closed dÈ = 0 is equivalent to the Jacobi identity

{f , {g,h}}+ {g, {h, f }}+ {h, {f ,g}} = 0 (2.1.30)

Finally, in general coordinates, the knowledge of the Poisson bracket { , } is equivalent
to the knowledge of the symplectic form È via its inverse È�1

{xi ,xj } = Èi j (x) (2.1.31)

2.1.2.f - The dynamics and Hamiltonian flows

The purpose of this formalism is of course to describe the dynamics in phase es-
pace. It is generated by anHamiltonian function H. The Hamiltonian is a real “smooth”
(at least di↵erentiable) function on phase space “ ! R, like the observables. The
state of the system x(t) evolves with time according to the Hamilton equation

ẋ(t) = {x(t),H} (2.1.32)

In terms of coordinates this reads

ẋ i (t) = wi j (x(t))ÅjH(x(t)) (2.1.33)

TheHamilton equations involve the Poisson Bracket and is covariant under local changes
of coordinates in phase space. They are flow equations of the form

ẋ i (t) = F i (x(t)) (2.1.34)

but the vector field F i = Èi jÅjH is very special and derives from the Hamiltonian H. The
time flow, i.e. the application Ê: “ ⇥R! “ is called the Hamiltonian flow associated
to H. The evolution functions Êt(x) defined by

x(t = 0) = x =) x(t) = Êt(x) (2.1.35)

form a group of transformations (as long as H is independent of the time)

Êt1+t2 = Êt1 �Êt2 (2.1.36)
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More generally, let us consider a (time independent) observable f (a function on “ ).
The evolution of the value of the observable f for a dynamical state x(t), f (x, t) = f (x(t))
where x(t) = Êt(x), obeys the equation

Åf (x, t)
Åt

= {f ,H}(x(t)) (2.1.37)

where the r.h.s. is the Poisson bracket of the observable f and the Hamiltonian H. In
particular (when H is independent of t) the energy E(t) = H(x(t)) is conserved

ÅE(x, t)
Åt

= 0 (2.1.38)

2.1.2.g - The Liouville measure

The symplectic form È defines an invariant volume element dfi on phase space “ .

dfi(x) = Èn =
2n
Ω

i=1

dxi |È|1/2 , |È| = |det(Èi j )| (2.1.39)

This is the Liouville measure on “ . This mesure is invariant under all the Hamitonian
flows, and is in fact the only local invariant.

2.1.2.h - A less trivial example: the classical spin

The simplest example of a system with a non trivial phase space is the classical
spin (the classical top with constant total angular momentum). The states of the spin
are labelled by unit 3-components vector ~n = (n1,n2,n3), |~n| = 1 (the direction of the
angular momentum). Thus the phase space is the 2-dimensional unit sphere and is
now compact (hence di↵erent from R2)

“ = S2

The classical precession equation

d~n
dt

= ~B ⇥ ~n

can be written in Hamiltonian form. ~B is a vector in R3, possibly a 3-component vector
field on the sphere depending on ~n.

There is a symplectic structure on “ . It is related to the natural complex structure
on S2 (the Riemann sphere). The Poisson bracket of two functions f and g on S2 is
defined as

{f ,g} = (~rf ⇥ ~rg) · ~n .

The gradient field ~rf of a function f on the sphere is a vector field tangent to the
sphere, so ~rf ⇥~rg is normal to the sphere, hence collinear with ~n. In spherical coordi-
nates

~n = (sin⁄cosÊ,sin⁄sinÊ,cos⁄)
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the Poisson bracket is simply

{f ,g} = 1
sin⁄

 

Åf
Å⁄

Åg
ÅÊ
� Åg
Å⁄

Åf
ÅÊ

!

Admissible local Darboux coordinates x = (x1,x2) such that È = dx1 ^ dx2 must be lo-
cally orthogonal, area preserving mappings R! S2. Examples are the “action-angle”
variables (the Lambert cylindrical equal-area projection)

x = (cos⁄,Ê)

and the plane coordinates (the Lambert azimuthal equal-area projection).

x = (2sin(⁄/2)cosÊ,2sin(⁄/2)sinÊ)

The Hamiltonian which generates the precession dynamics is simply (for constant ~B )

Figure 2.3: The Lambert cylindrical and azimuthal coordinates

H = ~B · ~n

2.1.2.i - Statistical states, distribution functions, the Liouville equation

We now consider statistical ensembles. If one has only partial information on the
state of the system (for instance if one consider an instance of the system taken at
random in a big ensemble, or if we know only the value of some of its observables) this
information is described by a statistical state (also called mixed) state or statistical
ensemble) Ô. Mixed states are described by probability distributions on the phase
space “ ,

d‚Ô(x) = dfi(x)‚Ô(x) (2.1.40)

with dfi(x) the Liouville measure and ‚Ô(x) the probability density, a non negative dis-
tribution (function) such that

‚Ô(x) � 0 ,
Z

“
dfi(x)‚Ô(x) = 1 (2.1.41)
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For a system in a statistical state Ô the expectation for an observable f (its expecta-
tion value, i.e. its mean value if we perform a large number of measurements of f on
independent systems in the same ensemble Ô) is

hfiÔ =
Z

⌦
dfi(x)‚Ô(x) f (x) (2.1.42)

When the system evolves according to the Hamiltonian flow Êt generated by an
Hamiltonian H, the statistical state evolves with time Ô! Ô(t), as well as the distribu-
tion function ‚Ô! ‚Ô(t). Ô being the initial state of the system at time t = 0, we denote
this distribution function

‚Ô(t)(x) = ‚Ô(x, t) (2.1.43)

It is related to the initial distribution function at time t = 0 by

‚Ô(x(t), t) = ‚Ô(x) , x(t) = Êt(x) (2.1.44)

(the Liouville measure is conserved by the Hamiltonian flow). Using the evolution
equation for x(t) 2.1.33, one obtains the Liouville equation as the evolution equation
for the distribution function ‚Ô(x, t)

Å
Åt

‚Ô =
n

H,‚Ô
o

(2.1.45)

The entropy of the statistical stateÔ is given by the Boltzmann-Gibbs formula (with
kB = 1)

S = �
Z

“
dfi(x) ‚Ô(x) log(‚Ô(x)) (2.1.46)

Of course when the state of the system is fully determined, it is a “pure state” x0
(Ôpure = x0) the distribution function is a Dirac measure ‚pure(x) = ÷(x� x0).

2.1.2.j - Canonical transformations

Hamiltonian flows are canonical transformations, i.e. examples of (bijective) map-
pings C ⌦ ! ⌦ that preserve the symplectic structure. Denoting X = C(x) the image
of the point x 2 “ by the canonical transformation C, this means simply that the sym-
plectic form È⇤ defined by

È⇤(x) = È(X) (2.1.47)

is equal to the original form È⇤ = È. È⇤ is called the pullback of the symplectic form
È by the mapping C. In a local coordinate system such that x = (xi ) and X = (Xk), this
means in components

Canonical transformations preserve the Poisson brackets. Let f and g be two ob-
servables (functions “ ! R and F = f � C�1 and G = g � C�1 their transform by the
transformation C

f (x) = F (X) , g(x) = G (X) (2.1.48)

C is a canonical transformation if

{f ,g}È = {F ,G }È (2.1.49)

IPhT 2014 The formalisms of quantum mechanics



16
CHAPTER 2. THE STANDARD FORMULATIONS OF CLASSICAL AND QUANTUM

MECHANICS

Taking for f and g the coordinate change xi ! Xi itself, canonical transformations are
change of coordinates such that

{Xi ,Xj } = {xi ,xj } (2.1.50)

Canonical transformations are very useful tools in classical mechanics. They are
the classical analog of unitary transformations in quantum mechanics.

In the simple example of the classical spin, the canonical transformations are the
smooth area preserving di↵eomorphisms of the 2 dimensional sphere.

2.1.2.k - Along the Hamiltonian flows

As an application, one can treat the Hamiltonian flow Êt as a time dependent
canonical transformation (a change of reference frame) and consider the dynamics
of the system in this new frame, that evolves with the system. In this new coordinates,
that we denote x̄ = {x̄ i }, if at time t = 0 the system is in the initial state x̄ = x0, at time t
it is still in the same state x̄(t) = x0. while the observables f become time dependent.

Indeed, starting from a time independent observable f , x! f (x), let us denote f̄ the
time dependent observable in the new frame,

f̄ (x̄, t) = f (x(t)) with x(t) = Êt(x̄) (2.1.51)

It describes how the observable f evolves with t, as a function of the initial state x̄ at
t = 0. Its evolution is given by

Åf̄
Åt

= {f̄ ,H} (2.1.52)

This change of frame corresponds to changing from a representation of the dy-
namics by an evolution of the states, the observables being time independent, to a
representation where the states do not evolves, but where there observables depend
on time. This is the analog for Hamiltonian dynamics to what is done in fluid dynamics:
going from the Eulerian specification (the fluid moves in a fixed coordinate system) to
the Lagrangian specification (the coordinate systemmoves along the fluid). These two
representations are of course the classical analog of the Schrödinger picture (vector
states evolves, operators are fixed) and of the Heisenberg picture (vector states are
fixed, operators depend on time) in quantum mechanics.

2.1.3 The algebra of classical observables

One can adopt a more abstract point of view. It will be useful for quantummechan-
ics.

2.1.3.a - Functions as elements of a commutative C⇤-algebra

The real functions (continuous, with compact support) on phase space f ; “ ! R
form a commutative algebra A with the standard addition and multiplication laws.

(f + g)(x) = f (x) + g(x) , (fg)(x) = f (x)g(x) (2.1.53)
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Statistical states (probability distributions on “ ) can be viewed as normalized pos-
itive linear forms Ô on A, i.e. applications A! R such that

Ô(”f + ‘g) = ”Ô(f ) + ‘Ô(g) ,with ”,‘ 2 R (2.1.54)

Ô(|f |2) � 0 , Ô(1) = 1 (2.1.55)

The sup norm or L1 norm, is defined on A as

kfk2 = sup
x2“
|f (x)|2 = sup

Ôstates
Ô(|f (x)|2) (2.1.56)

It has clearly the following properties (extending A from the algebra of real function
to the algebra of complex functions)

kfk = kf ⇤k , kfgk  kfk kgk , kf f ⇤k = kfk2 (2.1.57)

andA is complete under this norm (the limit of a convergent series inA belongs toA).
This makes the algebraA a mathematical object denoted a commutative C⇤-algebra.

A famous theorem by Gelfand and Naimark states that the reciprocal is true. Any
commutative C⇤-algebra A is isomorphic to the algebra C(X) of the continuous func-
tions on some topological (locally compact) space X. This seems a somehow formal
result (the space X and its topology may be quite wild, and very far from a regular
smooth manifold). What it is important is that a mathematical object (here a topo-
logical space X ) can be defined intrinsically (by its elements x) or equivalently by the
abstract properties of some set of functions over this object (here the commutative
algebra of observables). This modern point of view in mathematics (basically this idea
is at the basis of the category formalism) is also important in modern physics, as we
shall see later in the quantum case.

Technically, the proof is simple. Starting from some X andA = C(X), to any element
x 2 X, one associate the subalgebra Ix of all functions that vanish at x

Ix : {f 2A; f (x) = 0} (2.1.58)

The Ix are the maximal ideals of A, (left-)ideals I of an algebra A being subalgebras
of A such that x 2 I and y 2 A implies xy 2 I . It is easy to show that the set X
of the maximal ideals of A = C(X) is isomorphic to X, and that A/Ix = C the target
space. reciprocally, to any commutative C⇤ algebra A one can associate the set of its
maximal ideas X , show that it is locally compact and that

X = {maximal ideals of A} () A = C(X ) (2.1.59)

2.1.3.b - Observable as elements of a commutative Poisson algebra

For the Hamiltonian systems, the algebra of observables A of (now C1, i.e. di↵er-
entiable) functions on the phase space “ is equipped with an additional product, the
antisymmetric Poisson bracket {·, ·} that satisfy 2.1.28, 2.1.29 and 2.1.30. This algebra
A, with its three laws (addition, multiplication, Poisson bracket) is now a commutative
Poisson algebra. Poisson algebras may be non-commutative.
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Themost general formulation for classical Hamiltonian dynamics is that of Poisson
manifolds and of its associated commutative Poisson algebra. Poisson manifolds are
manifolds (phase space) embodied with a Poisson bracket, but this is a more general
formulation that symplectic manifolds, since it encompasses special situations where
the Poisson bracket is degenerate, and does not define a symplectic structure. They
are useful for some general situation, in particular when studying the e↵ective classi-
cal dynamics that emerge in some semiclassical limit from a fully quantum dynamics.
Poisson manifolds can in general be split (foliated) into “symplectic leaves” embodied
with a well defined induced symplectic structure.

The fact that in classical mechanics dynamics are given by Hamiltonian flows on a
phase space which is a symplectic or a Poisson manifold can be somehow justified at
the classical level. One has to assume that the possible dynamics are given by flows
equations generated by some smooth vector fields, that these flows are generated
by conserved quantities (Hamiltonians) and that the dynamics are covariant under
change of frames generated by these flows (existence and invariance of canonical
transformations).

However a full understanding and justification of classical Hamiltonian dynamics
comes from quantum mechanics. Indeed, the Poisson bracket structure is the “clas-
sical limit” of the Lie algebra structure of the commutators of quantum observables
(operators) in quantum mechanics, and the canonical transformations are the classi-
cal version of the unitary transformations in the Hilbert space of pure states.

2.2 Probabilities

Probabilities are an important aspect of classical physics 1 and are one of the key
components of quantum physics, since the later is intrinsically probabilistic. Without
going into any details and much formalism, I think it is important to recall the two
main ways to consider and use probabilities in mathematics, statistics, physics and
natural sciences: the frequentist point of view and the Bayesian point of view. At the
level considered here, these are di↵erent point of views on the same mathematical
formalism, and on its use. As we shall see, in some sense quantum mechanics forces
us to treat them on the same footing. There are of course many di↵erent, more subtle
and more precise mathematical as well as philosophical points of view on probability
theory. I shall not enter in any discussion about the merits and the consistency of
objective probabilities versus subjective probabilities.

Amongst many standard references on the mathematical formalism of probability,
there is the book by Kolmogorov [Kol50], and the book by Feller [Fel68]. See also the
quick introduction for and by a physicist by M. Bauer (in french) [Bau09]. References
on Bayesian probabilities are the books by de Finetti [dF74], by Jaynes [Jay03] and the
article by Cox [Cox46].

1. Probability theory appeared and developped in parallel with classical physics, with important con-
tributors in both fields, from Pascal, Bernouilli, and Laplace to Poincaré and Kolmogorov
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2.2.1 The frequentist point of view

The frequentist point of view is the most familiar and the most used in statisti-
cal physics, dynamical systems, as well as in mathematics (it is at the basis of the
formulation of modern probability theory from the beginning of 20th century, in par-
ticular for the Kolmogorov axiomatic formulation of probabilities). Roughly speaking,
probabilities represent a measure of ignorance on the state of a system, coming for
instance from: uncertainty on its initial state, uncertainty on its dynamical evolution
due to uncertainty on the dynamics, or high sensibility to the initial conditions (chaos).
Then probabilities are asymptotic frequencies of events (measurements) if we repeat
observations on systems prepared by the same initial procedure. More precisely, one
has a set “ of samples (the sample space), a „-algebra F of “measurable” subsets of
the sample space “ , and a measure P on F (equivalently a probability measure fi on
“ ). This probability measure is a priori given. Thus to a subset E 2 F is associated an
event E and the probability for this event to happen (its expectation)

P(E) = E[x 2 E] =
Z

“
fi(dx)ÁE (x) (2.2.1)

2.2.2 The Bayesian point of view

The so called Bayesian point of view is somehow broader, and of use in statistics,
game theory, economy, but also in experimental sciences. It is also closer to the initial
formulations of probabilities (or “chance”) in the 18th and 19th centuries. It has been
reviewed by statisticians like de Finetti or Jaynes (among others) in the 20th century.

Probabilities are considered as qualitative estimates for the “plausibility” of some
proposition (it can be the result of some observation), given some “state of knowl-
edge” on a system.

P(A|C) = plausibility of A, knowing C (2.2.2)

In particular, one considers the “priors”

P(C) = P( |C) (2.2.3)

These probabilities (degree of plausibility) must satisfy rules that are constrained by
logical principles, and which turns out to be the rules of probability theory. This is the
so called objectivist point of view (objective probabilities), where the degree of plau-
sibility must be established by a “rational agent” from its knowledge of the system.
Another (more controversial) point of view is the “subjectivist point of view" (subjec-
tive probabilities) where the probabilities P(A) correspond simply to the “degree of
personal belief” of the propositions by the agent. In the former usually the priors are
constrained by (for instance) some a priori assumed symmetry principle. The di↵er-
ence between the objective and subjective probabilities will be what are the allowed
rules for initial choices for the priors. Note also that the concept of Bayesian proba-
bilities is not accepted by everybody, and may be mathematically problematic when
dealing with continuous probability measures.
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2.2.3 Conditional probabilities

The basic rules are the same in the di↵erent formulations. A most important con-
cept is conditional probabilities P(A|B ) (the probability of A, B being given), and the
Bayes relation for the conditional probabilities

P(A|B ) = P(B |A)P(A)
P(B )

(2.2.4)

where P(A) and P(B ) are the initial probabilities for A and B (the priors), and P(A|B )
and P(B |A) the conditional probabilities.

Frequentist: In the frequentist formulation P(A|B ) is the frequency of A, once we have
selected the samples such that B is true. Bayes formula has the simple representation
with Venn diagrams in the set of samples

� ���

Figure 2.4: Venn representation of the conditional probabilities formula

Bayesian: In the Bayesian formulation (see for instance the book by Jaynes), and has
already presented above, one may consider every probabilities as conditional proba-
bilities. For instance PC(A) = P(A|C), where the proposition C corresponds to the “prior
knowledge” that leads to the probability assignment pC(A) for A (so PC is the probabil-
ity distribution). If AB means the proposition “A and B” (A^B or A+B ), Bayes formula
follows from the “product rule”

P(AB |C) = P(A|BC)P(B |C) = P(B |AC)P(A|C) (2.2.5)

Its meaning is the following: given C , if one already knows the plausibility for AB being
true (P(AB |C)), and the plausibility for B being true (the prior P(B |C)), then 2.2.5 tells
us how one should modify the plausibility for A of being true, if we learn that B is
moreover true (P(A|BC)). Together with the “sum rule”

P(A|C) + P(¬A|C) = 1 (2.2.6)

(¬A is the negation of A), these are the basic rules of probability theory in this frame-
work.

2.3 Quantum mechanics: the “canonical formulation”

Let me now recall the so called “canonical formalism” of quantum mechanics. By
"standard formalism” I mean nothing but the typical or standard presentation of the
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formalism, as it is given (with of course many variants) in most textbooks, prior to (or
without) the discussions on the significance and the possible interpretations of the
formalism. It relies on the formalism of Hilbert spaces, vector states and wave func-
tions, on the “correspondence principle” when discussing the quantization of a classi-
cal (usually non-relativistic) system, and aims of course at physical and calculational
understanding and e�ciency 2 when discussing physical systems and experiments.

There is of course an enormous number of good books on quantummechanics and
quantum field theory. Among the very first books on quantum mechanics, those of P.
A. Dirac (1930) [Dir30] and J. von Neumann (1932) [vN32] ([vN55] for the english tra-
duction of 1955) are still very useful and valuable. Some very good modern books on
quantummechanics with a contemporary view and a treatment of the recent develop-
ments are the latest edition of the standard by Cohen-Tanoudji, Diu & Laloe [CTDL06],
the book by M. le Bellac [LB11], and the book by Auletta, Fortunato and Parisi [AFP09].
Let me also quote at that stage the book by A. Peres [Per95], although it is much more
focused on the conceptual aspects.

Some standard modern references on quantum field theory are the books by J.
Zinn-Justin [ZJ02], by S. Weinberg [Wei05] and the book by A. Zee [Zee03] (in a very
di↵erent relaxed style). Reference more oriented towards mathematical physics will
be given later.

Amongst the numerous book and articles on the questions of the foundation and
the interpretation of quantum mechanics, very good references are the encyclopedic
and balanced review by Auletta [Aul01], and the more recent and shorter book by F.
Laloe [Lal12] (see also [Lal11, Lal01]). More will be given later.

2.3.1 Principles

I give here one of the variants of the canonical formalism, without any justification.

2.3.1.a - Pure states and Hilbert space

The phase space⌦ of classical mechanics is replaced by the complex Hilbert space
H of pure states. Elements of H (vectors) are denoted Ë or |Ëi (“kets” in Dirac nota-
tions). The scalar product of two vectors Ë and Ë0 inH is denoted Ë⇤·Ë0 or hË|Ë0i. The
Ë⇤ = hË| are the “bra” and belong to the dual H⇤ of H. Note that in the mathematical
litterature the scalar product is often noted in the opposite order hË|Ë0i = Ë0·Ë⇤. We
shall stick to the physicists notations.

Pure quantum states are rays of the Hilbert space, i.e. 1 dimensional subspaces
of H. They correspond to unit norm vectors |Ëi, such that kËk2 = hË |Ëi = 1, and
modulo an arbitrary unphysical (unobservable) phase |Ëi ' ei⁄ |Ëi. This normalization
condition comes of course from the Born rule (see below).

Of course a consequence of this principle is that that any complex linear combina-
tion of two states |”i and |‘i, |Ëi = a|”i+b|‘i, corresponds also 3 a state of the system.
This is the so-called superposition principle.

2. Looking for e�ciency and operability does not mean adopting the (in)famous “shut up and calcu-
late” stance, an advice often but falsely attributed to R. Feynman

3. At least for finite dimensional and simple cases of infinite dimensional Hilbert spaces, see the
discussion on superselection sectors
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The complex structure of the Hilbert space is a crucial feature of quantum me-
chanics. It is reflected in classical mechanics by the almost complex and symplectic
structures of the classical phase space.

2.3.1.b - Observables and operators

The physical observables A are the self-adjoint operators onH (Hermitian or sym-
metric operators), such that A = A†, where the conjugation is defined by hA†Ë0 |Ëi =
hË0 |AËi. Note that the conjugation A† is rather denoted A⇤ in the mathematical lit-
erature, and in some sections we shall use this notation, when dealing with general
Hilbert spaces not necessarily complex.

The operators on H form an associative, but non commutative complex operator
algebra. Any set of commuting self-adjoint operators {Ai } corresponds to a family of
classically compatible observables, which in principle can bemeasured independently.

2.3.1.c - Measurements, probabilities and the Born rule

The outcome of the measurement of an observable A on the system in a state Ë is
in general not deterministic. Quantum mechanics give only probabilities for the out-
comes, and in particular the expectation value of the outcomes hAiË. This expectation
value is given by the Born rule

hAiË = hË|A|Ëi = hË|AËi (2.3.1)

For compatible (commuting) observables the probabilities of outcome obey the stan-
dard rule of probabilities and these measurements can be repeated and performed
independently.

This implies (or is equivalent to state) that the possible outcomes of the measure-
ment of Amust belong to the spectrum of A, i.e. can only equal the eigenvalues of A (I
consider the simple case where A has a discrete spectrum). Moreover the probability
pi (Ë) to get as outcome the eigenvalue ai , denoting |ii the corresponding eigenvector,
is the modulus squared of the probability amplitude hi |Ëi

pi (Ë) =
probability of outcome of A! ai
if the system is in the state |Ëi = |hi |Ëi|2

A very important consequence (or feature) is that quantum measurements are in-
trinsically irreversible processes. Let us consider ideal measurements (non destruc-
tivemeasurements), i.e. measurement operations which can be repeated quasi-instantaneously
on quantum systems and when repeated, give always the same result. If the system is
initially in a state Ëi, if one performs an ideal measurement of A with outcome ai , and
if there is single eigenvector |i i associated to this eigenvalue ai of A, this implies that
the systemmust be considered to be in the associated eigenstate |ii. If the eigenspace
Vi associated to the eigenvalue ai is a higher dimensional subspace Vi ⇢ H, then the
systemmust be in the projected state |Ëii = Pi |Ëi, with Pi the orthogonal projector onto
Vi . This is the projection postulate.
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For observables with a continuous spectrum and non-normalizable eignestates,
the theory of ideal measurements involves more mathematical rigor and the use of
spectral theory.

At that stage I do not discuss what it means to “prepare a system in a given state”,
what “represents” the state vector, what is really a measurement process (the prob-
lem of quantum measurement) and what means the projection postulate. We shall
come back to some of these questions along the course.

2.3.1.d - Unitary dynamics

For a closed system, the time evolution of the states is linear and it must preserve
the probabilities, hence the scalar product h.|.i. Therefore is given by unitary transfor-
mations U(t) such that U�1 = U†. Again if the system is isolated the time evolution
form a multiplicative group acting on the Hilbert space and its algebra of observables,
hence it is generated by an Hamiltonian self-adjoint operator H

U(t) = exp
✓ t
i~
H
◆

The evolution equations for states and observables are discussed below.

2.3.1.e - Multipartite systems

Assuming that it is possible to perform independent measurements on two inde-
pendent (causally) subsystems S1 and S2 implies (at least in the finite dimensional
case) that the Hilbert space H of the states of the composite system S = “S1 [ S2” is
the tensor product of the Hilbert spacesH1 andH2 of the two subsystems.

H =H1 ⌦H2

This implies the existence for the system S of generic “entangled states” between the
two subsystems

|— i = c|Ëi1 ⌦ |Êi2 + c0 |Ë0i1 ⌦ |Ê0i2
Entanglement is one of the most important feature of quantum mechanics, and has
no counterpart in classical mechanics. It is entanglement that leads to many of the
counter-intuitive features of quantum mechanics, but it leads also to many of its in-
teresting aspects and to some of its greatest successes.

Finally let me insist on this point: the fact that one can treat parts of a physical
system as independent subparts is not obvious. Onemay ask what is the property that
characterizes this fact that two systems are independent, in the sense that they are
causally independent. In fact two parts of a system can be considered as independent
if all the physical observables relative to the first part commutes with those relative
to the second one. This can be properly understood only in the framework of special
relativity, and is deeply related to the concept of locality and causality in relativistic
quantum theories, namely in quantum field theories.
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2.3.1.f - Correspondence principe, canonical quantization

The correspondence principle has been very important in the elaboration of quan-
tum mechanics. Here by correspondence principle I mean that when quantizing a
classical system, often one can associate to canonically conjugate variables (qi ,pi )
self-adjoint operators (Qi ,Pi ) that satisfy the canonical commutation relations

{qi ,pi } = ÷i j =) [Qi ,Pj ] = i~÷i j (2.3.2)

and to take as Hamiltonian the operator obtained by replacing in the classical Hamil-
tonian the variables (qi ,pi ) by the corresponding operators.

For instance, for the particle on a line in a potential, one takes as (Q ,P) the position
and the momentum and for the Hamiltonian

H =
P2

2m
+ V(Q) (2.3.3)

The usual explicit representation is, starting from the classical position space R as
configuration space, to take for Hilbert space the space of square integrable functions
H = L2(R), the states |Ëi correspond to the wave functions Ë(q), and the operators are
represented as

Q = q , P =
~

i
Å
Åq

(2.3.4)

Of course the value of the wave function Ë(q) is simply the scalar product of the state
|Ëi with the position eigenstate |qi

Ë(q) = hq|Ëi , Q |qi = q|qi (2.3.5)

(a proper mathematical formulation involving the formalism of ringed Hilbert spaces).

2.3.2 Representations of quantum mechanics

The representation of states and observables as vectors and operators is invari-
ant under global unitary transformations (the analog of canonical transformations in
classical mechanics). These unitary transformations may depend on time. Therefore
there are di↵erent representations of the dynamics in quantum mechanics. I recall
the two main representations.

2.3.2.a - The Schrödinger picture

It is the most simple, and the most used in non relativistic quantum mechanics, in
canonical quantization and is useful to formulate the path integral. In the Schrödinger
picture the states Ë (the kets |Ëi) evolve with time and are noted Ë(t). The observ-
ables are represented by time independent operators. The evolution is given by the
Schrödinger equation

i~
dË
dt

= HË (2.3.6)

The expectation value of an observable Ameasured at time t for a system in the state
Ë is thus

hAiË(t) = hË(t)|A|Ë(t)i (2.3.7)
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The evolution operator U(t) is defined by

Ë(t = 0) = Ë0 ! Ë(t) = U(t)Ë0 (2.3.8)

It is given by

U(t) = exp
✓ t
i~
H
◆

(2.3.9)

and obeys the evolution equation

i~
d
dt

U(t) = H U(t) ; U(0) = 1 (2.3.10)

This generalizes easily to the case where the Hamiltonian depends explicitly of the
time t. Then

i~
d
dt

U(t, t0) = H(t) U(t, t0) ; U(t0, t0) = 1 (2.3.11)

and

U(t, t0) = T
"

exp
 

1
i~

Z t

t0
dt H(t)

!#

=
1
º

k=0

(i~)�k
Z

t0<t1<···<tk<t
dt1 · · ·dtk H(tk) · · ·H(t1) (2.3.12)

where T means the time ordered product (more later).

2.3.2.b - The Heisenberg picture

This representation is the most useful in relativistic quantum field theory. It is in
fact the best mathematically fully consistent formulation, since the notion of state in
more subtle, in particular it depends on the reference frame. It is required for building
the relation between critical systems and Euclidean quantum field theory (statistical
field theory).

In the Heisenberg representation, the states are redefined as a function of time via
the unitary transformation U(�t) on H, where U(t) is the evolution operator for the
Hamiltonian H. They are denoted

|Ë; ti = U(�t)|Ëi (2.3.13)

The unitary transformation redefines the observables A. They becomes time depen-
dent and are denoted A(t)

A(t) = U(�t)AU(t) (2.3.14)

The dynamics given by the Schrödinger equation is reabsorbed by the unitary trans-
formation. The dynamical states are independent of time!

|Ë(t); ti = U(�t)U(t)|Ëi = |Ëi (2.3.15)

The expectation value of an observable A on a state Ë at time t is in the Heisenberg
representation

hA(t)iË = hË(t); t|A(t)|Ë(t; , ti = hË|A(t)|Ëi (2.3.16)
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The Schrödinger andHeisenberg representation are indeed equivalent, since they give
the same result for the physical observable (the expectation values)

hAiË(t) = hA(t)iË (2.3.17)

In the Heisenberg representation the Hamitonian H remains independent of time
(since it commutes with U(t)

H(t) = H (2.3.18)

The time evolution of the operators is given by the evolution equation

i~
d
dt

A(t) = [A(t),H] (2.3.19)

This is the quantum version of the classical Liouville equation 2.1.52. Of course
the Schrödinger and the Heisenberg representations are the quantum analog of the
two “Eulerian” and‘ “Lagrangian” representations of classical mechanics discussed
above.

For the particle in a potential the equations for Q and P are the quantum version
of the classical Hamilton equations of motion

d
dt

Q(t) =
1
m
P(t) ,

d
dt

P(t) = �V 0(Q(t)) (2.3.20)

For an observable A which depends explicitly of time (in the Schrödinger picture), the
evolution equation becomes

i~
d
dt

A(t) = i~
Å
Åt

A(t) + [A(t),H] (2.3.21)

and taking its expectation value in some state Ë one obtains Ehrenfest theorem

i~
d
dt
hAi(t) = i~

Å
Åt
hAi(t) + h[A,H]i(t) (2.3.22)

2.3.3 Quantum statistics and the density matrix

2.3.3.a - The density matrix

As in classical physics, in general only some partial information is available on the
physical system one is interested in, or one wants to consider statistics over ensem-
bles of states. Such situations have to be described by the concept of statistical or
mixed state. But in quantummechanics all the information one can get on a system is
provided by the expectation values of its observables, since quantum mechanics con-
tains some intrinsic indeterminism, and involves already probabilities and statistics.
The pure quantum states |Ëi considered up to now are the quantum states which have
the property that a maximal amount of information can be extracted by appropriate
sets of compatible measurements on the state. The di↵erence with classical physics
is that di↵erent maximal sets of information can be extracted from the same state if
one chose to perform di↵erent incompatible sets of measurements.
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The mathematical concept that represents a general mixed state is the concept
of density matrix. But before discussing this, one can start by noticing that, as in
classical physics, an abstract statistical stateÈ is fully characterized by the ensemble
of the expectation values hAiÈ of all the observables A of the system, measured over
the state È.

hAiÈ = expectation value of Ameasured over the state È (2.3.23)

I denote general statistical states by Greek letters (here È) and pure states by the
bra-ket notation when there is a ambiguity. The È here should not be confused for the
notation for the symplectic form over the classical phase space of a classical system.
We are dealing with quantum systems and there is no classical phase space anymore.

From the fact that the observables may be represented as an algebra A of oper-
ators over the Hilbert space H, it is natural to consider that statistical states È cor-
responds to linear forms over the algebra of operators A, hence applications A! C;
A! hAiÈ, with the properties

haA+ bBiÈ = ahAiÈ + bhBiÈ linearity (2.3.24)

hA†iÈ = hAiÈ reality, z̄ means the complex conjugate of z 2 C (2.3.25)

hA†AiÈ � 0 and h1iÈ = 1 positivity and normalization (2.3.26)

For finite dimensional Hilbert spaces and for the most common infinite dimensional
cases (for physicists), any such liner a form can be represented as a normalized posi-
tive self-adjoint matrix ‚È

‚È � 0 , tr(‚È) = 1 (2.3.27)

such that for any operator A 2A, its expectation value in the state È is given by

hAiÈ = tr(‚ÈA) (2.3.28)

‚È is the density matrix or density operator associated to the state È. The concept
of density matrix was introduced by J. von Neumann (and independently by L. Landau
and F. Bloch) in 1927. The identity 2.3.32 is simply the generalization of the Born rule
for statistical states.

For pure statesÈ = |Ëi the density operator is simply the rank 1 projection operator
onto the state |Ëi

‚Ë = |ËihË| (2.3.29)

One can also remark that the set of mixed states, as represented by density matri-
ces, form a convex set (the set of matrices satisfying 2.3.27). It is convex since any
statistical mixture of two mixed states ‚1 and ‚2 is a mixed state ‚ = p1‚1 + p2‚2
(p1,p2 � 0 and p1 + p2 = 1). Pure states are nothing but the extremal points of the
set of mixed states, i.e. the states that cannot be written as a mixture of two di↵erent
states ‚ = p1‚1 + p2‚2 (‚1 , ‚2, p1,p2 > 0 and p1 + p2 = 1).

Before discussing some properties and features of the density matrix, let me just
mention that in the physics literature, the term “state” is usually reserved to pure
states, while in the mathematics literature the term “state” is used for general statis-
tical states. The denomination “pure state” or “extremal state” is used for vectors in
the Hilbert state and the associated projector. There are in fact some good mathe-
matical reasons to use this general denomination of state.
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2.3.3.b - Quantum ensembles versus classical ensembles

Let us consider a system whose Hilbert space is finite dimensional (dim(H) = N), in
a state given by a density matrix ‚È. ‚È is a N ⇥N self-adjoint positive matrix. It is di-
agonalizable and its eigenvalues are � 0. If it has 1  K  N orthonormal eigenvectors
labeled by |ni (n = 1, · · ·K) associated with K non-zero eigenvalues pn (n = 1, · · ·K) one
can write

‚È =
K

º

n=1

pn |nihn| (2.3.30)

with

0 < pn  1 ,
º

n

pn = 1 (2.3.31)

The expectation value of any observable A in the state È is

hAiÈ =
º

n

pnhn|A|ni (2.3.32)

The statistical state È can therefore be viewed as a classical statistical mixture of the
K orthonormal pure states |ni, n = 1, · · ·K, the probability of the system to be in the
pure state |ni being equal to pn.

This point of view is useful but may be misleading. It should not be used to infer
statements on how the system has been prepared. One can indeed build a statistical
ensemble of independently prepared copies of the system corresponding to the state
È by picking at random, with probability pn the system in the state |ni. But this is not
the only way to build a statistical ensemble corresponding to È. More precisely, there
are many di↵erent ways to prepare a statistical ensemble of states for the system, by
picking with some probability p” copies of the system in di↵erent states among a pre
chosen set {|Ë”i} of (a priori not necessarily orthonormal) pure states, which give the
same density matrix ‚È.

This is not a paradox. The di↵erence between the di↵erent preparation modes
is contained in the quantum correlations between the (copies of the) system and the
devices used to do the preparation. These quantum correlations are fully inaccessible
if one performs measurements on the system alone. The density matrix contains only
the information about the statistics of the measurement on the system alone (but
it encodes the maximally available information obtainable by measurements on the
system only).

Another subtle point is that an ensemble of copies of a system is described by a
density matrix ‚ for the single system if the di↵erent copies are really independent, i.e.
if there are no correlations between di↵erent copies in the ensemble, or if one simply
neglect (project out) these correlations. Some apparent paradoxes arise if there are
such correlations and if they must be taken into account. One must then consider the
matrix density for several copies, taken as a larger composite quantum system.
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2.3.3.c - The von Neumann entropy

The “degree of uncertainty” or “lack of information” which is “contained in” a
mixed quantum state È is given by the von Neumann entropy

S(È) = � tr(‚È log‚È) = �
º

n

pn logpn (2.3.33)

It is the analog of the Boltzman-Gibbs entropy for a classical statistical distribution.
It shares also some deep relation with Shannon entropy in information theory (more
later).

The entropy of a pure state is minimal and zero. Conversely, the state of maximal
entropy is the statistical state where all quantum pure states are equiprobable. It is
given by a density matrix proportional to the identity, and the entropy is the logarithm
of the number of accessible di↵erent (orthogonal) pure quantum state, i.e. of the
dimension of the Hilbert space (in agreement with the famous Boltzmann formulaW =
kB logN).

‚ =
1
N
1 , S = logN , N = dimH (2.3.34)

2.3.3.d - Example: entanglement entropy

An important context where the densitymatrix has to be used is the context of open
quantum systems and multipartite quantum systems. Consider a bipartite system S
composed of two distinct subsystemsA andB. The Hilbert spaceHS of the pure states
of S is the tensor product of the Hilbert space of the two subsystems

HS =HA ⌦HB (2.3.35)

Let us assume that the total system is in a statistical state given by a density matrix
‚S , but that one is interested only in the subsystemA (or B). In particular one can only
perform easement on observables relative to A (or B). Then all the information on
A is contained in the reduced density matrix ‚A; obtained by taking the partial trace
of the density matrix for the whole system ‚S over the (matrix indices relative to the)
system B.

‚A = trB [‚S ] (2.3.36)

This is simply the quantum analog of taking the marginal of a probability distribution
p(x,y) with respect to one of the random variables ‚x(x) =

R

dy ‚(x,y)).
If the system S is in a pure state |Ëi, but if this state is entangled between A and

B, the reduced density matrix ‚A is that of a mixed state, and its entropy is SA(‚A) > 0.
Indeed when consideringA only the quantum correlations betweenA andB have been
lost. If S is in a pure state the entropies SA(‚A) = SB (‚B). This entropy is then called the
entanglement entropy. Let us just recall that this is precisely one of the context where
the concept of von Neumann entropy was introduced around 1927. More properties
of features of quantum entropies will be given later.
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2.3.3.e - Thermal states

A standard example of density matrix is provided by considering an quantum sys-
tem S which is (weakly) coupled to a large thermostat, so that it is at equilibrium,
exchanging freely energy (as well as other quantum correlations) with the thermo-
stat, and at a finite temperature T . Then the mixed state of the system is a thermal
Gibbs state (or in full generality a Kubo-Martin-Schwinger or KMS state). If the spec-
trum of the Hamiltonian H of the system is discrete, with the eigenstates |ni, n 2 N
and eigenvalues (energy levels) by En (with E0 < E1 < E2 · · · ), the density matrix is

‚‘ =
1

Z(‘)
exp(�‘H) (2.3.37)

with Z(‘) the partition function

Z(‘) = tr [exp(�‘H)] (2.3.38)

and
‘ =

1
kBT

(2.3.39)

In the energy eigenstates basis the density matrix reads

‚‘ =
º

n

pn |nihn| (2.3.40)

with pn the standard Gibbs probability

pn =
1

Z(‘)
exp(�‘En) ; Z(‘) =

º

n

exp(�‘En) (2.3.41)

The expectation value of an observable A in the thermal state at temperature T is

hAi‘ =
º

n

pn hn|A|ni =
tr [A exp(�‘H)]
tr [exp(�‘H)]

(2.3.42)

For infinite systems with an infinite number of degrees of freedom, several equilibrium
macroscopic states may coexist. The density matrix formalism is not su�cient and
must be replaced by the formalism of KMS states (Kubo-Martin-Schwinger). This will
be discussed a bit more later in connection with superselection sectors in the alge-
braic formalism.

2.3.3.f - Imaginary time formalism

Let us come back to the simple case of a quantum non-relativistic system, whose
energy spectrum is bounded below (and discrete tomake things simple), but unbounded
from above. The evolution operator

U(t) = exp
✓ t
i~

H
◆

(2.3.43)
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considered as a function of the time t, may be extended from “physical” real time t 2 R
to complex time variable, provided that

Im(t)  0 (2.3.44)

More precisely, U(t) as an operator, belongs to the algebra B(H) of bounded operators
on the Hilbert space H. A bounded operator A on H is an operator whose L1 norm,
defined as

kAk2 = sup
Ë2H

hË|A†A|Ëi
hË|Ëi (2.3.45)

is finite. This is clear in the simple case where

U(t) =
º

n

exp
✓ t
i~
En

◆

|nihn| , kU(t)k =
8

>

>

<

>

>

:

exp
⇣ Im(t)

~

E0
⌘

if Im(t)  0,

+1 otherwise.
(2.3.46)

The properties of the algebras of bounded operators and of their norm will be dis-
cussed in more details in the next section on the algebraic formulation of quantum
mechanics.

temps réel

temps Euclidien

rotation
de Wick

Figure 2.5: Real time t and imaginary (Euclidean) time ‰ = it: Wick rotation

Consider now the case where t is purely imaginary

t = �i‰ , ‰ > 0 real U(�i‰) = exp
✓

�‰
~

H
◆

(2.3.47)

The evolution operator has the same form than the density matrix for the system in a
Gibbs state at temperature T

‚‘ =
1

Z(‘)
U(�i‰) , ‘ =

1
kBT

=
‰
~

= i
t
~

(2.3.48)

There is deep analogy

imaginary time ⇠ finite temperature

Moreover, when considering relativistic quantum field theories in a Lorentzian metric
ds2 = �dt2 + d~x 2, considering the theory at imaginary time t = �i‰ implies that this
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imaginary time ‰ becomes an “Euclidean coordinate” ‰ = x0, and Minkowski space
time becomes Euclidean space, with metric ds2 = d‰2 + d~x 2

These seemingly formal analogies are in fact quite important and have numerous
applications. They are at the basis of Euclidean Field Theory and of the many appli-
cations of quantum field theory to statistical physics, condensed matter and prob-
abilities. Reciprocally, statistical physics methods have found many applications in
quantum physics and high energy physics (for instance lattice gauge theories). Con-
sidering quantum theory for imaginary time is also very useful in high energy physics,
and in quantum gravity. Finally this relation between Gibbs (KMS) states and the uni-
tary evolution operator extends tin mathematics to a more general relation between
states and automorphisms of operator algebras (the Tomita-Takesaki theory), that we
shall discuss (very superficially) in the next chapter.

2.4 Path and functional integrals formulations

2.4.1 Path integrals

2.4.1.a - Path integral in configuration space

It is known since Feynman that a very useful and e�cient, if usually not yet math-
ematically rigorous, way to represent matrix elements of the evolution operator of
a quantum system (the transition amplitudes, or “propagators”) is provided by path
integrals (for non-relativistic systems with a few degrees of freedom) and functional
integrals (for relativistic or non relativistic systems with continuous degrees of free-
doms, i.e. quantum fields).

Standard references on path integral methods on quantum mechanics and quan-
tum field theory are the original book by Feynman & Hibbs [RPF10], and the books by
J. Zinn-Justin [ZJ02], [ZJ10].

For a single particle in an external potential this probability amplitude K for propa-
gation from qi at time ti to qf at time tf

hqf |U(tf � ti )|qii = hqf , tf |qi , tii U(t) = exp
✓ t
i~
H
◆

(2.4.1)

(the first notation refers to the Schrödinger picture, the second one to the Heisenberg
picture) can be written as a sum of histories (or path) q = {q(t); ti  t  tf} starting
from qi at time ti and ending at qf at time tf

Z

q(ti )=qI
q(tf )=qf

D[q] exp
✓ i
~

S[q]
◆

(2.4.2)

where S[q] is the classical action of the trajectory (history) .
The precise derivation of this formula, as well as its proper mathematical defini-

tion, is obtained by decomposing the evolution of the system in a large number N of
evolutions during elementary time step …t = ◊ = t/N, at arbitrary intermediate posi-
tions q(tn = n◊), n 2 {1, · · · ,N �1}, using the superposition principle. One then uses the
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q

q'

t

espace de
 configuration

temps
i=0 1 2 i-1 i i+1 N

Figure 2.6: Path integral: time discretization

explicit formula for the propagation kernel at small time (the potential V(q) may be
considered as constant locally)

K(qf ,◊,qi ,0) '
✓2i·~◊

m

◆�1/2
exp

 

i
~

 

m
2
(qf � qi )2

◊
� ◊V

✓qf + qi

2

◆

!!

(2.4.3)

and one then takes the continuous time limit ◊ ! 0. The precise definition of the
measure over histories or paths is (from the prefactor)

D[q] =
N�1
Ω

n=1

 

dq(tn)
✓2i·~◊

m

◆�1/2!

(2.4.4)

2.4.1.b - Path integral in phase space

This Lagrangian formulation of the path integral rely on a specific choice of config-
uration space, here the physical space of positions for the single particle. One should
keep in mind that di↵erent path integrals may correspond to di↵erent quantization
schemes of the same quantum theory. In particular, for this system the “Lagrangian”
path integral has a “Hamiltonian” version, which corresponds to a path integral in
phase space. It reads as a sum over trajectories in phase space {(q(t),p(t); ti < t  tf}

Z

q(ti )=qI , q(tf )=qf
D[q,p] exp

 

i
~

Z

dt (pq̇ �H(q,p)))
!

(2.4.5)

But one must be very careful on the definition of this path integral (discretization and
continuum time limit) and on the definition of the measure D[q,p] in order to obtain a
consistent quantum theory.
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2.4.2 Field theories, functional integrals

The path integral representations can be generalized to relativistic quantum field
theories. Let us consider the free scalar field, whose classical action (corresponding
to the Klein-Gordon equation) is

S[Ê] =
Z

dt
Z

d3~x
1
2

0

B

B

B

B

@

 

ÅÊ
Åt

!2

�
 

ÅÊ
Å~x

!2

�m2Ê2

1

C

C

C

C

A

=
Z

d4x
1
2

⇣

�ÅfiÊÅfiÊ�m2Ê2
⌘

(2.4.6)

The path integral becomes a functional integral over field configurationsÊ over space-
timeM1,3 of the form

Z

D[Ê] e i
~S[Ê] , D[Ê] '

Ω

x2M1,3

dÊ(x) (2.4.7)

More precisely, the vacuum expectation value of time ordered product of local field
operators Ê in this quantum field theory (the so called Wightman functions, or corre-
lation functions) can be expressed as functional integrals

h“ |TÊ(x1) · · ·Ê(xN )|“ i =
1
Z

Z

D[Ê] e i
~S[Ê]Ê(x1) · · ·Ê(xN ) (2.4.8)

Z is the partition function or vacuum amplitude

Z =
Z

D[Ê] e i
~S[Ê] (2.4.9)

The factor Z is a normalization factor for the functional integral, so that the vacuum
to vacuum transition amplitude is

h“ |“ i = 1

The functional integral quantizationmethod requiresmuch care to be defined properly
with full mathematical rigor. In particular the high energy-momenta / short distance
singularities of quantum fields require the theory of renormalization to construct the
functional integral and to check if indeed a continuum relativistic theory can be ob-
tained and make sense as a quantum theory. This is known to be the case in some
cases only (QFT in dimensions D < 4, some theories in D = 4 with an infra-red cut-o↵,
i.e. in a finite volume).

The path integral and functional integral formulations are nevertheless invaluable
tools to formulate many quantum systems and quantum field theories, grasp some
of their perturbative and non-perturbative features, and perform explicit calculations.
They give in particular a very simple and intuitive picture of the semiclassical regimes.
they explain why the laws of classical physics can be formulated via variational prin-
ciples, since classical trajectories are just the stationary phase trajectories (saddle
points) dominating the sum over trajectories in the classical limit ~ ! 0. In many
cases they allow to treat and visualize quantum interference e↵ects when a few semi-
classical trajectories dominates (for instance for trace formulas).
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Functional integral methods are also very important conceptually for quantum
field theory: from the renormalization of QED to the quantization and proof of renor-
malisability of non abelian gauge theories, the treatment of topological e↵ects and
anomalies in QFT, the formulation of the Wilsonian renormalization group, the appli-
cations of QFTmethods to statistical mechanics, etc. They thus provides a very useful
way to quantize a theory, at least in semiclassical regime where one expect that the
quantum theory is not in a too strong coupling regime and where quantum correla-
tions and interference e↵ects (possibly between non-trivial topological sectors) can
be kept under control.

I shall not elaborate further here. When discussing the quantum formalism, one
should keep in mind that the path integrals and functional integrals represent a very
useful and powerful (if usually not fully mathematically rigorous) way to visualize, ma-
nipulate and compute transition amplitudes, i.e. matrix elements of operators. Thus
functional integrals rather represent an application of the standard canonical formal-
ism, allowing to construct the Hilbert space (or part of it) and the matrix elements of
operators of a quantum theory out of the classical theory via a relatively quick and
e�cient recipe.

2.5 Quantum probabilities and reversibility

2.5.1 Is quantum mechanics reversible or irreversible?

An important aspect of classical physics and of quantum physics is the property
of reversibility. By reversibility it is meant that the general formulation of the basic
physical laws must be similar under time reversal. This is often stated as:

“There is no microscopic time arrow.”

This does not mean that the fundamental interactions (the specific physical laws that
govern our universe) are invariant under time reversal. It is known from quantum field
theory that (assuming unitarity, locality and Lorentz invariance) any theory must be
invariant under CPT only, the product of charge conjugation, parity and time rever-
sal. The reversibility statement means that the dynamics of any given state, viewed
forward in time (press key ⌘ ), is similar to the dynamics, viewed backward in time
(press key ⇣ ), of some other state (not necessarily the same).

This principle of reversibility is of course also very di↵erent from the macroscopic
irreversibility that we experience in everyday life (the cosmological arrow of time and
the expansion of the universe, the second principle of thermodynamics, some aspects
of quantum measurements, irreversible behavious in complex systems such as the
Parkinson’s laws [Par55] , etc.). I am not going to discuss the issue of the emergence
of irreversibility in classical physics, this would require a whole course on dynamical
systems and statistical physics. Some elementary aspects will be presented in sec-
tion 5.5 where quantum measurements are discussed.

In classical mechanics microscopic reversibility is an obvious consequence of the
Hamiltonian formulation. In quantum mechanics things are more subtle. Indeed if
the evolution of a “closed system” (with no interaction with its environment and the
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observer) is deterministic, unitary and reversible (in particular possible quantum cor-
relations between the system and its “outside” are kept untouched), themeasurement
processes over quantum systems are known to be irreversible and non-deterministic.
In particular ideal projective measurements feature (via the projection postulate) the
famous phenomenon of “reduction” or ‘collapse” of the wave function.

“The measurement process is an irreversible process”

This dichotomy between these two extreme classes of evolution processes has been
known and has been discussed since the birth of quantum mechanics. Is the irre-
versible character of measurement processes a signal of the incomplete character of
quantum mechanics? Is it a strange but unavoidable feature of the quantum word?
Is it a macroscopic e↵ect not so di↵erent from the occurrence of irreversibility in the
classical word? Is it related to the cosmological arrow of time or to some quantum
gravity e↵ect?

I am not going to discuss these important questions here. I shall come back to a
few of them in the last part of these notes. Let me just point out that, at the level
of the formalism, the concepts of probabilities and of indeterminism associated with
quantum measurement do not really contradict the principle of microsopic reversibil-
ity, in a certain sense that will be illustrated on a simple example below. This is in fact
known since quite a long time, see for instance the well-known ’64 paper by Aharonov,
Bergmann & Lebowitz [ABL64]. Since this point will be very important in this presen-
tation, especially when discussing the quantum logic formalism, let me explain it on
a simple, but basic example, with the usual suspects involved in quantum measure-
ments.

2.5.2 Reversibility of quantum probabilities

We consider two observers, Alice and Bob, and a single quantum system S . Each of
them can measure a di↵erent observable (respectively A and B ) of the quantum sys-
tem S (for simplicity S is taken to have a finite number of states, i.e. its Hilbert space
will be finite dimensional). We take these observations to be perfect (non demolition)
test measurements, i.e. yes/no measurements, represented by some selfadjoint pro-
jectors PA and PB such that P2

A = PA and P2
B = PB , but not necessarily commuting. The

eigenvalues of these operators are 1 and 0, corresponding to the two possible out-
comes 1 and 0 (or TRUE and FALSE ) of the measurements of the observables A and
of the observable B .

Let us consider now the two following “experimental” protocols, where Alice and
Bob make successive ideal measurements on a system S , and where Alice tries to
guess the result of the measurement by Bob. The two protocols correspond respec-
tively to prediction and to retrodiction.

Protocol 1 - From Alice to Bob: Alice gets the system S (in a state she knows nothing
about). She measures A and if she finds TRUE, then she send the system to Bob, who
measures B . What is the plausibility 4 for Alice that Bob will find that B is TRUE? Let

4. In a Bayesian sense.
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us call this the conditional probability for B to be found true, A being known to be true,
and denote it P(B [| A). The arrow [ denotes the causal/time ordering between the
measurement of A (by Alice) and of B (by Bob).

!

Figure 2.7: Protocol 1: Alice wants to guess what will be the result of Bob’s measure-
ment. This defines the conditional probability P(B [| A).

Protocol 2 - From Bob to Alice: Alice gets the system S from Bob, and knows nothing
else about S . Bob tells her that he has measured B , but does not tell her the result
of his measurement, nor how the system was prepared before he performed the mea-
surement (he may know nothing about it, he just measured B ). Then Alice measures A
and (if) she finds TRUE she asks herself the following question: what is the plausibility
(for her, Alice) that Bob had found that B was TRUE? 5 Let us call this the conditional
probability for B to have been found true, A being known to be true, and denote it by
P(B 7!| A). The arrow 7! denotes the causal/time ordering between the measurement
of A (by Alice) and of B (by Bob).

Comparing the two protocols: If S was a classical system, and the mesurements were
classical measurements which do not change the state of S , then the two protocols
are equivalent and the two quantities equal the standard conditional probability, given
by Bayes formula.

S classical system : P(B [| A) = P(B 7!| A) = P(B |A) = P(B \A)/P(A) .

In the quantum case, at a purely logical level, knowing only that the measure-
ment process may perturb the system S , the two conditional probabilities P(B [| A)

5. This question makes sense if for instance, Alice has made a bet with Bob. Again, and especially
for this protocol, the probability has to be taken in a Bayesian sense.
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!

Figure 2.8: Protocol 2: Alice wants to guess what was the result of Bob’s measurement.
This defines the conditional probability P(B 7!| A).

and P(B 7!| A) might very well be di↵erent. A crucial and remarkable property of quan-
tum mechanics is that they are still equal.

It is a simple but useful calculation to check this. In the first protocol P(B [| A) is
given by the Born rule; if Alice finds that A is TRUE and knows nothing more, her best
bet is that the state of S is given by the density matrix

‚A = PA/Tr(PA)

(equiprobabilities on the eigenspace of PA with eigenvalue 1, this is already a Bayesian
argument, already used by von Neumann [vN32]). Therefore for her the probability for
Bob to find that B is TRUE is

P(B [| A) = tr(‚APB ).

In the second protocol the best guess for Alice is to assume that before Bob mea-
sures B the state of the system is given by the fully equidistributed density matrix
‚1 = 1/tr(1) (again a Bayesian argument). In this case the probability that Bob finds
that B is TRUE, then that Alice finds that A is TRUE, is

p1 = tr(PB )/tr(1)⇥ tr(‚BPA) with ‚B = PB /Tr(PB ).

Similarily the probability that Bob finds that B is FALSE, then that Alice finds that A is
TRUE is

p2 = tr(1�PB )/tr(1)⇥ tr(‚BPA) = (tr(PA)� tr(PAPB ))/tr(1)

where ‚B = (1�PB )/tr(1�PB ). The total probability is then

P(B 7!| A) = p1 + p2 = tr(‚APB ).
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Therefore, even if A and B are not compatible observables, so that the projectors PA
and PB do not commute, one obtains in both case the same, and standard result for
quantum conditional probabilities

S quantum system : P(B [| A) = P(B 7!| A) = Tr[PAPB ]/Tr[PA] (2.5.1)

2.5.3 Causal reversibility

This is the basic argument. The situation studied in [ABL64] is more complicated.
It involves the selection of some initial state, a series of measurements and the post-
selection of some final state, but the conclusion is the same.

This reversibility property of quantum conditional probabilities is very important
and is, in my opinion, a crucial feature of quantum mechanics. In this review, I shall
denote it causal reversibility, in order not to confuse it with time reversal invariance
or with the simpler property of reversibility of unitary dynamics.
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