Random matrix ensembles for quantum spins
and decoherence

Francois David
IPhT Saclay & CNRS

J. Stat. Mech. (2011) PO1001
+ work In progress

Susy & Random Matrices, IHP 3-5 avril 2012 | In honor of Tom Spencer 0

mercredi 11 avril 12



Plan

|. The model: quantum spin + random matrices
. The evolution functional: exact solution
Evolution of coherent and incoherent states

A W N

. Quantum diffusion regime & initial conditions: to
be or not to be Markovian

5. Extensions: spin clusters

mercredi 11 avril 12



Plan

|. The model: quantum spin + random matrices
. The evolution functional: exact solution
Evolution of coherent and incoherent states

A W N

. Quantum diffusion regime & initial conditions: to
be or not to be Markovian

5. Extensions: spin clusters
Apologies
No disorder .... No SUSY ...

mercredi 11 avril 12



Decoherence
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* Decoherence = disappearance - or rather inobservability - of
the quantum correlations between

» some states of a system s, through its (weak) coupling with
an external system E (heat bath, environment, etc.)

* or more generally a few “individualized” degrees of freedom
(pointer states, semi-classical variables, collective
coordinates, etc.) of a large isolated macroscopic system

(a1]1) + azl2)) @ |@) — a1|y) @ |@7) + az|sy) @ |dh)
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* | shall present a simple toy model
* based on very standard ideas:
e spin and coherent states (Takahashi & Shibata, 1975)
e random matrix hamiltonians (Mello, Pereyra & Kumar, 1988)

* which have been much applied for the spin 1/2 case
(j=1/2, Q-bit, 2 level system)

* but some (relatively) novel aspects
e general spin j (from quantum to classical spin)
e generic interaction (novel random matrix ensembles)
e |t allows to study analytically several aspects decoherence

e In particular the crossover between unitary quantum dynamics and
stochastic diffusion in classical phase space
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| - The model

A quantum SU(2) spin & + an external system &

spin = j dim(Hs) = 25 +1 dim(Heg) = N >

Single spin:

For large spin 7 — oo the spin becomes a classical object
Classical phase space is the 2-sphere

The coherent states behave as quasi classical states

n) , (n-S)n) = jin)
Dynamics of the coupled spin:
H=Hs®1lg+ Hsg +1s ® H¢

The Hamiltonians:
* Slow spin dynamics Hs =0
(no dissipative & thermalisation effects)
« Dynamic of the external system generic He — Hge

5
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The interaction Hamiltonian

The interaction hamiltonian is given by a Gaussian random

matrix ensemble, with the only constraint that the ensemble in
invariant under

SU(2) x U(N)
spin / \ external system

For this, go to Wigner representation of spin operators

(ra|H|s8) = HLS — Wi jiRj=0816 - ® 2
J . .
_ (Lm) _ 20+1 /511
Ars — <T‘A|S> WA T Tsz:j 2] 41 <T ml s Ars

It is enough to take for the Wélﬁm) independent gaussian random

variables with zero mean and variance depending only on / and
with the Hermiticity constraint.

Im I,m mr(—m)
Var (W;B >) — A(l) wihm = (—1)ymWy,

6
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We thus get a matrix ensemble characterized by the variances
A={Al),1=0,1,---25}

NB: The /[=m=0 term represents the H¢s Hamiltonian

With this GU(2)xU(N) ensemble, the 2-points correlator is

Ol_ _ o _________ 0
r u
__ I
HQ%H}%J — 5@5557Drs,tu E _____________________ @

20+1 /9 1
Drovn = Gurin S A= <J

This representation allows to use diagrammatic rules to resum
perturbative expansions in the interaction.

Standard ribbon propagator for the N indices, more complicated
structure for the spin indices, but still planar.
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Il - The evolution functional
separable state — entangled state — mixed state for S
o) @ |po) — |@(1)) , ps(t) = tre(|P(2)){(D(?)]

Evolution functiona
ps(t) = M(t) - ps(0), M(t) = trg (e—itH (- ® pe(0)) eitH)

For simplicity, start from a random state |¥E)

Then the evolution functional is

dx Y  it(a—
t p— e _ Y et y)
M(t) 7421% 5 © G(z,y)
1 [ 1 1
p— —t
Gloy)=gte | ¥ T
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We take the large N limit (large external system) and make the
average over H, assuming

self averaging as usual.

G(z,y) is given by a sum of
planar diagrams of the standard

form (rainbow diagrams) Al
I'| S| \; u
It is useful to start from the single resolvent
1 1
= —t
H(x) A e I

H(x) is given by a sum of planar rainbow diagrams
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These resolvents obey recursion relations

La
uuvy S

A Amm

W X st

Thanks to the SU(2) invariance, the solution of these equations
takes a simple diagonal form in the Wigner representation

Hos(w) = 8rsH(2)

Grs,tu(T,y) %W(ll mhllama) gy = 51,120my +ma0 (—1)™ G (2, y)
with

Hi(e) — 1 - <$ B \/3:2 ~ 4&(0)) Resolvent for a single Wigner

matrix (semi circle law)
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Factorization

The evolution functional for the density matrix of the spin ps(?)
takes a simple diagonal form in the Wigner representation basis

psrs(t) — W™ (1) = MO (1) - W™ (0)

with the kernel given by a universal decoherence function

MO(t) = M(t/70, Z(1))

depending on a rescaled time t' = ¢/7, and a factor Z(/)

o= 1/y/A(0 z(1) = =

7o is the dynamical time scale of the system (more later)

The parameter Z(I) depends on the spin sector considered.
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The Z(I) function

The | dependence of the factor Z(/) depends on the initial variances
of the GU(2) ensemble for the Hamiltonian.

Ay = NS AW @1+ 1)(—1)ZH+ {; z ll’} « 6 symbol
Z(1) = A(1)/A(0) Z(l) € [-1,1]

Z(1) 1Is maximal for [=0
Z(l) takes a scaling form in the large spin limit

Z(1) = A(1)/A(0) = Y (z) with = = /2]

Its small [ behavior is quadratic in /

lo _
YA U+ +1)
1 Dy =

Z() =1—1( Dy =

DG+t o, <
> A@Er+1)
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Example 1: /=0 and 1 channels only

coupling distribution A(l) = {1, 1}
total spin ] = {1, 2,4, 8, 16,32, 64, 128} from blue to red

Z(1)

-1.0
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Example 2: /=0 to 12 channels

coupling distribution A(l)={1,1,1,1,1,1,1,1,1,1,1,1,1}
total spin J = {24, 48,96, 192, 384, 768} from blue to red

Z()

-0.5 -

-1.0
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Example 3: /=0 to 12 but even only channels

coupling distribution A(l)={1,0,1,0,1,0,1,0,1,0,1,0, 1}
total spin J = {24, 48,96, 192, 384, 768} from blue to red

Z()

-0.5 -

-1.0
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Example 4: [=0 to 10 channels, random variances

coupling distribution A(l) = {16.,0.99,0.94,0.44,03,0.94,0.65,0.96,0.64,0.82)
total spin ] = {9, 18, 36, 72, 144,288,576} from blue to red

Z(0)

-1.0

mercredi 11 avril 12



The decoherence function is a generalized hypergeometric function

 fdzr [dy -,y H@)H(y) 1 5
M(t,Z)_jfﬂ g e e H() = (e VAT )

NN o n s vmin 202m 4 D(n+ 1)%(2m)!
= D T () S e 3

m=0 n=0

large time limit:
fast algebraic
decay with ¢

except for Z close
to unity
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The decoherence function is a generalized hypergeometric function

M(t, Z) _ %d_gj dy e—it(:c—y) H(QZ)H(y) 7 H(CI?) _ %(CIZ . /5132 . 4)

2ir | 2im 1 — Z H(z)H(y)

NN o n e 22m 1) (n+ 1)%(2m)!
= T — lm 1 £ 2)

m=0 n=0

large time limit:
fast algebraic
decay with ¢

except for Z close
to unity

~N

J
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Small 1-Z scaling




Small 1-Z scaling
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Small 1-Z scaling M(t',z)=W(") with t"=1t(1-2)
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. . e IS
Small Z scaling function ¥ (t") = o dr /4 — g2 et Vi-1
T J—2

P(t)
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. . e IS
Small Z scaling function ¥ (t") = o dr /4 — g2 et Vi-1
T J—2

P(t)
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Small Z scaling function ~ ¥(t") = | da Vi — g2 et Vg
T J-2

mercredi 11 avril 12



small r and Z=1 behavior M, z)=14+(1—2)P(t)+---
O(t)=1— 1F5(—%;1,2; —4¢?)

d(t)
1.0 -

05
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lll - Evolution of coherent and incoherent states

We can easily study analytically and illustrate the evolution on the
matrix density of the spin, starting from a pure spin state [¥)

) = p =) (| = WE™ - W(7) ZWWYZ

Wigner distribution = function on the sphere

Coherent state

J .
— 2] ' +m _: —m _—1m
7)) = E G+ m()' 87 ) cos(0/2) T sin(0/2)7 e ™ m)
— ! !
20+ 1 [
(1) — _ -~ :

Coherent states are the most localised states on the sphere

21

mercredi 11 avril 12



* Coherent states look like a Gaussian on the unit sphere
with width Ay = 1/+/j
 Random states look like random functions on the unit sphere

coherent state random state

stereographic projection and j=20

22
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The time scales of decoherence dynamics

There are 4 time scales™ To <71 < To K T3 * not correlation times

since algebraic decay

o dynamical time scale for the whole system 79 ~ 1/ || Hsg + H¢ ||

71 decoherence time scale for generic states [ > \/j
7o evolution time scale for coherent states (onset of quantum diffusion)

73 equilibration time for quantum diffusion

For our simple model with Gaussian Hamiltonian ensembles
0

| Hse || .
o=V et Hell 2= T i
1

L 2
ﬁN([S»HSS]) T 1 He < [ =0term
73 J Hse < l# 0 terms

tr(ATA
with the «L. norm» for operators || A H2: t(r(l) )

27
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The ratio 72 > 71 Is large iff the commutator {§, Hgg] IS «small»
[g, Hgg} < §>< Hgg

Coherent states are robust against decoherence and play the role
of pointer states if

A(l)#£0 for [ <ly and j > I3

The dynamics of decoherence depends on the details of the
Hamiltonian ensemble

A={A®0), =0,y

Beyond the decoherence time scale 71 , the dynamics of coherent
states is much simpler and exhibit some universal features.

28

mercredi 11 avril 12



IV - Quantum diffusion and «Markovianity»

For m; < t < 19 only semiclassical coherent states survive
For o < t coherent states start to become mixed states 17>1

This is an effect of quantum diffusion, i.e. the remaining weak effect
of the external system on the coherent states.

The width of the distribution function in phase space is found to
grow like Ag(t) o< V't

This suggests a random v
walk in phase space 015

Classical

/

Quantum

But the probability profile f
can be computed and is "
not a Gaussian ! This is a j
signal that the evolution is s
not a Markovian short :
range process, even at \ \ e
large times! 23 4
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Generic dynamics for £ and initial conditions

The calculation can be extended to a general Hamiltonian for the
external system with a general eigenvalue distribution,
and to a given initial state |¢<) such as an energy eigenstate

e.v. distribution for Hgg e.v. distribution for Hg

initial state energy |E)

30
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The calculations and the explicit solutions for the evolution functional M(t) for
general interactions are then much more complicated (free probability calculus)

Question: What are the conditions for Markovian dynamics and classical
diffusion!?

Answer: Fast dynamics + initial energy eigenstate pe) = |E) for the
external system &
Hg >Huyu = 171> T0

Then the diffusion of coherent states on the sphere is Markovian and the
diffusion coefficient is

/
Daifr = 27T,05( )‘ (®[[S, Hse]| D)
d.o.s. of the external system /
typical size of a matrix element of the commutator
A Fermi Golden Rule-like formula! This is not too surprising, one must be able

to write a master equation for the evolution of the density matrix, and derive
a fluctuation-dissipation theorem.

2

31
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Evolution functional (general case)

pra(t) = tre(e 1 (p(0) @ |a){al)e™),,, = Myus(t, Ea)py(0)

Wigner transform integral representation

n dxy d:EQ e i@ —w2)
MOt B) = 7{ dim 7{ 2 ( EYOW (12) — E)
1
T U=20) + 20 (w1 — 22) /(W (1) — W(22)))
where
oy A AN0) = A/
20) = oo (0)
NN 2 o e Iy 25+ +1 77 I’
A1) = ND() = SO AW @+ -1 {7
C(x) = /dE f:(—E)E W(z) =z — ANC(x)

32
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If the initial state is a quantum superposition of energy eigenstates

ps) =) cilEi)

1

then the quantum diffusion is a randomization of a collection of Markovian

processes (random walks) on the sphere, with weight . = ‘Cz’|2 and
diffusion constant Dgis (E;)

This reflects the decoherence between the energy eigenstates (of the
external system) induced by the coupling with the large spin (mutual

decoherence between states of each large system $ or E induced by the
coupling)

33
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V - Extensions and open problems

|. Take into account the dynamics of the spin,e.g. Hs = ~S-B

* mathematically more difficult (known for low spin j=1/2)

* should lead to solutions for dissipation and relaxation processes in non
Markovian regimes, to quantum fluctuation-dissipation relations, etc.

2. Treat less generic Hamiltonians ensembles: examples

SU(2) x U(N) X Zyy SU(2) x G

(for instance, for interactions with finite energy range)

3. Compute multi-times correlations in non-Markovian regime.
* Some results known in Markovian regimes (quantum stochastic processes)
* The knowledge of the evolution functional M(t) is not enough!

* An interesting planar algebraic structure seems to emerge

tr(p(to)A(t1)A2(t2). .. An(tn))

1 1 L
_ T
g(ZO>ZlaZ27ZN) r(ZO—H®Zl_H® ®ZN_H>

34
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5. Define and study more realistic models.
Example: clusters of quantum spins
(measurement devices, decoherence in closed systems, etc..)

Start from IV spins 1/2, N large

Ferromagnetic coupling + small random multi-spin Hamiltonian

—

2
H=-J Zgz +€Hrandom(§17§27"°SN)

Classification of these ensembles of random Hamiltonians require
understanding of matrix ensembles invariant under the symmetric
(permutation) group S~ and tensor products of its representations

This gives interesting matrix ensembles and interesting dynamics
(requires free probabilitie/random matrix general calculation
techniques)

Work in progress!  Thank you!

35
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