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In this work we provide a comprehensive analysis of the activation problem out of equilibrium.
We generalize the Arrhenius law for systems driven by non conservative time independent forces,
subjected to retarded friction and non-Markovian noise. The role of the energy function is now
played by the out of equilibrium potential φ = − limT→0 T logPs, with Ps being the steady state
probability distribution and T the strength of the noise. We unveil the relationship between the
generalized Arrhenius law and a time-reversal transformation discussed in the context of fluctuations
theorems out of equilibrium. Moreover, we characterize the noise-activated trajectories by obtaining
their explicit expressions and identifying their irreversible nature. Finally, we discuss a real biological
application that illustrates our results.
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The Arrhenius law originally discovered for the rate
of chemical reactions [1] is one of the most important
principles governing the behavior of systems character-
ized by several energy scales. The diffusivity of vacancies
in crystals [2], the viscosity of strong super-cooled liquids
[3], the rate of protein folding [4] are just few examples
showing the broad range of physical situations in which
the Arrhenius law holds. This happens whenever the dy-
namics of the system at hand is dominated by a process
requiring an activation energy ∆E much larger than the
temperature. In this case, the time-scale characterizing
the dynamical behavior is given by

τ ' τ0 exp

(
∆E

T

)
,

thus leading to the same behavior for several observ-
ables related to the relaxation time (rates, diffusion co-
efficients, etc.). In this equation τ0 is, roughly speaking,
the high-temperature time-scale [5].

The usual domain of applicability of the Arrhenius law
is restricted to systems at equilibrium (or in a metastable
equilibrium, as in the case of nucleation processes). In
this case the Arrhenius law can be derived in several
ways. The original proof is due to Kramers [6], who
obtained it for a particle undergoing Langevin dynam-
ics with white noise. A natural question is to what
extent this can be generalized to non-equilibrium sys-
tems, which are nowadays witnessing a growing interest,
e.g. gently shaken granular media, sheared fluids at low
temperature, active matter, single molecule experiments,
biochemical networks. These systems are out of equi-
librium because are driven by forces that do not derive
from a potential and are subjected to noise that does not
necessarily correspond to a thermal bath at equilibrium.
If the force field is time-independent then a stationary
probability distribution is generally reached at long time,
but it is not given by the Gibbs-Boltzmann distribution
exp(−E/T ) since for non-conservative force fields there

is no energy function to start with. In consequence, the
usual intuition behind the Arrhenius law, which is based
on a stochastic dynamics in an energy landscape charac-
terized by a barrier ∆E, becomes meaningless. Yet, ex-
periments, such the ones of [7] on shaken granular media,
suggest that in the low noise regime a generalization of
this law does exist. Despite some results obtained in spe-
cific contexts [6, 8–13], a general and comprehensive anal-
ysis addressing this issue is still lacking. Here we fill this
gap: for driven systems subjected to non-thermal and
in general multiplicative non-Markovian noise we derive
the generalization of the Arrhenius law and identify the
corresponding rare noise-activated paths followed during
the dynamics. Our theory applies to force fields char-
acterized by more than one stable attractor and in the
small noise limit, meaning that the timescale to ”jump”
from one attractor to the other is much larger than the
characteristic timescales to vibrate around them. As we
shall explain, our results can be understood physically in
terms of a generalization of time-reversal symmetry dis-
covered in the context of fluctuations theorems [14–16].
In order to illustrate our results we provide an explicit
example inspired by bacteria evolution in the intestine
caused by antibiotic administration [17].

We start our analysis by focusing on a simplified model
defined by the Langevin equation:

γ
dx

dt
= F + η (1)

where F is the force field, γ is the viscosity, η a Gaussian
multiplicative noise, possibly corresponding to thermal
fluctuations. We assume that η has zero mean and vari-
ance 〈ηα(t)ηβ(t′)〉 = 2TγH(x)δ(t − t′)δα,β where H(x)
is a generic positive function of x and T is the strength
of the noise fluctuations (it only coincides with temper-
ature for an equilibrated bath). The force field F is non-
conservative therefore the system is kept out of equilib-
rium: it dissipates heat with the reservoir and does (or
receives) work because of the force field. More general
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systems containing an inertial term, retarded friction and
non-Markovian noise will be considered afterward. In or-
der to study a simple but instructive case of activated
non-equilibrium dynamics we focus on a force field char-
acterized by three fixed points corresponding to F = 0
(two stable, S1, S2, and one unstable U). This is the
counterpart of the usual process, a jump through an en-
ergy barrier, studied to derive the ”equilibrium” Arrhe-
nius law. Our derivation is based on the Martin-Siggia-
Rose field theory [18], whose action using Ito convention
is:

S = −
∫ tf

ti

dt′x̂ ·
(
dx

dt
− F(x)− TH(x)x̂

)
where x̂ is the response field and we use time units such
that γ = 1.
In the low noise limit, T → 0, the dynamics can be de-
scribed in the following way. The system first flows fol-
lowing the force field toward one of the stable points,
whether this is S1 or S2 depends on the starting point,
and then fluctuates locally around it. On much larger
times, rare configurations of the noise eventually induce
far away excursions allowing the system to escape from
one basin of attraction to the other. The characterization
of these dynamical processes can be obtained by comput-
ing the probability P (S1 → S2; t) that a system starting
in S1 at time ti is in S2 at a very large time tf = t+ ti.
This is given by sum over all paths [x(t)] that connect
these two points in a time t. Each trajectory is weighted
by the exponential of its corresponding action. In the
low noise limit it is straightforward to check that the
sum over paths is dominated by the saddle point contri-
butions because one can pull out a 1/T factor in front of
S by redefining x̂→ x̂/T . The functional integral is thus
approximated by the sum of the paths that verify:

δS

δxα
= 0 :

dx̂α
dt

= −
∑
β

[
∂Fβ
∂xα

x̂β + T x̂2
β

∂H(x)

∂xα

]
δS

δx̂α
= 0 :

dxα
dt
− Fα = 2TH(x)x̂α (2)

In the equilibrium case, the solution of the saddle point
equations can be constructed in terms of the downhill
trajectory, that corresponds to the path going from the
unstable point towards one of the stable ones, and the
uphill trajectory that corresponds to a path going in the
opposite direction. The extremal paths on which one has
to sum to obtain P (S1 → S2; t) are all possible com-
binations of the uphill and the downhill ones concate-
nated in such a way to verify the boundary conditions
x(ti) = xS1

and x(tf ) = xS2
. The detailed computa-

tion, which is analogous to the so called dilute instanton
gas, is presented in [19]. In order to extend it to the
non-equilibrium case we look for the generalization of
the downhill and the uphill solutions. The former is im-
mediately found: it corresponds to ẋ = F and x̂ = 0 and

leads to a null action. This means that the corresponding
weight is of the order of one, as expected physically, since
the downhill trajectory is a typical one and does not need
to be activated by the noise. The main problem is to find
the uphill trajectory going, say, from S1 to U . In equilib-
rium conditions, corresponding to F = −∇E and H = 1,
the uphill trajectory is the time-reversed of the downhill
one and reads ẋ = ∇E and x̂ = ẋ/T = ∇E/T . The cor-
responding action S = −(E(U) − E(S1))/T = −∆E/T
leads to an Arrhenius weight, e−∆E/T , for the uphill so-
lution.
The naive guess for the generalization to the non-
equilibrium case where one substitutes −∇E with F,
leading to ẋ = −F and x̂ = ẋ/T , does not work. In
order to find the solution of this conundrum, we have
to introduce the zero noise non-equilibrium potential
φ = limT→0−T logPs(x), with Ps being the station-
ary probability distribution. In mathematical language
φ is the large deviation function determining the prob-
ability of rare events in the zero noise limit. Plugging
Ps ' e−φ/T into the Fokker-Planck equation one finds
that φ verifies the equation

∇φ · (F +H(x)∇φ) +O (T ) = 0 (3)

Since φ somehow plays the role of the energy function, a
natural generalization of the uphill solution can be found
replacing E with φ in the expression for x̂, i.e. x̂ =
∇φ/T . Given the second equation of (2), this choice
leads to:

ẋ = F + 2H(x)∇φ x̂ = ∇φ/T , (4)

which indeed provides a solution also for first equation
of (2), as it can be checked by direct substitution and by
using the derivative of eq. (3). The action associated to
the uphill solution reads:

S = − 1

T

∫
dt′∇φ · ẋ + ∇φ · (F +H(x)∇φ) (5)

Noticing that the last term between parenthesis is zero
because of (3), we are left with the integral of a total
derivative and, therefore, S = −∆φ

T . Hence, we indeed

obtain the generalized Arrhenius weight, e−∆φ/T , for the
uphill solution. By combining together uphill and down-
hill solutions, as done in [19], one finds that

P (S1 → S2; t) = Ps(xS2)
(

1− e− t
τ

)
τ(T ) ' τ0 exp

(
∆φ

T

)
where τ0 contains the sub-leading contributions to the
generalized Arrhenius law coming from the Gaussian fluc-
tuations around the instantons. On the basis of the re-
sults of [9] we expect that an explicit computation should
lead to the result τ−1

0 = |λ0|/(2π)|
∏
i(ω

U
i )/(ωS1

i )|1/2
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where λ0 is the real part of the lowest eigenvalue of
∂Fα/∂xβ evaluated in U and the ωUi s and the ωS1

i s are
the eigenvalues of the Hessian of φ evaluated in U and
S1 respectively.
Note that in general the solution of a system of equa-
tions like (2) with fixed initial and final conditions is not
straightforward at all, and can be only obtained numeri-
cally by the shooting method (one searches by trial and
error the initial position and velocity that leads to the
correct solution). Thus, being able to provide the ex-
plicit solution and, in top of that, finding that the action
is the integral of a total derivative are quite unexpected
simplifications. In equilibrium, they are due to the exis-
tence of the time-reversal symmetry [16]. Remarkably, a
generalization of the time-reversal transformation, which
was introduced in the context of fluctuations theorems
out of equilibrium [12, 14–16], provides a physical expla-
nation for the non-equilibrium case too. This transfor-
mation gives a relationship between the probability of a
dynamical path and its time reversal in the so called ad-
joint dynamics corresponding to the Langevin evolution
in a renormalized force field FA = −F− 2H(x)∇φ:

P ([x(t)];S1 → U) = PA([x(−t)];U → S1) e−
∆φ
T . (6)

In this expression PA denotes the probability of paths
evolving with the adjoint dynamics [20]. In order to iden-
tify the uphill trajectory one has to maximize the LHS.
Instead of solving this difficult problem, one can solve
the much easier one consisting in maximizing the RHS
associated to the downhill trajectory in the adjoint dy-
namics. Since the exponential term is path-independent
(the boundary conditions are fixed), the most probable
path for T → 0 is just the one that follows the force field
FA = −F − 2H(x)∇φ going from the unstable point U
to the stable one S1 [21]. Because of the identity (6),
the time-reversal of this path is the one maximizing the
LHS and, indeed, corresponds to the uphill solution. In
conclusion, the generalization of the time reversal trans-
formation provides the physical principle behind the gen-
eralization of the Arrhenius law and an explanation for
the unexpected simplifications we discovered.

An important difference with the equilibrium case is
that the large deviation function φ is not known a pri-
ori. Thus, it may seem that the previous results are of
little use in practice. However, the explicit integration
of eqs. in (2) between S1 (or S2) and U and the evalua-
tion of the corresponding action allows one to explicitly
obtain ∆φ. Actually, this procedure is more general and
allows one to completely reconstruct φ(x) up to a nor-
malization constant. In order to do it, one can partition
the phase space in basins of attraction associated to each
stable point. The non-equilibrium potential for a point
belonging to the basin of, say, S1 is given by φ(xS1

) plus
the action evaluated on the trajectory that connects S1

to this point. This can be understood by noticing that
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FIG. 1. Non-equilibrium potential for ε = 1.2, f = 1.12,
ψ = 0.7.

under the time-reversal mapping the action S transforms
into the action for the downhill solution, which is null,
plus ∆φ/T between the final and the initial points. By
comparing the values of ∆φ for points along the separa-
trix one can completely reconstruct φ(x) up to a normal-
ization constant. Mathematically, this is related to an
underlying Hamilton-Jacobi theory that applies to eqs.
like the ones in (2) [15, 22].

In order to show an explicit example of our theoreti-
cal framework, we focus on a biological-inspired example
related to the study of the time evolution induced by an
antibiotic treatment of bacterial microbes living in the
human intestine [17]. This dynamical system was mod-
eled in terms of an over-damped Langevin equation char-
acterized by white noise and the non-conservative force
field F(x, y) = ( x

x+fy − εx,
fy

x+fy − ψxy − y). The vari-
ables x and y describe the concentrations of the bacteria
which are respectively sensitive and tolerant to the an-
tibiotic. The constant ε, f and ψ are related to mortality
rate, fitness and interactions between bacteria popula-
tions. This system exhibits a region of bistability for
a particular choice of the parameteres with two stable
points S1 = (0, 1) and S2 = (1/ε, 0), and an unstable one

U = ( εf−1
ψ , ψ+ε(1−εf)

ψfε ). In order to illustrate our theory,
we compute the non-equilibrium potential φ by evaluat-
ing the action for all the extremal trajectories starting
from stable points (Fig.1). It is double-well shaped with
two minima associated to S1 and S2 and one maximum in
correspondence to U . Then we characterize the optimal
paths that interpolates between the two stable points,
see Fig.2. The most striking difference with the equilib-
rium case is that uphill and downhill trajectories pass
through different regions of the phase space. The rea-
son for this can be understood by recalling that out-of-
equilibrium systems substain a steady state probability
current, J = (F−T∇)Ps. In the zero noise limit J equals
(F + ∇φ)Ps and is orthogonal everywhere to the gradi-
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FIG. 2. Saddle point trajectories in the field of forces F(x, y)
with the choice of the parameters ε = 1.7, f = 1.12, ψ = 1.1
and initial condition xi = S1, |x̂i| = 0.0032 (red) and xi =
S2, |x̂i| = 0.0032 (green). The plot shows clearly that uphill
and downhill paths visit distinct regions of the configuration
space.

ent of the potential because of eq. (3). Hence, uphill and
downhill trajectories can be respectively decomposed in
two perpendicular contributions: ẋ|uphill = ∇φ + J/Ps
and ẋ|downhill = −∇φ + J/Ps. These paths correspond
to gradient ascent and descent, similarly to equilibrium.
However, contrary to this case, the system also flows
along the direction given by the probability current and
therefore visit different portions of the phase space de-
pending whether it is moving uphill or downhill [23].
Another interesting finding that differentiates activation
in and out of equilibrium concerns the work done on
the system by the force field: W =

∫
dt ẋ · F. We

can compute W along the two trajectories and obtain
that, in both cases, it can be split into two contribu-
tions: W = T

∫
dtJ2/(TP 2

s ) − (φ(xf ) − φ(xi)). If we
compute the work done in a closed cycle, we obtain that
only the first term, related to the current, is always dissi-
pated while the second term vanishes. The system indeed
releases to the bath an amount ∆φ when it gradient de-
scends and it absorbs the same quantity during the gra-
dient ascent. Using the result in [24], which states that
the total entropy produced along a given trajectory reads
∆S =

∫
dtJ2/(TP 2

s ), one can recast the previous equa-
tion for W in a form resembling the first law of thermo-
dynamics: W = T∆S −∆φ. The main differences with
respect to the first law are that the previous expression is
valid for a given trajectory and that the internal energy,
which does not exist for a driven system, is replaced by
the out of equilibrium potential φ.
Let us finally discuss the most general physical case we

are able to treat, which is characterized by the following

system of stochastic equations:

mẍα+
∑
β

∫ t

−∞
dt′γα,β(t− t′)ẋβ = Fα + ηα

〈ηα(t)ηβ(t′)〉 = 2T γ̃α,β(t− t′)H(x) (7)

where γα,β(t − t′) is a function related to retarded fric-
tion, symmetric with respect to the interchange of α, β
and equal to zero for t < t′ and γ̃α,β(t−t′) is a symmetric
positive-definite operator associated to non-Markovian
noise [25]. Physically, eq. (7) corresponds to a sys-
tem which undergoes Netwonian dynamics in a non-
potential force field and is coupled to an out of equi-
librium thermal bath (only in the case H = 1 and for
γα,β(t − t′) + γα,β(t′ − t) = 2γ̃α,β the bath is at equi-
librium). The main trick we used to analyze this case
consists in reducing the problem to the one we already
solved. This is done by showing that the general stochas-
tic equation above can be rewritten in terms of over-
damped Langevin equations characterized by white noise
in an extended configuration space where new extra vari-
ables are introduced: the inertial term is handled by in-
troducing the momentum, p = mẋ; whereas retarded
friction and non-Markovian noise can be represented as
the result of integrating out a bath of harmonic oscilla-
tors linearly coupled to the system and evolving by an
over-damped Langevin equation characterized by white
noise [26]. More details and the explicit calculations can
be found in the SI text [27].

In conclusion, we provided a general and comprehen-
sive analysis of the problem of activation out of equilib-
rium. We showed that the Arrhenius law holds for a very
large class of out of equilibrium systems provided that the
energy function is replaced by the non-equilibrium poten-
tial φ. The most important difference with the equilib-
rium case is that the noise-activated paths are no longer
related by a simple time reversal transformation: uphill
and downhill paths visit different regions of the configu-
ration space. We characterized these trajectories by ob-
taining their explicit expression, by identifying their irre-
versible nature and by unveiling how they are related to
a generalization of the time-reversal transformation. We
illustrated our results in an explicit example borrowed
from biology where equilibrium is not even a well defined
concept. We envision many possible interesting applica-
tions in different fields ranging from physics to economics,
where equilibrium is a limiting assumption.
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