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Abstract

The intestinal microbiota plays important roles in digestion and resistance against entero-pathogens. As
with other ecosystems, its species composition is resilient against small disturbances but strong perturba-
tions such as antibiotics can affect the consortium dramatically. Antibiotic cessation does not necessarily
restore pre-treatment conditions and disturbed microbiota are often susceptible to pathogen invasion.
Here we propose a mathematical model to explain how antibiotic-mediated switches in the microbiota
composition can result from simple social interactions between antibiotic-tolerant and antibiotic-sensitive
bacterial groups. We build a two-species (e.g. two functional-groups) model and identify regions of dom-
ination by antibiotic-sensitive or antibiotic-tolerant bacteria, as well as a region of multistability where
domination by either group is possible. Using a new framework that we derived from statistical physics,
we calculate the duration of each microbiota composition state. This is shown to depend on the balance
between random fluctuations in the bacterial densities and the strength of microbial interactions. The
singular value decomposition of recent metagenomic data confirms our assumption of grouping microbes
as antibiotic-tolerant or antibiotic-sensitive in response to a single antibiotic. Our methodology can be
extended to multiple bacterial groups and thus it provides an ecological formalism to help interpret the
present surge in microbiome data.

Author Summary

Recent applications of metagenomics have lead to a flood of novel studies and a renewed interest in the role
of the gut microbiota in human health. We can now envision a time in the near future where analysis of
microbiota composition can be used for diagnostics and the rational design of new therapeutics. However,
most studies to date are exploratory and heavily data-driven, and therefore lack of mechanistic insights
on the ecology governing these complex microbial ecosystems. In this study we propose a new model
grounded on ecological and physical principles to explain intestinal microbiota dynamics in response
to antibiotic treatment. Our model explains a hysteresis effect that results from the social interaction
between two microbial groups, antibiotic-tolerant and antibiotic-sensitive bacteria, as well as the recovery
allowed by stochastic fluctuations. We use singular value decomposition for the analysis of temporal
metagenomic data, which supports the representation of the microbiota according to two main microbial
groups. Our framework explains why microbiota composition can be difficult to recover after antibiotic
treatment, thus solving a long-standing puzzle in microbiota biology with profound implications for
human health. It therefore forms a conceptual bridge between experiments and theoretical works towards
a mechanistic understanding of the gut microbiota.
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Introduction

Recent advances in metagenomics provide an unprecedented opportunity to investigate the intestinal
microbiota and its role in human health and disease [1, 2]. The analysis of microflora composition has
a great potential in diagnostics [3] and may lead to the rational design of new therapeutics that restore
healthy microbial balance in patients [4–6]. Before the clinical translation of human microbiome biol-
ogy is possible, we must seek to thoroughly understand the ecological processes governing microbiota
composition dynamics and function.

The gastro-intestinal microbiota is a highly diverse bacterial community that performs an important
digestive function and, at the same time, provides resistance against colonization by entero-pathogenic
bacteria [7–9]. Commensal bacteria resist pathogens thanks to resources competition [1,8], growth inhibi-
tion due to short-chain fatty acid production [10], killing with bacteriocins [11,12] and immune responses
stimulation [13, 14]. However, external challenges such as antibiotic therapies can harm the microbiota
stability and make the host susceptible to pathogen colonization [15–20].

Despite its importance to human health, the basic ecology of the intestinal microbiota remains unclear.
A recent large-scale cross-sectional study proposed that the intestinal microbiota variation in humans is
stratified and fits into distinct enterotypes, which may determine how individuals respond to diet or drug
intake [21]. Although there is an ongoing debate over the existence of discrete microbiome enterotypes [22],
they could be explained by ecological theory as different states of an ecosystem [23]. Ecological theory
can also explain how external factors, such as antibiotics, may lead to strong shifts in the microbial
composition. A recent study that analyzed healthy adults undergoing consecutive administrations of
the antibiotic ciprofloxacin, showed that the gut microbiota changes dramatically by losing key species
and can take weeks to recover [24]. Longitudinal studies, such as this one, suggest that many microbial
groups can have large and seemingly random density variations in the time-scale of weeks [25, 26]. The
observation of multiple microbial states and the high temporal variability highlight the need for ecological
frameworks that account for basic microbial interactions, as well as random fluctuations [27–29].

Here we propose a possible model to study how the intestinal microbiota responds to treatment with a
single antibiotic. Our model expands on established ecological models and uses a minimal representation
with two microbial groups [30] representing the antibiotic-sensitive and antibiotic-tolerant bacteria in the
enteric consortium (Fig. 1). We propose a mechanism of direct interaction between the two bacterial
groups that explains how domination by antibiotic-tolerants can persist even after antibiotic cessation.
We then develop a new efficient framework that deals with non-conservative multi-stable field of forces
and describes the role played by the noise in the process of recovery. We finally support our model
by analyzing the temporal patterns of metagenomic data from the longitudinal study of Dethlefsen and
Relman [24]. We show that the dynamics of microbiota can be qualitatively captured by our model and
that the two-group representation is suitable for microbiota challenged by a single antibiotic. Our model
can be extended to include multiple bacterial groups, which is necessary for a more general description
of intestinal microbiota dynamics in response to multiple perturbations.

Results

Mathematical model

We model the microbiota as a homogeneous system where we neglect spatial variation of antibiotic-
sensitive (s) and antibiotic-tolerant (t) bacterial densities. Their evolution is determined by growth
on a substrate and death due to natural mortality, antibiotic killing and social pressure. With these
assumptions, we introduce, as a mathematical model, two coupled stochastic differential equations for
the density of sensitives and tolerants (ρs and ρt) normalized with respect to the maximum achievable
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Figure 1. The two-group model of the intestinal microbiota with antibiotic-sensitive and
antibiotic-tolerant bacteria. Antibiotic sensitives can inhibit the growth of tolerants and both groups
compete for the same growth substrate. Model parameters εs and εt represent the antibiotic sensitivity
of sensitive and tolerant bacteria (where εs < εt), ms and mt represent their affinities to substrate and
ψ represents the inhibition of tolerants by sensitives.

microbial density:

dρs
dt

=
ρs

ρs + fρt
− ερs + ξs(t) = Fs(ρ) + ξs(t) (1)

dρt
dt

=
fρt

ρs + fρt
− ψρsρt − ρt + ξt(t) = Ft(ρ) + ξt(t) (2)

In the physics literature these types of equations represent stochastic motion in a non-conservative force
field F. The first terms in F correspond to the saturation growth terms representing the indirect compe-
tition for substrate and depend on f , which is the ratio of the maximum specific growth rates between
the two groups. If f > 1 tolerants grow better than sensitives on the available substrate and the reverse is
true for f < 1. They effectively describe a microbial system with a growth substrate modeled as a Monod
kinetic [31] in the limit of quasi-steady state approximation for substrate and complete consumption from
the microbes (see Methods for details). Both groups die with different susceptibility in response to the
antibiotic treatment, which is assumed to be at steady-state. ε defines the ratio of the combined effect
of antibiotic killing and natural mortality rates between the two groups (see Methods for details). While
the system can be studied in its full generality for different choices of ε, we consider the case of ε > 1
because it represents the more relevant case where sensitives are more susceptible to die than tolerants in
the presence of the antibiotic. A possible ε(t) that mimics the antibiotic treatments is a pulse function.
With this, we are able to reproduce realistic patterns of relative raise (fall) and fall (raise) of sensitives
(tolerants) due to antibiotic treatment as we show in Fig. S4 in the Supplementary Information (SI) Text.
Additionally, we introduce the social interaction term between the two groups, ψρtρs, to implement com-
petitive growth inhibition [13, 32]. In particular, we are interested in the case where the sensitives can
inhibit the growth of the tolerants (ψ > 0), which typically occurs through bacteriocin production [33].
Finally we add a stochastic term ξ that models the effect of random fluctuations (noise), such as random
microbial exposure, which we assume to be additive and Gaussian. The analysis can be generalized to
other forms of noise such as multiplicative and coloured.
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Antibiotic therapy produces multistability and hysteresis

We first analyzed the model in the limit of zero noise, ξ = 0. In this case, we were interested in studying
the steady state solutions that correspond to the fixed-points of equations (1,2) and are obtained imposing
F = 0. We found three qualitatively-distinct biologically meaningful states corresponding to sensitive
domination, tolerant domination and sensitive-tolerant coexistence (see SI Text). We evaluated the
stability of each fixed point (see SI Text) and identified three regions within the parameter space (Fig. 2A).
In the first region the effect of antibiotics on sensitive bacteria is very low (fε < 1) and domination by
sensitives is the only stable state (sensitives monostability). In the second region the effect of the antibiotic
on sensitives is stronger than their inhibition over tolerants (fε > 1 + ψ/ε) and the only stable state is
domination by tolerants (tolerants monostability). Finally, in the third region (1 < fε < 1 + ψ/ε) both
sensitive and tolerant dominations are possible and stable, while the third coexistence fixed point is
unstable (bistability) (see SI Text). This simple analysis shows that multistability can occur in a gut
microbiota challenged by an antibiotic where one group directly inhibits the other (i.e. through the ψ
term). Furthermore, it suggests that multistability is a general phenomenon since it requires only that
antibiotic-sensitive and antibiotic-tolerant bacteria have similar affinities to nutrients. This is a realistic
scenario because tolerants, such as vancomycin resistant Enterococcus [18], are often closely related to
other commensal but antibiotic-sensitive strains and therefore should have similar affinity to nutrients.
Finally, the solution of equations (1) and (2) reveals that hysteresis is present for values of fε andfψ
leading to multistability (Fig. 2B). Similarly to magnetic tapes, such as cassette or video tapes, which
remain magnetized even after the external magnetic field is removed (i.e. stopping the recording), a
transient dose of antibiotics can cause a microbiota switch that persists for long time even after antibiotic
cessation.

Noise alters stability points

The previous analysis shows the existence of multistability in the absence of noise. However, the influx
of microbes from the environment and/or the intra-population heterogeneity are expected in realistic
scenarios and affect the bacterial density evolution in a non-deterministic fashion. This raises the question
of how the noise alters the deterministic stable states and their stability criteria. We assume that the
noise is a fraction of bacteria ξ(t) that can be added (or removed) at each time step, but on average
has no effect since 〈ξ〉 = 0. This assumption is justified by the fact that a persistent net flux of non-
culturable bacteria from the environment is unrealizable. We also assume that this random event at time
t is not correlated to any previous time t′, which corresponds to 〈ξk(t)ξk′(t

′)〉 = Dδ(t − t′)δkk′ , where
D characterizes the noise amplitude and δ is the Dirac delta function. We calculated the stationary
probability of the microbiota being at a given state by solving the stationary Fokker-Planck Equation
(FPE) [34] corresponding to the Langevin equations (1,2):

−∇ · (F Ps) +
D

2
∇2Ps = 0. (3)

By numerically solving equation (3) as described in [35], for increasing D, we find that for small values
of D the most probable states coincide with the deterministic stable states given by F = 0 (Fig. 3A).
However, by increasing D the distribution Ps spreads and the locations of the most probable states change
and approach each other. As a consequence, the probability of an unstable coexistence, characterized by
ρs > 0 and ρt > 0, increases thus avoiding extinction. This intuitively justifies how recovery to a sensitive-
dominated state within a finite time after antibiotic cessation becomes possible with the addition of the
noise. Without noise, the complete extinction of sensitive bacteria would have prevented any possible
recolonization of the intestine. Beyond a critical noise level (Dc) bistability is entirely lost and the
probability distribution becomes single-peaked with both bacterial groups coexisting. The microbiota
composition at the coexistence state can be numerically determined from the solution of Ps(ρs, ρt), as
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Figure 2. Multistability and hysteresis in a simple model of the intestinal microbiota. A: phase
diagram showing the three possible stability regions. Antibiotic-sensitive bacteria dominate when
fε < 1 and antibiotic-tolerant bacteria dominate when fε > 1/2 +

√
1 + 4fψ/2 and therefore these are

regions of monostability. There is a region of bistability between the two regions where domination by
either sensitives or tolerants is possible. B: schematic display of the hysteresis phenomenon explaining
cases where antibiotic treatment produces altered microbiota (i.e. tolerants domination) that persists
long after antibiotic cessation. C-F: mean density values obtained simulating the Langevin dynamics for
a maximum time T = 10000 after an instantaneous change of the parameter ψ (C and D) and ε (E and
F). These averages are obtained over 1000 noise realizations. C, D and E, F show the
antibiotic-tolerants or antibiotic-sensitives densities, respectively, as a function of the social interaction
parameter (ψ) with fε = 1.21 or the antibiotic killing (ε) with fψ = 0.77.



6

shown in Fig. 3B and Supplementary Video S1. Further investigations based on analytical expansion
of the Langevin equations (see Methods) show that for small random fluctuations, D � Dc, the first
noise-induced corrections to the deterministic density are linearly dependent on D with a proportionality
coefficient determined by the nature of the interactions (insets in Fig. 3B). These linear correction terms
can be obtained as a function of the model parameters and, after substituting a particular set of values

in the bistable region (f = 1.1, ε = 1.1 and ψ = 0.4), they are 〈ζ(1)s 〉 = −4.3 D for sensitives and

〈ζ(1)t 〉 = 4.4 D for tolerants. These numbers are different from those reported in the insets of Fig. 3B.
However the discrepancy is due to the propagation of the boundary conditions when numerically solving
the solution of the FPE using finite elements (see SI Text).

This has important biological implications since it suggests that extinction is prevented and, more
importantly, that a minority of environmental microbes can settle in the gut at a rate that depends on
the strength of their social interaction with the established microbiota.

The introduction of random perturbation affects the stability criteria of the stable states. In particular,
we observe that the bistability region decreases when the noise amplitude D increases (Fig. 2C-F). At
the limit, when D > Dc the bistability is entirely lost and the only stable state is the one where both
groups coexist. This concept was previously hypothesized but not explicitly demonstrated in a model of
microbial symbionts in corals [30].

Noise affects the recovery time

Our model predicts that in absence of stochastic fluctuations the recovery time is larger than any obser-
vational time-scale so that it is impossible to revert to the conditions preceding antibiotic perturbation
(see Fig. S4 in SI Text). In reality, data show that this time can be finite and depends on the microbiota
composition and the degree of isolation of the individuals [18, 24, 36]. Thus, we aim to quantitatively
characterize how the relative contribution of social interaction and noise level affects the computation of
the mean residence time.

In order to determine the relative time spent in each domination state, we compute the probability of
residence πi(t) in each stable state i = 1, 2, .., N using master equations [34]. This method is more efficient
than simulating the system time evolution by direct integration of the Langevin equations because it boils
down to solving a deterministic second-order differential equation. Furthermore, this approach scales up
well when the number of microbial groups increases, in contrast to the numerical solution of the FPE
which can become prohibitive when N > 3. In our model, the master equations for the probability πi(t)
of residing in the tolerant i = 1 or sensitive i = 2 domination state are:

dπ1(t)

dt
= −P1→2π1(t) + P2→1π2(t)

dπ2(t)

dt
= −P2→1π2(t) + P1→2π1(t) (4)

where Pi→j is the transition rate from state i to j, which can be obtained in terms of the sum over all
the state space trajectories connecting i to j.

By solving this system of equations at steady-state, we obtain the residence probabilities π1 =

(1 + P1→2/P2→1)
−1

and π2 = (1 + P2→1/P1→2)
−1

. After computing the transition rate Pi→j ∝ e−
S(ρ∗)
D

as a function of the parameters, as reported in the Methods, we determine π2, which is our theoretical
prediction for the mean relative residence time 〈t2/(t1 + t2)〉 spent in the tolerant domination state (see
Fig. 5). The theoretical predictions are in good agreement with those obtained by simulating the dy-
namics multiple times and averaging over different realizations of the noise. A first consequence from this
analysis is that the time needed to naturally revert from the altered state depends exponentially on the
noise amplitude (1/D). As such, we predict that for the case of an isolated system (D ∼ 0) the switching
time is exponentially larger than any other microscopic scale and the return to a previous unperturbed
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Figure 3. Most probable microbiota states change from bistable scenario to mono-stable coexistence
with increasing noise. A: the bacterial density joint probability distribution determined by solving the
Fokker-Planck equation (3) for four different values of the environmental noise. B: the bacterial
densities at the peaks of P (ρs, ρt) as a function of the noise parameter D. Red symbols are data from
the numeric solution of the Fokker-Planck equation and the black solid lines are the exponential fit.
Parameters used: f = 1.1, ε = 1.1 and ψ = 0.4. The insets detail the linear regime.

state is very unlikely. On the contrary, as the level of random exposure D is increased, the time to
recover to the pre-treated configuration decreases (see Fig. S4 in SI Text). Additionally, this method
can be considered as a way to indirectly determine the strength of the ecological interactions between
microbes which can be achieved by measuring the amount of time that the microbial population spends
in one of the particular microbiota states. Therefore, it can potentially be applied to validate proposed
models of ecological interactions by comparing residence times measured experimentally with theoretical
predictions.
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Analysis of metagenomic data reveals antibiotic-tolerant and antibiotic-sensitive
bacteria

We now focus on the dynamics of bacteria detected in the human intestine and test the suitability of our
two-group representation by re-analyzing the time behaviour in the recently published metagenomic data
of Dethlefsen and Relman [24]. The data consisted of three individuals monitored over a 10 month period
who were subjected to two courses of the antibiotic ciprofloxacin. Since the data are noisy and complex,
and the individual subjects’ responses to the antibiotic are distinct [24], identifying a time behaviour
by manual screening is not a trivial task. We do it by using singular value decomposition (SVD) to
classify each subject p phylotype-by-sample data matrix Xp into its principal components. Because of
inter-individual variability we obtain, for each subject, the right and left eigenvectors associated to each
eigenvalue. By ranking the phylotypes based on their correlation with the first two components we recover
characteristic temporal patterns for each volunteer [37,38].

In all three subjects, we observe that, in spite of the individualized antibiotic effect, the two dominant
eigenvalues or principal components together capture about 70% of the variance observed in the data
(Fig. 5A-C). Invariably, the first component shows a decrease in correspondence to antibiotic treatment
and reflects the behaviour of antibiotic-sensitive bacteria (green line in Fig. 5D-F). Conversely, the second
component increases with the antibiotic treatment and represents antibiotic-tolerants (red line in Fig.
5D-F). The observation that each subject’s microbiota can be decomposed into two groups of bacteria



9

0 50 100 150 200 250 300 350

0

  

  

0 2 6 8 10

0 50 100 150 200 250 300 350

0

0 50 100 150 200 250 300 350

0

  

  

Cipro  1 Cipro  2

Samples

A

B

C

Cipro  1

G

I

Time  (days)

1 12 16

  

  

1 12 16 37 52

  

1 12 16 56

Cipro  2

1 2 3 5
0

1

1 2 3 5
0

1

1 2 3 5
0

1

Log Abundance

D

E

F

H

PC

PC1

PC2

F
V
E

F
V
E

F
V
E

Ph
yl

ot
yp

es
 

Ph
yl

ot
yp

es
 

Ph
yl

ot
yp

es
 

Figure 5. Analysis of microbiota response to the antibiotic ciprofloxacin from three subjects [24] using
singular value decomposition identifies antibiotic-sensitive and antibiotic-tolerant bacteria. A-C:
fraction of variance explained by the five most dominant components. D-F: plot of each sample
component 1 (green) and 2 (red) coordinates versus sample time. G-I: sorting of the phylotypes
log2-transformed abundance matrix based on the correlation within the two principal component.
Above (below) the green dashed lines, we display the time series of the top 20 phylotypes strongly
correlated (anti-correlated) with component 1 and anti-correlated (correlated) with 2 and dropping
(increasing) during treatment, which we identify as sensitves (tolerants). Subject 3 (C,F,I) displays
absence of sensitive bacteria for a prolonged period of about 50 days after the first antibiotic treatment.
This confirms the fact that microbiota response to antibiotic can differ from subject to subject.
Additionally, it also supports our model prediction of remaining locked in a tolerant-dominated state
after antibiotic treatment cessation.

with opposite responses to antibiotics supports the validity of the two-group approach used in our model.
Classification of each individual’s phylotypes as sensitive or tolerant can be obtained by determining
their correlation with the two principal components (see SI Text) (information in the right-eigenarrays
matrix from SVD). Bacteria correlated with component 1 are usually highly abundant before antibiotic
treatment and drop strongly during treatment, often below detection. Vice-versa, bacteria correlated
with component 2 are typically in low abundance before the antibiotic and increase with antibiotic
administration (Fig. 5G-I). Interestingly, despite significant inter-individual differences in recovery time
(Fig. 5G-I) and individualized response of each subject, the data show that in each individual the
majority of bacteria are antibiotic-sensitive and only a small but significant fraction are tolerant to
ciprofloxacin (see SI Text). The recognition of these time-patterns could be considered as a possible
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tool to indirectly determine the susceptibility of non-culturable commensal bacteria to FDA-approved
antimicrobial compounds. However, the presence of strains in the same phylotypes that display both
behaviors in response to the drug may constitute a significant challenge for the success of this method.

The time evolution of the phylotypes (Fig. 5G-I) qualitatively agrees with our theoretical prediction
that after the antibiotic administration the system moves fast, meaning in a time smaller than any other
observable time-scale, into a new stable state with less sensitives and more tolerants. Further, the data
also suggest that the return to sensitive domination happens after a recovery-time scale that depends on
the microbial composition.

Discussion

We present a model of inter-bacterial interactions that explains the effect of antibiotics and the counter-
intuitive observation that an antibiotic-induced shift in microbiota composition can persist even after
antibiotic cessation. Our analysis predicts a crucial dependence of the recovery time on the level of
noise, as suggested by experiments with mice where the recovery depends on the exposure to mice with
untreated microbiota [18]. The simple model here introduced is inspired by classical ecological modeling
such as competitive Lotka-Volterra models [39,40], but relies on mechanistic rather than phenomenological
assumptions, such as the logistic growth. Although more sophisticated multi-species models include
explicit spatial structure to describe microbial consortia [33, 41–43], our model is a first attempt to
quantitatively analyze the interplay between microbial social interactions (ψ) and stochastic fluctuations
(D > 0) in the gut microbiota. We find that these two mechanisms are the key ingredients to reproduce
the main features of the dynamics in response to antibiotic (sudden shifts and recovery). Our model
can be easily generalized to include spatial variability and more complicated types of noise. Therefore
we provide a theoretical framework to quantify microbiota resilience against disturbances, which is an
importance feature in all ecosystems [44]. By introducing a new stochastic formulation, we were able
to characterize composition switches within the context of state transition theory [45, 46], an important
development over similar ecological models of microbial populations [30]. We present a new method
to calculate the rate of switching between states that identifies the most likely trajectory between two
stable states and their relative residence time, which can be subjected to experimental validation. Finally,
we apply SVD to previously published metagenomic data [24], which allows us to classify the bacteria
of each subject in two groups according to their temporal response to a single antibiotic. The SVD
method has been used before to find patterns in temporal high-throughput data, including transcription
microarrays [37] and metabolomics [47]. Although our approach seems to capture well the main temporal
microbiota patterns, we should note that the use of the Euclidean distance as a metric for microbiome
analysis presents limitations and recent studies have proposed alternative choices [48–50]. We also opt
for an indirect gradient analysis method [51] because we are interested in emergent patterns from the
data regardless of the measurements of the external environmental variable (i.e. presence or absence of
the antibiotic) [50].

We propose a mechanism of interaction between two bacterial groups to explain the lack of recovery
observed in the experiments that can be validated in the near future. Although training the model with
the available data sets would be of great interest, this will not be useful in practice because we need more
statistical power to be predictive. However, we anticipate that a properly validated mathematical model
of the intestinal microbiota will be a valuable tool to assist in the rational design of antibiotic therapies.
For example, we predict that the rate of antibiotic dosage will play a crucial role. In order to let the
microbiota recover from antibiotic treatment, it is better to gradually decrease antibiotic dosage at the
first sign of average microbiota composition change, which has to be larger than the threshold community
change represented by the day-to-day variability [26], rather than waiting for tolerant-domination and
then stopping antibiotic treatment.

We show here the application of our theory to a two-bacterial group scenario because we are interested
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in the microbiota response when challenged with a single antibiotic. However, in more realistic conditions
the microbiota is subjected to different types of perturbations, which may drive it towards more alternative
stable states. Our theory of the microbial-states switches characterization can be naturally extended to
more than two states and consists of the solution of the linear system of equations πP = 0, where π is
the array of probability of residing in each stable state and P is the matrix of transition rates among the
states.

The ongoing efforts to characterize the microbial consortia of the human microbiome can yield tremen-
dous benefits to human health [52–55]. Within the next few years, we are certain to witness important
breakthroughs, including an increase in the number of microbiomes sequenced as well as in sequencing
depth. Yet, without the proper ecological framework these complex ecosystems will remain poorly un-
derstood. Our study shows that, as in other complex microbial ecosystems, ecological models can be
valuable tools to interpret the dynamics in the intestinal microbiota.

Methods

Full model and simplification

The model introduced in equations 1 and 2 is derived from the more detailed model described below. We
model the bacterial competition in a well-mixed system in the presence of antibiotic treatment by means
of the following stochastic differential equations:

dS

dt
= K(S0 − S)− msSρs

Bs(S + a)
− mtSρt
Bt(S + a)

dρs
dt

=
msSρs
S + a

− γAρs −Kρs + ξs(t)

dρt
dt

=
mtSρt
S + a

− ψρsρt −Kρt + ξt(t)

dA

dt
= K(A0 −A) (5)

where we account for two bacterial groups; the intestinal resident sensitive flora ρs and an antibiotic
tolerant one ρt. Additionally, we also consider the substrate S and the antibiotic A densities. The
antibiotic time evolution is simply a balance between inflow and outflow (i.e. no decay due to microbial
degradation) where K is the system’s dilution rate, which sets the characteristic microscopic time-scale,
and A0 is the constant density of the incoming antibiotic, which can be time dependent. Similarly the
substrate concentration, S, results from a mass balance from influx and microbial consumption. As for
the antibiotic, S0 is the constant density of the incoming nutrient (i.e. the concentration of resources
coming from the small-intestine). The second and third terms in the right-hand side of the second
equation in (5) describe the amount of substrate consumed by bacterial growth assuming Monod kinetics
where ms (mt) is the maximum growth rate for sensitives (tolerants), a is the half-saturation constant for
growth, which parametrizes the bacterial affinity to the nutrient, and Bs (Bt) is the yield for growth for
sensitives (tolerants). The last two equations describe how sensitives and tolerants grow on the substrate
available and are diluted with the factor K. We mimic the effect of the antibiotic on the sensitives
adding a term proportional to the sensitive density where the constant of proportionality γA is the
antibiotic-killing rate. We also introduce a direct inhibition term ψρs, which mimics the inhibition of
sensitive bacteria on the tolerants (social interaction). Finally the Gaussian random variables ξs, ξt are
the additive random patterns of exposure and represent the random microbial inflows (outflows) from
(to) the external environment.

It is convenient to scale the variables and set the dilution rate to unity (K = 1). Therefore, all the
rates have to be compared with respect to the system characteristic dilution rate. Introducing S̃ = S/S0 ,
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ρ̃s = ρs/(BsS0), ρ̃t = ρt/(BtS0), Ã = A/A0, γ̃ = (A0γ)/K, ψ̃ = ψ/(KBsS0), m̃s = ms/K, m̃t = mt/K,
ã = a/S0, ξ̃s = ξs/(BsS0K) and ξ̃t = ξt/(BtS0K) and dropping the tilde symbols, we obtain the following
dimensionless model:

dS

dt
= 1− S − msρs

S + a
S − mtρt

S + a
S

dρs
dt

=
msS

S + a
ρs − γAρs − ρs + ξs

dρt
dt

=
mtS

S + a
ρt − ψρsρt − ρt + ξt

dA

dt
= 1−A (6)

If we assume that the antibiotic is a fast variable compared to the microbial densities (ρs, ρt) (i.e. the
time-scale at which the antibiotic reaches stationary state is smaller than that of the bacteria), we can
solve for dA

dt = 0 and obtain A = 1. If we also assume that the incoming substrate is all consumed in
microbial growth, therefore maintaining the population in a stationary state with respect to the available
resources, and that, similarly to the antibiotic, the resources equilibrate much faster than the bacterial
densities (quasi-steady state assumption, dS

dt = 0), we obtain that:

S

S + a
=

1

msρs +mtρt
. (7)

If we now define a new parameter ε = (γ+1) describing the relative ratio of the combination of antibiotic
killing and natural mortality (i.e. wash-out) between sensitives and tolerants, the model reduces to the
two variables model in ρ reported in equations (1-2).

Effective potential and location of long-term states

The introduction of random noise has the important consequence of changing the composition of the
stable states (Fig. 3A). In order to characterize this phenomenon, we expand the solution of the Langevin
equations (1-2) around one of the stable states obtaining the following set of equations for the variable
ζ = ρ− ρi:

dζι
dt

=
∑
σ

dFι
dζσ

∣∣∣∣
ρi

ζσ +
1

2

∑
σκ

dFι
dζσdζκ

∣∣∣∣
ρi

ζσζκ + . . .+ ξι (8)

where to simplify the notation we drop the explicit time-dependence. We can easily recognize the first
derivative of the force on the right-hand side as the Jacobian matrix computed in one of the minima
dFι
dζσ

∣∣∣
ρi

= J(ρi). This equation can be solved order by order by defining the expansion ζ = ζ(0) +ζ(1) + . . .

and writing the equations for each order as:

dζ
(0)
ι

dt
=

∑
σ

Jισ(ρi)ζ
(0)
σ + ξι (9)

dζ
(1)
ι

dt
=

∑
σ

Jισ(ρi)ζ
(1)
σ +

1

2

∑
σκ

Vισκ(ρi)ζ
(0)
σ ζ(0)κ . (10)

Assuming that the initial condition at time zero is ζι(0) = 0, which can always be neglected for
long-term behaviour, the solution of equation (9) is

ζ(0)ι (t) =

∫ t

0

dt′
∑
σ

[
eJ(t−t

′)
]
ισ
ξσ(t′). (11)
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This means that the average location of the minima at zero order is not modified by the noise since
〈ζ(0)〉 ∝ 〈ξ〉 = 0. By computing the solution of the equation (10) we similarly find that:

ζ(1)ι (t) =
1

2

∫ t

0

∑
σκµ

[
eJ(t−t

′)
]
ισ
Vσκµ ζ

(0)
κ (t′) ζ(0)µ (t′)dt′ (12)

The long-time average value of the first order correction now reads:

lim
t→∞

〈
ζ(1)ι (t)

〉
=

1

2
lim
t→∞

∫ t

0

∑
σκµ

[
eJ(t−t

′)
]
ισ
Vσκµ

〈
ζ(0)κ (t′) ζ(0)µ (t′)

〉
dt′ (13)

The time integral can be easily computed assuming that the eigenvalues of J are negative, or at least
their real part is, as it should be for stable fixed points; therefore we obtain that:

lim
t→∞

〈
ζ(1)ι (t)

〉
=

1

2

∑
σκµ

−
[
J−1

]
ισ
Vσκµ 〈ζ(0)κ (∞) ζ(0)µ (∞)〉 . (14)

Thus, we find that the effect of random fluctuations is to correct the value of the stable points as if
an external field, proportional to strength of the fluctuations, was present. This field is equal to the
mean square displacement at large time opportunely weighted by the inverse of the curvature of the bare
potential around the stable points, J(ρi). The correlation can be now computed using equation (11) and
reads:

〈ζ(0)κ (∞) ζ(0)µ (∞)〉 = lim
t→∞

∫ t

0

dt′
∫ t

0

dt′′
∑
σσ′

[
eJ(t−t

′)
]
κσ

[
eJ(t−t

′′)
]
µσ′
〈ξσ(t′)ξσ′(t

′′)〉 (15)

Since 〈ξσ(t′)ξσ′(t
′′)〉 = Dδσσ′δ(t

′ − t′′) the previous equation simplifies to

〈ζ(0)κ (∞) ζ(0)µ (∞)〉 = lim
t→∞

D

∫ t

0

dt′
∑
σ

[
eJ(t−t

′)
]
κσ

[
eJ(t−t

′)
]
µσ

. (16)

which results in 〈ζ(1)〉 ∝ D.

Theoretical estimate of the mean residence time

The mean residence time in each state is proportional to the residence probability πi(t) defined in equation
(4). To obtain it, we need to compute the transition rate Pi→j as a function of the model parameters as:

Pi→j =
1

tf − ti

∫ ρj

ρi

Dρ P (ρ), (17)

where ti and tf are the initial and final time and Dρ is the functional integral over the trajectory ρ(t).
Each time trajectory ρ(t), solution of equations (1-2), has an associated weight P (ρ), defined as:

P (ρ) =

∫
Dξ P (ξ)δ(ξ − ρ̇ + F(ρ)). (18)

By discretizing the time so that t = `τ with ` = 1, . . . ,M and τ the microscopic time step, we obtain
that the Langevin equations can be written using the Ito prescription [56] as:

ρ` − ρ`−1

τ
= F(ρ`−1) + ξ` (19)
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where we use the short notation ρ(`τ) = ρ` and the initial value is ρ0 = ρi. The time discretization
allows us to interpret the functional integral in equation (18) as:

P (ρ) =

∫ M∏
`=1

dξ` P (ξ`) δ
(
ρ` − ρ`−1 −

[
F(ρ`−1) + ξ`

]
τ
)

(20)

Since the noise is Gaussian and white, its distribution now reads:

P
(
ξ`
)

=
( τ

2πD

)1/2
e−

τ
2D |ξ

`|2 . (21)

This can be justified using the property of the delta-function
∫
δ(t−t′)dt = 1 and its discrete time version

τ
∑M
i=1 f(τ)δij = 1 so that f(τ) = ε−1 follows and δ(t− t′)→ δij/τ .

Using the properties of the delta function, and integrating out all ξ`s, the continuous limit expression
of equation (21) is

P (ρ(t)) = e−
S(ρ)
D (22)

where S(ρ) = 1
2

∫ tf
ti
dt′ |ρ̇(t′)−F(ρ)|2 has an intuitive interpretation in thermodynamics and it is related

to the entropy production rate [57]. By using stationary-phase approximation, it turns out that in the
computation of the rate defined in (17) only one path matters, ρ∗, which is the most probable path.
Higher order factors are proportional to the term ∆T = tf − ti [45, 46], and therefore simplify with
the denominator in equation (21). This comes from the fact that several almost optimal paths can be
constructed starting from ρ∗. In the optimal path, the system stays in a stable state for a very long time,
then it rapidly switches to the other stable state where it persists until tf . By shifting the switching time
one obtains sub-optimal paths that, at the leading order in D, give the same contribution of the optimal
one and their number is directly proportional to ∆T . This leads to

Pi→j(ρ) ∝ e−
S(ρ∗(t))

D

∫
Dρ exp

(
− 1

2D

∫
dtdt′ρ(t)

δ2S(ρ)

δρ(t)δρ(t′)
ρ(t′)

)
. (23)

The functional Gaussian integral can be computed [45,46] and only provides a sub-leading correction

to the saddle-point contribution resulting in the transition rate formula Pi→j ∝ e−
S(ρ∗)
D , which is reported

in the Results section.
We now need to determine the optimal path and its associated action S(ρ∗). This path is defined as

the one where the functional derivative of S is set to zero such that the initial and final states are fixed.
This produces a set of second-order differential equations

ρ̈α =
∑
β

Fβ
∂Fβ
∂ρα

+
∑
β

ρ̇β

(
∂Fα
∂ρβ

− ∂Fβ
∂ρα

)
(24)

which can be solved imposing the initial conditions on ρi and ρ̇(ti).
It is easy to verify that the downhill solution is ρ̇ = F and it is associated with null action. Meanwhile,

the ascending trajectory, which is the one leading to a non-zero action and hence gives the transition
rate value, is not given by ρ̇ = −F, as it would be for conservative field of forces. This means that in
presence of a dissipative term the reverse optimal path from the minimum to the maximum is different
with respect to the one connecting the maximum from the minimum of the landscape.

As the last point, we want to show that the action associated to the optimal path can be further
simplified by noticing that

E =
1

2

(
|ρ̇|2 − |F(ρ)|2

)
= 0 . (25)
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We can easily prove this condition by showing that the time derivative dE/dt vanishes when equation
(24) is satisfied and remembering that the optimal path connects two stable states where F = 0 and
ρ̇ = 0. This property allows us to rewrite the action as:

S(ρ∗) =

∫ tf

ti

dt′
[
|ρ̇∗(t′)|2 − ρ̇∗(t′) · F(ρ∗(t′))

]
. (26)

We solved numerically the equation (24) using a trial-and-error approach. We varied the first-
derivative at initial time in order to arrive as close as possible to the final point within some numerical
precision. In principle the ideal trajectory connecting two stable points should be computed in the limit
of ρ̇(ti)→ 0 but this trajectory will take infinite time. We report three examples of most probable paths
connecting the points i to j and reverse for a chosen set of ρ̇(ti) in Fig. S6 of the SI Text .

Singular Value Decomposition

We first rarefy the raw phylotypes counts matrix as in [24]. We then normalize the logarithm of the
counts according to the following procedure: 1) we add one to all the phylotypes counts to take into
account also for the non-detected phylotypes in each sample, 2) we log-transform the data and 3) we
normalize the resulting matrix with respect to the samples averages. In formulae, the count associated
to phylotype i in sample j for each subject p is

Xp
ij = log2(Rawpij + 1)− µj

, where µj =
∑N
i=1 log2(Rawpij + 1)/N is the average value of the counts in each sample and N is the

total number of phylotypes. Among all possible normalization schemes, we decide to subtract the column
averages because we aim at identifying patterns within samples based on their correlation in bacterial
composition. Indeed, the covariance matrix of the samples is proportional to (Xp)TXp, where (Xp)T

is the transpose matrix. SVD on the matrix Xp is thus equivalent to the principal component analysis
(PCA) performed on the samples covariance matrix.
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Supplementary Information legends

Supplementary Information Text

The Supplementary Information (SI) Text reports additional calculations, figures and details on: 1)
model and relative stability analysis, 2) effect of random fluctuations and noise-induced dynamics and 3)
Singular Value Decomposition.

Video S1

The video shows the stationary probability distributions Ps as a function of the sensitive and tolerant
densities for increasing noise value D, which ranges from 10−4 to 10−2. For visualization purposes, the
noise value associated to each movie frame is displayed as an increasing bar in the top panel.

Video S2

The video shows the time evolution of the two principal components for the three subjects from [24].
Empty circles represent untreated samples, asterisks represent samples during treatement 1 and filled
circles represent represent samples during treatement 2.


