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Several mean-field computations have revealed the existeinan out of equilibrium dynamical transition
induced by quantum quenching an isolated system startong fts symmetry broken phase. In this work
we focus on the quanturs* N-component field theory. By taking into account dynamicattilations at the
Hartree-Fock level, corresponding to the leading ordeheflfN expansion, we derive the critical properties of
the dynamical transition beyond mean-field theory (inaigdat finite temperature). We find diverging time and
length-scales, dynamic scaling and aging. Finally, we liaveelationship with coarsening, arffeequilibrium
dynamical regime that can be induced by quenching from thersstric toward the symmetry broken phase.

Out of equilibrium quantum dynamics of isolated systemsone, a situation similar to the one leading to coarsening dy-
is a fundamental research topic which has recently become anamics in classical systemn [10].
cessible to experimental investigations by trapping skl ~ The model we focus on consists in licomponent real scalar
atoms in optical lattices [1]. After the pioneering work,[#]  field interacting via a quartic term in three dimensions. It
which the Mott insulator-superfluid quantum phase tramsiti  was studied thoroughly at equilibrium, since, depending on
was observed, the field has boomed with a lot of studies, ithe value ofN, it belongs to the same universality class as
particular on the so called quantum quenches. These protorany physical systems such as superfluids and ferromagnets
cols, consisting in a sudden change of an interaction param¢l1]. The corresponding Lagrangian reads [12]:
ter (for example using Feschbach resonances), bring ansyste 1
P AT _ = 2 2 2 212
initially in the ground state far from equilibrium. L[¢] = ((6t$) + (0xd)? + ro(@)?) + ) | [(@ 12.
Out of equilibrium quantum dynamics is a very broad field. 2 4IN
One of the main fascinating questions is whether, and to whaft equilibrium, this model has a quantum phase transition be
extent, there exist universal phenomena generalizingrles o tween a phase with spontaneous symmetry breaking in which
found for equilibrium systems. The quantum Kibble-Zurek(¢) is aligned along a certain direction foy < r§ and a para-
mechanism, describing the production of defects occuringnagnetic phase(,¢) = 0, forrg > re. The critical “mass”
during ramps accross a quantum critical point [3], is an ext§ is negative, due to the enhancement of tiieative mass
ample of such universal properties. The main topic of this arbecause of fluctuations. It was shownlin [7] that this model
ticle is another candidate for universal behavior oridindis- displays, at the mean-field level, a dynamical transitioa du
covered in the Hubbard model [4] and later found in a largeto quantum quenches in the maggother regimes were pre-
variety of quantum systems at the mean-field level [5-7]. Itviously studied inl[13]). In the following, with the aim of
consists in a dynamical transition out of equilibrium occur analyzing the fect of fluctuations on the dynamical transi-
ring after a quantum quench. Its main features are that longon we retain in the two-particle irreducigBaym-Kadan&
time averages display a singular behavior and the order paxpansion of the self-energy the leading order contrilpuitio
rameter vanishes when the final couplidg, reached after 1/N, which corresponds to the the dynamical Hartree-Fock
the quench, approaches a critical valhlﬁe approximationi[14]. The initial condition for the dynamiss
Attempts to go beyond mean-field theory in the Hubbardthe ordered ground state before the quench (finite temperatu
model showed that fluctuations play an increasingly imporinitial conditions will be considered later). Without loe$
tant role approaching the transition [8, 9]. A full analysis generality we focus on the case where the average fielis
however, is still lacking. Moreover, even though it is recog aligned along the first componemt = 6n1¢t = (&%yg, Note
nized that some physical observables are singulétfathe  that by symmetry the average field remains uniformtfsr0
critical nature of the transition remains to be found yet- Ac and only the diagonal termg = n of the connected Keldysh
tually, it is not known whether there is a diverging corriglat  correlation functlonsGm, = ({¢0t, ¢r t,}) #"¢" , are nonzero.
length-scale at the transition nor whether some kind of crit The time-dependent Dyson equations governmgf; the evolutio

ical dynamics scaling takes place. In this work we provideof the system after the quantum quench frgnto rj read:
answers to these open questions by going beyond mean-field

theory and taking into account some dynamical fluctuations. P = (rt . f )¢t _0V(¢) )
In order to do that, we shall focus on ti#é N-components ‘ 6N e 0p

quan_tum field thgory and _reta}ln |n_the self—co_ns_lste/m &x- 5t2(3$w __ (p + rt) Gptt’ @)
pansion the leading contributions in the lafgéimit. An un-

expected and interesting result of our analysis is that ite ¢ 52(3//tt - _ (pZ I+ ifﬁt )(3//tt ©)
ical out of equilibrium dynamics occurring at the dynamical P P

transition coincides with the one induced by quenches from r=rf+ L( fG// fGJ_ ) (4)
the unbroken symmetry phase toward the broken symmetry 0 Pt Pt


http://arxiv.org/abs/1211.2572v1

b) 1200
1000
800

*
“ 600
400
200
0

a) b) o1 T " ; a) 08

0.6
0.01

0.4

0.001
0.2

0.0001
(b) 10 100 1000

t

S NN I (S N ——
3-2-101234°¢E
A

FIG. 1. a) Cartoon of the dynamical transition at the meald-fexel.
From top to bottom: quench above (a), at (t) and below (b) the d
namical transition. bjy;| for a quench within the unbroken symmetry
phase (thick blue line) and at the dynamical transitiom(ted line).

In the second case, decays faster tharyil

FIG. 2. a) Long time averages/ VN andT;, as a function of the
relative distance to the critical poirdt (in %). b) Critical length

& versusA the distance from the dynamical transition. Notice that
despite the dferent definitions below and above the transitigh,
diverges asl/ VA on both sides of the transition, with andd, two
different constants.

where the parallel index has been used forrthe 1 Keldysh
correlation function and the perpendicular one for all ttte o
ers (which are equal by symmetry). The initial condition at
t = 0 is given by the value of the field and the equal time

(t = t = 0) Keldysh correlation function in the ground state
corresponding to the value of the ma'%s See the EPAPS
for more details. Since this problem is not exactly solvable
we integrated numerically the equations for a large value o
N = 1P [15] (note that the average field scales¥N). Al-
though the dynamics of the fielel and correlation&{y, look
superficially similar to a free field evolution, the time dape
dence of the fective mass; has dramaticféects as we shall
show.

Let us first recall the main result of mean-field theory, which

ple, the evolution of the mass for twofflirent quenches: we
find that oscillations are damped andconverges toward an
asymptotic value. Similar results are found for the field. By
studying quenches for several values of the final and initial
mass, we find that the dynamical transition continues to take
Place, as it was already mentioned in contexts related to cos
mology [18]. In the following, we study its critical featuge
Like in mean-field theory, the transition happens for quexsch
within the regime of broken symmetryg <rg— ré(d) <rg
and corresponds to a singularity in the asymptotic value (or
equivalently the time averaged value) of the field. We show
in Fig.[@a¢ and the average mass as a functiomof Be-
corresponds to neglecting all the feedback of correlat@ns low the transitiqn, the field relaxes to a nonzero asymptotic
value andr; vanishes. Above the transition, the field relaxes

the dynamics o in (@) [16]. The motion of the field is qual- »

o T . . to zero, whereas the mass converges to a positive value. The

itatively represented in Fif] 1a, where various quenchés wi _... N . : ;
critical behavior is dferent from the mean-field one, since in-

. - g | . . _
d:girgn(t'rqu:2?‘:1?a?ft%Zrigltgt:i?;b;lgggmﬁzé 3;?]3: is stead of a logarithmic singularity the average field varssie
b ' P q ¢ ~ |AJY* approaching the transition from below (— 0%),

the same. The initial condition instead depends on the vdlue whereas the asymptotic value pivanishes as for A — 0~

. : i
¢in th? ground state befqre the q_uenx:h.,on o)- Above the [19]. After having established the existence of a critiazihp
transition [case (a)] the field oscillates symmetricallgward . - .

let us now study its propertiese. focus on the physical be-

zero_anq, consequentTIy, Is characterized by_"’} zero time AVehavior after quenches right at= 0. We find that the dynam-
ageg = limr_«(1/T) b dte. Below the transition [case (b)] jcs is divided in two stages. First, the field relaxes to zero o
the field oscillates around one minimum of the potential andy timescales smaller than the one characterizing the evolu-
hence, is characterized by a non-zgrén between, atthe dy- (o of |r,|. In the second stag&y, increases exponentially,

namical transition Whencf) = rg(d) [case (1)] the field relaxes -~
. . . i V-p2rit 2 _
exponentially to zerad,e. to the maximum of the potential at asGpooe? V-7, for all momenta below a cufbA? = |rio|.

¢ = 0. The phenomenology of this mean-field transition is T1iS 1eads to a growth of theffective mass:, which even-
identical to the one found in other mean-field modelg [5, 6] tually stabilizes around zero, with a slow, oscillatingeo
For example, the time averaged value of the field has a logd2W decay shown in FigJ1b. This in turn stabilizes the growth
rithmic singularity at the dynamical transitiog: « 1/Inja],  ©f Gpw- At large times, the low momentum modes enter a
whereA is the relative distance to the dynamical critical point; '€Markabléwo-times dynamic scaling regime

f f(d f(d A t
A= [ro - ro( )] /ro( ) () G;)_tt’ = ET(DE, t_’) (6)

Our goal is to determine the impact of fluctuations at first or- t t t

der in /N on this scenario. The numerical analysis of the ?(pt, t_') ~ cos(pt(l— T)) - COS(Pt(l + T)) (7)
evolution eqs{{34) shows that the system always reaches a

steady state at long times [17]. This is the firsffelience  with a dynamical exponert = 1 andA a nonuniversal con-
with respect to mean-field theory, in which oscillationdéasl  stant. The parallel mod&’ follows the same scaling law.
persist even at long times. We show in Hi§j. 1b, as an exanifhe real space counterpart of e§] (7) re@ds ~ %®(|r| -
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FIG. 4. a) Qualitative interpretation of the correlationséal-space
in terms of a common virtual emitter in the paGt,. vanishes in the
dashed areas, where it is out of causal reach of virtual ersitth)
Rescaled two-times correlation functiorG, as a function of /t
fort/t’ = 1.2. All data collapse on a step functiontaecreases, with
finite size éfects on scal& ™.

FIG. 3. a) Equal-time correlation&,q| as a function ofp for

t = {100Q 200Q 4000 in a log-log scale. Notice the divergence of
correlations below a cufbscalep < A ~ 0.2. b) Rescaled equal-
time correlationﬂﬁpn/t2| as a function opt for the same data, y-axis
in log scale. All data collapse on the scaling law (7) drawhlack.

(t-1))O(t+t —Irl). The existence of the scaling variabl&t  dimensions, in terms of a continuum of virtual emitters. sThi
means that the system remains always out of equilibrium: ifs jllustrated in Fig[#a: between the origin and a point at a
is not characterized by any intrinsic time-scale besideadge  distancer, correlationsG, at successive timet$ andt are
after the quench, a phenomenon called ading [20]. nonzero only provided there is a virtual emitter in the past,
The scaling[(B) and.{7) is demonstrated in Fib. 3 for equalsusceptible to reach the two points at tintesandt respec-
time correlations (in Fourier space) and fort t' (in real  tively. Notice that this #ect includes the usual light-cone ef-
space) in Figi4b. An explanation for the form of the scalingfect found in various systems [21,/ 23], but that the two-time
function can be found analyzing quenches ifteg field the-  scaling is really a new feature, due to the critical naturalbf
ory where the final mass g = 0. Indeed, by generalizing the effective excitations. Away from the dynamical transition, we
result of [21] for a sudden quenches irfree field theory we  still observe the light conefiect but dynamic scaling does not
find the following expression for the real space two-times co hold any longer.
relations in the continuum limit (using the notati@ = p?):  We now analyze how the critical behavior emerge approach-
o ing the transition. Note that in this case there are two regim
Gk, = rbfﬂe'_m (cos(up(t —t')) - cosfuy(t + t'))). First, an out of equil_ibrium transient _that pe_rsists forradi
(2n)® w3 scalet’,. In this regime, corresponding to timésuch that
o ) 14, > t > A7l the dynamical scalind{6) remains valid
This is just the Fourier transform of ed.] (6) andl (7). It's im- (on poth sides of the transition) and, hence, the charatteri
portant to realize that, contrary to the free field theoryecas tjme-scale is the age of the system itself and the charatiteri
now the vanishing mass dynamicallygenerated by interac-  scale for the momentum is the inverse of that. In the second
tions. The funcUonaI form of _the decrease Qf the mass at longegime, corresponding to~ %, the system reaches a steady
times can be obtained, plugging the dynamical scaling fdrm ogtate in which the Keldysh correlation function becomegtim
the propagator intd{4). Calling a high momentum physical {ransiation invariant. The relaxation time-scale to tready

cutaff, we find: state,r%,, diverges approaching the dynamical transition. Nu-
f A merically we foundr?, ~ 1/|A[Y2.
Me=ry+— 3G t>1 (8)  Inthe stationary regime the transverse correlation fondtie-
12 )y () o il ; .
N comes time-translation invariant and has a scaling form:
f A A sin(2A)
=T, + dp=—(1-cos(t)) = —=——— v
° fm 2n s Giy = éF (pg*, el ) )
T

where to establish the last identity we have used that the con

stant contributions cancel since at the transition therthiso  the low momentum behavior is critical, e Gy ~ 1/ p?, un-
asymptotically massless. By taking into account sub-tegdi til values of p of the order of 1¢* are reached, accordingly
corrections to the dynamic scaling form of the propagater on F(x,y) — x2f(y) for x — 0. More details on the scaling func-
can show that the mass decays even faster tfiafiL&,122], tion can be found in [19]. Both* and¢* diverge as LJA|Y/?

as indeed we find numerically, see Fiyj. 1b. Note that the mapapproaching the transition [24]. The fact that they are char
ping to a free field theory, valid at large times, is also ustefu  acterized by the same critical exponent is in agreement with
interpret the form of the two-times scaling found previgusl the unit value of the dynamical exponerfiound previously.
One has to use that excitations propagate at fixed speed [2The similar divergence of the de-correlation time in thadie
and that in the limit of a large number of excitations the field state,r*, and the relaxation time toward the steady statg,
become classical. Then, according to the Huygens-Fresneln be understood assuming that that there is no intermedi-
principle, plane wave propagation can be interpreted,nig@eth ate regime. Indeed, if the out of equilibrium evolution stop



0.004F ' ' ] our results obtained at the leading order jiN1

The initial conditions for quenches from the unbroken to the
or 7 broken symmetry phase corresponaic= O (the initial state
“o DT - is symmetric) and negative masses. These are qualitatively
oooer > 1 similar to those of a quench at the dynamical transitionrafte
' the time7 defined above. Indeed, it turns out that the subse-
. . . , guent out of equilibrium dynamics is the same. In partigular
-0.008 -0004 0 0.00: the dfective mass vanishes asymptotically, and the two-time
To correlations scale likd{7). Thus, at least at the leading or

der in /N, the dynamical transition is characterized by the

FIG. 5. Quench phase diagram: long time typical dynamiesr @t  same critical properties of coarsening dynamics. A coreplet

, r . "
quenchry — r, for A = 1. DT: Dynamical transition, OESB: fB uench phase diagram is shown in Fily. 5a, summarizing all
equilibrium symmetry breaking, R: Relaxation on large tinte a d P J f R J

non critical state. Error bars are smaller than item sizee &kact p_OSSIbIe quenchef% = To- When the initial field is nonzero,
position of transition lines depends on non-universaliet, such o < T'o: the system relaxes to a steady state on both_S|des of
as the interaction strengthand the cutff A. the dynamical transition, either to a state of positive fielf
of positive mas$;. The correlations follow the scaling form
(6) on the dynamical transition (DT) and in the whole region
when the typical momentum scale during aging, which is pro{OESB) of quenches from the symmetric phase to the broken
portional to the time elapsed after the quench, reaches thesymmetry phase.

steady state value/g’, then one finds;, ~ 1/ ~ 7*. Note In conclusion, by going beyond mean-field theory and tak-
that the asymptotic value of théective mass; is notdirectly  ing into account fluctuations at the leading order jiN e
related ta¢". The latter is determined by studying the low mo- have shown that the dynamical transition induced by quantum
mentum properties d&;;; whereas the former is relevant only quenches displays bona fide critical properties, in paeticu
for the dependence in— t'. The diverging length is shown diverging time and lenth-scales, dynamical scaling andagi
in Fig.[2b, its divergence is a power laf(A) ~ 1/AY2, as  Moreover we have found that this aging dynamics is identi-
shown in the supplementary materlall[19]. cal to the coarsening dynamics following quantum quenches
A natural question is to what extent Starting from the grounq‘rom the Symmetry broken to the Symmetry unbroken phase_
state is important to induce the dynamical transition, espeCiearly, it would be interesting to extend our analysis taimo
cially in regards to experiments where reaching very low-temes directly relevant for experiments, such as the Bose Hub-
perature is one of the most challenging problem. We have athard model, and to the next leading order contribution in
dressed this issue by considering quantum quenches in whiclyN, where several dlierentequal-timescaling fixed points
for t < O the system is at equilibrium at temperatlr¢but  were found and long-time thermalization, at least for small
still isolated) and the value of the mass is Changed SUddenwuencheS' is guaranteed [27] This would provide a crucial
att = 0" [1S]. We have found exactly the same critical be- test to establish the nature of the dynamical transition. We
havior provided the initial state is still in the broken syetny  envision two diferent possibilities: either the transition per-
phase. Non-univefr%al features, such as the position ofythe dsjsts when dynamical fluctuations inducing quantum noise ar
namical transitiom)' instead are dierent. By increasing the  included: in this case it is likely related to the thermal gha
temperature at flxedo one finds that the value of the critical transition crossed by increasing the Strength of the quench
mass approacheg; they become equal wheh reaches the  or, more interestingly, it becomes a cross-over relatediy a
value corresponding to the thernedjuilibriumphase transi-  namical phenomenon that takes place while the system is tran
tion. For higher temperatures the dynamical transitionsdoesjently trapped in af-equilibrium region of the configuration
not exists any longer. space.
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