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We present a comprehensive theoretical study of finite size effects in the relaxation dynamics of
glass-forming liquids. Our analysis is motivated by recent theoretical progress regarding the under-
standing of relevant correlation length scales in liquids approaching the glass transition. We obtain
predictions both from general theoretical arguments and from a variety of specific perspectives:
mode-coupling theory, kinetically constrained and defect models, and random first order transi-
tion theory. In the latter approach, we predict in particular a non-monotonic evolution of finite
size effects across the mode-coupling crossover due to the competition between mode-coupling and
activated relaxation. We study the role of competing relaxation mechanisms in giving rise to non-
monotonic finite size effects by devising a kinetically constrained model where the proximity to the
mode-coupling singularity can be continuously tuned by changing the lattice topology. We use our
theoretical findings to interpret the results of extensive molecular dynamics studies of four model
liquids with distinct structures and kinetic fragilities. While the less fragile model only displays
modest finite size effects, we find a more significant size dependence evolving with temperature for
more fragile models, such as Lennard-Jones particles and soft spheres. Finally, for a binary mixture
of harmonic spheres we observe the predicted non-monotonic temperature evolution of finite size
effects near the fitted mode-coupling singularity, suggesting that the crossover from mode-coupling
to activated dynamics is more pronounced for this model. Finally, we discuss the close connection
between our results and the recent report of a non-monotonic temperature evolution of a dynamic
length scale near the mode-coupling crossover in harmonic spheres.

PACS numbers: 05.20.Jj, 64.70.kj, 05.10.a

I. INTRODUCTION

Theoretical studies of the glass transition make heavy
use of computer simulations of both simple model sys-
tems such as lattice glass models or kinetically con-
strained spin models, and more realistic models of liq-
uids studied through molecular dynamics simulations [1].
Usually, numerical studies are performed with periodic
boundary conditions using system sizes that are ‘large
enough’ to provide results that are representative of the
thermodynamic limit [2]. From this point of view the
existence of finite size effects is a nuisance. However, as
discovered in the context of standard critical phenom-
ena [3], a thorough study of finite size effects can be very
informative: It allows one to measure the growing corre-
lation lengths, to ascertain the critical properties, to ob-
tain quantitative information about fluctuations of the
order parameter, and to provide crucial tests for theo-
retical approaches. While a large amount of work has
been devoted to measuring the spatial extent of growing
correlation length scales [4] in supercooled liquids, only
few studies have paid specific attention to finite size ef-
fects [5–12], while an even smaller number of studies have
made explicit use of finite size scaling techniques to ex-
plore glass transitions [13–16]. The aim of this paper is
to fill this gap and to address from a theoretical point of
view the issue of finite size scaling in supercooled liquids.
For quite a long time, the glass transition was con-

sidered a puzzling phenomenon, corresponding to an ob-

vious change between fluid and solid states, but with-
out any of the signs found near standard phase transi-
tions, apart from a dramatic but gradual viscosity in-
crease when approaching the experimental glass temper-
ature [17, 18]. In apparent agreement with this situation,
early numerical simulations did not reveal the strong sys-
tem size dependences that would for instance smear out
singular behaviours expected near ordinary phase transi-
tions [19, 20]. In more recent years, important progress
has been made regarding the status of the glassy state
and of the relevant length scales characterizing systems
approaching the glass transition [21]. In particular, two
decades of active research on dynamic heterogeneity in
amorphous materials have established that the forma-
tion of rigid amorphous structures is indeed accompanied
by nontrivial spatiotemporal fluctuations, which become
more pronounced upon approaching the glassy phase and
are characterized by growing dynamic correlation length
scales [4].

A more recent line of research aims at demonstrat-
ing also the existence of growing static correlation length
scales, using point-to-set correlation functions [22–27].
The idea is to confine the system using carefully chosen
amorphous boundary conditions to detect the existence
of multi-point static correlations in viscous liquids. The
point-to-set lengthscale quantifies the spatial extent of
these correlations. However, it is still unclear if such
static length scales are equivalent to [28], indirectly re-
lated to [29], or even decoupled from [30–33], dynamic
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ones. Actually, the answer to this question may also
depend on the level of supercooling, thus revealing the
existence of physically distinct temperature regimes.

As is well-known in computational studies of phase
transitions, the size of the system can be used as an
additional physical length scale in the problem. Thus,
the interplay between the system size and the correlation
lengths can be used to probe the role played by dynamic
and static correlation lengths in determining the physical
behavior of supercooled liquids. In particular, an impor-
tant motivation for the present work is the recent numer-
ical finding [31] that, for a system of harmonic spheres,
a surprising non-monotonic temperature evolution of dy-
namic correlation length scales near an amorphous wall
has been detected in the temperature regime correspond-
ing to the mode-coupling temperature [34], which was
interpreted as a direct evidence that the physical mech-
anisms for relaxation are different at moderate and low
temperatures. If true, this interpretation suggests that a
similar change of behaviour could also occur in the bulk,
and could be revealed by studying carefully finite size ef-
fects in the same temperature regime. We shall see below
that our data indeed support the hypothesis of Ref. [31],
at least for the harmonic sphere system.

As mentioned above, finite size effects can also be
used to test and compare theoretical approaches. Indeed,
these provide different, and sometimes contrasting, pre-
dictions on the nature and extent of correlation lengths
and fluctuations in viscous liquids [21]. For instance ki-
netically constrained models [35] and the dynamic facili-
tation approach [36] focus on dynamic length scales that
usually diverge at a zero-temperature dynamic critical
point [37], random first order transition theory [38, 39]
predicts the occurrence of a narrowly avoided mode-
coupling dynamic singularity in the moderately super-
cooled regime, with a crossover towards a second regime
controlled by a thermodynamic singularity and activated
dynamics at lower temperatures, each domain being as-
sociated to its own diverging length scale [40]. As a con-
sequence, the interplay between correlation lengths and
system size and, hence, the resulting finite size effects de-
pend on the theoretical approach. A central motivation
for the present work is to obtain, discuss and compare
to numerical simulations the theoretical predictions con-
cerning finite size effects.

We emphasize that since our focus are highly vis-
cous supercooled liquids, we do not discuss the literature
about finite size effects in simple liquids which is a differ-
ent topic, for which hydrodynamic effects, ignored here,
play a more central role [41, 42].

In summary, this paper presents a comprehensive the-
oretical study of finite size effects in supercooled liquids.
Our aim is to provide useful practical information about
the relevance of finite size effects in computer studies of
the glass formation, test theoretical approaches and also
to obtain new insights about the nature of the fluctua-
tions revealed by finite size studies, in particular in the
region of the mode-coupling crossover.

The paper is organized as follows. In Sec. II we pro-
vide general theoretical arguments about confined super-
cooled liquids. In Sec. III, we use specific theoretical ap-
proaches to make predictions regarding finite size effects.
In Sec. IV we introduce a new lattice glass model with
an avoided mode-coupling singularity whose strength can
be tuned by changing the lattice topology and use it to
study finite size effects. In Sec. V we provide molecu-
lar dynamics simulations of four model liquids with dis-
tinct structures and kinetic fragilities. In Sec. VI we close
the paper with a discussion of the results. More details
about the new lattice glass model introduced in Sec. IV
are given in the Appendix.

II. EMERGENCE OF FINITE SIZE EFFECTS IN
FRAGILE LIQUIDS

The relaxation time of glass-forming materials ap-
proaching the glass transition follows a thermally acti-
vated form,

τα ≈ τ0 exp

[

E(T )

T

]

, (1)

where the activation energy E(T ) increases when tem-
perature decreases for fragile materials, whereas it is con-
stant for strong glass-formers [21]. Here and in the fol-
lowing we shall absorb the Boltzmann constant kB in the
definition of T . The temperature dependence in Eq. (1)
means that the nature of the relaxing ‘entities’, whatever
they are, changes with temperature. A growing activa-
tion energy actually suggests an increasing cooperativity
in the relaxation events, corresponding to the correlated
motion of an increasing number of particles. Thus, by re-
ducing the system size one expects, all other things being
equal, that the dynamics starts to differ from bulk behav-
ior when the linear size becomes comparable to the size
of these correlated regions. Thus, it is natural to expect
the emergence of a characteristic length scale, which we
denote by ℓFS(T ) in the following, characterizing finite
size effects such that bulk relaxation is obtained when
the system size is larger than ℓFS(T ). In cases where the
dynamics is characterized by several length scales, the be-
haviour of ℓFS(T ) will be more complicated, as we shall
see. In any case, we believe that finite size studies should
provide a new way to probe dynamical correlations and
cooperativity in glass-forming liquids [15].
By using a very general argument, one can show that

ℓFS(T ) must grow for fragile liquids when temperature
decreases. The starting point of our argument is to re-
call that an upper bound for the relaxation timescale
for a system of linear size L can be obtained assuming
the worst case scenario, namely that all particles have to
move together in a cooperative way to relax the struc-
ture. This leads to an upper bound for τα(L, T ) that
scales with L as

τα(L, T ) ≤ τub(L, T ) = τ0 exp

(

cLd

T

)

, (2)
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where τ0 is a microscopic timescale, c a numerical con-
stant, and d the spatial dimension. Note that for systems
evolving with stochastic dynamics and with discrete de-
grees of freedom this is a rigorous statement [43]. For
other systems, this result is expected on general ground
but a rigorous proof is probably out of reach.

Now, consider an infinite system characterized by
the relaxation timescale τα(T ) = τα(L → ∞, T ), and
then decrease its size while simultaneously measuring
τα(L, T ). By definition, the structural relaxation time
will not change until ℓFS(T ) is reached. A lower bound
for this length can be obtained by noticing that a con-
stant τα(L, T ) as a function of L would necessarily violate
the bound in Eq. (2) at small L and large enough τα(T ).
Thus, dynamical finite size effects must appear when (or
before that) τα(∞, T ) becomes equal to τub(L, T ). There-
fore, we find

ℓFS(T ) ≥
(

T

c
ln

[

τα(T )

τ0

])1/d

. (3)

Using Eq. (1), this result implies that, up to a propor-
tionality constant, ℓFS(T ) must increase with tempera-
ture at least as E(T )1/d. Note that this result does not
imply anything about the precise dependence of τα on
L, in particular whether this dependence is monotonic
or not. However, it shows that for fragile liquids the
length obtained by dynamical finite size effects studies
has to increase when temperature decreases. This growth
would be faster than (1/T )1/d or (T/(T − TV FT ))

1/d, in
the respective cases where τα(T ) follows a Bässler or a
Vogel-Fulcher temperature dependence.

At this point, three important remarks are in order.

(1) The lower bound on ℓFS(T ) only becomes mean-
ingful when (T ln[τα(T )/τ0]/c)

1/d ≥ a, where a is the
typical interparticle distance. The temperature at which
this takes place of course depends on the values of the
constant c and of τ0 and may actually correspond to very
deep supercooling, i.e. very large values of τα. It would
be interesting to have an estimate of c and τ0 for a given
liquid to understand what is the highest temperature at
which our argument becomes useful.

(2) For a strong (i.e. Arrhenius) liquid, E(T ) = E,
one finds that (T ln[τα(T )/τ0]/c)

1/d does not depend on
temperature. This makes perfect sense within the phys-
ical picture where strong liquids relax by localized and
independent thermally activated events. In this case ℓFS

should be temperature independent and roughly equal or
at least proportional to the microscopic length scale a.

(3) The lower bound we obtained for ℓFS(T ) actually
coincides with the one obtained in Ref. [23] for the static
point-to-set length. This is reasonable because one ex-
pects the dynamical length probed by finite size effects to
be larger than (or equal to) the static point-to-set length.

III. SPECIFIC THEORETICAL PREDICTIONS

Having argued by general arguments that ℓFS(T ) in-
creases when T decreases for fragile liquids and hence
should be related to cooperative relaxation of some sort,
we now address the precise form of τα(L, T ) as a func-
tion of L and the possible physical mechanisms behind
the increase of ℓFS(T ). Since this partially depends on
the particular theoretical description used, we consider
several different cases below.
An important conclusion of the following sections is

that ℓFS(T ) cannot be univocally related to one of the
several correlation lengths introduced recently. This re-
lation depends on the theory: ℓFS(T ) may coincide with
a static correlation, like the point-to-set one, or with the
dynamic correlation length, or only indirectly related to
either one of them.

A. Cooperatively rearranging regions

There are several theories that explain the relaxation
process in supercooled liquids in terms of cooperative re-
arrangements of regions involving a growing number of
particles. Theories falling in this category are the Adam-
Gibbs theory [44], the frustration-limited domain ap-
proach [45, 46] and Random First Order Transition The-
ory (RFOT) [38, 39, 47]. For the latter, a different dy-
namical process described by mode-coupling theory [34]
is responsible for relaxation for temperatures larger than
TMCT , and this regime is discussed separately below in
Sec. III C.
In all these theories the relaxation time is derived by

assuming activated dynamic scaling and using as a char-
acteristic length scale the linear size of the rearranging
regions. Thus, the logarithm of the relaxation timescale
is proportional to the length scale raised to some power,
which for instance is equal to d in the Adam-Gibbs
case [44]. The physical mechanism responsible for the
growth of this length scale and the exponent of the power
law depend on the details of the theory.
Assuming that cooperative relaxation events are un-

correlated, as it is usually done, the primary effect of
decreasing system size is to decrease the value of the ac-
tivation energy from its bulk value, because the number
of particles involved decreases, once the system size be-
comes smaller than the typical size of a rearranging re-
gion. Thus, for all these theories, one expects τα(L, T )
to be a monotonically increasing function of L approach-
ing the bulk value from below for L of the order of the
size of the rearranging regions. This is directly reminis-
cent of finite size effects near a second order phase tran-
sition [3], where divergences are smeared out by finite
system sizes. The only peculiarity of the glass transition
would be the occurence of activated, rather than alge-
braic, forms of dynamic scaling. It would be interesting
to know whether some kind of scaling formula holds for
τα(L, T ) (or log τα(L, T )).
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The behavior of τα(L, T ) as a function of L is also
similar to the one expected within RFOT using amor-
phous boundary conditions [21, 28]. However, the physi-
cal mechanisms conjectured to play a role for small L are
different from the periodic boundary conditions consid-
ered here. In the latter, the dynamics accelerates because
the boundary condition lowers the free energy of a single
state. Therefore relaxation occurs inside this state and
is hence faster than in the activated regime in which the
other states should also be visited. With periodic bound-
ary conditions instead, the dynamics is activated but the
barrier decreases if L becomes smaller.

B. Defect models

Defect models [35], and in particular dynamical facil-
itation models [36], have been widely used to study dy-
namical heterogeneities and spatial correlations in vis-
cous liquids, but dynamical finite size effects have not
been specifically discussed.
In defect models, whether cooperative or not [35], there

are at least two relevant length scales. One is the typi-
cal distance between defects, ξd ∝ c−1/d (c is the defect
density), and the other one is related to the size of dy-
namical correlations. The two are not necessarily equal,
and the latter can possibly be much larger than the for-
mer depending of the model and the dimensionality [48].
Assuming that the equilibrium concentration of defects is
unaffected by confinement, we expect ξd to be the most
relevant length scale for the finite size effects. In fact,
for intermediate system sizes (i.e. for L between ξd and
the dynamic correlation length), one might expect that
τ(L, T ) deviates only weakly from its bulk value, as the
nature of dynamical facilitation remains essentially un-
affected. This statement is straightforward for diffusing
defects and non-cooperative constrained models, but has
to be taken with some caution for cooperative models
which have a more complicated dynamics typically char-
acterized by several (and possibly a hierarchy) dynamic
length scales [6, 35].
By contrast, the nature of the dynamical processes

must change qualitatively when L competes with ξd. In-
deed, for L ≃ ξd about half of the equilibrium configura-
tions contain strictly no defect. In this case, the system
has to either use a different channel for relaxation or cre-
ate a new defect and then relax by defect diffusion. (Note
that this second scenario is strictly forbidden in spin fa-
cilitated models, which thus become instead non-ergodic
in this limit [35].) In both cases the corresponding re-
laxation time is expected to be larger than the one for
configurations having a defect from the beginning, which
instead relax on a timescale of the order of the bulk re-
laxation time. Therefore, the average relaxation time is
expected to start to increase strongly when L ≃ ξd (and
to become infinite in constrained spin models). The be-
havior for L < ξd is less clear because in this case the
system typically does not have any defect in equilibrium

configurations and, hence, relaxes in a way different from
the one used for L ≫ ξd, and no alternative relaxation
channel is described within the defect approach. Since
in this case the shape of τα(L, T ) is determined by the
L dependence of this unknown relaxation mechanism we
cannot say much about it. However, using the general ar-
gument developed above we know that for fragile liquids
τα(L, T ) has to decrease when the system size is reduced
below (T ln[τα(T )/τ0]/c)

1/d. Thus, in the case of frag-
ile liquids and within the framework of defect diffusion
theories we expect τα(L, T ) to have a non-monotonic be-
havior that can be more or less pronounced depending
on the underlying model. Instead, in the case of Arrhe-
nius liquids, it is possible that τα(L, T ) increases with
decreasing L until the linear system size is almost of the
order of the interparticle distance.
As final comments, we first stress that some form of

facilitation dynamics could additionnally be introduced
within cooperative rearranging regions theories. Thus
some mild non-monotonous behavior can be present even
in that case. Second, whatever is the correct theory, there
could be actually several length scales playing a role. It
is likely that larger length scales are affected first by the
confinement such that very large domains disappear first
when L is reduced, which should somehow truncate the
distribution of relaxation times, making the average (e.g
the first moment of the distribution) smaller. This sug-
gests that finite size effects could manifest themselves at
very long times only, which correspond to the final decay
of time correlation functions.

C. The mode-coupling theory crossover

In the framework of the mode-coupling theory of the
glass transition [34], a dynamical transition accompanied
by a diverging dynamic correlation length scale [49] takes
place at a finite temperature TMCT . It is well-known that
the transition predicted by the theory actually does not
take place in finite dimensional models and in experi-
ments. Instead, it is replaced by a crossover occurring
near the temperature extracted from fitting the dynam-
ical relaxation to scaling predictions of the theory, al-
though the precise nature of this crossover is not well
understood [39, 50]. RFOT theory naturally includes
mode-coupling theory, but at present it cannot describe
the nature of the crossover from mode-coupling to ac-
tivated relaxation in much detail [39]. Decreasing L at
constant temperature above TMCT (and, of course, below
the onset temperature), we again expect a non-monotonic
size dependence of τα(L, T ) due to the competition be-
tween two effects, which we now explain.
When considered from the point of view of random

first order transitions [39], a physical interpretation of
the dynamics within the mode-coupling regime is that
relaxation occurs along unstable modes that become less
and less unstable and more collective upon approach-
ing TMCT , thus leading to diverging dynamic correla-
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tions [49]. By reducing the system size below the dy-
namic correlation length, these unstable extended modes
are the most easily affected, and confinement should ren-
der some of these modes stable, thus closing some relax-
ation channels. The effect would then be to slow down
relaxation, or equivalently to shift the apparent value of
TMCT to larger temperature [40, 51].
However, decreasing the system size has a second con-

sequence. The singularity predicted by the theory cannot
occur in a finite size system, and therefore τα(L, T ) can-
not increase indefinitely by decreasing L. In fact this
growth is bounded from above by the general argument
detailed in Sec. II even though this may happen on quite
a small length scale. Within RFOT theory, the increase
of τα(L, T ) at small L should be cut off for length scales
such that relaxing via the mode-coupling channel be-
comes slower than the activation channel. Then, for even
smaller L, relaxation will proceed by cooperative rear-
rangements (as it does in the bulk below TMCT ) and this
should lead, as in Sec. III A, to a decrease of τα(L, T ) by
decreasing L.
Overall, we should then observe a non-monotonic be-

haviour of the relaxation time in the mode-coupling
regime, because using systems with finite sizes has a
qualitatively different impact on mode-coupling dynam-
ics (which slows down in confinement) and activated dy-
namics (which accelerates in confinement).
Although already quite complex, the picture depicted

above is certainly still too simplistic. As stated before,
the mode-coupling crossover is not well understood and
it is thus likely that dynamical finite size effects will turn
out to be quite subtle and lead to a very complex be-
haviour, as found in seemingly simpler mean-field mod-
els [52–54]. In order to shed some more light on this
crossover, we consider in the following a finite dimen-
sional model that displays an avoided mode-coupling sin-
gularity.

IV. A LATTICE GLASS MODEL WITH AN
AVOIDED MODE-COUPLING TRANSITION

A. Kac-Fredrickson-Andersen (KFA) model

We study a two dimensional Kac-version of the spin
facilitated model extensively studied by Fredrickson and
Andersen [55–57], which we call the ‘Kac-Fredrickson-
Andersen’ (KFA) model. This is defined by a non-
interacting Hamiltonian

H =
∑

i

ni, (4)

where ni = 0, 1 represents a binary mobility defect vari-
able. The average density of spins in the excited state is
c(T ) = (1 + exp(1/T ))−1. For the dynamics, we choose
the 2-spin facilitation rule, as in the original model [55]:
To be able to flip, a spin must possess at least 2 neigbours
which are both in the excited state ni = 1.

A generalisation to a Kac-version of the model can be
obtained by introducing a new geometrical parameter,
K, which characterizes the range of the spin connectiv-
ity within a regular two-dimensional square lattice. In
the standard FA model in two dimensions, the spin at
position r has 4 nearest neighbours that contribute to fa-
cilitating its dynamics. They occupy the positions r+ex,
r−ex, r+ey, and r−ey, where ex and ey are unit vectors
along the horizontal and vertical directions, respectively.
In our Kac-version, the spin at position r remains facili-
tated by 4 ‘neighbors’ which are now located at positions
r+ iex, r− jex, r+key, and r− ley, where (i, j, k, l) are
4 random numbers chosen in the set {1, · · · ,K} accord-
ing to a procedure that will be detailed below. Thus,
the KFA model contains quenched disorder, and spins
can interact on the lattice over a range K that can be
tuned at will and be made arbitrarily large, while keep-
ing the spin connectivity constant and equal to that of
the original K = 1 model.

To generate an instance of the lattice, we start from
the leftmost site of a given line and connect it at random
to one of its K right-neighbors. We then move to the
right by one lattice spacing and connect the new site at
random to one of its K right-neighbors, excluding the
one that has been connected at the previous step. This
procedure is then iterated up to the (K − 1)-th site of
the line always connecting the current site at random to
one of its K right neighbors excluding the ones that have
been previously connected. In order to guarantee that
at the end of the procedure each site has a right and
a left neighbour we proceed as follows for the remaining
sites. When choosing the right neighbour of site i we first
check whether i + 1 already has a left neighbour. If this
is not the case we connect i to i + 1, otherwise we pick
the right neighbor of i uniformly at random among the
sites i+ 2, . . . , i+K which have not yet been assigned a
left neighbour. We then iterate this procedure up to the
end of the line imposing periodic boundary conditions.
In this waywe generate a random one dimensional lattice
with connectivity two at each site and a range equal to
K.We then repeat the procedure for each line and column
of the square lattice to define an instance of the KFA
model. When performing simulations of the KFA model,
we also average over independent realizations (typically
2000) of the lattice.

Note that in the limit K → ∞ the probability ǫ that
a site is connected to its right nearest neighbour does
not decay to zero; however it can be easily be bounded
from above by exp(−1) and the numerics indicates that
this probability saturates at a lower value ǫ ≃ exp(−2).
Thusin the K → ∞ limit, the geometry becomes the
one of a Bethe lattice with connectivity equal to four-
decorated by loops occurring with probability at most
ǫ4 ≃ exp(−8) and a finite temperature singularity occurs.
We expect this transition to shares important similarities
with the mode-coupling transition as it is the case on the
pure Bethe lattice [58]. In particular, time correlation
functions should decay in a two-step manner with power
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laws characterizing the approach and departure from the
intermediate time plateau, and an algebraic divergence of
the temperature evolution of the equilibrium relaxation
time. Instead for K = 1 the topology of the square lat-
tice is recovered and the physical behavior is the one of a
cooperative kinetically constrained model, with a diver-
gence of timescales and length scales at T = 0 only [59].

The crucial point for our purposes is that, for a large
but finite K, we expect the dynamics to be controlled
in some temperature range by the mode-coupling singu-
larity because the system locally resembles the K = ∞
decorated tree, but the singularity must be avoided be-
cause the square lattice topology eventually dominates
at large enough length scales.

Therefore, as is believed to be the case in finite dimen-
sional glasses, the mode-coupling singularity is ‘avoided’
when temperature decreases because of the presence of
some ‘activated processes’. Actually, in this case it is
more correct to call these process cooperative instead of
activated since they are due to the diffusion of macro-
vacancies [59]. There are however two important differ-
ences between the KFA model and supercooled liquids.
First, in the KFA model both temperature regimes and
the related physical behaviours are well understood, and
thus our model smoothly interpolates between limits that
are under control. Second, we can tune the parameter
K to be very close or very far from the mode-coupling
limit, and thus we can control the relevance of the in-
finite range dynamics for the finite range model, which
is not readily realized in liquids. We note that a closely
related attempt to control the importance of mean-field
behaviour has recently been published [60] in the context
of off-lattice models of liquids, following an idea similar
to ours where the connectivity is kept constant while in-
creasing the range of the interaction between particles.

In the following we present results of extensive Monte-
Carlo simulations of the above model using periodic
boundary conditions and a lattice of linear size L which
we vary. We use a continuous time Monte-Carlo algo-
rithm [61], and study a broad range of parameters, chang-
ing in particular the Kac-range from K = 1 to K = 24
(note that we only consider the regime K < L/2). It is
important to stress that depending on K and L, espe-
cially at small system sizes, some samples may contain
a finite fraction of blocked spins, a ‘backbone’, that will
never flip. We disregard these configurations and sample
only the ones that do not contain blocked backbones. A
different choice would be to average over all configura-
tions and estimate the relaxation time as the time decay
of the persistence to a non-zero long-time value. We have
chosen the first solution, and so we perform a ‘biased’ av-
erage over all ergodic configurations, in order not to mix
ergodic and non-ergodic configurations in a single aver-
age. By contrast, no blocked configurations are found
when L is large enough and ‘bulk’ dynamics is studied.
Here, L ‘large enough’ means that the relaxation time
and the correlation functions ‘do not depend on L any
more’ (the size dependence of these functions is stud-

ied in great detail below). Because the Hamiltonian in
Eq. (4) is trivial, it is straightforward to generate equilib-
rium configurations and to study equilibrium relaxation
in the absence of any aging effect. The only limitation is
that complete relaxation cannot be observed over our fi-
nite time window when temperature is too low, a regime
which again depends on the value of K, and is of course
set by our computer resources.

B. Evidence of a mode-coupling crossover for the
bulk dynamics

Following previous work [37], we first probe the bulk
equilibrium dynamics in the KFA model by measuring
the persistence function,

P (t) =

〈

1

N

N
∑

i=1

Pi(t)

〉

, (5)

where Pi(t) = 1 if the spin at site i has not changed state
between times 0 and t, and Pi(t) = 0 otherwise. We have
also studied the spin-spin autocorrelation function, and
have found qualitatively similar results, which are thus
not presented here.
Our findings for different connectivity ranges K, and

temperatures T are presented in Fig. 1. To obtain these
data, we have used L = 150 for K = 1, up to L = 250 for
K = 24, carefully checking the absence of finite size ef-
fects. The data for K = 1 in Fig. 1a resemble previously
published results in cooperative kinetically constrained
models [35, 37, 62–64]. The shape of the persistence func-
tion changes very little when temperature decreases. An
important point for us is that these curves only display a
single decay towards zero instead of the clear two-step de-
cay (termed alpha and beta relaxations) typically found
in supercooled liquids. This distinction was often inter-
preted as being a consequence of working on the lattice
because short-time thermal vibrations cannot contribute
to relaxation functions [62]. It was later understood that
an analog of the beta-relaxation could nevertheless ap-
pear and be studied in lattice models [50, 58, 63, 64], as
we now confirm.
When moving from K = 1 to K = 24 in Fig. 1b, which

is the largest range studied in this work, we find that
the shape of the correlators changes continuously with
increasing K. In particular, the short-time dynamics
changes from being convex (or quasi-logarithmic [62, 64])
to becoming concave and converging to an intermediate-
time plateau, as can clearly be seen in Fig. 1b. This two-
step decay is also characteristic of the decay of dynamic
correlators predicted by mode-coupling theory. Due to
the small probability (≃ exp(−8)) for a site to be in a
loop, we expect the system for K → ∞ to be well de-
scribed by a Bethe lattice for the system sizes which we
can numerically explore. We have performed a few simu-
lations directly on the Bethe lattice, as in Ref. [58], and
found that, on the range of temperature accessible for
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FIG. 1: Time dependence of persistence functions in the KFA
model for various connectivity range K and temperatures T .
(a) Data for K = 1 and decreasing temperatures (from left to
right). (b) The data for K = 24 and decreasing temperatures
(from left to right) clearly show a two-step decay towards
an intermediate plateau. (c) Comparison between data for
K = 8 and K = 24 at various temperatures. A filled circle
indicates the crossover timescale t∗ after which the two sets
of data deviate significantly, thus delimiting the (t, T ) domain
of applicability of mean-field dynamics.

K = 24, the relaxation functions for K = 24 and K = ∞
are extremely close, and so we take K = 24 as being
representative of the infinite-range limit over the acces-
sible temperature range. For the studied connectivity,
the transition temperature for the Bethe lattice limit is
Tc = 0.480898.

Overall, these curves suggest that, as announced, the
KFA model crosses over from a mode-coupling like dy-

namics at large K towards a dynamics of a different na-
ture at small K, which is cooperative, yielding a super-
Arrhenius growth of the relaxation time.

Interestingly, while the data for K = 1 appear qualita-
tively different from theK = ∞ counterpart, we find that
for intermediate K values, a finite temperature regime
seems to open where the dynamics is qualitatively similar
to the mean-field regime, with deviations only appearing
at lower temperatures. We confirm these observations in
Fig. 1c where relaxation data for K = 8 and K = 24 are
superimposed for various temperatures. It is clear that
deviations between both sets of curves are very small at
high temperatures, and become quite large when T de-
creases. More precisely, we observe that for each temper-
ature the relaxation data are very similar at short times,
but differ at long times. This allows the definition of a
crossover timescale t∗(T ), marked with a closed symbol
in Fig. 1c, such that differences between the two persis-
tence functions only become significant for t > t∗. We
find that t∗ belongs to the alpha-relaxation when temper-
ature is not too low, which implies that the correlation
functions and thus the relaxation time are controlled, in
this temperature regime, by the infinite-range dynamics.
However, when temperature is decreased further, t∗ now
belongs to the beta-relaxation. This means that suffi-
ciently close to the dynamic singularity of the K = ∞
model, the temperature evolution of τα differs signifi-
cantly from the infinite-range model, so that the singular-
ity is eventually avoided. Quite remarkably, we also find
that the beta-relaxation does not seem to be very much
affected by this crossover, which could imply that short-
time dynamics remains well-described by the mean-field
limit even at temperatures where the long-time dynam-
ics is already controlled by actived processes. This would
suggest that a more precise prescription for the applica-
bility of the mode-coupling predictions should be done
in the (time, temperature) domain, rather than by defin-
ing a single crossover temperature [39]. In practice, this
suggests that mode-coupling theory could still be useful
below TMCT , at least to describe the short-time dynamics
of viscous liquids and estimate for instance the tempera-
ture evolution of the Debye-Waller factor [34, 65].

A much sharper identification of the crossover is found
by studying the alpha-relaxation time of the system. We
extract τα(T ) from the relaxation curve using the defini-
tion P (τα(T )) = const. Note that the value of the con-
stant is irrelevant as the shape of the relaxation barely
evolves with temperature for a given value of K, as long
as the constant corresponds to the final decay. We use
the value 0.28 which lies roughly in the middle of the fi-
nal relaxation for large K. The temperature dependence
of the corresponding τα(T ) is presented in Fig. 2 using
an Arrhenius plot, see Fig. 2a, or using a reduced plot
inspired by the mode-coupling prediction, see Fig. 2b.

These results confirm that for the largest range stud-
ied, K = 24, the dynamics is very close to the results
obtained directly on the Bethe lattice [58], which were
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FIG. 2: Temperature evolution of the relaxation time in
the KFA model. (a) Arrhenius plot, the vertical line is at
Tc(K = ∞) = 0.480898. (b) The same data plotted in a
log-log representation as a function of T − Tc, the full line
representing the mean-field limit of Eq. (6). In both panels,
we see that deviations from mean-field occur at higher T for
smaller K, which shrinks the domain of validity of the mean-
field prediction for the growth of τα.

shown to obey a power law divergence,

τα(T ) ∝ |T − Tc|−γ , (6)

with γ = 2.9 and Tc ≃ 0.481. This temperature is indi-
cated with a vertical line in Fig. 2. When plotted as a
function of T − Tc in a log-log representation, the data
for K = 24 follow the power law divergence over almost
the entire temperature regime we were able to study nu-
merically. We observe a power law regime over nearly
4 decades of slowing down, which is more than what is
typically observed in supercooled liquids.
When K is decreased, however, stronger deviations

from this power law divergence appear, and the devia-
tions appear at higher temperatures when K becomes
smaller. Accordingly, the mode-coupling power law is
obeyed over a range which shrinks with decreasing K,
see Fig. 2b. For K = 1, the power law is followed over
about 2 decades only, which means that the system is
quite far from its mean-field limit. In fact, without the
K = 24 data as a guide, it would be difficult to argue
that a mode-coupling crossover occurs at all for this sys-

tem [50], a situation which we will again encounter in
Sec. V when performing molecular dynamics simulations.
Note that in this analysis, we have not tried to use Tc as
an additional free parameter, which would somewhat im-
prove the quality of the power law fit.
These results clearly show that relaxation in the KFA

model is a combination of mode-coupling and cooperative
dynamics, whose respective importance depends on the
temperature, the geometry of the underlying lattice (i.e.
the value of K), and the considered timescale. For large
values of K we find an apparent mode-coupling diver-
gence analogous to the one reported for the Bethe lattice
with the same connectivity. However, contrary to Bethe
lattices, the dynamic singularity is eventually avoided for
any value of K < ∞. This can be proven rigorously, the
argument being deferred to the Appendix. The proof for
K > 1 is a straightforward generalization of the K = 1
case discussed previously [59], and it shows that for any
finite K the relaxation time diverges only at T = 0, with
a divergence which becomes steeper when K increases.
This results from the behaviour of the upper bound we
derive for τα(T ), showing that τα(T ) cannot grow faster
than exp[K exp(K/T )], to leading order at low T .
Interestingly, this argument also suggests that using

any of the standard definitions of the kinetic fragility,
the KFA model would become more fragile with increas-
ing the value of K, the fragility even becoming for-
mally infinite when K → ∞. The fragility increases
with K because the dynamics is more influenced by
the mode-coupling crossover and closer to an algebraic
singularity at Tc, which is responsible for the fragility
increase observed numerically in Fig. 2. In the low-
temperature regime below the mode-coupling crossover
where the upper bound derived in the Appendix is valid,
the corresponding fragility also increases because the
effective activation energy increases with K. Within
the KFA model, we arrive to the intriguing conclusion
that systems where the mode-coupling crossover is more
pronounced are also characterized by a larger kinetic
fragility. It would be interesting to know whether such a
correlation holds for real supercooled liquids. We discuss
this issue further in Sec. V.

C. Dynamical finite size effects

Having established that the KFA model smoothly in-
terpolates between mode-coupling and cooperative dy-
namics, we are now in a position to study how the dif-
ferent regimes are affected by confinement and the corre-
sponding finite size effects. In order to do that, we shall
analyze how the alpha-relaxation depends on the con-
trol parameters (K,T, L). We recall that for small sys-
tem sizes, instances containing a blocked backbone may
appear with a finite probability. When this probability
becomes large, the KFA model is no longer a physical
description of a realistic glassy liquids which cannot be
truly blocked. In a more realistic system, a different re-
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FIG. 3: System size dependence of the relaxation time in the
KFA model at two fixed temperatures and various values of
the interaction range K. The strong temperature evolution
of the finite size effects indicates the growth of ℓFS(T ) at low
T . Note the different L dependence in the cooperative (τα
increases with L) and the mode-coupling (τα decreases with
L) regimes.

laxation mechanism will replace facilitation. In order to
avoid this problem, we have decided to reject those in-
stances and perform an average over samples which do
not contain blocked backbones.
We find that the shape of the persistence functions de-

pends weakly but in a non-trivial manner on the control
parameters. For this section we use, for convenience, an
integral definition of the relaxation time:

τα =

∫

∞

0

dt P (t). (7)

We have checked that our conclusions do not depend on
this particular defintion of τα. We have explored the
dependence of τα on all three parameters over a wide
range. We now present the salient features of the finite
size effects within the KFA model.
First, we fix the temperature, and study how the re-

laxation time reaches its bulk value for L → ∞ for dif-
ferent connectivity ranges K, see Fig. 3. For a moderate
temperature, T = 0.577 (recall that Tc = 0.481) bulk
relaxation times are of the order 5 · 103 for all K. We
observe that this value is reached for moderate system
sizes in all cases, L ≈ 20−40, and that the K → ∞ limit
is reached very quickly as well, since the data do not
change for K ≥ 8. Strikingly, we find that the asymp-
totic value of τα(L) is reached from below for K = 1 and
from above for K ≥ 4, suggesting that finite size effects
are qualitatively different for mode-coupling (K > 4) and
cooperative (K < 4) regimes at this temperature.
These observations are amplified at lower temperature.

For T = 0.502, bulk dynamics is recovered only at much
larger system sizes, from L ≈ 30 for K = 1 to L ≈ 150

for K = 24. Moreover, since we are very close to the
mean-field singularity, the K → ∞ limit is only achieved
for much larger K, near K ≈ 32. Thus, by decreasing
the temperature we observe enhanced finite size effects
in both dynamical regimes, which constitutes direct ev-
idence that dynamical slowing down is accompanied by
a growing correlation length scale, and unveils the exis-
tence of a growing length ℓFS(T ), that determines dy-
namical finite size effects and which grows by lowering
the temperature. We emphasize that this result holds
both in mean-field and cooperative regimes even though
the system size dependence is qualitatively different in
both cases.

We now fix the connectivy rangeK, and study for each
different K value the whole temperature evolution of the
finite size effects in Fig. 4. For the case K = 1, shown in
Fig. 4a, the mode-coupling regime is almost absent and
the dynamics appears to be ‘activated’ and non-mean-
field in the whole slow dynamics regime. Correspond-
ingly, the relaxation time increases with L for all tem-
peratures with no sign of non-monotonic behaviour. This
behaviour can be explained by recalling that relaxation
in the K = 1 model proceeds via diffusion of so-called
‘macro-vacancies’. The relaxation time corresponds to
the time it takes a macro-vacancy to diffuse over an area
comparable to the inverse of the macro-vacancy density.
When the system size becomes smaller than this charac-
teristic area dynamical finite size effects set in. The inter-
pretation is that by sampling configurations that do not
contain blocked structures, we are effectively condition-
ing the sampled configurations to always contain at least
one macro-vacancy. The area over which this macro-
vacancy must diffuse becomes smaller when L decreases,
and so does the relaxation time. This argument also ex-
plains why convergence to the bulk behaviour is reached
only at system sizes that grow with decreasing T , because
the density of macro-vacancies decreases. Therefore, the
growth of ℓFS(T ) is directly related to the growth of dy-
namical correlations in this regime which directly control
the finite size effects observed in Fig. 4a.

The situation for K = 4, shown in Fig. 4b, is differ-
ent because mode-coupling dynamics now controls the
relaxation over an intermediate temperature regime, as
discussed above. We have argued in Sec. III C that mode-
coupling dynamics in finite systems should be slower than
in the bulk, which is indeed compatible with the higher
temperature data shown in Fig. 4b, which show that the
bulk value of the relaxation time is reached from above.
This situation is in stark contrast with the cooperative
behaviour obtained for K = 1 in Fig. 4a. Decreasing
the temperature has two effects. First, bulk dynamics is
reached only at system sizes that grow, because ℓFS(T )
grows, as noticed above. Second, the presence of the
mode-coupling regime becomes evident, as dynamics be-
comes cooperative and thus reacts differently to finite
sizes. At very low temperature we find that dynamics
is fully cooperative, and τα increases with L. A striking
behaviour is observed near T ≈ Tc where both types of
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FIG. 4: Temperature evolution of finite size effects. (a) K = 1
and various temperatures, 0.577 ≤ T ≤ 0.409, (b) K = 8
and various temperatures, 0.577 ≤ T ≤ 0.490, (c) K = 24
and various temperatures, 0.577 ≤ T ≤ 0.490. While τα
grows with L in the purely cooperative regime (K = 1 at
all T , K = 4 at low T ), it decreases with L in the mode-
coupling regime (K = 4 and 24 at moderate T ), and has
a non-monotonic size dependence when both regimes coexist
and compete (K = 8, 24 near Tc). This competition produces
a non-monotonic temperature evolution of the characteristic
length ℓFS(T ), indicated by open symbols in (b).

dynamics coexist and compete to yield a non-monotonic
behaviour of τα(L), which should be interpreted as a
‘mixture’ of high and low temperature behaviours.

A second striking consequence of this competition is
that the length ℓFS(T ), which can be estimated as the
system size needed for τα(L, T ) to converge to the bulk

value, has a non-monotonic evolution with temperature,
as indicated by the open symbols in Fig. 4b. These open
symbols have been placed in between the first two con-
secutive L values for which the relaxation time does not
evolve anymore, within statistical accuracy. While these
points do not represent the result of the quantitative de-
termination of a characteristic system size, they describe
qualitatively well the numerical data. This behaviour oc-
curs near the mode-coupling temperature and the mini-
mum of ℓFS(T ) occurs when the opposite effects of co-
operative and mode-coupling dynamics on the relaxation
time nearly compensate to produce negligible finite size
effects. The effective non-monotonic temperature evolu-
tion of ℓFS(T ) is strongly reminiscent of the numerical
findings of Ref. [31], as we discuss further in Sec. VI.
By contrast, the four-point dynamic susceptibility mea-
sured in the bulk does not show such a non-monotonic
temperature evolution, as discussed in the Appendix.

We were only able to detect such a striking non-
monotonic temperature evolution of ℓFS(T ) over a nar-
row range, 4 ≤ K ≤ 8. This is because smallK values are
little influenced by the mean-field limit, while for large
K we cannot study low enough temperatures and enter
the fully cooperative regime. Indeed, for K = 24 shown
in Fig. 4c, we find a qualitatively similar coexistence and
non-monotonic behaviour at intermediate temperatures,
and the effect is even more pronounced because for this
K value, the mode-coupling singularity is only narrowly
avoided, and the mode-coupling regime extends to much
lower temperatures. However, for this value we have not
been able to reach sufficiently low temperatures to see
purely cooperative dynamics and a monotonic increase
of τα with L, see the lower temperature in Fig. 4c.

In conclusion, the study of finite size effects in the
KFA model, where the relative importance of mode-
coupling and cooperative dynamics can be controlled,
supports the validity of the theoretical arguments devel-
oped in Sec. III. We find in particular that both tem-
perature regimes exhibit qualitatively distinct response
to the use of finite sizes, while in the crossover region a
remarkable non-monotonic size dependence is obtained,
which reveals in a very direct manner that the nature
of the relaxation is changing near the avoided singu-
larity Tc. We also observe that for systems that are
too far from the mean-field limit, this crossover is too
weak, dynamics is mostly controlled by cooperative pro-
cesses and τα increases monotonically with L. There-
fore, finite size effects can be viewed as a powerful tool
to probe the existence of a physically relevant temper-
ature regime where mean-field-like dynamics prevails.
In all cases, we find that finite size effects appear for
L ≤ ℓFS(T ), where ℓFS(T ) represents a length scale
which grows upon decreasing the temperature in both
mode-coupling and cooperative regime, but exhibits an
apparent non-monotonic temperature evolution when the
opposite effects of mean-field and cooperative dynamics
nearly compensate.
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V. RESULTS FROM MOLECULAR DYNAMICS
SIMULATIONS

A. Models and bulk behaviour

Given the diversity of behaviours predicted theoreti-
cally in previous sections, we have decided to undertake
a large numerical effort to investigate finite size effects
in a broad variety of model systems using molecular dy-
namics simulations and to study liquids with different
interactions and kinetic fragilities. We have performed
large-scale simulations of four model liquids representa-
tive of different classes of systems.
The first model, which we call the ‘network liquid’,

was introduced and studied in Ref. [66]. Using carefully
chosen Lennard-Jones interactions between the two com-
ponents of a binary mixture, it is possible to mimic the
structure of network-forming liquids (such as silica) while
avoiding the use of long-range electrostatic interactions,
which is especially convenient when small systems need
to be studied. Additionally, at low enough temperatures
the temperature dependence of the relaxation time was
found to be close to an Arrhenius law [66], and therefore
we use this network liquid as representive of the class of
strong glass-formers.
The second model we study is the binary Lennard-

Jones mixture introduced in Refs. [67]. The model
was originally devised as a simple Lennard-Jones model
for two-component metallic glasses and has become a
canonical system for numerical studies of supercooled liq-
uids [68]. Its relaxation time grows in a super-Arrhenius
manner, and so it is considered as a good model for
fragile liquids. Although comparing kinetic fragilities
between simulations and experiments is not straightfor-
ward, the binary Lennard-Jones mixture has an ‘inter-
mediate’ fragility, which suggests it is less fragile than
typical fragile glass-forming materials studied in experi-
ments such as for instance ortho-terphenyl [66, 69].
The third model is also a canonical model for studies of

the glass transition. It is a binary mixture of soft spheres
interacting with a purely repulsive r−12 potential intro-
duced in Ref. [70]. Its behaviour is in fact very similar
to the one of the binary Lennard-Jones potential, since
this model also seems to display an intermediate kinetic
fragility.
The fourth model we study is a binary mixture of

soft repulsive particles interacting with a one-sided re-
pulsive harmonic potentiel. The model was introduced in
Ref. [71] as a model for wet foams, and its glass-forming
properties were studied in Refs. [72], where it was shown
that over a broad regime of densities, this system actually
behaves as a quasi-hard sphere system. Comparing the
kinetic fragility of hard spheres (whose glass transition
is controlled by density) to molecular liquids (controlled
by temperature) is ambiguous [72]. However, using the
compressibility factor Z = P/(ρT ) to build the analog
of an Arrhenius plot for hard spheres [72] suggests that
hard spheres are actually characterized by a rather large
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FIG. 5: Bulk relaxation time τα(T ) of the four model liquids
studied in this work using the representation of Fig. 2b ap-
propriate for detecting a mode-coupling algebraic divergence
at temperature Tc. We vertically shift the systems by a time
constant τ∞ for clarity, and show as a dashed line the result
of power law fits with exponents γ = 2.8, 2.4, 2.2 and 2.8
for the network liquid, Lennard-Jones particles, soft and har-
monic spheres, respectively. The power law fit is obeyed over
a broader range from bottom to top.

kinetic fragility. We take harmonic spheres as being rep-
resentative of fragile glass-forming materials.
Because these models have been studied extensively

before, we only provide limited details about our simula-
tions in the sections below, and refer to the original pub-
lications for more informations. Our focus in this work
was to analyze how simulations in finite size systems dif-
fer from the bulk behaviour, and whether the observed
finite size effects could be interpreted along the lines
discussed in previous sections. As a dynamical observ-
able we measure the behaviour of the self-intermediate
scattering function, Fs(q, t), and determine the alpha-
relaxation time τα(T ), from the time-decay of this corre-
lator to the value 1/e and a wavevector corresponding to
the first peak of static structure, as is usual [1]. Our cen-
tral aim is to measure τα(T,N) for systems containing a
finite number of particles, N .
By construction, simulations are performed in a tem-

perature regime which corresponds to the first 4-5
decades of dynamical slowing down. Thus, this regime
is typically the one where predictions from the mode-
coupling theory are usually tested. Therefore, our sim-
ulations fall in the temperature range where a crossover
from mode-coupling to activated dynamics might occur.
In Fig. 5 we give evidence that such a crossover seems
to be present in the bulk dynamics of the four liquids.
For all liquids, we measure the temperature dependence
of the bulk relaxation time. We then fit its temperature
evolution to a power law divergence, as in Eq. (6), to es-
timate the location Tc of the mode-coupling singularity.
We present the data for the four liquids in Fig. 5 using
the same representation as in Fig. 2b, where a power law
divergence appears as a straight line. For all liquids, a
power law regime is obtained for intermediate tempera-
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tures, although the time window over which it applies
depends on the particular system. Unsurprisingly we
find that a power law divergence is not very pronounced
for the network liquid which rapidly enters an Arrhenius
regime at low temperatures, while the harmonic sphere
system is the one for which the power law is the most
convincing. The Lennard-Jones and soft sphere mixtures
have an intermediate behaviour. Thus, we find that the
degree to which mode-coupling theory predictions apply
(at least for the bulk relaxation time) seems correlated
with the kinetic fragility of the model. The same connec-
tion was found in the KFA model in Sec. IV. We empha-
size that a power law fit to the relaxation for moderately
supercooled liquids is bound to yield a quantitative es-
timate of the value of Tc, but this does not necessarily
imply, as we shall see, that the long-time dynamics is
truly controlled by the mode-coupling physics [50].

B. Network liquid with Arrhenius behaviour

We start our discussion with the results obtained for
the network liquid [66]. The model is an AB2 binary
mixture designed to be a simple analog of silica, SiO2,
forming a connected assembly of tetrahedric structures.
For this system, we find that dynamics becomes slow
when temperature becomes smaller than T ≈ 0.45, and
we can follow finite size effects down to T = 0.29, where
bulk dynamics has slowed down by about 4 decades. Us-
ing a power law fit of these data, we obtain an exponent
γ ≈ 2.8 and extract the location of the mode-coupling
temperature, Tc ≈ 0.31. Since the power law is obeyed
over a limited temperature range, it is relatively easy to
access temperatures lower than Tc in equilibrium con-
ditions, as found also in a more realistic model of sil-
ica [73]. The density of the system, ρ = 1.655, has been
adjusted to best reproduce the structure of silica obtained
in molecular dynamics simulations performed at density

ρ = 2.37g/Å
3
[73].

For this system we performed simulations both using
a thermostat (in the NVT ensemble [74]), or without
thermostat after proper thermalisation (in the NVE en-
semble), because as discussed in Refs. [75] thermally ac-
tivated processes for systems evolving with Newtonian
(i.e. energy conserving) dynamics might induce dynam-
ical correlations between particles when the heat needed
to cross a barrier locally is borrowed to neighboring par-
ticles. We found no quantitative differences between the
two sets of simulations, and we have therefore merged
the two sets of simulations for the bulk data presented in
Fig. 5.
The results corresponding to dynamical finite size ef-

fects are reported in Fig. 6, where both NVT and NVE
simulations are shown, yielding quite similar results. We
use system sizes that are limited on the small N side
by the fact that the static structure, as revealed by the
pair correlation function g(r), becomes sensitive to N
and the network of tetrahedra does not fit well the small
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FIG. 6: System size dependence of relaxation time in the
network liquid where Tc ≈ 0.31. The dynamics slows down
for smaller systems, but the amplitude and range of the effect
evolves weakly with temperature.

simulation box. For large N , we easily observe conver-
gence to the bulk behaviour for the relaxation time as
soon as N is larger than a few thousands particles. In
Fig. 6 we observe a small finite size effect, since τα(T,N)
reaches its bulk value from above, that is, small systems
are slower than larger ones. However, this effect is quite
modest and, more importantly, it does not seem to evolve
very much over the temperature range where slow, Ar-
rhenius dynamics is observed, i.e. T ≤ 0.45. Therefore,
for the network liquid, we find no clear evidence that
the length scale ℓFS(T ) becomes large at low tempera-
tures. These results are consistent with the view that,
for systems showing an Arrhenius behaviour, relaxation
remains ‘local’ and that correlations are rather weak and
evolve very slowly with the temperature [76].

Dynamic heterogeneity has not been studied in detail
for the present network liquid, but growing four-point
dynamic susceptibilities (but not dynamic length scales)
have been reported in numerical studies of silica [77, 78].
A way to reconcile these findings with our result is either
that ℓFS(T ) is not related to the dynamical correlation
length, or that dynamic susceptibilities grow at low tem-
peratures because the strength, rather than the spatial
extent, of dynamic correlations increase at low T , a point
that deserves further studies.

Contrary to what was found for the activated (and
highly cooperative) regime of the KFA model, the small
dynamical finite size effect reported for the network liq-
uid goes in the opposite direction of making the dynamics
slower for smaller systems, which indicates that this finite
size effect is not related to a competition between the sys-
tem size and the spatial extent of the relaxaxing ‘entities’.
A possible explanation is that for small system sizes, the
silica-like network is somewhat frustrated by the periodic
boundary conditions, which could increase slightly the
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FIG. 7: System size dependence of relaxation time in a
Lennard-Jones liquid from the high temperature liquid, T ≥

1.0 down to below the mode-coupling temperature T = 0.42 <

Tc ≈ 0.435.

energy barrier needed to form a defected tetrahedra, and
thus slow down the dynamics. In this view, dynamical
finite size effects would be dominated by non-collective
effects and, possibly, related to a subtle change of the
static structure, an issue worth pursuing.

C. Binary Lennard-Jones mixture

We now turn to the case of the binary Lennard-Jones
mixture [67]. This model displays super-Arrhenius re-
laxation, and it is a model for which several quantitative
tests of the scaling predictions of the mode-coupling the-
ories have been performed with some success [67], even
though deviations from the predictions can be observed
at low temperatures [75]. Additionally, growing dynamic
length scales have been reported for this system [79–83].
For all these reasons, one may expect a more interest-
ing temperature dependence of finite size effects for this
model.
The results of our molecular dynamics simulations are

shown in Fig. 7. The simulations were performed in the
microcanonical ensemble only, the value of the total en-
ergy being carefully controlled in each independent sim-
ulation to maintain the temperature equal to the desired
value, and prevent spurious fluctuations in the dynamics.
We present data for the high temperature liquid, T = 2.0,
and below the onset of glassy dynamics, T ≈ 1.0, down
to T = 0.42 which lies below the fitted value of the mode-
coupling temperature Tc ≈ 0.435 [67].
We find that almost no dynamical finite size effects are

present above and near the onset temperature for slow
dynamics, consistent with the idea that, in simple liq-
uids, relaxation is a fast local process. For 0.5 ≤ T ≤ 1.0,
we find that finite size effects are present at small sizes

and that the dynamics slows down when N is small [9].
Remarkably, we find that this effect becomes more pro-
nounced both in amplitude and in range, suggesting that
the interplay between system size and structural relax-
ation has a more collective nature than in the Arrhenius
liquid studied in Sec. VB. This suggests that a non-trivial
characteristic length scale ℓFS(T ) grows when tempera-
ture is decreased below the onset in this model, in agree-
ment with previous work [15, 16]. Repeating the empiri-
cal analysis performed recently in Ref. [16], we find sim-
ilarly that the typical lengthscale over which finite size
effects occur grows by about 50% over the temperature
range T = 0.42 − 1.0. Contrary to previous work [15],
however, we always find a monotonic N dependence of
τα, even at low temperatures. We believe that the (rel-
atively small) non-monotonic size dependence reported
earlier [15] was due to statistical uncertainty [84].
Another result obtained below Tc is that we do not

find a qualitative change in the size dependence of the
relaxation time and the bulk value is still reached from
above by increasing L for this low temperature. There-
fore, contrary to what has been found for the KFA model
or predicted on general grounds for activated relaxation,
we do not find any non-monotonic behavior near or be-
low Tc. We find this result somewhat surprising and sug-
gest several hypothesis to account for these observations.
First, it could be that the mode-coupling crossover is ab-
sent or very weak in this case, as in the network liquid
studied above. This is however at odds with previous
work establishing the validity of the scaling predictions
of mode-coupling theory for this system at intermedi-
ate temperatures [67]. The second hypothesis is that
activated dynamics at low temperatures involves a co-
operativity length that has not yet grown very large, and
thus cannot compete with the system size L before other,
more microscopic effects, also appear such that there is
no room for the general argument of Sec. II to apply.
By this argument we would conclude that much lower
temperatures should be studied to reveal a change in the
nature of finite size effects in this model, which is at
present beyond our numerical capabilities. A possible in-
terpretation is that static point-to-set correlation length
scales do not grow significantly in this system over the
temperature regime currently accessible to simulations,
or at least much less than dynamical correlation length
scales. See Refs. [27, 85, 86] for recent work on static
correlations in this system.

D. Soft spheres

In this section we study the binary system of soft
spheres introduced long ago in studies of the glass tran-
sition [70]. We choose the particular model studied by
several groups [25, 70, 87, 88], namely a 50:50 mixture of
soft spheres interacting with an r−12 repulsion, different
species having different sizes. We use a diameter ratio
1.2 and adopt the same units as in Ref. [25], where den-
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sity ρ is fixed and temperature T decreased (although
this is a matter of convenience for this system since the
static structure is uniquely controlled by the combina-
tion Γ = ρT−1/4). It was shown that this model displays
in the supercooled regime increasing dynamic [88] and
static [26] length scales. We perform simulations in the
canonical NVT ensemble, using a Nosé-Poincaré thermo-
stat with inertia parameter Q = 5.0 [74].

A new technical difficulty for this system is that its
glass-forming ability is worse than the three other mod-
els studied in this work. In particular, we found that
crystallization intervenes very easily when temperature is
decreased, especially in small systems. Thus, we had to
carefully determine for each independent sample whether
it had crystallized in the course of the simulation or not.
We did so by measuring several structural indicators,
such as pressure, energy, and pair correlation function
from which crystallization was obvious. Therefore, in the
data presented below, we only consider state points where
crystallization was found very infrequently. In practice,
we do not show data when crystallization occurred in
more than 30 % of the samples.

A few of the remaining data are still a little ambigu-
ous, as we observe fluctuations of the potential energy
that are large and long-lived, but do not correspond to an
irreversible crystallization of the system. This is reminis-
cent of the numerical observations reported for another
binary mixture [89]. For these runs, dynamics is typically
slower than the average, and it is not clear whether these
runs should be discarded (as being affected by incom-
plete crystallization), or averaged together with ‘normal’
samples (as being characterized by some other forms of
local ordering). We checked that the main conclusions
reported below are not affected if we remove these very
slow samples.

For this system, the bulk data were fitted to a power
law divergence, and the result of this fitting is shown
in Fig. 5, where we use γ ≈ 2.2 and Tc ≈ 0.198.
We note that this value is significantly smaller than
the values (Tc = 0.226 . . .0.246) quoted in the liter-
ature [25, 28, 87, 90], which stems from very early
work [87], and presumably overestimated the mode-
coupling temperature by a very large amount.

We present our results for finite size effects in the
soft sphere mixture in Fig. 8. As for the Lennard-Jones
model, we find that dynamics is rather insensitive to sys-
tem sizes in the high temperature liquid, but becomes
size dependent below the onset of glassy dynamics, which
we locate near T ≈ 0.25. The size dependence also ex-
tends to larger sizes when T decreases, signalling again
the growth of the characteristic length ℓFS(T ) with de-
creasing T . Unfortunately, due to the crystallization is-
sue mentioned above, it is not easy to follow the size
dependence to very low temperatures over a broad range
of system sizes. The limited amount of data shown in
Fig. 8 seems to suggest that soft spheres have a behaviour
similar to the one observed in the Lennard-Jones sys-
tem. In particular, the size dependence for T = 0.2, near
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FIG. 8: System size dependence of relaxation time in a soft
sphere mixture from the high temperature liquid, T ≥ 0.25
down to the mode-coupling temperature (Tc ≈ 0.198). We
only consider state points where crystallization is very infre-
quent. The overall temperature evolution is similar to the
Lennard-Jones results in Fig. 7.

the mode-coupling temperature, does not show sign of a
qualitatively different behaviour as compared to higher
temperatures. We were not able to study this system
at even lower temperatures, because of crystallization is-
sues. We suspect in particular that the very strong finite
size effects reported in Ref. [10] might be affected by crys-
tallization as well, since the size dependence reported in
Fig. 8 is more modest.

E. Harmonic spheres

The final model we consider is a 50:50 binary mixture
of harmonic spheres with diameter ratio 1.4, which we
study using molecular dynamics simulations in the micro-
canonical ensemble. We use the same parameters as in
Ref. [31], and work at constant density ρ = 0.675 and use
temperature as a control parameter. For this density, the
onset of glassy dynamics is near T ≈ 13 and the mode-
coupling temperature used in Fig. 5 is Tc ≈ 5.2 [31, 72].
In contrast with the soft sphere model studied in the pre-
vious section we find that crystallization is not an issue
for systems as small as N = 108 over the entire range of
temperatures. Since the range of the potential is equal
to the particle diameter (as for hard spheres), we can in
principle study even smaller system sizes. We have found
that this is only possible for large enough temperatures,
systems with N = 32 becoming very heterogeneous at
low temperatures. Therefore, we shall only display data
for those state points where stability is never an issue.
In Fig. 9 we present our results for the finite size depen-

dence of the relaxation time in harmonic spheres across
the mode-coupling crossover. For high and moderately
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FIG. 9: System size dependence of relaxation time in a
harmonic sphere mixture from the high temperature liquid,
T ≥ 13 down to the mode-coupling temperature Tc ≈ 5.2.
Note the qualitative change of size dependence near the mode-
coupling crossover and the non-monotonic size dependence at
low T .

low temperatures, we find results that are qualitatively
very similar to the ones discussed in the previous sec-
tions for soft and Lennard-Jones particles, with no size
dependence above the onset, a slowing down at small
sizes between the onset and mode-coupling temperatures
which becomes more pronounced if T is lowered.
Strikingly, we find that near and below the mode-

coupling temperature the size dependence changes its
qualitative form to become nearly size independent at
T = 5.0, and even non-monotonic with N at the lowest
temperature we have been able to study, T = 4.7. For
this temperature, we note that the maximum of τα(N)
occurs for a system size of about N ≈ 600, where the
structure is very stable and very close to that found in
the bulk system. Additionally, these data have been av-
eraged over a large number of realizations and very long
simulation times to reduce the statistical noise, and so
the effect reported in Fig. 9 is physical.
The data presented in Fig. 9 are qualitatively similar

to the one obtained for the KFA model at intermediate
K (see Fig. 4b) and presumably have a similar physical
origin. A natural interpretation of this non-monotonic
behaviour comes from the fact that it occurs very close
to the fitted mode-coupling temperature, Tc ≈ 5.2, where
deviations from mode-coupling predictions are already
present, see Fig. 5. Therefore, we attribute this change of
behaviour to a change of physical mechanism controlling
the relaxation from mode-coupling to activated dynam-
ics.
From the behavior shown in Fig. 9 we conclude also

that mode-coupling and activated dynamics interact and
compete to produce an apparently non-monotonic tem-
perature evolution of ℓFS(T ), having a maximum near

T ≈ 6. and a minimum near T ≈ 5, see Fig. 9. It is
remarkable that this qualitative evolution with temper-
ature of ℓFS(T ) follows very closely the behaviour re-
ported for dynamic profiles near an amorphous wall in
Ref. [31] for the same system. Thus, we think that the
bulk data reported in Fig. 9 provide both an independent
confirmation and a natural physical interpretation of the
surprising non-monotonic dependence of dynamic length
scales found near Tc in this system [31].
Finally, for the system of harmonic spheres, we

have additionally studied the dynamics using Monte-
Carlo simulations, using the same implementation as in
Ref. [91]. For the present system we found that Monte-
Carlo dynamics is slightly less efficient than molecu-
lar dynamics, so that getting data comparable to those
shown in Fig. 9 is challenging. Instead, we performed
very long simulations for only a few selected state points
(N, T ), which confirmed that also for Monte Carlo dy-
namics, the size dependence of the relaxation time be-
comes non-monotonic at low temperature, T = 4.7, and
nearly size independent at T = 5, in agreement with
Fig. 9. Therefore, this effect is not due to the specific
type of dynamics chosen to perform our study. This also
confirms that hydrodynamic effects [41, 42] play very lit-
tle role in the results presented in this work.

VI. SUMMARY AND CONCLUSION

To conclude this article, we wish to summarize the
main results obtained in this work. First, we discussed
from a theoretical point of view the possible effects and
the interest of using small sizes to study the dynamics
of supercooled liquids. We presented the following ar-
guments, which depend on the precise mechanism envi-
sioned for structural relaxation in systems approaching
the glass transition.

1. Only minor finite size effects are expected for strong
glass-formers whose relaxation time follows an Ar-
rhenius law because the corresponding activation
energy likely corresponds to a ‘local’ excitation.
Thus, the length ℓFS should not grow with decreas-
ing temperature and the relaxation timescale for
small system sizes should be dominated by non-
universal effects affecting the local energy barrier
for relaxation.

2. For cooperative, thermally activated processes, dy-
namics becomes faster if the system size decreases
because cooperative events then involve a smaller
number of particles, thus reducing the barrier for
relaxation. In this case the growth of ℓFS should
track the one of the length scale measuring cooper-
ativity (e.g., the point-to-set length within RFOT).

3. Mode-coupling relaxation becomes slower in
smaller systems because spatially extended, unsta-
ble relaxation modes become stable in small sys-
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tems [40]. This trend holds until activated dynam-
ics takes over when all unstable modes have disap-
peared, and presumably makes relaxation faster as
described in item 2. Overall, the size dependence
can thus be non-monotonic at intermediate temper-
atures. Moreover, this can lead to a quite unusual
behavior of ℓFS(T ) that would track the one of the
dynamical correlation length.

4. For diffusing point defects, dynamics becomes
slower when system size decreases because another
relaxation channel must be used when no defects
are present in small systems. If cooperative acti-
vation occurs, then the dynamics may accelerate
at small sizes, making the overall size dependence
non-monotonic. In this case ℓFS(T ) is expected to
be related in a power law way to the dynamical
correlation length.

5. For kinetically constrained models, defects are the
only channel available. Thus, dynamics becomes
non-ergodic in samples containing no defects, which
can be seen as an extreme slowing down. By
discarding these instances, one biases the statisti-
cal weight towards configurations with larger con-
centration of defects, and as a result the mea-
sured relaxation time decreases when the system
size decreases (the effective defect concentration in-
creases).

We have also introduced a new lattice glass model,
the Kac-Fredrickson-Andersen (KFA) model, for which
the distance to the mean-field (or mode-coupling like)
limit can be controlled by tuning the range K of the spin
connectivity. We have provided numerical and analyt-
ical evidence that this approach successfully generates
an avoided mode-coupling singularity, in analogy with
real supercooled liquids. The detailed analysis of the dy-
namical finite size effects of this model agrees with the
general theoretical predictions. For K = 1, we obtain
a monotonic growth of the relaxation time with system
size, explained by mechanism 5. However, for intermedi-
ate values of K, the system exhibits an MCT crossover
and the behaviour follows a non-monotonic size depen-
dence. Although here the reason for non-monotonicity
is not that small systems have activated dynamics, the
study of the KFA model is a concrete example for which
one finds that the interplay between two competing re-
laxation mechanisms can lead, for intermediateK values,
to a surprising non-monotonic temperature evolution of
the characteristic length ℓFS(T ).
Subsequently, we have presented the results of simula-

tions of four models for supercooled liquids. Mechanism
1 gives a good description of the size dependence for the
strong, network-forming liquid. The effect of the mode-
coupling crossover described by mechanism 3 is observed
in a model quasi-hard spheres, while the behaviour of the
Lennard-Jones and soft spheres models appeared some-
what intermediate between mechanisms 1 and 3, and was
harder to interpret.

Overall, the simulation of fragile systems seem to con-
firm the RFOT result of Ref. [40], recently discovered
in simulation of model systems [31], that dynamic and
static length scales are largely decoupled in the mode-
coupling regime and have distinct temperature depen-
dences, with static point-to-set length scales starting to
show a significant growth at temperatures near the mode-
coupling crossover, while dynamic length scales grow
rapidly even at higher temperatures. A natural inter-
pretation of the non-monotonic size dependence found in
Fig. 9 is that both types of mechanisms compete near the
mode-coupling temperature. This competition has also
been invoked to interpret the non-monotonic behaviour
of dynamic profiles near an amorphous wall in Ref. [31].
We have shown that a similar non-monotonic tempera-
ture evolution of ℓFS(T ) is obtained in the same har-
monic sphere model.
These results contribute to a clarification of the na-

ture of the mode-coupling crossover, and show that the
strength of the mode-coupling relaxation mechanims de-
pends on the specific model, and is very weak in glass-
formers with low and intermediate fragility. It would be
desirable to understand better why the mode-coupling
crossover is more pronounced in harmonic (and presum-
ably hard) spheres than in other models, in order to ob-
serve similar qualitative changes in the mechanisms re-
sponsible for structural relaxation for other systems and
in experimental work. Another issue worth exploring is
the idea that using finite sizes may perturb the static
structure of the liquid at the level of high-order correla-
tion functions, which in turn could affect the dynamics.
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Appendix A: More results on the KFA model

1. Relaxation time

In this section we discuss the relaxation time of the
KFA model, showing the absence of a finite temperature
dynamic singularity for K < ∞.
The relaxation mechanism for the square lattice K = 1

has been discussed in Ref. [59]. It is explained in terms
of the diffusion of macro-vacancies, i.e. extended defects.
The relaxation timescale is given by the time it takes to
macro-vacancies to diffuse over an area proportional to
the inverse of their density. Since the diffusion coeffi-
cient of a macro-vacancy simply leads to subleading cor-
rections, one finds that the relaxation timescale is given
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by the inverse of the probability of having one macro-
vacancy around a given site. This reads [59]:

P =

∞
∏

ℓ=1

[1− (1− c)ℓ]4 ∼ e−4/c ∼ e−4 exp(1/T ) > 0. (A1)

This argument shows that the relaxation timescale can-
not be larger than 1/P , which is a finite number at all T .
Therefore, the K = 1 model has a relaxation time that
only diverges at T = 0 and hence has no finite tempera-
ture singularity.
In the opposite limit where K = ∞ (i.e. on the Bethe

lattice), it is easily shown that a singularity arises when
the probability for a site to be unable to relax satisifies
the self-consistent relation [58]:

P = (1− c)[P 3 + 3(1− P )P 2], (A2)

which shows that P (T ≤ Tc) = P (Tc) + a
√
T − Tc and

corresponds to the well-known ‘square root’ singularity
also found in the context of mode-coupling theory [34]
and controls for instance the temperature dependence of
the long-time limit of the persistence function in the glass
phase.
For intermediate K, one can readily generalize the

K = 1 argument on the probability. The only variant is
that instead of requiring one vacancy per side of an ex-
panding square of size ℓ [59], one now requires at least K
consecutive up spins on each side of the square. This pro-
cedure generates the macro-vacancies of the KFA model.
The probability of such a ‘K-macro-vacancy’ reads:

P (K) = cK
2

∞
∏

ℓ=K

[1−(1−cK)ℓ/K ]4 ∼ cK
2

exp(−Kc−K) > 0.

(A3)
From this argument, we conclude therefore that the KFA
model at finiteK has no finite T singularity, as forK = 1,
but since the above probability P (K) increases rapidly
with K, large K values should produce results that are
closer to the mean-field Bethe lattice limit obtained at
K = ∞. The data shown in Fig. 2 are clearly consistent
with this expectation, and confirm also that models with
larger K have a larger kinetic fragility, i.e. a sharper
temperature dependence.

2. Four-point dynamic susceptibility

In this section we discuss the behaviour of the four-
point function in the KFA model, and in particular its
behaviour across the mode-coupling crossover.
We define the four-point susceptibility χ4(t) in terms

of the spontaneous fluctuations of the persistence func-
tion [37, 64]:

χ4(t) = N
[

〈p2(t)〉 − 〈p(t)〉2
]

, (A4)

where p(t) is the instantaneous value of the persistence in
a system composed of N sites, such that 〈p(t)〉 = P (t).
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FIG. 10: Top: Temperature evolution of the peak of χ4 for the
KFA model in an Arrhenius plot. Bottom: Dynamic scaling
between peak of the susceptibility and relaxation time. Power
laws, Eq. (A6), with exponents ∆1 = 3 and ∆∞ = 1.45 are
shown for comparison.

The time evolution of χ4(t) is as found in many other
systems. It has a peak whose height χ⋆

4 increases when T
decreases, and its position in time shifts to larger times,
essentially tracking the alpha-relaxation time. As sug-
gested by previous work [48], the approach to this peak
obeys either a single power for K = 1, or is composed
of two distinct power laws in the mode-coupling regime,
K > 2.

We follow the temperature evolution of the peak of the
dynamic susceptibility, χ⋆

4(T ), in Fig. 10. We use two
representations. In Fig. 10a, we use an Arrhenius plot to
emphasize the similarity of behaviour of χ⋆

4 with the be-
haviour of τα(T ). The crossover nature of these curves is
in particular very clear, with a near power law divergence
for K = 24, or a much slower growth for K = 1. Inter-
estingly, we again find that χ⋆

4 has a mixed behaviour for
intermediate K values, clearly crossing over from mode-
coupling to cooperative behaviour near Tc.

This crossover becomes more striking when represent-
ing χ⋆

4 as a function of τα(T ) using T as a running pa-
rameter, as frequently used in studies of glass-forming
systems [37, 83], see Fig. 10b. In this representation,
both physical regimes are well-described by a power law
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‘dynamic scaling’,

χ⋆
4 ∼ τ1/∆α , (A5)

where the dynamic exponent ∆ for a given K takes two
values,

∆(K = ∞) = ∆∞ ≈ 1.45, ∆(K = 1) = ∆1 ≈ 3.
(A6)

For intermediate K values, the data exhibit a clear
crossover from ∆∞ to ∆1 as τα increases, see for instance
the data for K = 4 in Fig. 10b.

It is interesting to note that the mode-coupling
crossover, in this simple model at least, is not character-
ized by a non-monotonic behaviour of χ4(t), but rather
by a change of its temperature dependence. Although
this reflects nicely the change of physical mechanism for
structural relaxation near Tc, as shown in Fig. 10, the be-
haviour of χ4 is not as striking as the non-monotonic size
dependence of τα(L, T ) in Fig. 4, and it shows no sign of
the non-monotonic temperature dependence found above
for ℓFS(T ), or the non-monotonic dynamic profiles re-
ported near amorphous walls in Ref. [31].
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[9] S. Büchner and A. Heuer, Phys. Rev. E 60, 6507 (1999).

[10] K. Kim and R. Yamamoto, Phys. Rev. E 61, R41 (2000).
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