
ar
X

iv
:1

11
1.

29
83

v1
  [

he
p-

th
] 

 1
3 

N
ov

 2
01

1

SMALL REPRESENTATIONS, STRING INSTANTONS,

AND FOURIER MODES OF EISENSTEIN SERIES

MICHAEL B. GREEN, STEPHEN D. MILLER, AND PIERRE VANHOVE

WITH APPENDIX “SPECIAL UNIPOTENT REPRESENTATIONS” BY

DAN CIUBOTARU AND PETER E. TRAPA

Abstract. This paper concerns some novel features of maximal para-
bolic Eisenstein series at certain special values of their analytic parame-
ter, s. These series arise as coefficients in the R4 and ∂4 R4 interactions
in the low energy expansion of the scattering amplitudes in maximally
supersymmetric string theory reduced to D = 10 − d dimensions on a
torus, Td (0 ≤ d ≤ 7). For each d these amplitudes are automorphic
functions on the rank d+ 1 symmetry group Ed+1.

Of particular significance is the orbit content of the Fourier modes of
these series when expanded in three different parabolic subgroups, cor-
responding to certain limits of string theory. This is of interest in the
classification of a variety of instantons that correspond to minimal or
“next-to-minimal” BPS orbits. In the limit of decompactification from
D to D + 1 dimensions many such instantons are related to charged 1

2
-

BPS or 1
4
-BPS black holes with euclidean world-lines wrapped around

the large dimension. In a different limit the instantons give nonpertur-
bative corrections to string perturbation theory, while in a third limit
they describe nonperturbative contributions in eleven-dimensional su-
pergravity.

A proof is given that these three distinct Fourier expansions have cer-
tain vanishing coefficients that are expected from string theory. In par-
ticular, the Eisenstein series for these special values of s have markedly
fewer Fourier coefficients than typical maximal parabolic Eisenstein se-
ries. The corresponding mathematics involves showing that the wave-
front sets of the Eisenstein series in question are supported on only a
limited number of coadjoint nilpotent orbits – just the minimal and triv-
ial orbits in the 1

2
-BPS case, and just the next-to-minimal, minimal and

trivial orbits in the 1
4
-BPS case. Thus as a byproduct we demonstrate

that the next-to-minimal representations occur automorphically for E6,
E7, and E8, and hence the first two nontrivial low energy coefficients in
scattering amplitudes can be thought of as exotic θ-functions for these
groups. The proof includes an appendix by Dan Ciubotaru and Peter
E. Trapa which calculates wavefront sets for these and other special
unipotent representations.
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1. Introduction

String theory is expected to be invariant under a very large set of dis-
crete symmetries (“dualities”), associated with arithmetic subgroups of a
variety of reductive Lie groups. For example, maximally supersymmet-
ric string theory (type II superstring theory), compactified on a d-torus
to D = 10−d space-time dimensions, is strongly conjectured to be invariant
under Ed+1(Z), the integral points of the rank d + 1 split real form1 of one
of the groups in the sequence E8, E7, E6, SO(5, 5), SL(5), SL(3) × SL(2),
SL(2)× R

+, SL(2) listed in table 1.

α2

α4α1 α3

· · ·

αd+1

Figure 1. The Dynkin diagram for the rank d+1 Lie group
Ed+1, which defines the symmetry group for D = 10− d.

1The split real forms are conventionally denoted En(n), but in this paper we will trun-

cate this to En since no other forms of En are needed.
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These symmetries severely constrain the dependence of string scattering
amplitudes on the symmetric space coordinates (or “moduli”), φd+1, which
parameterise the coset Ed+1/Kd+1, where the stabiliser Kd+1 is the max-
imal compact subgroup of Ed+1. The list of these symmetry2 groups and
stabilisers is given in table 1. These moduli are scalar fields that are in-
terpreted as coupling constants in string theory. A general consequence of
the dualities is that scattering amplitudes are functions of φd+1 that must
transform as automorphic functions under the appropriate duality group
Ed+1(Z). It is difficult to determine the precise restrictions these dualities
impose on general amplitudes, but certain exact properties have been ob-
tained in the case of the four-graviton interactions, where a considerable
amount of information has been obtained for the first three terms in the low
energy (or “derivative”) expansion of the four graviton scattering amplitude
in [1] (and references cited therein). These are described by terms in the
effective action of the form

E(D)
(0,0)(φd+1)R4 , E(D)

(1,0)(φd+1) ∂
4 R4 , E(D)

(0,1)(φd+1) ∂
6 R4 , (1.1)

where the symbol R4 indicates a contraction of four powers of the Riemann

tensor with a standard rank 16 tensor. The coefficient functions, E(D)
(p,q)(φd+1),

are automorphic functions that are the main focus of our interests (the
notation is taken from [1, 2] and will be reviewed later in (2.3)). More
precisely we will focus on the three terms shown in (1.1) that are protected
by supersymmetry, which accounts for the relatively simple form of their
coefficients.

The coefficients of the first two terms satisfy Laplace eigenvalue equations
(2.6-2.7) and are subject to specific boundary conditions that are required
for consistency with string perturbation theory and M-theory. The solutions
to these equations are particular maximal parabolic Eisenstein series that
were studied in [2] (for cases with rank ≤ 5) and [1] (for the E6, E7 and
E8 cases), and will be reviewed in the next section. The required bound-
ary conditions in each limit amount to conditions on the constant terms in
the expansion of these series in three limits associated with particular max-
imal parabolic subgroups of relevance to the string theory analysis. Such
subgroups have the form Pα = Lα Uα, where α labels a simple root, Uα is
the unipotent radical and Lα = GL(1) ×Mα is the Levi factor. The three
subgroups of relevance here have Levi factors Lα1 = GL(1) × SO(d, d),
Lα2 = GL(1) × SL(d + 1), and Lαd+1

= GL(1) × Ed, respectively. In each
case the GL(1) parameter, r, can be thought of as measuring the distance
to the cusp3, as will be discussed in the next section. A key feature of the
boundary conditions is that they require these constant terms to have very

2The continuous groups, Ed+1(R), will be referred to as symmetry groups while the
discrete arithmetic subgroups, Ed+1(Z), will be referred to as duality groups.

3Each of the groups we are considering has a single cusp. The various limits correspond
to different ways of approaching this cusp.
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D Ed+1(R) Kd+1 Ed+1(Z)
10A R

+ 1 1
10B SL(2,R) SO(2) SL(2,Z)
9 SL(2,R)× R

+ SO(2) SL(2,Z)
8 SL(3,R) × SL(2,R) SO(3)× SO(2) SL(3,Z)× SL(2,Z)
7 SL(5,R) SO(5) SL(5,Z)
6 SO(5, 5,R) SO(5)× SO(5) SO(5, 5,Z)
5 E6(R) USp(8)/Z2 E6(Z)
4 E7(R) SU(8)/Z2 E7(Z)
3 E8(R) Spin(16)/Z2 E8(Z)
Table 1. The symmetry groups of maximal supergravity in
D = 10 − d ≤ 10 dimensions. The group Ed+1(R) is a split
real form of rank d+1, andKd+1 is its maximal compact sub-
group. In string theory these groups are broken to the dis-
crete subgroups, Ed+1(Z) as indicated in the last column [3].
The split real form Ed+1(R) is determined among possible
covers or quotients by its maximal compact subgroup Kd+1,
which shares the same fundamental group. The terminology
10A and 10B in the first column refers to the two possible
superstring theories (types IIA and IIB) in D = 10 dimen-
sions.

few components with distinct powers of the parameter r. These conditions
pick out the unique solutions to the Laplace equations, which are,4

E(10−d)
(0,0) = 2 ζ(3)E

Ed+1

α1;
3
2

, (1.2)

for the groups E1, E4, E5, E6, E7, and E8 [1, 2] and

E(10−d)
(1,0)

= ζ(5)E
Ed+1

α1;
5
2

, (1.3)

for the groups E1, E6, E7, and E8 [1]. Here EG
β;s is the maximal parabolic

Eisenstein series for a parabolic subgroup Pβ ⊂ G that is specified by the
node β of the Dynkin diagram (see (2.12) for a precise definition). This
generalizes results for the SL(2,Z) case (relevant to the ten-dimensional type

IIB string theory). The functions E(10−d)
(0,0) and E(10−d)

(1,0) in the intermediate

rank cases involve linear combinations of Eisenstein series [2], which will be

discussed later in section 4. The third coefficient function, E(10−d)
(0,1) satisfies

an interesting inhomogeneous Laplace equation and is not an Eisenstein
series [1, 5]. Its constant terms in the three limits under consideration were

4In [1,2,4] the series were indexed by the Dynkin label [1 0 · · · 0] of the root α1. In the
present paper, we will index the series according the labeling of the simple root in figure 1.
We have as well changed the normalisations of the Eisenstein series, since our series there

was instead E
Ed+1

[10···0];s = 2ζ(2s)E
Ed+1
α1;s .
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also analysed in the earlier references but it will not be considered in this
paper, which is entirely concerned with Eisenstein series.

In other words, our previous work showed that the particular Eisenstein
series in (1.2) and (1.3) have strikingly sparse constant terms as required to
correctly describe the coefficients of the 1

2 -BPS and 1
4 -BPS interactions. But

the string theory boundary conditions also determine the support of the non-
zero Fourier coefficients in each of the three limits under consideration. In
string theory, the non-zero Fourier modes describe instanton contributions
to the amplitude. These are classified in BPS orbits obtained by acting on a
representative instanton configuration with the appropriate Levi subgroup.
A given instanton configuration generally depends on only a subset of the
parameters of the Levi group, Lα = GL(1) × Mα, so that a given orbit
depends on the subset of the moduli that live in a coset space of the form
Mα/H

(i), where H(i) ⊂ Mα denotes the stabiliser of the i-th orbit. The
dimension of the i-th orbit is the dimension of this coset space.

In particular, the coefficients in the s = 3/2 cases covered by (1.2) must be
localized within the smallest possible non-trivial orbits (“minimal orbits”)
of the Levi actions, as required by the 1

2 -BPS condition. Furthermore, in
the s = 5/2 cases covered by (1.3) the coefficients must be localized within
the “next-to-minimal” (NTM) orbits (see section 2.2).

This provides motivation from string theory for the following

String motivated vanishing of Fourier modes of Eisenstein series:

(i) The non-zero Fourier coefficients of E
Ed+1

α1;
3
2

(d = 5, 6, 7) in any of

the three parabolic subgroups of relevance are localized within the
smallest possible non-trivial orbits (“minimal orbits”) of the action
of the Levi subgroup associated with that parabolic, as required by the
1
2 -BPS condition.

(ii) The non-zero Fourier coefficients of E
Ed+1

α1;
5
2

(d = 5, 6, 7) are localized

within “next-to-minimal” (NTM) orbits, as required by the 1
4-BPS

condition.

While the special properties of the Fourier coefficients of the s = 3/2 series
is implied by the results in [6], the corresponding properties for the NTM
orbits at s = 5/2 is novel. One of the main mathematical contributions of
this paper is to give a rigorous proof of these statements using techniques
from representation theory, by connecting these automorphic forms to small
representations of the split real groups Ed+1. The Fourier coefficients in
the intermediate rank cases not covered by (1.2) and (1.3) satisfy analogous
properties as we will determine by explicit calculation later in this paper.

2. Overview of scattering amplitudes and Eisenstein series

Since this paper covers topics of interest in both string theory and math-
ematics, this section will present a brief description of the background to
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these topics from both points of view followed by a detailed outline of the
rest of the paper.

2.1. String theory Background. We are concerned with exact (i.e., non-
perturbative) properties of the low energy expansion of the four-graviton
scattering amplitude in dimension D = 10 − d, which is a function of the
moduli, φd+1, as well as of the particle momenta kr (r = 1, . . . , 4) that are

null Lorentz D-vectors (k2r = kr · kr = 0) that are conserved (
∑4

r=1 kr =
0). They arise in the invariant combinations (Mandelstam invariants), s =
−(k1 + k2)

2, t = −(k1 + k4)
2 and u = −(k1 + k3)

2 that satisfy s+ t+ u = 0.
At low orders in the low-energy expansion the amplitude can usefully be
separated into analytic and nonanalytic parts

AD(s, t, u) = Aanalytic
D (s, t, u) + Anonanalytic

D (s, t, u) (2.1)

(where the dependence on φd+1 has been suppressed). The analytic part of
the amplitude has the form

Aanalytic
D (s, t, u) = TD(s, t, u) ℓ

6
D R4 , (2.2)

where ℓD denotes the D-dimensional Planck length scale and the factor
R4 represents the particular contraction of four Riemann curvature tensors,
tr(R4) − (trR2)2/4, that is fixed by maximal supersymmetry in a stan-
dard fashion [7]. The scalar function TD has the expansion (in the Einstein
frame5)

TD(s, t, u) = E(0,−1) σ
−1
3 +

∑

p,q≥0

E(D)
(p,q) σ

p
2 σ

q
3 (2.3)

= 3σ−1
3 + E(D)

(0,0) + E(D)
(1,0) σ2 + E(D)

(0,1) σ3 + · · · .
Symmetry under interchange of the four gravitons implies that the Man-
delstam invariants only appear in the combinations σ2 and σ3 with σn =
(sn+ tn+un) (ℓ2D/4)

n. Since s, t, u are quadratic in momenta the successive
terms in the expansion are of order n = 2p + 3q in powers of (momenta)2.
The degeneracy, dn = ⌊(n + 2)/2⌋ − ⌊(n + 2)/3⌋, of terms with power n is
given by the generating function6,

1

(1− x2)(1− x3)
=

∞
∑

n=0

dn x
n , (2.4)

so d0 = 1, d1 = 0 and dn = 1 for 2 ≤ n ≤ 5.

The coefficient functions in (2.3), E(D)
(p,q)(φd+1), are automorphic functions

of the moduli φd+1 appropriate to compactification on Td. The first term
on the right-hand side of (2.3) coefficient is identified with the tree-level

5The Einstein frame is the frame in which lengths are measured in Planck units rather
than string units, and is useful for discussing dualities.

6This is the same as the well-known dimension formula for the space of weight 2n
holomorphic modular forms for SL(2,Z), which are expressed as polynomials in the (holo-
morphic) Eisenstein series G4 and G6.
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contribution of classical supergravity and has a constant coefficient given

by E(D)
(0,−1)(φd+1) = 3. The terms of higher order in s, t, u represent stringy

modifications of supergravity, which depend on the moduli in a manner
consistent with duality invariance. This expansion is presented in the Ein-
stein frame so the curvature, R, is invariant under Ed+1(Z) transformations,
whereas it transforms nontrivially in the string frame since it is nonconstant
in φd+1 ∈ Ed+1(R). Apart from the first term, the power series expansion
in (2.3) translates into a sum of local interactions in the effective action.
The first two of these have the form

ℓ8−D
D

∫

dDx
√

−G(D) E(D)
(0,0) R4 , ℓ12−D

D

∫

dDx
√

−G(D) E(D)
(1,0)∂

4R4 . (2.5)

The three interactions with coefficient functions E(D)
(0,0), E(D)

(1,0) and E(D)
(0,1)

displayed in the second equality in (2.3) are specially simple since they are
protected by supersymmetry from renormalisation beyond a given order in
perturbation theory. In particular, the R4 interaction breaks 16 of the 32
supersymmetries of the type II theories and is thus 1

2 -BPS, while the ∂4R4

interaction breaks 24 supersymmetries and is 1
4 -BPS; likewise, the ∂6R4

interaction breaks 28 supersymmetries and is 1
8 -BPS. The next interaction

is the p = 2, q = 0 term in (2.3), E(D)
(2,0) ∂

8R4. Naively this interaction

breaks all supersymmetries, in which case it is expected to be much more
complicated, but it would be of interest to discover if supersymmetry does
constrain this interaction.7

It was argued in [2], based on consistency under various dualities, that

the coefficients E(D)
(0,0), E

(D)
(1,0) and E(D)

(0,1) satisfy the equations
(

∆(D) − 3(11 −D)(D − 8)

D − 2

)

E(D)
(0,0) = 6π δD,8 , (2.6)

(

∆(D) − 5(12 −D)(D − 7)

D − 2

)

E(D)
(1,0) = 40 ζ(2) δD,7 , (2.7)

(

∆(D) − 6(14 −D)(D − 6)

D − 2

)

E(D)
(0,1) = −

(

E(D)
(0,0)

)2
+ 120ζ(3)δD,6 , (2.8)

where ∆(D) is the Laplace operator on the symmetric space E11−D/K11−D.
The discrete Kronecker δ contributions on the right-hand-side of these equa-
tions arise from anomalous behaviour and can be related to the logarithmic
ultraviolet divergences of loop amplitudes in maximally supersymmetric su-
pergravity [4].

Recall that automorphic forms for SL(2,Z) have Fourier expansions (i.e.,
q-expansions) in their cusp. For higher rank groups, automorphic forms have
Fourier expansions coming from any one of several maximal parabolic sub-
groups Pαr , where the simple root αr corresponds to node r in the Dynkin

7A discussion of the properties of E
(9)
(2,0) in nine dimensions can be found in [8, sec-

tion 4.1.1].
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diagram for Ed+1 in figure 1. We are particularly interested in this Fourier
expansion for r = 1, 2, or d+ 1, because each of these expansions has a dis-
tinct string theory interpretation in terms of the contributions of instantons
in the limit in which a special combination of moduli degenerate. These
three limits are:

(i) The decompactification limit in which one circular dimension, rd,
becomes large. In this case the amplitude reduces to the D + 1-
dimensional case with D = 10 − d. The BPS instantons of the
D = (10 − d)-dimensional theory are classified by orbits of the Levi
subgroup GL(1) × Ed. Apart from one exception, these instantons
can be described in terms of the wrapping of the world-lines of black
hole states in the decompactified D + 1-dimensional theory around
the large circular dimension (the exception will be described later).
This limit is associated with the parabolic subgroup Pαd+1

.
(ii) The string perturbation theory limit of small string coupling constant,

in which the string coupling constant,
√
yD, is small, and string

perturbation theory amplitudes are reproduced. The instantons are
exponentially suppressed contributions that are classified by orbits
of the Levi subgroup GL(1)×SO(d, d). This limit is associated with
the parabolic subgroup Pα1 .

(iii) The M -theory limit in which the M -theory torus has large volume
Vd+1, and the semi-classical approximation to eleven-dimensional su-
pergravity is valid. This involves the compactification of M-theory
from 11 dimensions on the (d + 1)-dimensional M -theory torus,
where the instantons are classified by orbits of the Levi subgroup
GL(1) × SL(d+ 1). This is associated with the parabolic subgroup
Pα2 .

The special features of the constant terms that lead to consistency of all
perturbative properties in these three limits appear to be highly nontrivial,
and indicate particularly special mathematical properties of the Eisenstein
series that define the coefficients of the R4 and ∂4R4 interactions. The
solutions to equations (2.6-2.8) satisfying requisite boundary conditions on
the constant terms (zero modes) in the Fourier expansions in the limits (i),
(ii), and (iii) were obtained for 7 ≤ D ≤ 10 in [2], and for 3 ≤ D ≤ 6 in [1].
In particular, (1.2) and (1.3) were found to be solutions for the cases with

duality groups E6, E7 and E8. Whereas the coefficient functions E(D)
(0,0) and

E(D)
(1,0) are given in terms of Eisenstein series that satisfy Laplace eigenvalue

equations on the moduli space, the coefficient E(D)
(0,1), of the

1
8 -BPS interaction

∂6R4, is an automorphic function that satisfies an inhomogeneous Laplace
equation. Various properties of its constant terms in these three limits were
also determined in [1, 2].

Whereas the earlier work concerned the zero Fourier modes of the coeffi-
cient functions, in this paper we are concerned with the non-zero modes in
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the Fourier expansion in any of the three limits listed above. These Fourier
coefficients should have the exponentially suppressed form that is character-
istic of instanton contributions. In more precise terms, the angular variables
involved in the Fourier expansion with respect to a maximal parabolic sub-
group Pα come from the unipotent radical Uα of Pα, and are conjugate to
integers that define the instanton “charge lattice”. Asymptotically close to
a cusp a given Fourier coefficient is expected to have an exponential factor
of exp (−S(p)), where S(p) is the action for an instanton of a given charge,
as will be defined in section 3.1. In the case of fractional BPS instantons
the leading asymptotic behaviour in the cusp is the real part of S(p), and is
related to the charge (B.4), which enters the phase of the mode.

In each limit the 1
2 -BPS orbits are minimal orbits (i.e., smallest nontriv-

ial orbits) while the 1
4 -BPS orbits are “next-to-minimal” (NTM) orbits (i.e.,

smallest nonminimal or nontrivial orbits). The next largest are 1
8 -BPS or-

bits, which only arise for groups of sufficiently high rank; in the E8 case
there is a further 1

8 -BPS orbit beyond that. These come up again as “char-
acter variety orbits”, a major consideration in sections 5 and 6. They are
closely related to – but not to be confused with – the minimal and next-to-
minimal coadjoint nilpotent orbits that are attached to the Eisenstein series

that arise in the solutions for the coefficients, E(D)
(0,0) and E(D)

(1,0) in (1.2) and

(1.3), respectively.
Note on conventions. Following [1, Section 2.4], the parameter asso-

ciated with the GL(1) factor that parameterises the approach to any cusp
will be called r and is normalised in a mathematically convenient manner.
It translates into distinct physical parameters in each of the three limits
described above, that correspond to parabolic subgroups defined at nodes
d + 1, 1 and 2, respectively, of the Dynkin diagram in fig. 1. These are
summarised as follows:

Limit (i) r2 = rd/ℓ11−d , rd = radius of decompactifying circle ,

Limit (ii) r−2 =
√
yD = string coupling constant ,

Limit (iii) r
2(1+d)

3 = Vd+1/ℓ
d+1
11 , Vd+1 = vol. of M− theory torus .

(2.9)

The D-dimensional string coupling constant is defined by yD = g2s ℓ
d
s/Vd,

where D = 10− d and gs is either the D = 10 IIA string coupling constant,
gA, or the IIB string coupling constant, gB , and Vd is the volume of Td in
string units.8 The Planck length scales in different dimensions are related

8We will use the symbol Td to denote the string theory d-torus while using the symbol
T d+1 for the corresponding M-theory (d+1)-torus expressed in eleven-dimensional units.
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to each other and to the string scale, ℓs, by

(ℓA10)
8 = ℓ8s g

2
A , (ℓB10)

8 = ℓ8s g
2
B , ℓ11 = g

1
3
A ℓs ,

(ℓD)
D−2 = ℓD−2

s yD = (ℓD+1)
D−1 1

rd
, for D ≤ 8 (d ≥ 2)

ℓ79 = ℓ7s y9 = (ℓA10)
9 1

rA
= (ℓB10)

9 1

rB
. (2.10)

(note the two distinct Planck lengths in the ten-dimensional case and the
distinction between r1 = rA and r1 = rB in the two type II theories).

2.2. Mathematics background. Let us begin by recalling some notions
from the theory of automorphic forms that are relevant to the expansion
(2.3), specifically from [1, Section 2]. Let G denote the split real Lie group
En, n ≤ 8, defined in table 1. For convenience we fix (as we may) a Chevalley
basis of the Lie algebra g of G, and a choice of positive roots Φ+ for its root
system Φ. Letting Σ ⊂ Φ+ denote the positive simple roots, the Lie algebra
g has the triangular decomposition

g = n ⊕ a ⊕ n− , (2.11)

where n (respectively, n−) is spanned by the Chevalley basis root vectors
Xα for positive roots α ∈ Φ+ (respectively, α ∈ Φ−), and a is spanned by
their commutators Hα = [Xα,X−α]. Let N ⊂ G be the exponential of n; it
is a maximal unipotent subgroup. Likewise A = exp(a) is a maximal torus,
and is isomorphic to rank(G) copies of R+. The group G has an Iwasawa
decomposition G = NAK, whereK = Kn is the maximal compact subgroup
of G listed in table 1. There thus exists a logarithm map H : A → a which
is inverse to the exponential, and which extends to all g ∈ G via its value
on the A-factor of the Iwasawa decomposition of g.

The standard maximal parabolic subgroups of G are in bijective corre-
spondence with the positive simple roots of G. Given such a root β and
a standard maximal parabolic Pβ , the maximal parabolic Eisenstein series
induced from the constant function on Pβ is defined by the sum

EG
β;s :=

∑

γ ∈ (Pβ∩G(Z))\G(Z)

e2 s ωβ(H(γg)) , Re s ≫ 0 , (2.12)

where ωβ, the fundamental weight associated to β, is defined by the con-
dition 〈ωβ, α〉 = δα,β . These series generalize the classical nonholomorphic
Eisenstein series (the case of G = SL(2)), and more generally the Epstein
Zeta functions (the case of G = SL(n) and β either the first or last node
of the An−1 Dynkin diagram). Because of this special case, we often refer
to the β = α1 series (in the numbering of figure 1) as the Epstein series
for a particular group, even if it is not SL(n). These series are the main
mathematical objects of this paper.
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As shorthand, we often denote a root by its “Dynkin label”, that is, string-
ing together its coefficients when written as a linear combination of the posi-
tive simple roots Σ. Thus α2+α3+2α4+α5 could be denoted 0112100 · · · or
[0112100 · · · ], with brackets sometimes added for clarity. Note that Eisen-
stein series of the type (2.12) are parameterized by a single complex variable,
s, whereas the more general minimal parabolic series in (5.3) has rank(G)
complex parameters.

The series (2.12) is initially absolutely convergent for Re s large, and
has a meromorphic continuation to the entire complex plane as part of a
more general analytic continuation of Eisenstein series due to Langlands.
Its special value at s = 0 is the constant function identically equal to one.
This corresponds to the trivial representation of G(R), and clearly has no
nontrivial Fourier coefficients. The main result of the following sections
extends this phenomenon to other special values of s which are connected
to small representations of real groups (see sections 2.2.2 and 5), and which
have very few nontrivial Fourier coefficients. This will be demonstrated to
be in complete agreement with a number of string theoretic predictions, in
particular the one stated in section 2.2.2.

The main results of [1] were the identifications (1.2) and (1.3) of E(D)
(0,0)

and E(D)
(1,0), respectively, in terms of special values of the Epstein series, for

3 ≤ D = 10 − d ≤ 5. The more general automorphic function E(D)
(0,1), which

satisfies (2.8) was also analysed in [1], but will not be relevant in this pa-
per. The case of SO(5, 5) was also covered in [1], but is somewhat more
intricate; it will be explained separately. We will show in a precise sense
that these Epstein series at the special values at s = 0, 3/2, and 5/2 corre-
spond, respectively, to the three smallest types of representations of G (see
theorem 2.13) below.

2.2.1. Coadjoint nilpotent orbits. Let g be the Lie algebra of a matrix Lie
group G, whether over R or C. An element of g is nilpotent if it is nilpo-
tent as a matrix, i.e., some power of it is zero. The group G acts on its
Lie algebra g by the adjoint action Ad(g)X = gXg−1, and hence dually
on linear functionals λ : g → C through the coadjoint action given by
(Coad(g)λ)(X) = λ(Ad(g)X) = λ(gXg−1). Actually g is isomorphic to its
space of linear functionals via the Killing form, and so the coadjoint action
is isomorphic to the adjoint action. Following common usage, we thus refer
to the orbits of the adjoint action of G on g as coadjoint nilpotent orbits
(even though they are, technically speaking, adjoint orbits).

The book [9] is a standard reference for the general theory of coadjoint
nilpotent orbits. When G is a real or complex semisimple Lie group there are
a finite number of orbits, each of which is even dimensional. The smallest of
these is the trivial orbit, {0}. On the other hand, there is always an open,
dense orbit, usually refereed to as the principal or regular orbit. Another
orbit which will be important for us is the minimal orbit, the smallest orbit
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Group Orbit Dimension Basepoint
SL(2) 0 0

2 X1

0 0
SL(3)× SL(2) 2 an SL(2) root

4 an SL(3) root
0 0

SL(5) 8 X1111

12 X1110 +X0111

0 0
SO(5, 5) 14 X12211

20 X01111 +X11211

0 0
E6 22 X122321

32 X111221 +X112211

40 X011221 +X111210 +X112211

0 0
E7 34 X2234321

52 X1123321 +X1223221

54 X0112210 +X1112221 +X1122110

0 0
58 X23465432

E8 92 X23354321 +X22454321

112 X22343221 +X12343321 +X12244321

114 X11232221 +X12233211

Table 2. Basepoints of the smallest coadjoint nilpotent or-
bits for the complexified En groups. The notation Xα de-
notes a root vector for the simple root α, which are written
here in terms of the Dynkin labels described in the text.
The SL(3)×SL(2) case comes from the E3 Dynkin diagram,
which is the E8 Dynkin diagram from figure 1 after the re-
moval of nodes 4, 5, 6, 7, and 8. It is a product of two
simple Lie algebras, and has a different orbit structure than
the others; its smallest orbits come from the respective fac-
tors.

aside from the trivial orbit. Since our groups G are all simply laced, it can
be described as the orbit of any root vector Xα, for any root α.

Tables 2 gives a list of some orbits that are important to us, along with
their basepoints.
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2.2.2. Automorphic representations. The right translates of an automorphic
function by the group G span a vector space on which G acts. For a suit-
able basis of square-integrable automorphic forms and most Eisenstein se-
ries, this action furnishes an irreducible representation. As we discussed
in [1, Section 2], the Eisenstein series are specializations of the larger “min-
imal parabolic Eisenstein series” defined in (5.3). The automorphic repre-
sentations connected to the latter are principal series representations, an
identification which can be made by comparing the infinitesimal characters
(that is, the action of all G-invariant differential operators). They are also
right-K-invariant, and thus by definition their special values are spherical
subrepresentations of these principal series representations.

An irreducible representation is related to coadjoint nilpotent orbits through
its wavefront set, also known as the “associated variety” of its “annihilator
ideal”. It is a theorem of Borho-Brylinski [10] and Joseph [11] that this set
is always the closure of a unique coadjoint nilpotent orbit. Thus a coadjoint
nilpotent orbit is attached to every irreducible representation.

Trivial Orbit

Minimal orbit

NTM Orbit E
G
α1;5/2

(Larger orbits)

E
G
α1;3/2

E
G
α1;0

Figure 2. Schematic of small representations and Eisen-
stein special values

Part (iii) of the following theorem is the main mathematical result of this
paper, in particular the cases of E7 and E8. Part (i) is trivial, while part (ii)
is contained in results of Ginzburg-Rallis-Soudry [6], following earlier work
of Kazhdan-Savin [12].

Theorem 2.13. Let G one of the groups E6, E7, or E8 from table 1. Then

(i) The wavefront set of the automorphic representation attached to the
s = 0 Epstein series is the trivial orbit.

(ii) The wavefront set of the automorphic representation attached to the
s = 3/2 Epstein series is the closure of the minimal orbit.
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(iii) The wavefront set of the automorphic representation attached to the
s = 5/2 Epstein series is the closure of the next-to-minimal (NTM)
orbit.

The closure of the minimal orbit is simply the union of the minimal orbit and
the trivial orbit, while the closure of the next-to-minimal orbit is the union
of itself, the minimal orbit, and the trivial orbit. Theorem 2.13 will be used
in proving theorem 6.1, which is the mathematical proof of the statement
concerning vanishing Fourier modes motivated by string considerations at
the end of section 1.

2.3. Outline of paper. This paper combines information deduced from
string theory with results in number theory involving properties of Eisen-
stein series, which we hope will be of interest to both string theorists and
number theorists. In particular, each subject is used to make nontrivial
statements about the other). Sections 3–4 and appendices B–E are framed
in string theory language and provide information concerning the structure
expected of the non-zero Fourier modes based on instanton contributions in
superstring theory and supergravity. The subsequent sections provide the
mathematical foundations of these observations and generalize them signif-
icantly.

Section 3 presents the classification of the expected orbits of fractional
BPS instantons in the three limits (i), (ii), and (iii) considered in section 2.1,
from the point of view of string theory. The BPS constraints imply that
these instantons span particular small orbits generated by the action of the
Levi subgroup acting on the unipotent radical associated with the parabolic
subgroup appropriate to a given limit. These orbits can be thus thought of
as character variety orbits, which are discussed at the beginning of section
4.

In the rest of section 4 and appendix E we will consider explicit low-rank
examples (with rank d + 1 ≤ 5) of the Fourier expansions of the functions

E(10−d)
(0,0) and E(10−d)

(1,0) in the parabolic subgroups corresponding to each limit.

In the cases with d + 1 ≤ 4 (D ≥ 7), the definition (2.12) implies that the
coefficient functions are combinations of SL(n) Eisenstein series that can
easily be expressed in terms of elementary lattice sums. In these cases it
is straightforward to use standard Poisson summation techniques to exhibit
the precise form of their Fourier modes. In particular, the non-zero Fourier

modes of E(10−d)
(0,0) = 2 ζ(3)E

Ed+1

α1;3/2
will be determined in the three limits

under consideration for the rank d+1 ≤ 4 cases. These modes are localized
within the minimal character variety orbits that contain precisely the 1

2 -
BPS instantons that are anticipated in section 3. We will see, in particular,
that in the decompactification limit (i) the precise form for each of these
coefficients matches in detail with the expression determined directly from
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a quantum mechanical treatment of D-particle world-lines wrapped around
a S1 ⊂ Td.9

Explicit examples of the Fourier expansion of the coefficient of the 1
4 -

BPS interaction, E(D)
(1,0), will also be presented in section 4 and appendix E.

This function is equal to ζ(5)E
SL(2)
α1;5/2

for D = 10, but involves particular

combinations of E
Ed+1

α1;5/2
and other Eisenstein series for 6 ≤ D ≤ 9. In order

to give a complete analysis of the contributions to E(7)
(1,0), we will make use

of a representation of E
SL(5)
α4;5/2

that expresses it as the Mellin transform of

the SO(5, 5) Eisenstein series E
SO(5,5)
α1;3/2

. As we are not aware of a reference

for this representation in the literature, we present it in proposition 4.1.
The resulting Fourier expansions contain contributions localized within the
minimal (12 -BPS) character variety orbit and the next-to-minimal (14 -BPS)
character variety orbit, comprising precisely the instantons anticipated in
section 3.

The highest rank case that is amenable to classical lattice summation
techniques is the D = 6 case (with duality group SO(5, 5,Z)), where we have

made use of an integral representation of the series E
SO(5,5)
α1;s . The coefficient

E(6)
(0,0) involves only this series at s = 3/2, and its non-zero Fourier modes are

supported within the minimal (12 -BPS) character variety orbits in any of the

three limits. On the other hand the next coefficient, E(6)
(1,0)

, involves the sum

of the regularized values of Ê
SO(5,5)
α1;5/2

and Ê
SO(5,5)
α5;3

. Although we have not

computed the Fourier expansion of the second series, it is still possible to
show that the non-zero Fourier coefficients of this sum are supported within
the minimal and next-to-minimal (i.e., 1

2 - and 1
4 -BPS) character variety

orbits in each of the three limits. This will be discussed at the end of
section 4.

Sections 5, 6, and 7 are primarily concerned with the exceptional group
cases, which correspond to d ≥ 5 and D ≤ 5. Since classical lattice summa-
tion techniques are difficult to apply in this context, we instead use results
from representation theory to show a large number of the Fourier coefficients
vanish. Indeed, avoiding explicit computations here is one of the main nov-
elties of the paper. Section 5 discusses aspects connected to representation
theory and contains a proof of theorem (2.13), which makes important use of
appendix A by Ciubotaru and Trapa on special unipotent representations.

Section 6 then applies these results to Fourier expansions, using a de-
tailed analysis of character variety orbits. We will see that the spectrum
of instantons that are expected to vanish on the basis of string theory is
precisely reproduced by the Eisenstein series in (1.2), (1.3). For the s = 3/2

9The term D-particle refers to any point-like BPS particle state obtained by completely
wrapping the spatial directions of Dp-brane states.
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case (the 1
2 -BPS case) we will reproduce the statements in [6, 13, 14] that

only the minimal orbit and the trivial orbit contribute to the Fourier expan-
sions of the Eisenstein series. However, we will find that this generalizes for
s = 5/2 (the 1

4 -BPS case) to the statement that no orbits larger than the
next-to-minimal (NTM) orbit can contribute. The analysis in [1] showed
the striking fact that the particular Eisenstein series in (1.2) and (1.3) have
constant terms with very few powers of r (defined in 2.9) in their expan-
sion around any of the three limits under consideration. The analysis in
this paper demonstrates analogous special features of the orbit structure of
the non-zero modes. Theorem 6.1 gives a precise statement about which
Fourier modes automatically vanish because of representation theoretic rea-
sons. This set of vanishing coefficients is exactly those that are argued to
vanish for string theory reasons in section 3.

It is important to point out that our methods show the vanishing of a pre-
cise set of Fourier coefficients, but typically do not show the nonvanishing of
the remaining Fourier coefficients. However, this is accomplished in a num-
ber of low rank cases by explicit calculations in section 4.1 and appendix E,
and we hope to treat some of the higher rank cases in a future paper. Sec-
tion 7 discusses square-integrability of the coefficients and conditions under

which E(D)
(0,0), E

(D)
(1,0) is square-integrable for higher rank groups.

3. Orbits of supersymmetric instantons

From the string theory point of view our main interest is in the system-
atics of orbits of BPS instantons that enter the Fourier expansions of the
coefficients of the low order terms in the low energy expansion of the four
graviton amplitude. Before describing these orbits in sections 3.3 – 3.5 we
begin with a short overview of the special features of such instantons that
follow from supersymmetry. A short summary of the M-theory supersym-
metry algebra and BPS particle states is given in appendix B (although
this barely skims the surface of a huge subject), where the structure of
the eleven-dimensional superalgebra is seen to imply the presence of an ex-
tended two-brane (the M2-brane) and five-brane (the M5-brane) in eleven
dimensions. Compactification on a torus also leads to Kaluza–Klein (KK)
point-like states and Kaluza–Klein monopoles (KKM), one of which is in-
terpreted in string theory as a D6-brane. All the particle states in lower
dimensions can be obtained by wrapping the spatial directions of these ob-
jects around cycles of the torus.

3.1. BPS instantons. One class of BPS instantons can be described from
the eleven-dimensional semi-classical M-theory point of view by wrapping
euclidean world-volumes of M2- andM5- branes around compact directions
so that the brane actions are finite. These branes couple to the three-form
M-theory potential and its dual, and the BPS conditions constrain their
charges, Q(p), to be proportional to their tensions, T (p), where p = 2 or 5 (as
briefly reviewed in appendix B). Wrapping the world-volume of a euclidean
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M2-brane around a 3-torus, T 3 ⊂ T d+1, or a euclidean M5-brane around a
6-torus, T 6 ⊂ T d+1, gives a 1

2 -BPS instanton, which has a euclidean action

of the form S(p) = 2π (T (p) + iQ(p)). This gives a factor in amplitude of the

form e−S(p)
that has a characteristic phase determined by the charge of the

brane.
In addition, the “KK instanton” is identified with the euclidean world-line

of a KK charge winding around a circular dimension. The magnetic version
of this is the “KKM instanton”, one manifestation of which appears in
string theory as a wrapped euclidean D6-brane. Recall that aKK monopole
in eleven dimensional (super)gravity with one compactified direction labelled
x# has a metric of the form [15]

ds2 = V −1 (dx#+A ·dy)2+V dy ·dy−dt2+dx26 , V = 1+
R

2|y| , (3.1)

where ds27 = −dt2 + dx26 is the seven-dimensional Minkowski metric and the
other four dimensions, x#, y = (y1, y2, y3), define a Taub–NUT space, and

|y|2 =
∑3

i=1 y
2
i . The coordinate x# is periodic with period 2πR and the

potential, A, satisfies the equation ∇ × A = −∇V = B. Poincaré duality
in the ten dimensions (t, x6,y) relates the 1-form potential, A, to a 7-form,

i.e, ∗dA = dC(7). If x# is identified with the M-theory circle, C(7) couples
to a D6-brane in the string theory limit. This gives an instanton when
its world-volume is wrapped around a 7-torus. More generally, x# can be
identified with other circular dimensions of the torus T d+1, giving a further d
distinctKKM ’s, each one of which appears as a finite action instanton when
wrapped on an M-theory 8-torus, T 8 (i.e., when d = 7). When describing
these in the string theory parameterisation (on the string torus T7) these
will be referred to as “stringy KKM instantons”. Furthermore, it is well
understood how to combine wrapped branes to make 1

2−, 1
4− and 1

8 -BPS

instantons [16, 17]10 in a manner analogous to combining p-branes to make
states preserving a fraction of the symmetry.

This description of instantons is directly relevant to the discussion of the
semi-classical M-theory limit (case (iii)) associated with the Fourier expan-
sion in the parabolic subgroup Pα2 in section 3.5. This is the large-volume
limit in which eleven-dimensional supergravity is a valid approximation.
Similarly, the instanton contributions in limits (i) and (ii) can be described
by translating from the M-theory description to the string theory descrip-
tion of the wrapped branes. These wrapped string theory objects comprise:
the fundamental string and the Neveu–Schwarz five-brane (NS5-brane) that
couple to BNS; Dp-branes that couple to the Ramond–Ramond (p+1)-form

potentials C(p+1) (with −1 ≤ p ≤ 9); and KK charges and KK monopoles

10We are concerned with compactification on tori, but more generally the BPS con-
dition requires branes to be wrapped on special lagrangian submanifolds (SLAGs) or on
holomorphic cycles [16].
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that couple to modes of the metric associated with toroidal compactification
on Td.

Knowledge of this instanton spectrum is a valuable ingredient in under-
standing the systematics of the Fourier modes of the Eisenstein series that
enter into the definitions of the coefficients of the low order interactions in
the expansion of the scattering amplitude. In particular, it connects closely
with the study of the Fourier expansions of specific Eisenstein series that

enter into E(D)
(0,0) and E(D)

(1,0) (that will be discussed later in this paper), as well

as with the Fourier expansion of the more general automorphic function

E(D)
(p,q) (that will not be discussed in this paper).

3.2. Fourier modes and orbits of BPS charges. The Fourier expansion
associated with any parabolic subgroup, Pα = Lα Uα, of Ed+1 is a sum over
integer charges that are conjugate to the angular variables that enter in its
unipotent radical Uα. These determine the phases of the modes. The Levi
factor is a reductive group that has the form Lα = GL(1)×Mα, where Mα

is its semisimple component.
The conjugation action on Uα of Lα – or more specifically, its intersection

with the discrete duality group Lα ∩ Ed+1(Z) – relates these charges by
Fourier duality. Thus this action carves out orbits within the charge lattice,
with each given orbit only covering a subset of the total charge space. This
viewpoint is expanded upon in more detail in section 4.1. In this subsection
we classify these orbits in cruder form, by considering the action of the
continuous group Lα on the charge lattice. Our purpose here is to isolate
broad families of charges which have common features. Indeed, since we are
mainly interested in the algebraic nature of the group action, we sometimes
look at the less refined action of the complexification of Lα in order to avoid
subtle issues about square roots.

As will be explained in section 4.1, the action of Lα on the charge lattice
is related to the adjoint representation on the Lie algebra of Uα. This
representation is irreducible if and only if Uα is abelian. That is the case
for the unipotent radicals we consider of every symmetry group Ed+1(R) of
rank d+ 1 < 6. Otherwise, the Fourier expansion is only well-defined after
averaging over the commutator subgroup (see (4.3)), and hence does not
capture the full content of the function. We devote the rest of this section
to relating these orbits to BPS instantons in the three limits we consider.
In each particular case we will explain the origin of the non-abelian nature
of the unipotent radicals, which have charges that do not commute with the
other brane charges. A discussion of such effects within string theory can
be found, for example, in [18].

We now describe the adjoint action Vα̂ on the unipotent radical, where α̂
labels the node immediately adjacent to α in the Dynkin diagram (fig. 1).
For the three parabolic subgroups of interest to us the representations of the
unipotent radical are as follows:
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(i) The maximal parabolic Pαd+1
.

In this case α̂ = αd and Lαd+1
= GL(1) × Ed. The following lists

the representations Vαd
for each value of 2 ≤ d ≤ 7.

Ed+1 Mαd+1
Vαd

E8 E7 qi : 56, q : 1
E7 E6 qi : 27
E6 SO(5, 5) Sα : 16

SO(5, 5) SL(5) v[ij] : 10
SL(5) SL(3)× SL(2) via : 3× 2

SL(3)× SL(2) SL(2)× R
+ vva : 2

The notation in the last column indicates the irreducible represen-
tations indexed by their dimensions. Both the fundamental repre-
sentation and the trivial representation of E7 occur, because the
unipotent radical Uα8 is a Heisenberg group. The lower dimensional
representations are: the fundamental representation for E6; a spinor
representation for SO(5, 5); the rank 2 antisymmetric tensor repre-
sentation for SL(5); a bivector representation for SL(3) × SL(2);
and a scalar-vector representation for SL(2)× R

+.
(ii) The maximal parabolic Pα1 .

In this case α̂ = α3, which is a spinor node (following the number-
ing of figure 1) and Lα1 = GL(1)×SO(d, d). The representation Vα̂
always includes a spinor representation of SO(d, d). It is irreducible
except in the cases of d = 6, 7. The case of SO(6, 6) ⊂ E7 also
includes a copy of the trivial representation, because the unipotent
radical is again a Heisenberg group; the case of SO(7, 7) ⊂ E8 also
includes a copy of the standard 14-dimensional “vector” representa-
tion.

(iii) The maximal parabolic Pα2 .
In this case α̂ = α4 and Lα2 = GL(1)×SL(d+1). The representa-

tion Vα̂ always includes a rank 3 antisymmetric tensor of SL(d+1),
vijk, of dimension 1

3!(d+1)d(d−1). It is irreducible when the rank is
less than 6 (see table 3) for the dimensions in the higher rank cases.

In each case, the charges form a lattice within the first listed piece of Vα̂,
that is, the irreducible subrepresentation coming from the “abelian part” of
Uα. More precisely, these are the nontrivial representations in part (i), the
spinor representations in part (ii), and the rank 3 antisymmetric tensors vijk
in part (iii). This space is identical with the “character variety orbit” u−1

introduced in section 4.1.
Before proceeding with the explicit list of orbits based on the counting of

states and instantons in the next three subsections, we will recall basic prop-
erties of the space of charges. Apart from the most trivial case (with duality
group SL(2,Z)), the 1

2 -BPS orbits only fill a subset of the whole space. For

the Ed+1 groups with 1 ≤ d ≤ 5 the complementary space to the 1
2 -BPS

space is filled out by 1
4 -BPS orbits. For E7 and E8 the full space is spanned
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Group first node second node last node
SL(3)× SL(2) 2 0 1 0 3 0

SL(5) 4 0 4 0 6 0
SO(5, 5) 8 0 10 0 10 0
E6 16 0 20 1 16 0
E7 32 1 35 7 27 0
E8 64 14 56 8 + 28 56 1

Table 3. Dimensions of the unipotent radical Uαi
for the

standard maximal parabolic subgroup Pαi
where i = 1, i = 2

and i = d. For each node the first column gives the dimension
of the character variety u−1 (see section 4.1), and the second
column gives the dimension of the derived subgroup [U,U ].
The sum of the two is the dimension of U . The unipotent
radical U is abelian when the dimension in the second column
is zero; it is a Heisenberg group when this dimension equals
1 and even more non-abelian when it is > 1.

by the union of 1
2 -,

1
4 - and

1
8 -BPS orbits. The Fourier coefficients of the BPS

protected operators will have nonvanishing Fourier coefficients only associ-
ated to these nilpotent orbits. The classification of possible charge orbits
only depends on the semi-classical nature of the associated BPS configura-
tions, but does not provide any detailed information about strong quantum
corrections. Such information should be encoded in the precise form of the
instanton contributions to the Fourier modes.

The instanton spectrum will now be considered in each of these limits
in turn. In each case we will list the single-particle BPS states and single
instantons that form the basis of the charge orbits. These numbers are equal
to the dimensions of the full space of charges spanned by the orbits. Since we
will be only interested in BPS (supersymmetric) orbits we will not discuss
all the possible nilpotent orbits of E7 and E8. A complete discussion of the
orbit structure is given in section 6.1.

3.3. BPS instantons in the decompactification limit: Pαd+1
.

The parabolic subgroup of relevance to the expansion of the amplitude in
D = 10 − d dimensions when the radius rd defined in (2.9) of one circle of
the torus Td becomes large is Pαd+1

, which has Levi factor Lαd+1
= GL(1)×

Ed. In this limit there is a close correspondence between the spectrum of
instantons in D = 10− d dimensions and the spectrum of black hole states
in D + 1 = 11 − d dimensions. This follows from the identification of the
euclidean world-line of a charged black hole of mass M wrapping around
a circular dimension of radius r with an instanton with action 2πMr that
gives rise to an exponential factor of e−2πMr in the amplitude. In addition
to instantons of this type, there can be instantons that do not decompactify
to particle states in the higher dimension because their actions are singular
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in the large-r limit. In any dimension there are also instantons with actions
independent of r that are inherited from the higher dimension in a trivial
manner.

The spectrum of BPS black hole states in compactified string theory has
been studied extensively. We will here follow the analysis in [19,20], which
considered the spectrum of branes wrapped on Td. This generates charged
1
2 - and 1

4 - BPS black hole states that correspond to singular solutions in
supergravity since they have zero horizon size and hence zero entropy. In
addition, for E6, E7 and E8 there are

1
8 -BPS states that correspond to black

holes that have non-zero entropy (as well as states with zero entropy), the
prototypes being the analysis of black holes in D = 5 dimensions (with E6

duality group) in [21, 22]. The discussion of the associated nilpotent orbits
was given in [23]. Our main interest is to extend the analysis in order to
account for BPS instantons.

We shall, for convenience, use the M-theory description starting from
eleven dimensional supergravity compactified on a (d+1)-torus that will be
denoted T d+1. The BPS particle states in any dimension are obtained by
wrapping all the spatial dimensions of the various extended objects in super-
gravity around the torus. These include the M2-brane and the M5-brane,
together with the Kaluza–Klein modes of the metric and the magnetic dual
Kaluza–Klein monopoles. The BPS instantons can be listed by completely
wrapping the euclidean world-volumes of these objects on these tori.

3.3.1. Features of Pαd+1
orbits.

The details of the enumeration of BPS states and instantons in the de-
compactification limit are reviewed in appendix C, the results of which are
summarised in this subsection. These states are labelled by a set of charges
that couple to components of the various tensor potentials in the theory and
span a space whose dimension is given in the second column of table 4 on
page 22 for each Levi group, Mαd+1

, with 0 ≤ d ≤ 7. Correspondingly, the
dimension of the space of instanton charges is given in the third column.
Table 5 on page 23 lists the BPS orbits for each Levi group in the range
0 ≤ d ≤ 7.

Table 4 shows that, with one exception, the number of BPS instantons in
dimension D equals the sum of the number of BPS particle states and the
BPS instantons in dimension D + 1, as anticipated above. The exceptional
case is the parabolic subgroup with Mα8 = E7, where the number of instan-
tons, 120, is one greater than the number of BPS states, 56, plus instantons,
63 in D = 4.

The BPS orbits for each value of d = 10 − D with Levi factor Ld+1 =
GL(1)× Ed are shown in table 5. The tensors v, va, via, vij and the spinor
S are introduced in section 3.2. I3 and I4 are cubic and quartic invariants
of E6 and E7, respectively, which are defined in terms of the fundamental
representation, qi, of E6 and E7, as reviewed in appendices C.6 and C.7. A
general feature that is valid in for each d > 0 is that the 1

2 -BPS states fill
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D = Mαd+1
= Ed # point charges # instanton charges

10− d (dim Uαd+1
) = # +ve roots of Ed

10A 1 1 0
10B SL(2) 0 1
9 SL(2)× R

+ 3 1
8 SL(3)× SL(2) 6 4
7 SL(5) 10 10
6 SO(5, 5) 16 20
5 E6 27 36
4 E7 56 (57) 63
3 E8 120 120

Table 4. The dimensions of the spaces spanned by the BPS
point-like charges and BPS instantons of maximal supergrav-
ity for the Levi subgroups in Pαd+1

. The parenthesis for
Mα8 = E7 indicates that the number of BPS states is one
less than the dimension of the unipotent radical, Uα8 , of the
parabolic subgroup Pα8 of E8.

out orbits of the form

O 1
2
−BPS =

Ed+1

Ed ⋉Rnd+1
, (n2, . . . , n8) = (0, 3, 6, 10, 16, 27, 57) . (3.2)

The integers nd+1 are the dimensions of the unipotent radicals, Uαd+1
, listed

in table 3 on page 20; they are also the numbers of BPS states for the
symmetry groups Ed+1 listed in table 4, apart from the case of d = 7 where
Uα8 is an element of a non-abelian Heisenberg group. As mentioned earlier,
Uα8 has dimension 57 while the E7 point-like states (charged black holes)
are labelled by only 56 charges. The missing charge arises from the fact that
among the 120 instantons in D = 3 dimensions (see table 4) there is one
that is a wrapped KKM with x# (the fibre coordinate in (3.1)) wrapped
around the direction that is identified with (euclidean) time. Since particle
states in D = 4 dimensions are obtained by identifying the decompactified
direction with time, the exceptional instanton is one for which x# grows in
the cusp and its action becomes singular. By contrast, 56 of the D = 3
instantons have action proportional to r7 and are seen as point-like states in
four dimensions, and the other 63 have no r7 dependence and decompactify
to instantons in four dimensions.

It is interesting to speculate about an additional line to table 5 which we
did not list, namely one for Mα9 = E8 inside the affine Kac-Moody group
E9. While this latter group is infinite dimensional, one can still make sense
of the orbits in terms of the finite dimensional vector space u− in (4.5).
Indeed, u− here is 248-dimensional and the action of E8 is isomorphic to the
adjoint action on its Lie algebra. Thus the orbits there coincide with the
coadjoint nilpotent orbits for E8.
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Mαd+1
= Ed BPS BPS condition Orbit Dim.

SL(2) 1
2 - 1 0

SL(2)× R
+ 1

2 v va = 0 R+×SL(2)
SL(2) 1

1
4 v va 6= 0 R

+ × SL(2)
SO(2) 3

1
2 ǫab vi avj b = 0 SL(3)×SL(2)

(R+×SL(2))⋉R3 5

SL(3)× SL(2)
1
4 ǫab vi avj b 6= 0 SL(3)×SL(2)

SL(2)⋉R2 6
1
2 ǫijklm vij vkl = 0 SL(5)

(SL(3)×SL(2))⋉R6 7

SL(5)
1
4 ǫijklm vij vkl 6= 0 SL(5)

O(2,3)⋉R4 10
1
2 (SΓmS)=0

SO(5,5)
SL(5)⋉R10 11

SO(5, 5)
1
4 (SΓmS)6=0

SO(5,5)
O(3,4)⋉R8 16

1
2

I3=
∂I3
∂qi

=0,

and
∂2I3

∂qi∂qj
6=0.

E6
O(5,5)⋉R16 17

E6
1
4

I3=0,
∂I3
∂qi

6=0 E6
O(4,5)⋉R16 26

1
8 I3 6=0 R∗ × E6

F4(4)
27

1
2

I4 =
∂2I4

∂qi∂qj

∣

∣

∣

∣

AdjE7

=0 ,

and
∂3I4

∂qi∂qj∂qk
6=0.

E7

E6⋉R27 28

E7
1
4

I4=
∂I4
∂qi

=0,

and
∂2I4

∂qi∂qj

∣

∣

∣

∣

AdjE7

6=0.
E7

(O(5,6)⋉R32)×R
45

1
8 I4=0,

∂I4
∂qi

6=0
E7

F4(4)⋉R26 55

1
8 I4>0 R

+ × E7
E6(2)

56

Table 5. The orbits of instantons associated with the par-
abolic subgroup Pαd+1

. With one exception these are orbits
of charged black hole states satisfying fractional BPS condi-
tions that are generated by the action of the Levi subgroup,
GL(1) × Ed, on a representative BPS state. The notation is
explained in the text.

3.4. The string perturbation theory limit: Pα1 .

In this limit BPS instantons give non-perturbative corrections to string
perturbation theory. This involves an expansion in the parabolic subgroup
Pα1 , with Levi factor Lα1 = GL(1)×SO(d, d). This limit is analogous to the
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limit considered in the previous subsection with the role of the decompacti-
fying circle radius, rd, replaced by the inverse string coupling in D = 10− d
dimensions, which is denoted 1/

√
yD. In this case the orbits of BPS charges

do not correspond to black hole charge orbits.
The BPS instantons that enter in this limit are easiest to analyse in

terms of the wrapping of euclidean world-volumes of Dp-branes, the NS5-
brane and stringy KKM instantons. The Dp-branes enter for all values of
d ≥ 0 and their contribution alone leads to an abelian unipotent radical,
Uα1 . The NS5-branes contribute on tori of dimension d ≥ 6 and the KKM
instantons contribute for d = 7. Both these kinds of instantons render the
unipotent radical nonabelian. In section 3.4.1 and appendix D we review
the classification of Dp-brane instantons in terms of the classification of
SO(d, d) chiral spinor orbits, which leads to the following features:

• For d ≤ 3 there is only one non-trivial orbit, which is 1
2 -BPS.

• 1
4 -BPS orbits arise when d ≥ 4 and have dimensions 2d−1, the same
as that of the full spinor space.

• For d = 4 the 1
2 -BPS orbit is parameterised by a spinor satisfying

the SO(4, 4) pure spinor constraint, S · S = 0, while the full eight-
component spinor space (with S · S 6= 0) parameterises the 1

4 -BPS
orbit.

• For d = 5 the 1
2 -BPS orbit is parameterised by a SO(5, 5) spinor

satisfying the pure spinor constraint,11 SΓiS = 0, and once again
the unconstrained spinor parameterises the 1

4 -BPS orbit.

• For d = 6 the 1
2 -BPS orbit is defined by a SO(6, 6) spinor satisfying

the pure spinor constraint,

F2 := 1
2

12
∑

i,j=1

SΓijS dxi ∧ dxj = 0 , (3.3)

where the 1
4 -BPS orbit is parameterised by a spinor satisfying the

weaker constraints

F2 6= 0 , F2 ∧ F2 = 0 . (3.4)

In addition there is a 1
8 -BPS orbit which is identified with the space

of a spinor satisfying

F2 ∧ F2 6= 0 , ∗F2 ∧ F2 = 0 , (3.5)

where ∗ is the Hodge star operator, and a second 1
8 -BPS orbit iden-

tified with the space spanned by an unconstrained 32-component
spinor.

11The Dirac matrices Γi (i = 1, . . . 2d) form a 2
d

2
−1×2

d

2
−1 representation of the Clifford

algebra Cℓ(d, d). We will denote the antisymmetric product of r Dirac Γ matrices by

Γi1···ir = 1
r!

∑
σ∈Sr

(−)σΓiσ(1) · · ·Γiσ(r), where (−)σ is the signature of the permutation

σ.
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• For d = 7 there are nine nontrivial orbits (in addition to the trivial
orbit) that were determined by Popov [24]. The 1

2 -BPS case is the
smallest non-trivial orbit, which is the space spanned by a spinor
satisfying

F3 :=
1

3!

14
∑

i,j,k=1

SΓijkS dxi ∧ dxj ∧ dxk = 0 , (3.6)

where S is a SO(7, 7) spinor and Γi (i = 1, . . . , 14) are corresponding
Dirac matrices. However, the description of the remaining orbits in
terms of covariant constraints involving F3 analogous to those of
(3.4) and (3.5) is not known to our knowledge.

We now turn to a detailed description of these orbits, which draws from
the information in section 6.1.

3.4.1. Classification of spinor orbits. A review of the method for classifying
spinor orbits of G = Spin(d, d) (the subgroup of even and invertible elements
of the Clifford group Cℓ(d, d) associated with SO(d, d)) can be found in [25]
(based on the original work in [26] for d ≤ 6, and [24] for d = 7).

The following tables will summarise some facts about these orbits, which
are cosets of the form O = SO(d, d)/H, H being the stabilizer of a point in
the orbit. For each value of d we will give a representative spinor of each
orbit (labelled S0 in column 1 and defined in appendix D), together with
its stabiliser (H in column 2), its dimension (dim(G/H) in column 3) and
the fraction of supersymmetry it preserves – i.e., its BPS degree N/2d−1 is
determined by the number of linearly independent spinors N of the orbit
representative S0. In the following we will only list the BPS orbits appearing
into the Fourier coefficients of the coefficients we are interested in. A more
complete discussion is given in section 6.1.

The tables that follow have the following general properties:

• The bottom row is the trivial orbit and the top row is the dense
orbit of a full spinor.

• The first non-trivial orbit is the 1
2 -BPS configuration with orbit

parametrized by the coset12

O1
2−BPS

=
SO(d, d)

SL(d)⋉R
d(d−1)

2

(3.7)

of dimension 1+d(d−1)/2. This is the orbit of a spinor satisfying the
pure spinor constraint and can be obtained by acting on the ground
state of the Fock space representation of the spinor with SO(d, d)
rotations.

12Although the orbits listed in this section are over R or C, the structures are largely
independent of the ground field. For example, this particular orbit has the same form over

any field k with characteristic different from 2, but with the R factor replaced by k
d(d−1)

2 .
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• The second non-trivial orbit (the NTM, or 1
4 -BPS, orbit) arises for

d ≥ 4 and is the coset

O1
4−BPS

=
SO(d, d)

(Spin(7)× SL(d− 4))⋉ U (d−4)(d+11)
2

, (3.8)

where where Us is a unipotent group of dimension s (which is non-
abelian for d ≥ 6).

In more detail, the specific orbits for each SO(d, d) group are as follows:

◮ SO(1, 1) is trivial. For SO(2, 2) and SO(3, 3) the action of the spin group
is transitive and there are only two orbits: the trivial one of dimension 0,
and the Weyl spinor orbit. This is in accord with the discussion in the
previous subsection.

G = SO(2, 2)
S0 stabilizer H dim(G/H) BPS

1 SL(2)⋉R 2 1
2

0 Spin(4) 0 −−

G = SO(3, 3)
S0 stabilizer H dim(G/H) BPS

1 SL(3)⋉R
3 4 1

2
0 Spin(6) 0 −−

◮ For d ≥ 4 the action of the spin group is not transitive and there are
several non-trivial orbits represented by constrained spinors.13

G = SO(4, 4)
S0 stabilizer H dim(G/H) BPS

1 + e1234 Spin(7) 8 1
4

1 SL(4)⋉R
6 7 1

2
0 Spin(8) 0 −−

G = SO(5, 5)
S0 stabilizer H dim(G/H) BPS

1 + e1234 Spin(7)⋉R
8 16 1

4

1 SL(5)⋉R
10 11 1

2
0 Spin(10) 0 −−

13The symbols ei1···ir and e∗i1···ir labelling the spinor S0 are defined in appendix D.
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◮ The SO(6, 6) case involves some noncommutative unipotent subgroups Us

of dimension s. The full spinor orbit of dimension 32 is R∗×SO(6, 6)/SL(6).

G = SO(6, 6)
S0 stabilizer H dim(G/H) BPS

1 + e∗14 + e∗25 + e∗36 SL(6) 32 0
1 + e∗14 + e∗25 Sp(6)⋉R

14 31 1
8

1 + e∗14 (SL(2)× Spin(7))⋉ U17 25 1
4

1 SL(6)⋉R
15 16 1

2
0 Spin(12) 0 −−

◮ For SO(7, 7) the full spinor orbit of dimension 32 isGL(1)×SO(7, 7)/(G2×Z2

G2), where G2 is the exceptional group of rank 2 and where H1 ×Z2 H2 de-
notes the almost direct product of two groups intersecting on Z2. Of the
total of 10 orbits obtained in [24], we only list the ones relevant for the
analysis of the Fourier modes discussed in this paper.

G = SO(7, 7)
S0 stabilizer H dim(G/H) BPS

1 + e∗7 SL(6) ⋉R
12 44 1

8

1 + e∗147 + e∗257 (Sp(6) ×Z2 R)⋉R
26 43 1

8

1 + e1234 (SL(3)× Spin(7)) ⋉ U27 35 1
4

1 SL(7) ⋉R
21 22 1

2
0 Spin(14) 0 −−

3.4.2. Neveu–Schwarz five-brane and stringy KKM instantons.
The wrapped world-volume of the NS5-brane produces a new kind of

instanton when d ≥ 6, which is a source of BNS flux. Whereas the Dp-brane
instantons have actions of the form C/gs with C independent of gs, the
wrapped NS5-brane has an action of the form C/g2s . This means that such

NS5-instantons are suppressed by e−C/g2s , and so, in the string perturbation
theory regime they are suppressed relative to the Dp-brane instantons. The
presence of the charge carried by this wrapped NS5-brane instanton leads to
a non-commutativity of the unipotent radical, Uα1 , which lies in a Heisenberg
group (this is analogous to the fact that the KKM instanton in D = 3 led
to non-commutativity of the unipotent radical Uα8 in the Pα8 parabolic
subgroup of E8). The non-commutativity arises because the presence of
a NS5-brane charge generates a non-trivial BNS background. This affects
the definition of the D-brane charges due to the dependence on BNS of
their field-strengths, F (4) := dC(3) + dBNS ∧ C(1) and ∗F (4) = dC(5) +
C(3) ∧ dBNS − dC(3) ∧ BNS. Since there is only one euclidean NS5-brane
configuration on a 6-torus (the D = 4 case) the non-commutative part of
Uα1 is one-dimensional, so the unipotent radical forms a Heisenberg group.
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Upon further compactification on T7 to D = 3 there are 7 distinct
wrapped NS5-brane world-volume instantons, one for each six-cycle. In ad-
dition, there are 8 M-theory KKM instantons that are distinguished from
each other in the M-theory description by identifying the coordinate x# with
any one of the 1-cycles, as explained earlier. In string language, one of these
is the wrapped euclidean D6-brane that has been counted as one of the 64
components of the SO(7, 7) spinor space and contributes to the abelian part
of the unipotent radical Uα1 . The other 7 are KKM instantons with x#

identified with a circle in one of the 7 other directions. These are T-dual
to the 7 wrapped NS5-branes. The presence of the D6-brane and KKM
instantons leads to a higher degree of non-commutativity of the unipotent
radical, due for example, to the non-linear dependence of the D6-brane field
strength on BNS through ∗dC(1) = dC(7) + 1

2 BNS ∧ dC(5) − 1
2dBNS ∧C(5) −

1
3BNS ∧BNS ∧ dC(3) + 1

3BNS ∧ dBNS ∧ dC(5).
We will see later that this counting coincides with that expected from

a group theoretic analysis of the dimension of the abelian and non-abelian
(i.e., derived subgroup) parts of the unipotent radical summarised in the
columns labelled “first node” of table 3 on page 20.

3.5. BPS instantons in the semi-classical M-theory limit: Pα2 .

This is the limit in which the volume, Vd+1, of the M-theory torus T d+1

becomes large and semi-classical eleven-dimensional supergravity is a good
approximation. The Fourier modes of interest are those associated with the
maximal parabolic subgroup Pα2 , which has Levi subgroup Lα2 = GL(1) ×
SL(d+1). The constant terms in the Fourier expansion were considered in [1]
and shown to match expectations based on perturbative eleven-dimensional
supergravity.

The instanton charge space can be described as follows. The wrappedKK
world-lines do not give instantons in this limit since their action is indepen-
dent of the volume, Vd+1. Wrapped euclidean M2-branes appear in D ≤ 8
dimensions (corresponding to symmetry groups with rank ≥ 3), while the
wrapped euclidean M5-brane arises for D ≤ 5 dimensions (corresponding
to symmetry groups with rank ≥ 6) and the wrapped world-volume associ-
ated with the KKM enters first in D = 3 dimensions (i.e., for symmetry
group E8). These instanton actions have the exponentially suppressed form
exp(−C/Va

d+1), where C is independent of Vd+1 in the limit Vd+1 → 0, and
a = 3/(d + 1) for the wrapped M2-brane, a = 6/(d + 1) for the wrapped
M5-brane and a = 7/(d + 1) for the wrapped KKM .

The space spanned by the 3-form, v[ijk] that couples to M2-brane world-

sheets wrapping 3-cycles inside T d+1 has dimension

Dd+1
M2 =

(d+ 1)!

3! (d − 2)!
, (3.9)

which equals 1, 4, 10, 20, 35, and 56, respectively, for tori of dimensions 3, 4,
5, 6, 7, and 8 (corresponding to the duality groups E3, . . . , E8). Similarly, the
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space of euclidean five-branes wrapping 6-cycles inside T d+1 has dimension

Dd+1
M5 =

(d+ 1)!

6!(d − 5)!
, (3.10)

which equals 1, 7, and 28, respectively, for d+1 = 6, 7, and 8 (corresponding
to duality groups E6, E7, and E8). Finally, a finite action KKM instanton
only exists if there are 8 circular dimensions, so it only contributes for the
E8 case. As argued earlier, there are 8 distinct objects of this kind since x#

is distinguished from the other circular coordinates.
Again these dimensions can be compared with those listed in section 6.1

and summarised in table 3 on page 20 under the heading “second node”.
The wrapped euclideanM2-branes contribute the dimensions of abelian part
of the unipotent radical for this maximal parabolic subgroup. In fact the
numbers in the left-hand column of the second node heading are equal to
Dd+1

M2 for all 0 ≤ d ≤ 7. The M5-brane charge space of dimension Dd+1
M5 ,

equals the dimension of the non-commutative part (i.e., derived subgroup) of
the unipotent radical for E6 and E7, while for E8 there is also a contribution
of 8 from the KKM instantons. In this case the non-abelian component of
the unipotent radical arises from the KKM instanton dependence on the
3-form A(3) configurations (analogous to the way the BNS configurations
induced the non-commutativity in the previous section).

Although we have given a list of dimensions of the space spanned by the
orbits, in this case we have not analysed the BPS conditions to discover how
the complete space decomposes into orbits with fractional supersymmetry.
However, the latter part of this paper analyses the complete orbit structure
for the subgroup Pα2 and the list of orbits is given in table 8 on page 55.
From this we can identify, for each value of d, the minimal (12 -BPS) and

NTM (14 -BPS) orbits, as well as many others that arise when d ≥ 5 (i.e. for
E6, E7 and E8).

4. Explicit examples of Fourier modes for rank ≤ 5.

4.1. Fourier expansions for higher rank groups. Suppose that φ ∈
C∞(Γ\G) is an automorphic function, and that A ⊂ G is an abelian sub-
group which is isomorphic to R

m for some m > 0. If Γ ∩ A corresponds
to a lattice in R

m under this identification, then φ’s restriction to A, φ(a),
has a Fourier expansion. The same is true for any right translate φ(ag), for
g fixed. A prime example of this is A equal to the unipotent radical U of
a maximal parabolic subgroup P = LU of G, when U is abelian and Γ is
arithmetically defined:

φ(ug) =
∑

χ

χ(u)φχ(g) , φχ(g) =

∫

Γ∩U\U
φ(ug)χ(u)−1 du , (4.1)
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where the sum is taken over all characters χ of U which are trivial on Γ∩U .
In particular the special case u = e,

φ(g) =
∑

χ

φχ(g) , (4.2)

reconstructs φ as a sum of its Fourier coefficients φχ. When U fails to be
abelian the coefficients φχ still make sense, though φ is no longer a sum of
them. Instead, it is the integral of φ over the commutator subgroup14 [U,U ]
of U which has an expansion

∫

Γ∩[U,U ]\[U,U ]
φ(ug) du =

∑

χ

φχ(g) ; (4.3)

in other words, the Fourier expansion only captures a small part of φ’s
restriction to U – the part which transforms trivially under [U,U ].

A character on U can be viewed as a linear functional on its Lie algebra
u, via its differential. In our case, in which U is the unipotent radical of
a maximal parabolic subgroup P = Pαj

for some simple root αj , u has a
graded structure

u = u1 ⊕ u2 ⊕ · · · (4.4)

in which uk is the span of root vectors for roots of the form α =
∑

ckαk, with
cj = k. The Killing form exhibits the dual u∗ of u as the complexification
of the Lie algebra

u− = u−1 ⊕ u−2 ⊕ · · · . (4.5)

The commutator subgroup [U,U ] has Lie algebra u2 ⊕ u3 ⊕ · · · , so the dif-
ferential of a character is sensitive only to u1. Again through the bilinear
pairing of the Killing form, its dual space u∗1 is isomorphic to the complexi-
fication u−1 ⊗C of u−1. The exponential of any such a linear functional is a
character of U , and hence u−1 ⊗ C is known as the character variety of U .

Now let χ be a character of U which is invariant under the discrete sub-
group Γ∩U . The above correspondence guarantees the existence of a unique

Y ∈ u−1 ⊗C such that χ(eX) = eB(Y,X) , (4.6)

where B(·, ·) is the Killing form. Decompose P = LU , where L is the
Levi component. Then formula (4.1) and the automorphy of φ under any
γ ∈ Γ ∩ L imply that

φχ(γg) =

∫

Γ∩U\U
φ(γ−1uγg)χ(u)−1 du

=

∫

Γ∩U\U
φ(ug)χ(γuγ−1)−1 du .

(4.7)

14The commutator subgroup [U, U ] is the smallest normal subgroup of U which contains
all elements of the form [u1, u2], for u1, u2 ∈ U .
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Here we have changed variables u 7→ γuγ−1, which preserves the measure
du. In terms of (4.6)

χ(γeXγ−1) = χ(eγXγ−1
) = eB(Y,γXγ−1) = eB(γ−1Y γ,X) , (4.8)

because of the invariance of the Killing form under the adjoint action; the
character in the second line of (4.7) is hence equal to the character for the
Lie algebra element γ−1Y γ ∈ u−1 ⊗ C.

Consequently, the Fourier coefficients (4.1) are related for characters χ
which lie in the same Γ ∩ L-orbit under the adjoint action on u−1 ⊗ C. It
should be remarked that u−1 – like each space uj – is invariant under the
adjoint action of L, and typically furnishes an irreducible representation of
L. The complexification LC of L likewise acts on u−1 ⊗ C according to
an irreducible representation, and carves it up into finitely many complex
character variety orbits. Similarly, the adjoint action of Γ ∩ L on the set
of characters of U which are trivial on Γ ∩ U refines these complex orbits
into myriad further “integral” orbits. Those characters naturally form a
lattice inside of iu−1 ⊂ u−1 ⊗ C, and this last action is that of a discrete
subgroup of L on a lattice, e.g., the action of GL(n,Z) on Z

n in a particular
special case. These are more subtle to describe because of number-theoretic
reasons; indeed, even describing Γ∩L for a large exceptional group is quite
complicated. Recall that this is the charge lattice from section 3.

Each of these complex character variety orbits (and hence each of the
Γ ∩ L-orbits on the set of characters that are trivial on Γ ∩ U) is thus con-
tained in a single (complex) coadjoint nilpotent orbit. It therefore makes
sense to categorize the complex character variety orbits by giving their base-
points and dimensions. This information was provided in section 3, based
on the analysis of BPS states in string theory. This analysis focused on
the supersymmetric orbits and did not cover all possible orbits. A system-
atic and detailed analysis of the remaining orbits for the maximal parabolic
subgroups we study will be given in 6.1. These have long been known for
the classical groups by the study of “classical rank theory”; the paper [27]
contains a listing for all maximal parabolic subgroups of exceptional groups.
In addition, the integral orbits are also known in many cases: Bhargava [28,
Section 4] and Krutelevich [29] treat certain cases, with additional cases to
appear in forthcoming work of Bhargava.

Note that the calculation (4.7) shows that each coefficient φχ – which is
determined by its values on L – is automorphic under any γ that lies in both
Γ and StabL(χ), the stabilizer of χ within L. In terms of the differential,
these are the elements of Γ∩L for which the adjoint action fixes the element
Y ∈ u−1 ⊗ C from (4.6). One can therefore use (4.7) to write the sum of
φχ(g), for χ ranging over one of the integral orbits, as the sum of left γ-
translates of a fixed φχ, where γ now ranges over cosets of Γ∩L modulo the
stabilizer of this fixed character. The vanishing of any Fourier coefficient φχ
as a function of L is equivalent to that of all Fourier coefficients in its orbit.
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The following subsections (together with details that are presented in
appendix E) concern some specific, explicit examples of the Fourier modes

of the coefficient functions E(D)
(0,0) and E(D)

(1,0) for the low rank duality groups

with d ≤ 4 (i.e. D ≥ 6). In these cases standard, classical techniques can
be used to obtain exact expressions, including the arithmetical divisor sums
that appear. These techniques have the virtue of being relatively simple in
these special low rank cases; the higher rank cases of E6, E7 and E8 will
be discussed in the later sections, although without precise calculations –
our chief contribution is to use representation theory to show that many of
them vanish.

In each particular case we will explicitly identify the character χ, which
lies in the lattice of characters of U that are trivial on Γ ∩ U , with a tuple
of integral parameters mi, and use the notation

F (D)α
(p,q) (mi) :=

(

E(D)
(p,q)

)

χ
and FGα

β;s (mi) :=
(

EG
β;s

)

χ
(4.9)

to refer to the Fourier modes of E(D)
(p,q) and E

G
β;s, respectively.

The precise details of these Fourier coefficients could, in principle, be inde-
pendently checked against an explicit evaluation of instanton contributions
to the graviton scattering amplitude, but in practice such detailed verifica-
tion is very difficult. However, most details of the contribution of 1

2 -BPS
instantons to these coefficients in limit (i), the decompactification limit in
which rd ≫ 1, can be motivated directly from string theory. This is the
limit in which, for these low rank cases, the instantons are identified with
wrapped world-lines of small black holes of the (D+1)-dimensional theory.
The asymptotic behaviour can be understood by studying the fluctuations
around 1

2 -BPS D-particle configurations in a manner that generalises the
arguments of [30], leading to an expression for the modes in D = 10− d ≤ 9
dimensions of the form

F (D)αd+1

(0,0) (k) = ( rd
ℓD+1

)nD σ7−D(|k|)
e−SD(k)

SD(k)
8−D

2

(

1 +O(
ℓD+1

rd
)
)

. (4.10)

Here SD(k) = 2π|k|rdm 1
2
is the action for the world-line of the D-particle

wound around the circle of radius rd and m 1
2
, which is a function of the

moduli, is the mass of a “minimal” 1
2 -BPS point-like particle state in D+1

dimensions – that is, a state that is related by duality to the lightest mass
single-charge D-particle. Such states can form threshold bound D-particles
of mass pm 1

2
. The divisor sum, σn(k) = kn σ−n(k) =

∑

q|k q
n, sums over the

winding number q of the world-lines of such D-particles (where k = p × q)
and can be identified with a matrix model partition function. The factor
of SD(k)

(D−8)/2 comes from integration over the bosonic and fermionic zero
modes and nD is a constant that depends on the dimension D. Because
of the high degree of supersymmetry preserved by the 1

2 -BPS configuration
it turns out that this approximation is exact in several cases. We have
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not completed an independent quantum calculation of the 1
4 -BPS instanton

contributions, which are more subtle, but we hope to discuss these in a
separate publication.

4.2. D = 10B: SL(2,Z).
The simplest nontrivial (but very degenerate) example arises in the case of
the IIB theory with D = 10, where the discrete duality group is SL(2,Z).15

In this case the 1
2 - and 1

4 -BPS interactions, E(10)
(0,0) and E(10)

(1,0), are given by

Eisenstein series [31,32]

E(10)
(0,0) = 2ζ(3)E

SL(2)
3
2

(Ω) , E(10)
(1,0) = ζ(5)E

SL(2)
5
2

(Ω) , (4.11)

where 2ζ(2s)Es(Ω) is a non-holomorphic Eisenstein series and Ω := Ω1 +
iΩ2 = C(0) + i/

√
y10.

It is useful to parametrize the coset SL(2)/SO(2) (the upper half plane)
associated with the continuous symmetry group, SL(2,R), by the coset de-
scribed by the parabolic subgroup consisting of matrices of the form

e2 =
1

Ω
1
2
2

(

1 Ω1

0 Ω2

)

=

(

Ω
− 1

2
2 0

0 Ω
1
2
2

)

(

1 Ω1

0 1

)

. (4.12)

where the (somewhat trivial) Levi factor L is the diagonal GL(1) factor and
the second factor, which depends on Ω1, is the unipotent radical, U . The
SL(2) Eisenstein series can be expressed as

2ζ(2s)ESL(2)
s (Ω) :=

∑

M2∈Z2\{0}
(m2

SL(2))
−s =

∑

(m,n)∈Z2\{0}

Ωs
2

|m+ nΩ|2s ,

(4.13)
where the SL(2,Z)-invariant (mass)2 is defined by

m2
SL(2) :=M2 · g2 ·MT

2 =
|m+ nΩ|2

Ω2
, (4.14)

where g2 = e2 · eT2 and M2 = (n,m) ∈ Z
2\{0}.

It is straightforward to determine the Fourier coefficients using the stan-
dard expansion of such series in terms of Bessel functions,

Es(Ω) =
∑

n∈Z
FSL(2)
s (n) e2iπnΩ1 , (4.15)

The zero Fourier mode is

FSL(2)
s (0) = Ωs

2 +
ξ(2s − 1)

ξ(2s)
Ω1−s
2 , (4.16)

15The type IIA theory has no instantons, which means that only the 0-dimensional
trivial orbit contributes.
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where ξ(s) = π−s/2Γ(s/2)ζ(s). The non-zero mode with phase e2iπnΩ1 is

FSL(2)
s (n) =

2Ω
1
2
2

ξ(2s)

σ2s−1(|n|)
|n|s− 1

2

Ks− 1
2
(2π|n|Ω2) , (4.17)

where σα(n) =
∑

0<d|n d
α is the divisor function, and the non-zero mode

with frequency n is proportional toKs− 1
2
, which is a modified Bessel function

of the second kind.
In this degenerate case the only limit to consider is Ω2 → ∞, which is

the limit of string perturbation theory organized as a power series in Ω−2
2

corresponding to the genus expansion of a closed Riemann surface. In this
limit the expansion of the coefficient functions is dominated by the two

power behaved constant terms in the zero mode F
SL(2)
s (0) in (4.16), while

the non-zero modes have asymptotic behaviour at large Ω2,

FSL(2)
s (n) =

σ2s−1(|n|)
ξ(2s)|n|s e−2π|n|Ω2

(

1 +O(Ω−1
2 )
)

, (4.18)

where the asymptotic expansion of the Bessel function

Kν(x) =

√

π

2x
e−x

(

1 +O(x−1)
)

, (4.19)

for x≫ 1 has been used.
The two power behaved terms have the interpretation of terms in string

perturbation theory, which is an expansion of y10, the square of the string
coupling constant. Furthermore, the Eisenstein series with s = 3/2 and with
s = 5/2 have the correct power-behaved terms to account precisely for the
known behaviour of the R4 and ∂4R4 terms in the low energy expansion of
the four graviton amplitude in 10 dimensions. In [1] it was shown that this
is in agreement with string perturbation theory extends to the higher rank
cases where the pattern of constant terms is more elaborate. Furthermore,
the exponential terms in the expansion in (4.18) correspond to the expected
D-instantons that arise in the D = 10 type IIB theory. This illustrates the
fact, common to all BPS instanton processes, that the exponential decay of
a Fourier mode is proportional to the charge n that determines the phase of
the mode. The correction term of order Ω−1

2 in (4.18) indicates perturbative
corrections to the instanton contribution given by an expansion in powers of
the string coupling constant that corresponds to the addition of boundaries
in the Riemann surface.

In this case the only instantons are 1
2 -BPS D-instantons – there are no

1
4 -BPS instantons in the ten-dimensional type IIB theory. However, it is
known from string theory arguments that the Eisenstein series at s = 3/2 is
associated with the 1

2 -BPS R4 term while the series at s = 5/2 is associated

with the 1
4 -BPS ∂

4R4 contribution. This leaves unresolved the question as
to what features of these series at special values of s encode the fraction
of supersymmetry that these terms preserve? This must be encoded in the



SMALL REPRESENTATIONS, STRING INSTANTONS, AND FOURIER MODES 35

measure. Indeed in the s = 3/2 case it was argued in [30, 33] that the
measure factor σ−2(|n|) arises from the 1

2 -BPS D-instanton matrix model,
which was verified in [30,34]. Presumably, the s = 5/2 measure should arise
in a similar manner.

In most of the higher-rank examples that follow there is a less subtle
distinction between the 1

2 -BPS and 1
4 -BPS cases since in typical cases there

are 1
4 -BPS instanton configurations that break 3

4 of the supersymmetry. As
will be shown in the following, these generally enter into non-zero Fourier

modes of the coefficient E(D)
(1,0) for 3 ≤ D < 10 (although, as will also be seen

later, only the 1
2 -BPS orbit contributes in the Pα1 parabolic withD = 7, 8, 9).

The subtleties of the measure factor are not required in order to identify the
fraction of supersymmetry preserved in such cases. However, there are no 1

8 -
BPS configurations for D > 5. Therefore, for D > 5 the distinction between

the coefficient E(D)
(0,1) and the ones which preserve more supersymmetry is

again not determined by the spectrum of instantons that contribute in the
various limits under consideration. This indicates that the 1

8 -BPS nature of

E(D)
(0,1) must be encoded in the form of the measure factor.

4.3. D = 9: SL(2,Z).
The coefficients of the R4 and ∂4R4 interactions in this case are [2, 35,36]

E(9)
(0,0) = 2ζ(3) ν

− 3
7

1 E
SL(2)
3
2

+ 4ζ(2)ν
4
7
1 , (4.20)

E(9)
(1,0) = ζ(5)ν

− 5
7

1 E
SL(2)
5
2

+
4ζ(2)ζ(3)

15
ν

9
7
1 E

SL(2)
3
2

+
4ζ(2)ζ(3)

15
ν
− 12

7
1 , (4.21)

where ν1 = (ℓB10/rB)
2 = g

7
8
A (rA/ℓ

A
10)

3
2 with rB the radius of the compact

dimension in the IIB theory and rA = ℓ2s/rB the radius in the IIA the-
ory. The IIA string coupling, gA, is related to that of the IIB theory by
gA = gB ℓs/rB . Furthermore, the D = 9 theory can be viewed as the com-
pactification of M-theory from 11 dimensions on a 2-torus, T 2, with volume

V2 = ν
2/3
1 ℓ211.

The limit ν1 → 0 is the limit in which the R+ parameter of the continuous
symmetry, SL(2,R)×R

+, becomes infinite, which is the decompactification
limit to the D = 10 IIB theory (rB → ∞) while the limit ν1 → ∞ is
the semi-classical M-theory limit in which, V2, the volume of T 2 becomes
infinite. Equations (4.20) and (4.21) show that there are no non-zero modes
in either of these limits. Since Ω2 = g−1

A rA/ℓs, the perturbative IIB limit,
Ω2 → ∞, is also the D = 10 type IIA limit, rA → ∞. This is the limit in the
parabolic subgroup GL(1)×U of the SL(2) factor (given in (4.12)) in which
the parameter in the GL(1) Levi factor in the SL(2) becomes infinite. The

non-zero Fourier modes of the expression for E(9)
(0,0) in (4.20) that contribute

in this limit are obtained by using the mode expansion of E3/2 given in the
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previous section in (4.20), giving

F (9)
(0,0)(k) :=

∫

[0,1]
dΩ1 E(9)

(0,0) e
−2iπkΩ1

= 8πΩ
1
2
2 ν

− 3
7

1

σ2(|n|)
|k| K1(2π|k|Ω2) . (4.22)

The limit Ω2 → ∞ in the Bessel function in the second line gives the D-
instanton contribution to the coefficient of the R4 interaction in the type
IIB perturbative string theory limit, which has the form, after reinstating
the power of ℓ9 in the effective action, (2.5),

1

ℓ9
F (9)
(0,0)(k) =

rB
ℓ2s

√
8π σ−2(|n|)

e−2π|k|Ω2

(2π|k|Ω2)
− 1

2

(1 +O(Ω−1
2 )) , (4.23)

where the factor of rB/ℓs shows that this term survives the limit rB → ∞.
On the other hand, taking the large radius rA/ℓ10 → ∞ limit in the IIA

case gives

1

ℓ9
F (9)
(0,0)(k) =

1

rA

√
8π σ−2(|k|)

e
−2π|k|rAm 1

2

(2π|k|rAm 1
2
)−

1
2

(1 +O(ℓ10/rA)) , (4.24)

wherem 1
2
= 1/(ℓsgA). This expression reproduces the asymptotic behaviour

for the 1
2 -BPS contribution given in (4.10) with D = 9, nD = −1 and

S9 = 2π|k|rAm 1
2
. The exponent has the interpretation of the action of the

euclidean world-line of a type IIA D0-brane of charge p wrapped q times
around the circle of radius rA, where k = p × q (and the sum over q is in
σ−2(|k|)).

A similar expansion of the two Eisenstein series in (4.21) gives the mode

expansion of the coefficient E(9)
(1,0) as the sum of two terms. The occurrence of

both the s = 3/2 and s = 5/2 series demonstrates that the ∂4 R4 interaction
contains a piece that is 1

4 -BPS as well as a piece that is 1
2 -BPS. Repeating the

above analysis for the 1
4 -BPS part of E(9)

(1,0) (the E5/2 term in (4.21)), making

use of (4.18) with s = 5/2 gives (after multiplying by ℓ39 to reproduce the
∂4 R4 interaction in (2.5))

ℓ39F
(9)
(1,0)(k)

∣

∣

∣

1
4
−BPS

∼ (ℓA10)
3 g

− 1
2

A

(

ℓA10
rA

)3

σ−4(|k|)
e−S9(n)

(S9(n))
− 3

2

.

(4.25)

As with the D = 10 examples, the distinction between the s = 3/2 and
s = 5/2 Eisenstein series is not seen in the instanton orbits (both series
contain the same 1-dimensional orbit) but must be encoded in the different
measure factors, such as the divisor function, which takes the form σ−4(|k|)
when s = 5/2. In contrast to the 1

2 -BPS case we have not derived (4.25), or
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the analogous expressions for D < 9 obtained below, by explicitly evaluating
the 1

4 -BPS instanton contributions.

4.4. D = 8: SL(3,Z) × SL(2,Z).

The coefficient function E(8)
(0,0) is given in terms of Eisenstein series by

[1, 2, 36,37]

E(8)
(0,0) := lim

ǫ→0

(

2ζ(3 + 2ǫ)E
SL(3)

α1;
3
2
+ǫ

+ 4ζ(2− 2ǫ)E
SL(2)
1−ǫ (U)

)

. (4.26)

It was shown in [2] that the poles in ǫ of the individual series in parentheses

cancel and the expression is analytic at ǫ = 0. The coefficient function E(8)
(1,0)

is given by

E(8)
(1,0) = ζ(5)E

SL(3)

α1;
5
2

+
4ζ(4)

3
E

SL(3)

α1;− 1
2

E
SL(2)
2 (U) . (4.27)

We have suppressed the dependence of the SL(3) series on the 5 parameters
of the SL(3)/SO(3) coset, but have indicated that the SL(2) series depends
on U , the complex structure of the 2-torus, T2 (see appendix E for details).

(i) The maximal parabolic Pα3 = GL(1) × SL(2)× R
+ × Uα3

This is relevant for the decompactification limit r2/ℓ9 → ∞. The Fourier
modes, which are integrals with respect to the Uα3 factor in (E.16), get
contributions from the sum of the modes of the SL(3) and SL(2) Eisenstein

series. The modes of E(D)
(0,0) are defined by

F (8)α3

(0,0) (kp1, kp2, k
′) :=

∫

[0,1]3
dC(2)dBNSdU1 e

−2iπk(p1C(2)+p2BNS)−2iπk′U1 E(8)
(0,0) ,

(4.28)

where gcd(p1, p2) = 1 and C(2), BNS and U1 are the components of the
unipotent radical in (E.16). Using the definition in (4.26) the Fourier modes

of E(8)
(0,0) are given by the sum of the Fourier modes of the SL(3) and SL(2)

series defined in (E.17) and (E.19)16

F (8)α3

(0,0) (kp1, kp2, k) = 2ζ(3)F
SL(3)α2

α1 ;
3
2

(kp1, kp2) + 4ζ(2)F
SL(2)
1 (k′) . (4.29)

Using the expression in (E.20) with s = 1 for the SL(2) Fourier modes and
U2 = r2/r1 = r2/rB we obtain17

F
SL(2)
1 (k′) = 4π σ−1(|k′|) e−2π |k′| r2× 1

r1 . (4.30)

The exponent can be identified with minus the action of the world-line of a
1
2 -BPS charge p KK state wrapped q times around a circle of radius r2, with
p× q = k′. The divisor sum σ−1(|k′|) weights the different values of p with

16The nodes on the SL(3) Fourier coefficients are labelled in the notation of the stan-
dard Dynkin diagram for SL(3).

17Here, and in the following we will use the type IIB description, in which r1 = rB.
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a factor of 1/p. The expression (4.30) agrees with the general asymptotic
formula (4.10), but it is notable that in this case there are no perturbative
corrections.

The SL(3) part is obtained from (E.18) with s = 3/2,

F
SL(3)α2

α1;
3
2

(kp1, kp2) = 2π σ−1(|k|) e
−2π|k| |p2+p1Ω|√

Ω2

1√
ν2 , (4.31)

where gcd(p1, p2) = 1. This expression reproduces the asymptotic behaviour
(which is again exact) for the 1

2 -BPS contribution given in (4.10) withD = 8.
The exponent can be written as

− 2π|k| |p2 + p1Ω|√
Ω2

1√
ν2

= −2π|k|r2mp1,p2 , (4.32)

where the k = 1 contribution is minus the action for the world-line of a state
of mass

mp1,p2 ℓs = |p2 + p1Ω|
r1
ℓs
, (4.33)

wound around the circle of radius r2. This is the mass of a (non-threshold)
bound state of p2 fundamental strings and p1 D-strings wound around the
dimension of radius r1. In the limit r2/ℓ9 → ∞ the Fourier coefficients
with different p1’s and p2’s fill out an orbit under the action of the discrete
subgroup, SL(2,Z), of the Levi factor, which is the nine-dimensional dual-
ity group. This is made manifest by expressing mp1,p2 in nine-dimensional
Planck units,

mp1,p2 ℓ9 =
|p2 + p1Ω|√

Ω2
ν
−3/7
1 , (4.34)

where SL(2,Z) acts with the usual linear fractional transformation on Ω
and leaves ν1 invariant. For k > 1 in (4.31) describe world-line actions of
threshold bound states of mass p ×mp1,p2 wound q times around the circle
of radius r2 with k = p × q and the divisor sum weights the contributions
with a factor of 1/|q|.

Thus, in the decompactification limit these instantons correspond to the
expected contributions from the point-like 1

2 -BPS black hole states in nine

dimensions listed in appendix C.2. The Kaluza–Klein 1
2 -BPS states in (4.30)

are in the singlet v and the (p, q)-string bound state in (4.31) in the doublet
va of SL(2). These contributions come from separate configurations (v = 0,
va 6= 0) and (v 6= 0, va = 0) so that the condition vva = 0 is satisfied.

The Fourier modes of the coefficient E(8)
(1,0) in the Pα3 parabolic are defined

as

F (8)α3

(1,0) (kp1, kp2, k
′) :=

∫

[0,1]3
dC(2)dBNSdU1 e

−2iπ k (p1C(2)+p2BNS)−2iπk′ U1 E(8)
(1,0) ,

(4.35)
where we have chosen to extract the greatest common divisor k so that

gcd(p1, p2) = 1. Note that, unlike in the case of E(8)
(0,0), the integral does not

split into the sum of two terms even though Uα3 is block diagonal since E(8)
(1,0)
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contains the product of two Eisenstein series. Substituting the expression

(4.27) for E(8)
(1,0) (which includes a term quadratic in Eisenstein series), it is

straightforward to perform the Fourier integration with the result

F (8)α3

(1,0) (kp1, kp2, k
′) = ζ(5)F

SL(3)α2

α1 ;
5
2

(kp1, kp2) (4.36)

+
2π4

135
F

SL(3)α2

α1;− 1
2

(kp1, kp2)F
SL(2)
2 (k′)

The k = 0 or k′ = 0 terms are determined by 1
2 -BPS instantons arising from

the winding of the nine-dimensional 1
2 -BPS states, listed in appendix C.2,

around the decompactifying circle.
The 1

4 -BPS part is contained in the k 6= 0, k′ 6= 0 modes of the second
contribution in (4.36). Applying (E.22) with s = −1/2 and s′ = 2, and
after extracting the greatest common divisor ℓ = gcd(k, k′) and setting k =
ℓq1, k

′ = ℓq2 with gcd(q1, q2) = 1, these can be written as

π2

1080

Ω
4
3
2

T
1
3
2

σ−3(|ℓq1|)σ−3(|ℓq2|)
1 + 2π|ℓq1||p2 + p1Ω|T2

|p2 + p1Ω|3
1 + 2π|ℓq2|U2

U2

× exp(−2π|ℓq1||p2 + p1Ω|T2 − 2π|ℓq2|U2) . (4.37)

Taking the limit r2/ℓ9 → ∞ and recalling that T2 = ν
− 3

7
1 Ω

− 1
2

2 r2/ℓ9 and

U2 = r2/r1 = ν
4
7
1 r2/ℓ9, the leading behaviour of this expression is

ζ(4)

3

ℓ49
ℓ48
σ3(|ℓq1|)σ3(|ℓq2|)

exp(−2π ℓ r2m 1
4
)

(|ℓq1| |p2+p1Ω|√
Ω2

ν
− 3

7
1 )2 × (|ℓq2| ν

4
7
1 )

2
, (4.38)

where the 1
4 -BPS mass is given by

m 1
4
ℓ9 = |q1|

|p2 + p1Ω|√
Ω2

ν
− 3

7
1 + |q2| ν

4
7
1 , (4.39)

or in string units

m 1
4
ℓs = |q1||p2 + p1Ω|

r1
ℓs

+ |q2|
ℓs
r1
. (4.40)

Thus, as anticipated, the instanton action is described by the world-lines
of the constituents (in this case bound states of F and D strings and KK
charge) of 1

4 -BPS bound states on a circle S1 of radius r2, Much as be-
fore, the divisor functions encode the combinations of winding numbers and
charges carried by these world-lines although the combinatorics are here
more complicated than in the 1

2 -BPS and deserve further study.

(ii) The maximal parabolic Pα1 = GL(1)× SO(2, 2) × Uα1

This is relevant to the string perturbation theory limit, in which the
string coupling constant, y8 gets small. The unipotent factor Uα1 in (E.23)
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is parametrized by (C(2),Ω1). In this case the non-zero Fourier modes of

E(8)
(0,0) are obtained from (E.25) with s = 3/2,

F (8)α1

(0,0) (kp1, kp2) :=

∫

[0,1]2
dΩ1dC

(2)e−2iπk (p1C(2)+p2Ω1)E(8)
(0,0) (4.41)

=
4π√
y8

σ2(|k|)
|k|

√
T2

|p2 + p1T |
K1

(

2π|k| |p2 + p1T |√
T2y8

)

.

Its asymptotic form for y8 → 0 is given by

lim
y8→0

F (8)α1

(0,0) (kp1, kp2) ∼
2π

y8
σ2(|k|)

( √
T2y8

|k| |p2 + p1T |

)
3
2

e
−2π|k| |p2+p1T |√

T2y8 ,

(4.42)
where gcd(p1, p2) = 1 and the asymptotic form of the Bessel function has
been used in the last line in order to extract the leading instanton con-
tribution in the perturbative limit, y8 → 0 with T2 fixed [2] (recalling
y8 = (Ω2

2T2)
−1 is the square of the string coupling). In this limit these

non-perturbative effects behave as e−C/
√
y8 , as expected of D-brane instan-

tons. The p1 = 0 and p2 6= 0 terms are D-instanton contributions and those
with p1 6= 0 are the wrapped D-string contributions of charge (p1, p2) that
are related by the SL(2,Z) action on the T modulus, which is part of the
perturbative T-duality symmetry.

The Fourier modes of E(8)
(1,0) are given by

F (8)α1

(1,0) :=

∫

[0,1]2
dΩ1dC

(2) e−2iπk(p1C(2)+p2Ω1)E(8)
(1,0) (4.43)

=
16ζ(2)

y
2
3
8

σ4(|k|)
|k|2

T2
|p2 + p1T |2

K2

(

2π|k| |p2 + p1T |√
T2y8

)

+
8ζ(4)E2(U)

π y
1
6
8

σ2(|k|)
|k|

|p2 + p1T |√
T2

K1

(

2π|k| |p2 + p1T |√
T2y8

)

,

with gcd(p1, p2) = 1. In the limit of small string coupling, y8 → 0 and

recalling that ℓ8 = ℓs y
1/6
8 , the first line on the right-hand side behaves as

ℓ4s
ℓ48

8ζ(2)

y8
σ4(|k|)

( √
y8T2

|k| |p2 + p1T |

)
5
2

exp

(

−2π|k| |p2 + p1T |√
T2y8

)

, (4.44)

which is characteristic of the 1
2 -BPS configuration due to a euclidean world-

sheet of a (p1, p2) D-string wrapped k times around T2.
The second line behaves in the small string coupling limit y8 → 0 as

ℓ4s
ℓ48

4ζ(4)y8 E2(U)σ−2(|k|)
( √

y8T2
|k| |p2 + p1T |

)− 1
2

exp

(

−2π|k| |p2 + p1T |√
T2y8

)

,

(4.45)
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which is suppressed relative to (4.44) by y28, which is four powers of the string
coupling. As in the D = 9 and D = 10 cases, the distinction between the
1
2 -BPS and 1

4 -BPS cases is not seen in the argument of the Bessel function,
which determines the exponential suppression at small y8. In other words,
there are no 1

4 -BPS instantons so the second term on the right-hand side
of (4.43) has the same exponential suppression in the y8 → 0 limit as the
first line. The distinction between the 1

2 - and
1
4 -BPS contributions in (4.43)

again lies in the properties of the measure rather than in the spectrum of
instantons.

(iii) The maximal parabolic Pα2 = GL(1) × SL(3)× Uα2

This corresponds to the limit in which the volume of the M-theory 3-
torus, V3, gets large. The unipotent factor Uα2 (E.26) depends only on U1

and the Fourier modes in this case only involve the modes of the SL(2,Z)
Eisenstein series,

F (8)α2

(0,0) :=

∫

[0,1]
dU1 e

−2iπ kU1 E(8)
(0,0) = 2πσ−1(|k|) e−2π|k|U2 . (4.46)

Recalling [2] that U2 = V3/ℓ
3
P is the volume of the M-theory 3-torus, we see

that these coefficients are exponentially suppressed in V3, and correspond
to the expected contributions from euclidean M2-branes wrapped k times
on the 3-torus.

Furthermore, the divisor function reproduces the one derived from a direct
partition function calculation in [38]. The form of this measure factor can
also be seen from a simple duality argument using the fact that the wrapped
M2-brane instanton is related to the Kaluza–Klein world-line instanton by
the SL(2,Z) part of the duality group. This duality interchanges T and
U and, hence, the factor exp(−2π|k|/√Ω2ν2) = exp(−2π|k|T2) in (4.30) is
related to exp(−2π|k| U2) in (4.46). This explains the fact that the measure
factor, σ−1(|k|), is the same in both these equations.

4.5. D = 7: SL(5,Z).

In this case the coefficient functions are given in terms of Eisenstein series
by [1, 2]

E(7)
(0,0) = 2ζ(3)E

SL(5)

α1 ;
3
2

, (4.47)

E(7)
(1,0) = lim

ǫ→0

(

ζ(5 + 2ǫ)E
SL(5)

α1;
5
2
+ǫ

+
24ζ(4− 2ǫ)ζ(5 − 2ǫ)

π2
E

SL(5)

α4;
5
2
−ǫ

)

(4.48)

It was shown in [2] that the pole of the individual series in the parenthesis
cancel in the limit ǫ → 0 and the resulting expression is analytic at ǫ = 0.
The detailed properties of the Eisenstein series that appear on the right-hand
side are reviewed in appendix E.2.



42 M.B. GREEN, S.D. MILLER, AND P. VANHOVE

(i) The maximal parabolic Pα4 = GL(1) × SL(3)× SL(2)× Uα4

This is the decompactification limit in which r3/ℓ8 = r2 → ∞ (where
r is the GL(1) parameter that parameterises the approach to the cusp).
Recalling the relation between the volume of the 3-torus ν3 and the volume
of the 2-torus ν2 [2], the limit under consideration is one in which ν3 =

ν
5
6
2 (r3/ℓ8)

−2 → 0. The unipotent radical is abelian and has the form

Uα4 =

(

I2 Q4

0 I3

)

, (4.49)

where In is the rank n identity matrix and Q4 is the 2 × 3 matrix defined
in (E.37).

Specialising the Fourier modes of E
SL(5)
α1;s that are given in (E.40) to the

case s = 3/2 and using the relation between the GL(1) parameter and the

radius of compactification, r2 = r3/ℓ8, gives the Fourier modes of E(7)
(0,0)

in (4.47)

F (7)α4

(0,0) (k, Ñ4) :=

∫

[0,1]6
d3BNSd

3C(2) e−2iπk tr(Ñ4·Q4) E(7)
(0,0)

=

(

r3
ℓ8

)
4
5

4π σ0(|k|)K0(2π|k| r3m 1
2
) , (4.50)

where gcd(Ñ4) = 1 and the support of the non vanishing Fourier coefficients

is determined by the rank 1 integer-valued matrix Ñ4 in M(3, 2;Z) of the

form Ñ4 = mT n with n = (ni) ∈ Z
3 and m = (ma) ∈ Z

2. This matrix
satisfies the relation

2
∑

a,b=1

ǫab(Ñ4)i
a(Ñ4)j

b = 0, ∀i, j = 1, 2, 3 (4.51)

with ǫ12 = ǫ21 = −1 and ǫ11 = ǫ22 = 0, which is precisely 1
2 -BPS condition

discussed in appendix C.3. The argument of the Bessel function in (4.50) is
proportional to the mass of 1

2 -BPS states, where

m2
1
2
ℓ8 := tr(g−1

3 Ñ4g2Ñ
T
4 ) = m2

SL(2) ×m2
SL(3) , (4.52)

where m2
SL(2) is given in (4.14) and m2

SL(3) is given in (E.8). This is the

mass of a 1
2 -BPS bound state of fundamental strings and D-strings with

Kaluza–Klein momentum. This expression is covariant under the action
of the symmetry group SL(3) × SL(2) of the Levi factor. In the limit

r3/ℓ8 → ∞ the expression for the Fourier modes F (7)α4

(0,0) takes the form

F (7)α4

(0,0) (k, Ñ4) =

(

r3
ℓ8

) 4
5

2π σ0(|k|)
e
−2π|k| r3 m 1

2

√

|k|r3m 1
2

(1 +O(ℓ8/r3)) , (4.53)

which is in accord with the behaviour described in (4.10) with D = 7.



SMALL REPRESENTATIONS, STRING INSTANTONS, AND FOURIER MODES 43

The Fourier modes of E(7)
(1,0) in (4.48) in this parabolic subgroup are defined

as

F (7)α4

(1,0) (k,N4) :=

∫

[0,1]6
d3BNSd

3C(2) e−2iπk tr(N4·Q4) E(7)
(1,0) (4.54)

with gcd(N4) = 1. The expression for these Fourier modes is obtained by

adding (E.40) for the series E
SL(5)
α1;s to (E.55) for the series E

SL(5)
α4;s in the

correct ratio and setting s = 5/2.

The Fourier modes of the Eisenstein series E
SL(5)
α4;s will be computed by

noting that this series can be represented as the Mellin transform of the

E
SO(5,5)

α1;
3
2

series, making use of the following proposition.

We consider H = γ g γT , where γ ∈ SL(d,Z) and g is the SL(d) matrix
parametrizing the coset space SL(d)/SO(d). LettingHk be the bottom right
k× k minor of H the general minimal parabolic Eisenstein series associated
with the minimal parabolic subgroup P (1, . . . , 1),

E
SL(d)
β;s1,...,sd

=
∑

γ∈SL(n,Z)/B(Z)

d−1
∏

k=1

(detHk)
λd−k+1−λd−k−1

2 , (4.55)

Here we have set 2sk = λd−k+1 − λd−k − 1 for 1 ≤ k ≤ d − 1, and ǫk = 1

if sk 6= 0 and ǫk = 0 if sk = 0 and β =
∑d−1

i=1 ǫiβi where βi are the simple
roots of SL(d) with the usual labelling.

Proposition 4.1. The SL(d) series E
SL(d)
β1;s

is given by the Mellin transform

of the SO(d, d) series E
SO(d,d)
α1;d/2−1 according

4ξ(2s)ξ(2s − 1)E
SL(d)
β2;s

= 2ξ(d − 2)

∫ ∞

0
dV V 2s−1E

SO(d,d)

α1;
d
2
−1

(V g) , (4.56)

where G = V g parametrizes the coset SO(d, d)/SO(d)×SO(d) and det g =

1. An equivalent integral representation for the series E
SL(d)
βd−1;s

is obtained by

the use of the functional equation.

Proof. In [2, appendix B.2] an integral representation for these SL(d) Eisen-
stein series was given. The construction considered the integral

Is(Λ, g) :=

∫ Λ

0
dV V 2s−1

∫

F

d2τ

τ22
Γ(d,d)(V g; τ) (4.57)

where Λ > 0, Γ(d,d)(G; τ) is the genus one lattice sum for the self-dual
lorentzian lattice of rank d. The metric G parametrizing the coset
SO(d, d)/SO(d) × SO(d) is decomposed as G = V g with det g = 1 and
g parametrizes the coset space SL(d)/SO(d). This integral was evaluated
in [2, appendix B.2] with the result

Is(Λ, g) = 2ζ(2s)
Λ2s

2s
+
π

3

Λ2s−1

2s− 1
E

SL(d)
β1;1

+ 4ξ(2s)ξ(2s − 1)E
SL(d)
β2;s

. (4.58)
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On the other hand we have the following representation of the E
SO(d,d)
α1;s

series [2, appendix C]

2ξ(2s)ESO(d,d)
α1;s (G) =

∫

F

d2τ

τ22
Es+1− d

2
(τ) Γ(d,d)(G) (4.59)

Since E
SL(2)
0 = 1 this implies that the series E

SL(d)
β2;s

(g) is the Mellin trans-

form with respect to the parameter V of the SO(d, d) series E
SO(d,d)

α1;
d
2
−1

(V g)

given in (4.56). The series E
SL(d)
βd−1;s

is obtained from E
SL(d)
β2;s

by the functional

SL(d) equation

ξ(d− 2s)ξ(d− 1− 2s)E
SL(d)

βd−1;
d
2
−s

= ξ(2s)ξ(2s − 1)E
SL(d)
β2;s

(4.60)

leading to

ξ(2s)ξ(2s − 1)E
SL(d)
βd−1;s

= ξ(d− 1)

∫ ∞

0
dV V 2s−1−dE

SO(d,d)

β1;
d
2
−1

(V −1g) . (4.61)

�

This construction, which differs from the one presented in [39], is very

useful for explicitly evaluating the Fourier coefficients of the series E
SL(5)
β2;s

.

By applying the proposition in the SL(5) case (and noting that the relation
of the standard labelling of the simple roots of SL(5), βi, to our labelling,

αi, in figure 1 implies that E
SL(5)
α3;s = E

SL(5)
β2;s

and E
SL(5)
α4;s = E

SL(5)
β4;s

) the

expression for the coefficient of the ∂4R4 interaction is given by the sum of
two contributions,

F (7)α4

(1,0) (N4) = F (7)α4

(1,0) I(k, Ñ4) + F (7)α4

(1,0) II(N4) , (4.62)

where F (7)α4

(1,0) I(k, Ñ4) depends on the rank 1 integer valued matrix Ñ4 that

arises from the terms in (E.56) and contains the 1
2 -BPS configurations, while

F (7)α4

(1,0) II(N4) depends on the rank 2 integer valued matrix, N4, given in (4.64)

based on the terms that arise from the contribution to the Eisenstein series,

E
SL(5)
α4;s in (E.57). This contains the 1

4 -BPS contributions.

The 1
2 -BPS contributions are given in (E.40) and (E.56)

F (7)α4

(1,0) I(k, Ñ4) = 4π2
(

r3
ℓ8

)2 σ2(|k|)
|k|

m 1
2

‖n‖ K1(2π|k| r3m 1
2
)

+
2π

3

(

r3
ℓ8

)2




∑

u∈Z3\{0}

δ(u · n)
‖u‖4





1 + 2π
r3m 1

2
ℓ8

‖p‖3 e
−2π r3 |k|m 1

2

(4.63)
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where Ñ4 = nT · p with n ∈ Z
3 and p ∈ Z

2 with m 1
2
is defined in (4.52),

‖p‖2 = pT · g−1
2 · p, ‖n‖2 = nT · g3 ·n, ‖u‖2 = uT · g3 · u and δ(x) = 1 if x = 0

and 0 otherwise.
The 1

4 -BPS contributions are characterized by Fourier coefficients local-
ized on the contribution from rank 2 matrix

N4 = mT p− nT q; m = (mi), n = (ni) ∈ Z
3; p = (pa), q = (qa) ∈ Z

2 .
(4.64)

The expression derived in (E.57) reads

F (7)α4

(1,0) II(k,N4) =
3

2π3

∫ +∞

−∞
dτ1

1 + 2π|p + qτ1|
√
n2 r3/ℓ8

|p + qτ1|3(q2)
1
2

e−2πr3 |k|m(τ1).

(4.65)
where gcd(N4) = 1 and the mass in the exponent is given by

m(τ1) ℓ8 = |p+ qτ1|
√
n2 + |m+ nτ1|

√

q2 , (4.66)

where n2 = nT · g3 · n and q2 = qT · g2 · q. In the limit r3 ≫ ℓ8 the integral
(4.65) is dominated by the minimum value of m(τ1), which is at τ1 = 0
(using the fact that N4 has rank 2). The result is that the dominant mass
is the sum of the masses of two 1

2 -BPS states given in (4.52).

(ii) The maximal parabolic Pα1 = GL(1) × SO(3, 3) × Uα1

The instanton contributions to E(7)
(0,0) in the perturbative string limit as-

sociated with Lα1 = GL(1) × SO(3, 3) are given by (E.44) upon setting
s = 3/2. The relation between the GL(1) parameter and the string coupling

constant in 7 dimensions is r−2 = y
1
2
7 and the relation between the 7 dimen-

sion Planck length and the string length is ℓ7 = ℓs y
1/5
7 [2]. In this case the

unipotent radical is abelian and has the form

Uα1 =

(

I4 Q1

0 1

)

, (4.67)

where Q1 is a SO(3, 3) spinor defined in (E.42).
This leads to the expression for the Fourier modes

F (7)α1

(0,0) (k,N1) :=

∫

[0,1]4
d4Q1 e

−2πikNT
1 ·Q1 E(7)

(0,0)

=
4π

y
7
10
7

σ2(|k|)
|k|

K1

(

2π|k| ‖N1‖√
y7

)

‖N1‖
. (4.68)

where ‖N1‖2 := NT
1 ·g4 ·N1 withN1 ∈ Z

4\{0}, such that gcd(N1) = 1, and g4
is a 4× 4 matrix parametrizing the coset space SO(3, 3)/SO(3)×SO(3). In
the limit y7 → 0 the right hand side of (4.68) has the exponential suppression
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characteristic of an instanton contribution and contributes

ℓ7 F (7)α1

(0,0) (k,N1) ∼ ℓs
2π

y7
σ2(|k|)

( √
y7

|k| ‖N1‖

)− 3
2

exp

(

−2π|k|‖N1‖√
y7

)

(4.69)
to the effective R4 action with D = 7 in (2.5).

Terms with N1 = (1, 0, 0, 0) are D-instanton contributions. Terms with
N1 6= (1, 0, 0, 0) are 1

2 -BPS contributions due to wrapped Euclidean bound
states of fundamental and D-strings. The rank 4 integer vector N1 is unre-
stricted.

The Fourier modes in this parabolic of E(7)
(1,0) are given for the series E

SL(5)
α1;5/2

in (E.44) and in (E.64) for the series E
SL(5)
α4;5/2

. Adding these contributions

and setting s = 5/2 gives

F (7)α1

(1,0)
(k,N1) :=

∫

[0,1]4
d4Q1 e

−2πik NT
1 ·Q1 E(7)

(1,0)

=
8π2

3 y7

σ4(|k|)
|k|2

1

‖N1‖2
K2

(

2π|k| ‖N1‖√
y7

)

(4.70)

+
4√
y7





∑

m∈Z4\{0}

δ(m ·N1)

(m2)2





‖N1‖
|k| K1

(

2π|k|‖N1‖√
y7

)

,

where N1 ∈ Z
4\{0} such that gcd(N1) = 1 and m2 = mT · g−1

4 ·m. In the
limit y7 → 0 these modes give instantonic contributions of the form

ℓ57F (7)α1

(1,0) (k,N1) ∼ ℓ5s
2π2

3 y7
σ4(|k|)

( |k|‖N1‖√
y7

)− 5
2

exp

(

2π|k| ‖N1‖√
y7

)

+ℓ5s 2y7





∑

m∈Z4\{0}

δ(m ·N1)

(m2)2





1

k2

( |k|‖N1‖√
y7

) 1
2

exp

(

2π|k|‖N1‖√
y7

)

,

(4.71)

to the effective ∂4R4 action with D = 7 in (2.5).
The two contributions to the Fourier modes have the same support (i.e., in

both cases the charges are labelled by the matrix N1) because there are no
1
4 -

BPS instantons in the expansion at node α1 (see section 3.4.1). The different
BPS nature of each contribution must be encoded in the factor multiplying
the Bessel functions. Once more, we see that the 1

4 -BPS contribution in the

second line has an extra four powers of the string coupling constant y27.

4.6. D = 6: SO(5, 5,Z).

The coefficient functions in this case are given by combinations of Eisen-
stein series [1],

E(6)
(0,0) = 2ζ(3)E

SO(5,5)

α1;
3
2

, (4.72)
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and

E(6)
(1,0) = lim

ǫ→0

(

ζ(5 + 2ǫ)E
SO(5,5)

α1;
5
2
+ǫ

+
8ζ(6)

45
E

SO(5,5)
α5;3−ǫ

)

. (4.73)

It was shown in [1] that the pole of the individual series in the parenthesis
cancel in the limit ǫ → 0 and the resulting expression is analytic at ǫ = 0.
Whereas the previous cases involved SL(n) Eisenstein series, which could
be expressed as lattice sums that were easy to manipulate, there is much
less understanding of the SO(5, 5) series in terms of such explicit lattice

sums. Various properties of E
SO(5,5)
α1;s were considered in [2] (where the series

was denoted (2ζ(2s))−1 E
SO(5,5)
[10000];s), based on the integral representation to

be reviewed below. This is sufficient to discuss the Fourier modes of the
coefficient E(6)

(0,0), but since E(6)
(1,0) also involves the series E

SO(5,5)
α5;s , detailed

evaluation of its Fourier modes will not be performed in this paper due to
space limitations. However, we are able to determine its orbit content as
will be discussed later in this subsection.

The integral representation for the SO(d, d) Eisenstein series E
SO(d,d)
α1;s as

a theta-lift of SL(2) Eisenstein series was presented in [2,40,41] in the form

2ξ(2s)ESO(5,5)
α1;s =

∫

F

d2τ

τ22
Es− 3

2
(τ) Γ(5,5) , (4.74)

where the lattice sum is

Γ(5,5) = V(5)
∑

(mi,ni)∈Z10

e
− π

τ2
(m+nτ)T ·(g+B)·(m+nτ̄ )

. (4.75)

The symmetric matrix g and the antisymmetric matrix B parametrize the
coset SO(5, 5)/SO(5)×SO(5). The Fourier modes of this series at node α5

and node α1 will now be described.

(i) The maximal parabolic Pα5 = GL(1) × SL(5)× Uα5

This parabolic subgroup has Levi factor Lα5 = GL(1) × SL(5) (recalling
from figure 1 that in our conventions α5 is a spinor node of E5 = SO(5, 5)).
We will here evaluate the Fourier modes using the same methods as used

for computing the constant term of the series E
SO(d,d)
α1;s in [2, appendix C].

The Fourier modes are defined as

FSO(5,5)α5
α1;s (N2) :=

∫

[0,1]5
dQ2 e

−2iπ tr(NT
2 ·Q2)ESO(5,5)

α1;s (4.76)

where Q2 is a 5× 5 antisymmetric matrix parametrizing the abelian unipo-
tent radical Uα5 , and N2 is an antisymmetric 5 × 5 matrix with integer
entries.

We find that the Fourier modes of the series E
SO(5,5)
α1;s are localized on the

rank 1 contributions where N2 satisfies the constraints

5
∑

i,j,k,l=1

ǫijklm(N2)ij(N2)kl = 0, ∀1 ≤ m ≤ 5 , (4.77)
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where ǫijklm is the totally antisymmetric symbol with ǫ12345 = 1. This
constrains is the 1

2 -BPS condition discussed in appendix C.4.
This condition can be solved as

N2 = mTn− nTm; m,n ∈ Z
5 , (4.78)

with gcd(N2) = 1. Applying the method of orbits for the SL(2) action on

τ , the Fourier modes of FSO(5,5)α5
α1;s take the form

FSO(5,5)α5
α1;s (N2) =

V(5)

ξ(s)

∫ ∞

−∞
dτ1

∫ ∞

0

dτ2
τ22

Es− 3
2
(τ) e

−π|k|V
2
5

(5)

(m+τn)T ·g5·(m+τ̄n)
τ2 ,

(4.79)
Setting s = 3/2 in this equation, using E0(τ) = 1 and V(5) = (r4/ℓ7)

5/2,
(see [2, section 3.4]) gives

F (6)α5

(0,0)
(N2) = 4π

(

r4
ℓ7

) 5
2

σ1(|k|)
e
−2π |k| r4 m 1

2

|k|r4m 1
2

, (4.80)

where
m2

1
2
ℓ27 := tr(g5N2g5N2) = m2n2 − (m · n)2 . (4.81)

with m2 = mT · g5 ·m, and with identical definition for n2 and m · n. The
expression in (4.80) reproduces the asymptotic (actually exact in this case)
behaviour for 1

2 -BPS contribution in (4.10) with D = 6.

The Eisenstein series E
SO(5,5)
α1;s has a single pole at s = 5/2 with residue

equal to the s = 3/2 series E
SO(5,5)
α1;3/2

discussed above. This series only receives

1
2 -BPS contributions. The complete coefficient E(6)

(1,0), defined in (4.73), also

gets a 1
4 -BPS contribution from E

SO(5,5)
α5;s , which has a pole at s = 3 such

that the resulting combination in (4.73) is analytic as shown in [1].

(ii) The maximal parabolic Pα1 = GL(1)× SO(4, 4) × Uα1

In this parabolic subgroup the Levi factor is Lα1 = GL(1) × SO(4, 4).
The elements of the unipotent radical are parametrized by the 4× 2 matrix

Q1 =
(

Q1I QI
2

)

, ∀1 ≤ I ≤ 4 . (4.82)

In the type IIA string theory description this matrix is parametrized by
the 4 euclidean D0-brane charges, and 4 euclidean D2-branes wrapped on
3-cycles of T4.

The Fourier modes of (4.74) are defined as

FSO(5,5)α1
α1;s (N1) :=

∫

[0,1]8
d8Q1e

−2iπ tr(NT
1 Q1)ESO(5,5)

α1;s , (4.83)

where N1 is the 4× 2 matrix

N1 := (mI nI), ∀1 ≤ I ≤ 4 . (4.84)

The entries mI corresponds to the 4 different ways of wrapping the 1-
dimensional euclidean world-volume of a D0-brane on the 4-torus, and the
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entries nI the four ways of wrapping the three dimensional euclidean world-
volume of a D4-brane on the 4-torus. The energy of the D0-brane is E0 =
∑4

I=1m
IRI/(ℓsgs) and the energy of theD4-brane is E4 = V4

∑4
I=1 nIℓs/(RIgs)

where V4 = R1R2R3R4/ℓ
4
s is the volume of the 4-torus. In order to make a

contact with the orbit classification in section 3.4.1 we have introduced the
vector (pL, pR) in the even self-dual Lorentzian lattice Γ(4,4). The 4-vector

pIL = mIRI/ℓs × 1/
√
V4 + nIℓs/RI ×

√
V4 and pIR = mIRI/ℓs × 1/

√
V4 −

nIℓs/RI ×
√
V4 for 1 ≤ I ≤ 4.

The energy the (D0,D2) bound-state is given by
√
V4/gs ×

√

p2L + p2R.

Introducing y6 = g2s/V4 the GL(1) parameter is r = y
− 1

4
6 . We remark

that the lattice is even p2L − p2R = 2
∑4

I=1mIn
I ∈ 2Z. In terms of the

modes matrix N1 in (4.84) this is expressed as p2L− p2R = tr(N1JN
T
1 ) where

J =

(

0 1
1 0

)

. By triality the SO(4, 4) vector (pL, pR) is equivalent to a

SO(4, 4) chiral spinor used for the orbit classification in section 3.4.1.
By extending the constant term computation in [2, Appendix C] the

Fourier coefficients are given by

FSO(5,5)α1
α1;s (N1) =

V(5)

2ξ(2s)

∑

k∈Z\{0}

∫ ∞

0
dτ2 e

−πr2 k2

τ2
−πτ2 r2 (p2L+p2

R
)×

×
∫ 1

2

− 1
2

dτ1Es− 3
2
(τ) e−iπτ1 (p2L−p2

R
) . (4.85)

It is significant that setting s = 3/2 and using E0(τ) = 1, the integration
over τ1 projects onto the condition p2L − p2R = 0 which is the pure spinor
condition for SO(4, 4). Using the triality relation between vector and spinor
representation of SO(4, 4) this condition is the 1

2 -BPS (pure spinor) con-
dition S · S = 0 discussed in section 3.4.1. It is then straightforward to
evaluate the integrals in (4.85) to evaluate the Fourier modes of the coeffi-

cient function E(6)
(0,0), giving

F (6)α1

(0,0) (N1) = 4πV(4) y
− 1

4
6

∑

k∈Z\{0}

|k|
√

2p2L

K1(2π|k| y
− 1

2
6

√

2p2L) δ(p
2
L = p2R) ,

(4.86)
where the contributions are localized on the 1

2 -BPS pure spinor locus p2L −
p2R = 0 which is the condition tr(N1JN

T
1 ) = 0 on the mode matrix N1. As

expected, the argument of the Bessel function is proportional to r2 = 1/
√
y6,

the inverse of the string coupling with D = 6, so its asymptotic expansion is
that expected from the contribution of 1

2 -BPS states from wrapped D-brane

on the 4-torus T4.
When s 6= 3/2 the τ1 integral in (4.85) does not impose the restriction

p2L−p2R = 0 and so the solution fills a generic SO(4, 4) orbit and the solution
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is 1
4 -BPS. Although the function E(6)

(1,0) in (4.73) is a linear combination of the

vector Eisenstein series, E
SO(5,5)
α1;5/2

and the spinor series, E
SO(5,5)
α5;3

, at present

we know little about the explicit structure of the latter, so we will only
discuss the former here. The Fourier modes of the vector series at s = 5/2
are given by

F
SO(5,5)α1

α1;
5
2

(N1) = 8V(5)
∑

k∈Z\{0}

∫ ∞

0
dτ2 e

−πr2 k2

τ2
−πτ2 r2 (p2L+p2R)×

×
∫ 1

2

− 1
2

dτ1 Ê1(τ) e
2iπτ1 (p2L−p2R) . (4.87)

The series E
SO(5,5)
α1;s has a single pole at s = 5/2 from the single pole of the

SL(2) series Es(τ) at s = 1 in the integral representation in (4.85). The

Fourier modes depend on the finite part Ê1(τ) defined by the expansion

in (E.14). Using the fact that Ê1(τ) = −π × log(τ2|η(τ)|4) gives the result

F
SO(5,5)α1

α1;
5
2

(N1) = −16πV(4)y
− 1

4
6 σ−1(

1

2
|p2L − p2R|)

∑

k∈Z\{0}
|k| ×

×
K1(2πy

− 1
2

6 |k|
√

p2L + p2R + |p2L − p2R|)
√

p2L + p2R + |p2L − p2R|
, (4.88)

where the mode matrixN1 in (4.84) is unconstrained and p2L−p2R = tr(N1JN
T
1 ) ∈

2Z is an even integer.

In summary, the non-zero Fourier modes of E(6)
(0,0) have support on the 1

2 -

BPS orbit in limits (i), (ii) and (iii). One of the contributions to E(6)
(1,0) is the

regularised series Ê
SO(5,5)

α1;
5
2

. This has non-zero Fourier modes with support

on the 1
2 -BPS orbit in limits (i) and (iii), but on both the 1

2 -BPS and 1
4 -BPS

orbits in limit (ii). Although we have not computed the modes for the other

contribution to E(6)
(1,0) – the series Ê

SO(5,5)
α5;3

– we do know its orbit content

by use of techniques similar to those in section 6.2. The result is that the
non-zero Fourier modes of this series have support on the 1

2 -BPS and 1
4 -BPS

orbits in limits (i) and (iii), but only on the 1
2 -BPS orbit in limit (ii). In

other words the complete coefficient E(6)
(1,0) has the expected content of both

the 1
2 -BPS and 1

4 -BPS in its non-zero Fourier modes in all three limits.

5. The next to minimal (NTM) representation

This section contains the proof of theorem 2.13, drawing on some results
in representation theory that can be found in appendix A by Ciubotaru and
Trapa. As we remarked just before its statement, cases (i) and (ii) are by now
well known, and so we restrict our attention to case (iii): the s = 5/2 series.
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To set some terminology, let G = NAK be the Iwasawa decomposition of the
split real Lie group G, B the minimal parabolic subgroup of G containing
NA, and aC = a ⊗R C be the complexification of the Lie algebra of A.
Without any loss of generality we may assume it is the complex span of the
Chevalley basis vectors Hα, where α ranges over the positive simple roots.
For any λ ∈ a∗

C
, the dual space of complex valued linear functionals on aC,

define the vector space of functions on G

Vλ :=
{

f : G→ C | f(nag) = e(λ+ρ)(H(a))f(g), ∀ n ∈ N, a ∈ A, g ∈ G
}

.

(5.1)
The transformation law and Iwasawa decomposition show that all functions
in Vλ are determined by their restriction to K. Then G acts on Vλ by the
right translation operator

(πλ(h)f) (g) := f(gh) , (5.2)

making (πλ, Vλ) into a representation of G commonly called a (nonunitary)
principal series representation. It is irreducible for λ in an open dense subset
of a∗

C
, but reduces at special points with certain integrality properties – such

as the ones of interest to us. The representation Vλ has a unique K-fixed
vector up to scaling, namely any function whose restriction to K is constant.
These are also known as the spherical vectors of the representation, and any
representation which contains them is also called “spherical”. When Vλ is
reducible, it clearly can have at most one spherical subrepresentation.

The minimal parabolic Eisenstein series is defined as

EG(λ, g) =
∑

γ∈B(Z)\G(Z)

e(λ+ρ)(H(γg)) , (5.3)

initially for λ in Godement’s range {λ|〈λ, α〉 > 1 for all α ∈ Σ}, and then by
meromorphic continuation to all of a∗

C
. When λ has the form λ = 2sωβ − ρ,

it specializes to the maximal parabolic Eisenstein series (2.12). For generic
λ in the range of convergence, the right translates of EG(λ, g) span a sub-
space of functions on G(Z)\G(R) which furnish a representation of G that is
equivalent to Vλ; the group action here is also given by the right translation
operator (5.2). The spherical vectors in this representation are the scalar
multiplies of EG(λ, g), because the function H(g) – the logarithm of the Iwa-
sawa A-component – is necessarily right invariant under K. For general λ at
which EG(λ, g) is holomorphic, its right translates span a spherical subrep-
resentation of Vλ, again with the group action given by the right translation
operator (5.2).

As mentioned above, the principal series Vλ reduces for special values of λ.
This reducibility reflects special behavior of the Eisenstein series EG(λ, g).
This is most apparent at the point λ = −ρ, where the transformation law
(5.1) indicates that the constant functions on K extend to constants on
G, and hence that the trivial representation is a subrepresentation of V−ρ.
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G = E6 G = E7 G = E8

s = 0
λdom [1,1,1,1,1,1] [1,1,1,1,1,1,1] [1,1,1,1,1,1,1,1]
sGRS

zKS

s = 3/2
λdom [1,1,1,0,1,1] [1,1,1,0,1,1,1] [1,1,1,0,1,1,1,1]
sGRS 1/4 5/18 19/58
zKS 7/22 11/34 19/58

s = 5/2
λdom [0,1,1,0,1,1] [1,1,1,0,1,0,1] [1,1,1,0,1,0,1,1]
sGRS -1/2 1/18 11/58
zKS none 33/34 11/58

Table 6. The values of λ for the three values of s and three
groups in theorem 2.13. Weights λ ∈ a∗

C
are listed here in

terms of their inner products with the positive simple roots
as [〈λ, α1〉, 〈λ, α2〉, . . .]. For comparison with [6, 12], we have
listed the parameters sGRS (the quantity s on [6, p.71]) and
zKS (the quantify z(G) from [6, p.86]) for s = 3/2, as well
as their corresponding generalizations for s = 5/2. These
parameters coincide for the group E8. The parameter zKS is
not relevant to the s = 5/2 case for E6 because the relevant
Weyl orbits do not intersect (cf. [1, Section 3.1]).

Likewise, the specialization of the minimal parabolic Eisenstein series at
λ = −ρ is the constant function identically equal to 1, a compatible fact.

The proof of theorem 2.13 rests upon special properties of the spherical
subrepresentation of Vλ at the values of λ relevant to the s = 5/2 Epstein
series. We recall that for this maximal parabolic Eisenstein series, λ has the
form λ = 2sωα1−ρ; it is characterized by having inner product 2s−1 with α1,
and inner product−1 with each αj , j ≥ 2. Write λdom for a dominant weight
in the Weyl orbit of λ, i.e., one whose inner product with all positive roots
is nonnegative. Table 6 on page 52 gives dominant weights for the groups
in Theorem 2.13 as well as its three values of s ∈ {0, 3/2, 5/2}, although of
course only the last value is of immediate relevance in this section.

The case of G = E6 is slightly easier than the others because of a low-
dimensional coincidence, which in fact is mostly independent of the actual
value of s in that the same statement holds for generic s. Namely, the
representation Vλ we consider is part of a family of degenerate principal
series representations, induced from the trivial representation on the reduc-
tive SO(5, 5) factor of the Levi component GL(1)×SO(5, 5) of the maximal
parabolic subgroup Pα1 . These representations are indexed by the one di-
mensional family λ = 2sωα1 −ρ, s ∈ C, which is related to the GL(1) factor.
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Though they may reduce at particular points, their Gelfand-Kirillov dimen-
sion18 is equal to the dimension of the unipotent radical of that parabolic,
16; likewise, any subrepresentation of it cannot have larger dimension. Since
the dimension of the wavefront set of a representation is twice the Gelfand-
Kirillov dimension, it is bounded by 32. For E6, the orbits in Figure 2 have
dimensions 0, 22, and 32; all other orbits have larger Gelfand-Kirillov di-
mension. Hence the orbit attached to the s = 5/2 Eisenstein series for E6

is either the trivial orbit, the minimal orbit, or the next-to-minimal orbit.
It cannot be the trivial orbit, because only the trivial representation is at-
tached to it. Likewise, Kazhdan-Savin [12] proved a uniqueness statement
for the minimal orbit, that (up to Weyl equivalence) only the s = 3/2 series
is related to the minimal representation. We thus conclude it is attached to
the next-to-minimal orbit.

To explain the s = 5/2 cases for E7 and E8 we need to rely on some recent
results from representation theory, and some notions from there concerning
unipotent and special unipotent representations. A striking feature from
the table is that 〈λdom, αj〉 has all 1’s except for a single zero for the s =
3/2 case, and two zeroes for the s = 5/2 case. This phenomenon, which
came up here because of physical arguments, also arose in work on special
unipotent representations. These λdom take the same value on simple roots
as a particular element H of the Cartan subalgebra of g. In our three
examples there is a unique coadjoint nilpotent orbit containing a nilpotent
element X such that there is a homomorphism from sl2 to g carrying ( 0 1

0 0 )
to X and

(

1 0
0 −1

)

to H. In terms of Figure 3 these three related “dual”
orbits are the top three listed, though in the reverse order. Appendix A
describes a related construction for more general types of orbits beyond the
ones considered in this paper.

As part of the more general result given in appendix A, corollary A.6 then
asserts that the spherical subquotient of each of the three principal series
Vλdom

has wavefront set equal to the closure of the dually related orbit listed
in figure 3. This proves theorem 2.13 for E7 and E8.

6. Fourier coefficients and their vanishing

6.1. Dimensions of orbits in the character variety. In sections 3.3-3.5
we listed a number of explicit features of the orbits of instantons for the par-
abolic subgroups Pα1 , Pα2 , and Pαd+1

(in the numbering of figure 1). These
are the character variety orbits discussed at the beginning of section 4.1. In
this section we give more details, in particular basepoints and dimensions for
each of the finite number of orbits under the complexification LC of the Levi
factor of the parabolic. As shorthand, we will refer to these as the “complex

18The Gelfand-Kirillov dimension is a numerical index of how “large” a representation
is; it is half the dimension of the associated coadjoint nilpotent orbit (i.e., the orbit
whose closure is the wavefront set of the representation). For example, finite dimensional
representations have Gelfand-Kirillov dimension equal to zero.
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Principal orbit

Subregular orbit

Sub-subregular

Trivial Orbit

Minimal Orbit

NTM Orbit

{ Fuzzy structure }

E7

[1,1,1,1,1,1,1]

E6

[1,1,1,1,1,1]

E8

[1,1,1,1,1,1,1,1]

[1,1,1,0,1,1]

[0,1,1,0,1,1]

[1,1,1,0,1,1,1]

[1,1,1,0,1,0,1]

[1,1,1,0,1,1,1,1]

[1,1,1,0,1,0,1,1]

[0,0,0,0,0,0] [0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0]

[0,1,0,0,0,0]

[1,0,0,0,0,1]

[0,0,0,0,0,0,1]

[0,0,1,0,0,0,0]

[0,0,0,0,0,0,0,1]

[1,0,0,0,0,0,0,0]
dim 92

dim 58

dim 0dim 0dim 0

dim 34

dim 52

dim 22

dim 32

Marking of Orbit

Figure 3. The largest and smallest orbits, with markings.

orbits of the Levi”. We shall also use the notation Yα to refer to the root
vector X−α, in order to keep the listing of basepoints more readable.

This information is quoted from the paper [27], which lists the corre-
sponding information for any maximal parabolic subgroup of an exceptional
group. We also describe the group action of the Levi in some of the cases,
the rest being described in [27]. Recall that the dimensions of the character
varieties were given earlier in table 3 on page 20. In the following subsec-
tions, we give more details for the groups E5 = SO(5, 5), E6, E7, and E8.
For ease of reference, tables 7 on page 55, 8 on page 55, and 9 on page 56
give the orbit dimensions for the parabolic subgroups Pα1 , Pα2 , and Pαd+1

of each of these groups, respectively.

6.1.1. SO(5, 5). Recall that we label our E5 = D5 Dynkin diagram accord-
ing to the numbering in Figure 1. This does not match the customary
numbering of the D5 Dynkin diagram, but has the advantage of allowing for
a uniform discussion of all of our cases of interest.

Node 1 is the so-called “vector” node, because Pα1 has Levi component
isomorphic to GL(1) × SO(4, 4), which acts on the 8-dimensional, abelian
unipotent radical by the usual 8-dimensional representation of SO(4, 4).
This action breaks into 3 complex orbits: the trivial orbit; a 7-dimensional
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Group dimensions
SL(2) 0 1 - - - - - - - -

SL(3)× SL(2) 0 2 - - - - - - - -
SL(5) 0 4 - - - - - - - -
SO(5, 5) 0 7 8 - - - - - - -
E6 0 11 16 - - - - - - -
E7 0 16 25 31 32 - - - - -
E8 0 22 35 43 44 50 54 59 63 64

Table 7. Dimensions of character variety orbits for the Levi
component of the parabolic formed by deleting the first node
of E4 = SL(5), E5 = SO(5, 5), E6, E7, and E8. A dash, −,
signifies that there is no orbit. The character variety orbits in
this parabolic subgroup are the SO(d, d) spinor orbits listed
in section 3.4.1.

Group dimensions
SL(2) 0 - - - - - - - - -

SL(3)× SL(2) 0 1 - - - - - - - -
SL(5) 0 4 - - - - - - - -
SO(5, 5) 0 7 10 - - - - - - -
E6 0 10 15 19 20 - - - - -
E7 0 13 20 21 25 26 28 31 34 35
E8 0 16 25 28 31 32 35 38 40 · · ·

Table 8. Dimensions of character variety orbits of the Levi
component for the parabolic formed by deleting the second
node of E4 = SL(5), E5 = SO(5, 5), E6, E7, and E8. A dash,
−, signifies that there is no orbit. Not all E8 orbits are listed
(there are 23 total).

orbit with basepoint Yα1 ; and the open, dense 8-dimensional orbit with
basepoint Y11110 + Y11101 (see table 7).

Nodes 2 and 5 are the “spinor nodes”, and have identical orbit structure
(up to relabeling the nodes). Here the Levi component of Pα2 or Pα5 is
now isomorphic to GL(1) × SL(5), and acts on the 10-dimensional abelian
unipotent radical by the second fundamental representation, also known as
the exterior square representation. In other words, the action of the SL(5)
piece is equivalent to that on antisymmetric 2-tensors x∧ y = −y∧x, where
x and y are 5-dimensional vectors. This action also has 3 complex orbits
(part of a general description for abelian unipotent radicals of maximal
parabolic subgroups given in [42]): the trivial orbit; a 7-dimensional orbit
with basepoint Yα2 in the case of node 2, and Yα5 in the case of node 5;
and the open, dense 10-dimensional orbit with basepoint Y01211+Y11111 (see
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Group dimensions
SL(2) 0 - - - -

SL(3)× SL(2) 0 1 3 - -
SL(5) 0 5 6 - -
SO(5, 5) 0 7 10 - -
E6 0 11 16 - -
E7 0 17 26 27 -
E8 0 28 45 55 56

Table 9. Dimensions of character variety orbits of the Levi
component for the parabolic formed by deleting the last node
of E4 = SL(5), E5 = SO(5, 5), E6, E7, and E8. A dash, −,
signifies that there is no orbit. The character variety orbits
in this parabolic subgroup were also listed in table 5 based
on enumeration of instanton orbits.

table 8, or table 9). This last basepoint is in the open dense orbit for either
Pα2 or Pα5 .

6.1.2. E6. Node 1 and 6 are related by an automorphism of Dynkin di-
agram, and have identical orbit structure (up to relabeling the nodes).
Here the Levi component is isomorphic to GL(1) × SO(5, 5), which acts
on the 16-dimensional, abelian unipotent radical by the spin representa-
tion of SO(5, 5). There are three complex orbits: the trivial orbit; an 11-
dimensional orbit with basepoint Yα1 in the case of node 1, and Yα6 in
the case of node 6; and the open, dense 16-dimension orbit with basepoint
Y111221 + Y112211 for either nodes 1 or 6 (see table 7 or table 9).

Node 2 is the first case we encounter with a non-abelian unipotent radical.
It is instead a 21-dimensional Heisenberg group, and its character variety has
5 complex orbits (another general fact for Heisenberg unipotent radicals of
maximal parabolic subgroups [43]): the trivial orbit; a 10-dimensional orbit
with basepoint α2; a 15-dimensional orbit with basepoint Y111221+Y112211; a
19-dimensional orbit with basepoint Y011221+Y111211+Y112210; and the open,
dense 20-dimensional orbit with basepoint Y010111 + Y112210 (see table 8).

6.1.3. E7. This is the first group for which the three nodes have math-
ematically different structures. Node 1 has a 33-dimensional unipotent
radical which is a Heisenberg group, and Levi component isomorphic to
GL(1)×SO(6, 6). The action on the 32-dimensional character variety again
has 5 complex orbits: the trivial orbit; a 16-dimensional orbit with base-
point Yα1 ; a 25-dimensional orbit with basepoint Y1123321 + Y1223221; a 31-
dimensional orbit with basepoint Y1122221+Y1123211+Y1223210; and the open,
dense 32-dimensional orbit with basepoint Y1011111 + Y1223210 (see Table 7
on page 55).

Node 2 has a 42-dimensional unipotent radical, and a 35-dimensional
character variety. The Levi component GL(1)×SL(7) acts with 10 complex
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orbits: the trivial orbit; a 13-dimensional orbit with basepoint Yα2 ; a 20-
dimensional orbit with basepoint Y1122221 + Y1123211; a 21-dimensional orbit
with basepoint Y0112221 + Y1112211 + Y1122111; a 25-dimensional orbit with
basepoint Y1112221+Y1122211+Y1123210; a 26-dimensional orbit with basepoint
Y1111111+Y1123210; a 28-dimensional orbit with basepoint Y0112221+Y1112211+
Y1122111+Y1123210; a 31-dimensional orbit with basepoint Y0112221+Y1111111+
Y1123210; a 34-dimensional orbit with basepoint Y0112211+Y1112111+Y1112210+
Y1122110; and the open, dense 35-dimensional orbit with basepoint Y0112111+
Y0112210 + Y1111111 + Y1112110 + Y1122100 (see table 8 on page 55).

Node 7 has a 27-dimensional abelian unipotent radical, and Levi compo-
nent isomorphic to GL(1)×E6,6. The latter acts with 4 complex orbits: the
trivial orbit, a 17-dimensional orbit with basepoint Yα7 , a 26-dimensional
orbit with basepoint Y1123321+Y1223221, and the open, dense 27-dimensional
orbit with basepoint Y0112221 + Y1112211 + Y1122111 (see Table 9 on page 56).

6.1.4. E8. This is the biggest of our groups, and the unipotent radicals of
its maximal parabolics are never abelian.

Node 1 has a 78-dimensional unipotent radical, and a 64-dimensional
character variety. The Levi component is isomorphic to GL(1) × SO(6, 6)
and acts according to the spin representation of SO(6, 6), with 10 com-
plex orbits: the trivial orbit; a 22-dimensional orbit with basepoint Yα1 ; a
35-dimensional orbit with basepoint Y12244321 + Y12343321; a 43-dimensional
orbit with basepoint Y12233321 +Y12243221 +Y12343211; a 44-dimensional orbit
with basepoint Y11122221 + Y12343211; a 50-dimensional orbit with basepoint
Y11233321+Y12233221+Y12243211+Y12343210; a 54-dimensional orbit with base-
point Y11222221+Y12243211+Y12343210; a 59-dimensional orbit with basepoint
Y11122221+Y11233211+Y12232211+Y12343210; a 63-dimensional orbit with base-
point Y11222221 + Y11232211 + Y11233210 + Y12232111 + Y12232210; and the open,
dense 64-dimensional orbit with basepoint Y11122111+Y11221111 +Y11233210 +
Y12232210 (see table 7 on page 55).

Node 2 has a 92-dimensional unipotent radical, and a 56-dimensional
character variety. The Levi component is isomorphic to GL(1) × SL(8)
and acts according to the third fundamental representation of SL(8), also
known as the exterior cube representation. It acts with 23 complex orbits,
the four smallest of which are: the trivial orbit; a 16-dimensional orbit with
basepoint Yα2 ; a 25-dimensional orbit with basepoint Y1123221 + Y11233211;
and a 28-dimensional orbit with basepoint Y11122221 + Y11222211 + Y112321111
(see table 8 on page 55).

Node 8 has a 57 dimensional unipotent radical which is a Heisenberg
group. The Levi factor is isomorphic to GL(1) × E7 and acts with 5 com-
plex orbits on the 56-dimensional character variety: the trivial orbit; a 28-
dimensional orbit with basepoint Yα8 ; a 45-dimensional orbit with base-
point Y22454321+Y23354321; a 55-dimensional orbit with basepoint Y12244321+
Y12343321 + Y22343221; and the open, dense 56-dimensional orbit with base-
point Y01122221 + Y22343211 (see table 9 on page 56).
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6.2. Applications of Matumoto’s theorem. In Section 2.2.2 we men-
tioned that representations of real groups have an invariant attached to
them, the wavefront set, that in a sense measures how big the representa-
tion is. Theorem A.5 indeed computes this wavefront set in many cases,
including ours. There is a theorem due to Matumoto [44] that asserts, in
a precise sense, that small representations cannot have large Fourier coef-
ficients. Namely, he proves that if an element Y ∈ u−1 associated to the
character χ from (4.6) does not lie in the wavefront set, then the Fourier
coefficient φχ from (4.1) must vanish identically.

For example, the trivial representation has wavefront set {0}, and like-
wise the constant function does not have any nontrivial Fourier coefficients.
In [27] a detailed analysis is given of the different character variety orbits
for each parabolic subgroup of an exceptional group, and which coadjoint
nilpotent orbits they are contained in. It is then a simple matter to apply
Matumoto’s theorem and determine a set of Fourier coefficients which au-
tomatically vanishes because their containing coadjoint nilpotent orbits lie
outside the wavefront set. In particular, it is shown in [27] that the closure
of the minimal coadjoint nilpotent orbit contains the two smallest character
variety orbits in each of the examples of Pα1 , Pα2 , and Pαd+1

for the groups
Ed+1, 5 ≤ d ≤ 7 (this was known to experts, at least in special cases – see for
example [6]). Likewise, it is also verified there that the closure of the next-
to-minimal coadjoint nilpotent orbit contains the three smallest character
variety orbits in each of these nine examples.

Combining this with the characterization in Theorem 2.13 of the wave-
front sets for the Epstein series at s = 0, 3/2, and 5/2, we get the following
statement about the vanishing of Fourier coefficients. This gives a rigorous
proof of the vanishing statements on page 5.

Theorem 6.1. Let 5 ≤ d ≤ 7 and G = Ed+1 as defined in table 1 on page 4.
Then:

(i) All Fourier coefficients of the s = 0 Epstein series vanish in any of
the parabolics Pα1 , Pα2 , or Pαd+1

, with the exception of the constant
terms (which were calculated in [1]).

(ii) All Fourier coefficients of the s = 3/2 Epstein series EG
α1;3/2

vanish

in any of the parabolics Pα1 , Pα2 , or Pαd+1
, with the exceptions of the

constant term and the smallest dimensional character variety orbit.
This orbit has: dimension 11 for E6 and either Pα1 or Pα6 , and
dimension 10 for Pα2 ; dimensions 16, 13, and 17 for E7 and Pα1 ,
Pα2 , and Pα7 , respectively; and dimensions 22, 16, and 28 for E8

and Pα1 , Pα2 , and Pα8 , respectively.
(iii) All Fourier coefficients of the s = 5/2 Epstein series EG

α1;5/2
vanish

in any of the parabolics Pα1 , Pα2 , or Pαd+1
, with the exceptions of

the constant term and the next two smallest dimensional character
variety orbits. This additional character variety orbit is: the 16, 15,
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and 16-dimensional orbits for E6 and Pα1 , Pα2 , and Pα6 , respec-
tively; the 25, 20, and 26-dimensional orbits for E7 and Pα1 , Pα2 ,
and Pα7 , respectively; and the 35, 25, and 45-dimensional orbits for
E8 and Pα1 , Pα2 , and Pα8 , respectively.

7. Square integrability of special values of Eisenstein series

In this section we remark that some of the coefficient functions E(D)
(0,0) and

E(D)
(1,0) from the expansion (2.3) provide examples of square-integrable au-

tomorphic forms on higher rank groups. In particular, we will prove this

is the case for E(D)
(1,0) on E7 and E8. In light of (1.3), this proves the as-

sociated automorphic representation is unitary, since it can be realized in
the Hilbert space L2(Ed+1(Z)\Ed+1(R)). This unitary can also be demon-
strated by purely representation theoretic methods. At present this is more
of a curiosity, since we are not aware of any particular importance for our ap-
plications. The analysis in the proof also determines the exact asymptotics
of these coefficients in various limits, generalizing those studied in [1].

Theorem 7.1. Let G denote the group Ed+1 defined in table 1 on page 4.

(i) The Epstein series EG
α1;0 is constant, and hence always square-integrable.

(ii) The Epstein series EG
α1;3/2

and hence E(10−d)
(0,0) is square-integrable if

4 ≤ d ≤ 7.

(iii) The Epstein series EG
α1;5/2

and hence E(10−d)
(1,0) is square-integrable if

6 ≤ d ≤ 7.

Case (i) is obvious since the quotient Ed+1(Z)\Ed+1(R) has finite volume,
while case (ii) was proven earlier by [6]. We have included them here in the
statement for convenience and comparison. It should be stressed, though,
that EG

α1;s is certainly not square integrability for general s. The same
method treats the lower rank groups as well, though since the statements
are not needed here we refer to papers [6] and [45] for D5.

Proof. Recall that the series EG
α1;s is a specialization of theminimal parabolic

Eisenstein series EG(λ, g) from (5.3) at λ = 2sω1 − ρ. This is explained in
our context in [1, Section 2], where Langlands’ constant term formula is also
given in Theorem 2.18. The latter shows that the constant term of EG(λ, g)
along any maximal parabolic subgroup P is a sum of other minimal parabolic
Eisenstein series on its Levi component. By induction, this is also true if P is
not maximal. In particular, since these Eisenstein series on smaller groups
are orthogonal to all cusp forms on those groups, the constant terms are
therefore orthogonal to all cusp forms on the Levi components – a meaningful
statement only, of course, when the parabolic P is not the Borel subgroup
B (so that the Levi is nontrivial). This means EG(λ, g) has “zero cuspidal
component along any such P” in the sense of [46, Section 3], or equivalently
that it is “concentrated” on the Borel subgroup B.
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The constant term along B is explicitly given in terms of a sum over the
Weyl group:

∫

N(Z)\N(R)
EG(λ, ng) dn =

∑

w∈Ω

e(wλ+ρ)(H(g))M(w, λ) , (7.2)

where M(w, λ) is given by the explicit product over roots whose sign is
flipped by w,

M(w, λ) =
∏

α> 0
wα< 0

c(〈λ, α〉) , (7.3)

with

c(s) :=
ξ(s)

ξ(s+ 1)
and ξ(s) := π−

s
2 Γ( s2) ζ(s) (7.4)

(see, for example, [1, (2.16)-(2.21)]). This formula is valid for generic λ,
and develops logarithmic terms at special points via meromorphic continua-
tion. Moreover, certain coefficients M(w, λ) may vanish, for example when
〈λ, α〉 = −1 and the respective factor in (7.4) has a zero owing to the pole
of ξ(s) at s = 0 (unless it is canceled by a pole from another factor). Be-
cause EG(λ, g) is “concentrated on B”, Langlands’ criteria in [46, Section 5]
asserts that it is square-integrable if and only if the surviving exponents wλ
have negative inner product with each fundamental weight:

〈wλ, ωα〉 < 0 for each α > 0 . (7.5)

The rest of the proof involves an explicit calculation to check that for each
w ∈ Ω, either M(w, λ) vanishes or (7.5) holds. Actually, despite the enor-
mous size of the Weyl groups involved, M(w, λ) vanishes for all but very
few w (because of the special nature of λ).

Though the individual terms in (7.2) are frequently singular at the values
of λ in question, the overall sum can be calculated explicitly by taking limits.
We now present the result of this calculation. To make the condition (7.5)
more transparent, we take g = a to be an element of the maximal torus A
(as we of course may, given that H(g) depends only on the A-component of
g’s Iwasawa decomposition). We then furthermore parameterize a by real
numbers r1, r2, . . . via the condition that the simple roots on a take the
values

aα1 = er1 , aα2 = er2 , . . . . (7.6)

For example, for G = E6 the limiting value of (7.2) as λ approaches 3ω1 − ρ
can be calculated explicitly as e2r1+3r2+4r3+6r4+4r5+2r6 times

3ζ(3)
(

e2r1+r3 + er5+2r6
)

+ π2(er2 + er3 + er5) + 6π(r4 + γ − log(4π))

3ζ(3)
.

(7.7)

This expression is dominated by eρ(H(g)) = e8r1+11r2+15r3+21r4+15r5+8r6 for
ri > 0, that is, (7.5) holds and hence EG

α1;3/2
is square-integrable – verifying

a fact proven in [6].
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We now turn to the two new cases, those of the s = 5/2 series for E7

and E8. We recall the computational method of [1, Section 2.4] to find the
minimal parabolic constant terms, namely to precompute the set

S := { w ∈ Ω | wαi > 0 for all i 6= 1 } . (7.8)

For w /∈ S, M(w, λ) will include the factor c(〈λ, αi〉) = c(〈2sω1 − ρ, αi〉) =
c(−〈ρ, αi〉) = c(−1) = 0 for some i > 1. At the same time, at least for
Re s < 1

2
, all inner products 〈λ, α〉 will be negative, and hence none of

the other factors in (7.3) can have a pole (after all, c(s) is holomorphic for
Re s < 0). Thus the term for w in (7.2) vanishes identically in s by analytic
continuation, and the sum in (7.2) reduces to one over w ∈ S.

For E7 there are only 126 elements in S out of the 2,903,040 elements of
the full Weyl group Ω. It can be calculated that all but three w of these
126 satisfy Langlands’ condition (7.5), and the three that do not have the
following expressions for M(w, λ) for s = 5/2 + ε:

Exception 1 : c(2(ǫ − 5))c(2ǫ)2c(2ǫ− 9)c(2ǫ − 8)2c(2ǫ− 7)2c(2ǫ − 6)3 ×
× c(2ǫ− 5)3c(2ǫ− 4)3c(2ǫ− 3)3c(2ǫ− 2)3c(2ǫ − 1)3 ×
× c(2ǫ+ 1)2c(2ǫ+ 2)c(2ǫ + 3)c(2ǫ + 4)c(4ǫ − 7) ,

Exception 2 : c(2ǫ)2c(2ǫ− 9)c(2ǫ − 8)2c(2ǫ − 7)2c(2ǫ− 6)3c(2ǫ− 5)3 ×
× c(2ǫ− 4)3c(2ǫ− 3)3c(2ǫ− 2)3c(2ǫ− 1)3c(2ǫ + 1)2 ×
× c(2ǫ+ 2)c(2ǫ + 3)c(2ǫ + 4)c(4ǫ − 7) ,

Exception 3 : c(2(ǫ − 5))c(2ǫ)2c(2ǫ− 11)c(2ǫ − 9)c(2ǫ − 8)2c(2ǫ − 7)2 ×
× c(2ǫ− 6)3c(2ǫ− 5)3c(2ǫ − 4)3c(2ǫ− 3)3c(2ǫ− 2)3 ×
× c(2ǫ− 1)3c(2ǫ+ 1)2c(2ǫ + 2)c(2ǫ + 3)c(2ǫ + 4)c(4ǫ − 7) .

(7.9)
Each of these terms is in fact zero by dint of the triple zero counterbalancing
the double pole at ǫ = 0. (Incidentally, the overall series EG

α1;5/2
was shown

to be non-zero in [1] for both G = E7 and G = E8).
For E8 there are 2160 elements in S out of the 696,729,600 elements of

the full Weyl group Ω. Likewise, all but 258 of these 2160 w satisfy (7.5).
Again, all 258 of these terms vanish at s = 5/2 because their products have
a triple zero (coming from three c(s) factors evaluated at near s = −1) that
balance two poles (coming from two c(s) factors evaluated near s = 1).

�

8. Discussion and future problems

In this paper we have studied the Fourier modes of the Eisenstein se-
ries that define the coefficients of the first two nontrivial interactions in the
low energy expansion of the four-graviton amplitude in maximally super-
symmetric string theory compactified on Td, and verified they have certain
expected features. In particular, we have shown that their non-zero Fourier
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coefficients contain the expected minimal and next-to-minimal (12 -BPS and
1
4 -BPS) instanton orbits for any of the symmetry groups, Ed+1 (0 ≤ d ≤ 7).
This extends the analysis of these functions in [1], where the constant terms
of these functions were shown to reproduce all the expected features of string
perturbation theory and semi-classical M-theory. Furthermore, in low rank
cases we were able to present the explicit Fourier coefficients of these func-
tions and show that they have the form expected of BPS-instanton contri-
butions. Indeed, the form of the 1

2 -BPS contributions match those deduced
from string theory calculations as summarised by (4.10).

For high rank cases this involved a detailed analysis of the automorphic
representations connected to these coefficients. Namely, we explained that
they are automorphic realizations of the smallest two types of nontrivial
representations of their ambient Lie groups, and why this property auto-
matically implies the vanishing of a slew of Fourier coefficients – precisely
the Fourier coefficients that the BPS condition ought to force to vanish. We
furthermore showed the most interesting cases – those of the next-to-minimal
representation for E7 and E8 – occur in L2(Ed+1(Z)\Ed+1(R)).

This raises some obviously interesting questions, both from the string
theory perspective and from the mathematical perspective.

An immediately interesting mathematical direction would be the explicit

computation of the non-zero Fourier modes of E(D)
(0,0) and E(D)

(1,0) for the high

rank cases with groups E6, E7 and E8, in particular to get finer information
using the work of Bhargava and Krutelevich on the integral structure of
the character variety orbits. In a different direction, as mentioned in sec-
tion 3.3.1 it would be of interest to extend the considerations of this paper
to affine E9 and behind that to hyperbolic extensions.

Another question that is natural to ask in the context of string theory is to
what extent does our analysis generalise to higher order interactions in the
low energy expansion, which preserve a smaller fraction of supersymmetry?
Could there be a rôle for Eisenstein series with other special values of the
index s in the description of such terms? However, the evidence is that such
higher order terms involve automorphic functions that are not Eisenstein

series. For example, E(D)
(0,1) (the coefficient of the 1

8 -BPS ∂
6 R4 interaction) is

expected to satisfy a particular inhomogeneous Laplace eigenvalue equation
[5]. Although its constant term has, to a large extent, been analysed for
the relevant values of D [1], it would be most interesting to analyse the

non-zero Fourier modes of E(D)
(0,1), which should describe the couplings of 1

8 -

BPS instantons in the four-graviton amplitude for low enough dimensions,
D. This should reveal a rich structure. For example, the instantons that
contribute in the limit of decompactification from D to D + 1 include the
1
8 -BPS black holes of D + 1 dimensions, which can have non-zero horizon
size and exponential degeneracy. It is not apparent at first sight whether
this degeneracy should be encoded in the solutions of the inhomogeneous
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equation satisfied by E(D)
(0,1). Indeed, we have seen in the 1

4 -BPS cases that the

Fourier expansion of the coefficient function E(D)
(1,0)

in the decompactification

limit does not determine the Hagedorn-like degeneracy of 1
4 -BPS small black

holes in D + 1 dimensions. Rather, the divisor functions weight particular
combinations of charges and windings of the wrapped world-lines of such
objects.

These issues involve mathematical challenges. For example, the study of
inhomogeneous Laplace equations for the group SL(2,R) heavily relies on
explicit formulas for automorphic Green functions, which do not generalize
in an obvious manner to higher rank groups because they involve automor-
phic Laplace eigenfunction forms which do not have moderate growth in the
cusps (at present the existence of such functions is itself an open problem).

Another issue is to what extent this analysis can be extended to discuss
the automorphic properties of yet higher order terms in the expansion of the
four-graviton amplitude. Further afield are issues concerning the extension
of these ideas to multi-particle amplitudes, to amplitudes that transform
as modular forms of non-zero weight, and extensions to processes with less
supersymmetry.
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Appendix A. Special unipotent representations,
by Dan Ciubotaru and Peter E. Trapa

Department of Mathematics
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Salt Lake City, UT 84112-0090
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The representations considered in Theorem 2.13 are examples of a wider
class of representations which have attracted intense attention in the math-
ematical literature. The purpose of this appendix is to recall certain results
(from a purely local point of view) which are especially relevant for the
discussion of Section 5.
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To begin, let G denote a real reductive group arising as the real points
of a connected complex algebraic group GC. In [Ar1] and [Ar2], Arthur
set forth a conjectural description of irreducible (unitary) representations
contributing to the automorphic spectrum of G. In many cases, these con-
jectures could be reduced to a fundamental set of representations attached
to (integral) “special unipotent” parameters. In the real case, Arthur’s
conjectures — and, in particular, the definition of the corresponding spe-
cial unipotent representations — are made precise and refined in the work
of Barbasch-Vogan [BV1] and, more completely, in the work of Adams-
Barbasch-Vogan [ABV]. The perspective of these references is entirely lo-
cal. (Of course an extensive literature approaching Arthur’s conjectures by
global methods exists and, for classical groups, is summarized in [Ar3].) As
we now explain, the representations appearing in Theorem 2.13 are indeed
special unipotent in the sense of Adams-Barbasch-Vogan.

Write gC for the Lie algebra of GC and fix a Cartan subalgebra hC arising
as the Lie algebra of a maximal torus in GC. Write Ω for the Weyl group of
hC in gC. The classification of connected reductive algebraic groups natu-
rally leads from GC to the Langlands dual G∨

C
, a connected reductive com-

plex algebraic group, e.g. [Sp]. Let g∨
C
denote the Lie algebra of GC. The

construction of G∨
C
includes the definition of a Cartan subalgebra h∨

C
which

canonically identifies with the linear dual of hC,

h∨C ≃ (hC)
∗. (A.1)

Let N denote the cone of nilpotent elements in gC, and likewise let N∨

denote the cone of nilpotent elements in g∨
C
. Write GC\N and G∨

C
\N∨ for

the corresponding sets of adjoint orbits. These sets are partially ordered by
the inclusion of closures. Spaltenstein defined an order-reversing map

d : G∨
C\N∨ −→ GC\N

with many remarkable properties which were refined in [BV1, Appendix];
see Theorem A.4 below.

Example A.1. Suppose the Dynkin diagram corresponding to gC is simply
laced (as is the case for the groups Ed+1 from figure 1 and table 1). Then
gC ≃ g∨

C
and G∨

C
and GC are isogenous. Thus G∨

C
\N∨ can be identified with

GC\N and d can be viewed as an order reversing map from the latter set
to itself. With this in mind, consider Figure 3. The map d interchanges the
top three orbits with the bottom three orbits (in an order reversing way, of
course). In particular d applied to the sub-subregular orbit is the next to
minimal orbit. The complete calculation of d is given in [Ca].

Fix an element O∨ of G∨
C
\N∨. According to the Jacobson-Morozov The-

orem, there exists a Lie algebra homomorphism

φ : sl(2,C) −→ g∨C
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such that the image under of φ of

(

0 1
0 0

)

lies in O∨ and

φ

(

1 0
0 −1

)

∈ h∨C ≃ h∗C, (A.2)

with the last isomorphism as in (A.1).
The element in (A.2) depends on the choice of φ. Its Weyl group orbit is

well-defined however (independent of how φ is chosen). So define

λ(O∨) := (1/2) φ

(

1 0
0 −1

)

∈ h∗C/Ω. (A.3)

According to the Harish-Chandra isomorphism, λ(O∨) specifies a maximal
ideal Z(O∨) in the center of the enveloping algebra U(gC). Recall that
an irreducible admissible representation of G is said to have infinitesimal
character λ(O∨) if its Harish-Chandra module is annihilated by Z(O∨).

A result of Dixmier implies that there is a unique primitive ideal I(O∨)
in U(gC) which is maximal among all primitive ideals containing Z(O∨).
(A primitive ideal in U(gC) is, by definition, a two-sided ideal which arises
as the annihilator of a simple U(gC) module.) Given any two-sided ideal
I in U(gC), we can consider the associated graded ideal gr(I) with respect
to the canonical grading on U(gC). According to the Poincaré-Birkoff-Witt
Theorem, gr(I) is an ideal in gr(U(gC)) ≃ S(gC), the symmetric algebra of
gC, and hence cuts out a subvariety (the so-called associated variety, AV(I),
of I) of g∗

C
.

It will be convenient to identify gC with g∗
C
(by means of the choice of an

invariant form) and view AV(I) as a subvariety of gC. (The choice of form is
well-defined up to scalar; since AV(I) is a cone, AV(I) becomes a well-defined
subvariety of gC.) A theorem of Joseph [11] and Borho-Brylinski [BoBr1]
(cf. the short proof in [V2]) implies that if I is primitive, AV(I) is indeed
the closure of a single nilpotent orbit of GC.

Theorem A.4 ([BV1, Corollary A.3]). In the setting of the previous para-
graph,

AV(I(O∨)) = d(O∨).

Example A.2. Suppose GC is simply laced and make identifications as in
Example A.1. Suppose O∨ is respectively the regular, subregular, or sub-
subregular, orbit in Figure 3. Then AV(I(O∨)) is the closure respectively
of the zero, minimal, or next-to-minimal orbit.

Definition A.3 (Barbasch-Vogan [BV1]). Fix an orbit O∨ as above. Sup-
pose further that O∨ is even or, equivalently, that λ(O∨) is integral. An
irreducible admissible representation of G is said to be (integral) special
unipotent attached to O∨ if the annihilator of its Harish-Chandra module
is I(O∨).

Note that since I(O∨) is a maximal primitive ideal, special unipotent
representations are, in a precise sense, as small as possible.
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Theorem A.5. Suppose G is split and π is an irreducible spherical rep-
resentation with infinitesimal character λ(O∨) (with notation as in (A.3)).
Suppose further that O∨ is even. Then π is special unipotent in the sense of
Definition A.3.

Sketch. Chapter 27 in [ABV] defines special unipotent Arthur packets. Roughly
speaking, such a packet is parametrized by a rational form of an orbit O∨

in G∨
C
\N∨ ( [ABV, Theorem 27.10]). In the case that O∨ is even, these

packets are known to consist of representations appearing in Definition A.3
([ABV, Corollary 27.13]). As a consequence of [ABV, Definition 22.6] (see
also the discussion after [ABV, Definition 1.33]), such a packet also con-
tains a (generally nontempered) L-packet. In the case at hand, the special
unipotent Arthur packet parametrize by O∨ contains the L-packet consist-
ing of the spherical representation with infinitesimal character λ(O∨). This
completes the sketch. �

Corollary A.6. The spherical subrepresentations of the principal series rep-
resentations Vλdom

from section 5 are integral special unipotent attached to
O∨ (Definition A.3) where O∨ is, respectively, the regular, subregular, and
sub-subregular nilpotent orbit (all of which are even). According to Corol-
lary A.4 and Example A.2, the wavefront sets of these representations are,
respectively, the zero, minimal, and next to minimal orbits.

Finally, we remark that since the special unipotent representation of Defi-
nition A.3 are predicted by Arthur to appear in spaces of automorphic forms,
they should be unitary.

Conjecture A.7. Suppose π is integral special unipotent in the sense of
Definition A.3. Then π is unitary.

The representations appearing in Theorem A.5 are known to be unitary
if GC is classical or of Type G2. This was proved by purely local methods
in [V1], [V2], and [B]. For a summary of results obtained by global methods,
see [Ar3].

For completeness, we discuss the analogs of these results in the p-adic
case. Let F be a p-adic field, with ring of integers O, and finite residue field
Fq. The group G is now the F -points of a connected algebraic group GF

defined over F . We assume for simplicity that G is split and of adjoint type.
Let K be the O-points of GF , a maximal compact open subgroup of G. Let
I be the inverse image in K under the natural projection K → GF (Fq) of a
Borel subgroup over Fq. The compact open subgroup I is called an Iwahori
subgroup.

The Iwahori-Hecke algebra H(G, I) is the convolution algebra (with re-
spect to a fixed Haar measure on G) of compactly supported, locally con-
stant, I-biinvariant complex functions on G. It is a Hilbert algebra, in the
sense of Dixmier, with respect to the trace function f 7→ f(1), and the ∗-
operation f∗(g) = f(g−1), f ∈ H(G, I). Thus, there is a theory of unitary
remodules of H(G, I) and an abstract Plancherel formula.
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If (π, V ) is a complex smooth G-representation, such that V I 6= 0, the
algebra H(G, I) acts on V I via

π(f)v =

∫

G
f(x)π(x)v dx, v ∈ V I , f ∈ H(G, I).

Theorem A.8 ([Bo]). The functor V → V I is an equivalence of categories
between the category of smooth admissible G-representations and finite di-
mensional H(G, I)-modules

Borel conjectured that this functor induces a bijective correspondence
of unitary representations. This conjecture was proved by Barbasch-Moy
[BM1] (subject to a certain technical assumption which was later removed).

Theorem A.9 ([BM1]). An irreducible smooth G-representation (π, V ) is
unitary if and only if V I is a unitary H(G, I)-module.

The algebraH(G, I) contains the finite Hecke algebraH(K, I) of functions
whose support is in K. Under the functor η, K-spherical representations of
G correspond to spherical H(G, I)-modules, i.e., modules whose restriction
to H(K, I) contains the trivial representation of H(K, I).

The classification of simple H(G, I)-modules is given by Kazhdan-Lusztig
[KL].

Theorem A.10 ([KL]). The simple H(G, I)-modules are parameterized by
G∨

C
-conjugacy classes of triples (s∨, e∨, ψ∨), where:

(i) s∨ ∈ G∨
C
is semisimple;

(ii) e∨ ∈ N∨ such that Ad(s)e = qe;
(iii) ψ∨ is an irreducible representation of Springer type of the group of

components of the mutual centralizer ZG∨
C
(s∨, e∨) of s∨ and e∨ in

G∨
C
.

Let π(s∨, e∨, ψ∨) denote the simpleH(G, I)-module parametrized by [(s∨, e∨, ψ∨)].

Example A.4. In the Kazhdan-Lusztig parametrization, the simple spher-
ical H(G, I)-modules correspond to the classes of triples [(s∨, 0, 1)]. Here
s∨ is the Satake parameter of the corresponding irreducible spherical G-
representation. On the other hand, let O∨ be a fixed G∨

C
-orbit in N∨, and

set s∨O∨ = qλ0(O∨) where λ0(O∨) is any choice of representative of the el-
ement in (A.3). If e∨0 belongs to the unique open dense orbit of ZG∨

C
(s∨)

on g∨q = {x ∈ g∨q : Ad(s∨)x = qx} (in particular e∨0 ∈ O∨), then the sim-
ple H(G, I)-module (and the corresponding irreducible G-representation)
parametrized by [(s∨O∨ , e∨0 , ψ

∨)] is tempered.

The Iwahori-Hecke algebra has an algebra involution τ , called the Iwahori-
Matsumoto involution, defined on the generators as in [IM]. It induces an
involution on the set of simple H(G, I)-modules, which is easily seen to map
unitary modules to unitary modules. The effect of τ on the set of Kazhdan-
Lusztig parameters is given by a Fourier transform of perverse sheaves [EM],
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and therefore it is hard to compute effectively in general, except in type
A [MW]. (For a general algorithm, see [L].) However, it is easy to see that
if π(s∨O∨ , 0, 1) is a simple spherical H(G, I)-module, then

τ(π(s∨O∨ , 0, 1)) = π(s∨O∨ , e∨0 , 1), (A.11)

where the notation is as in Example A.4. In particular, π(s∨O∨ , 0, 1) is uni-
tary. Together with Theorem A.9, this gives the following corollary (cf. Con-
jecture A.7).

Corollary A.12. If π is an irreducible spherical G-representation with Sa-
take parameter s∨O∨ ∈ G∨

C
, then π is unitary.
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Appendix B. Supersymmetry and instantons

The constraints of maximal supersymmetry are efficiently described by
starting with the superalgebra generated by the 32-component Majorana
spinor supercharge, Qα =

∫

J0
αd

10x, where JI
α is the supercurrent (with

spinor index α, β = 1, . . . , 32 and vector index I = 0, 1, . . . , 10). This satis-
fies the anti-commutation relations,

{Qα , Qβ} = PI1

(

Γ0ΓI1
)

αβ
+ Zαβ (B.1)

where the central charge is

Zαβ = ZI1I2

(

Γ0ΓI1I2
)

αβ
+ ZI1···I5

(

Γ0ΓI1···I5)
αβ

, (B.2)

where ΓI
αβ are SO(1, 10) Dirac matrices19 and PI is the eleven-dimensional

translation operator.

B.1. BPS particle states. Positivity of the anticommutator in (B.1) leads
to the Bogomol’nyi bound that restricts the masses of states to be larger
than or equal to the central charge. States saturating the bound are BPS
states that form supermultiplets, the lengths of which depend on the fraction
of supersymmetry broken by their presence. The shortest multiplets are 1

2 -
BPS, with longer multiplets for smaller fractions.

The presence of the 2-form component of the central charge indicates
that the theory contains a membrane-like state (the M2-brane) carrying a

conserved charge Q(2), while the 5-form component indicates the presence
of a 5-brane state (the M5-brane) carrying a charge Q(5). The 2-form and
5–form in (B.1) are given by integration of the spatial directions of the M2
and M5 branes over 2-cycles AI1I2 or 5-cycles AI1···I5 ,

ZI1I2 = Q(2)

∫

AI1I2

d2X , ZI1···I5 = Q(5)

∫

AI1···I5

d5X . (B.3)

The M2 and M5-branes are 1
2 -BPS states that preserve 16 of the 32 com-

ponents of supersymmetry. The 2-form charge couples to a 3-form potential

(C
(3)
I1I2I3

), with field strength H(4) = dC(3). This is analogous to the manner
in which the Maxwell 1-form potential couples to a point-like electric charge
(a 0-brane), and H(4) is the analogue of the Maxwell field. Poincare dual-

ity gives a 7-form field strength defined by ∗H(4) := H(7), which is solved
locally as H(7) = dC(6) + C(3) ∧ dC(3) and defines the six-form potential,

19ΓI1···Ir
αβ is the antisymmetrized product of r Gamma matrices normalised so that

Γ1···r = Γ1 · · ·Γr.
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C(6), that couples to the five-brane. In other words, the M5-brane couples
to the magnetic charge that is dual to the electric charge carried by the
M2-brane. The BPS condition implies that the charge on the brane is equal
to its tension, T (r),

Q(r) = T (r) . (B.4)

The integrals in (B.3) are well-defined when all the spatial directions of the
branes are wound around the compact cycles of the M-theory torus, T d+1,
in which case the state is point-like from the point of view of the D = 10−d
non-compact dimensions (so there are finite-mass point-like states due to
wrapped M2-branes when d ≥ 1 as well as wrapped M5-branes when d ≥
4).20 Other kinds of 1

2 -BPS states also arise in the toroidal background, such
as point-like Kaluza–Klein (KK) charges, which are modes of the metric
that contribute for any d ≥ 0. The magnetic dual of a KK state is a KKM ,
which is described by a Taub-NUT geometry in four spatial dimensions,
leaving six more spatial dimensions that are interpreted as the directions on
a six-brane. This has a finite mass when wrapped around T 6, so it can arise
when d ≥ 5.

The complete spectrum of BPS states in an arbitrary toroidal compact-
ification of type IIA or IIB string theory can be deduced by considering
the toroidal compactification of the M-theory algebra (B.1) with appropri-
ate rescalings of the moduli [47]. Combining completely wrapped branes in
various combinations leads to point-like 1

2 -,
1
4 - and

1
8 -BPS states that are of

importance in discussing the spectrum of black holes in string theory [21,22].
This spectrum is of significance in classifying the orbits of instantons that
decompactify to black hole states in one higher dimension associated with
the parabolic subgroup Pαd+1

(where we will follow the discussion in [19,20]).

Appendix C. Orbits of BPS instantons in the
decompactification limit

In this limit a finite action instanton inD = 10−d dimensions corresponds
to an embedded euclidean world-volume that can be one of three types: (a)
It has an action that does not depend on rd as rd → ∞ and so is also an
instanton of the (D + 1)-dimensional theory – this contributes only to the
constant term in this parabolic and does not appear in non-zero Fourier
modes; (b) It is a euclidean world-line of a (D + 1)-dimensional point-like
BPS black hole with mass MBH , which gives a term suppressed by a factor
of e−2π rd MBH in the amplitude in the limit rd/ℓD+1 → ∞; (c) It has an
action that grows faster than rd/ℓD+1 so it does not decompactify to give
either a particle state or an instanton in D + 1 dimensions.

20There is a huge literature of far more elaborate windings of such branes around
supersymmetric cycles in curved manifolds, in which case a fraction of the supersymmetry
may or may not be preserved.
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In order to illustrate this pattern the following list summarises the spec-
trum of particle states and instantons in each dimension in the range 3 ≤
D ≤ 10 (i.e. 0 ≤ d ≤ 7).21

C.1. D = 10.
In this case there are no 1

4 -BPS states. In the type IIA theory the 1
2 -BPS

particle states consist of threshold bound states of D0-branes. There are no
instantons in the IIA theory and there is no symmetry group.

The type IIB theory has no BPS particle states but has the 1
2 -BPS D-

instanton, multiples of which can contribute to the amplitude. The duality
group of the IIB theory is SL(2,Z) and there is only one orbit,

O2 =
SL(2,R)

R
. (C.1)

The bold face subscript, in this example and in the following, gives the
dimensions of the coset, dim(G/H) = dim(G) − dim(H).

C.2. D = 9.
This is obtained by considering M-theory on a 2-torus T 2, where the discrete
duality group SL(2,Z) is identified with the group of large diffeomorphisms
of T 2.

• The BPS particle states consist of the M2-brane wrapping T 2, and
two Kaluza–Klein modes arising from the two cycles of the torus,
giving a total of 3 BPS states. Their charges are parametrized by
a scalar v and a SL(2) vector va. The charges of the 1

2 -BPS states

are given by the condition [19] v va = 0 and the 1
4 -BPS states by

v va 6= 0.
• There is a single BPS instanton that can be identified with the wrap-
ping of the euclidean world-line of a Kaluza–Klein state formed on
one cycle around the second cycle of the torus – in this sense a
euclidean Kaluza–Klein state wraps a 2-cycle on a torus.

C.3. D = 8.
M-theory on a 3-torus T 3 (duality group SL(3,Z) × SL(2,Z)).

• There are 3 BPS states from the M2-brane wrapping 2-cycles, and
3 BPS states from the Kaluza–Klein states associated with 1-cycles,
giving a total of 6 BPS states.

• There is 1 BPS instanton from the world-volume of the M2-brane
wrapping the whole of T 3, and 3 BPS instantons from the Kaluza–
Klein states wrapping 2-cycles, giving a total of 4 BPS instantons.

The 6 BPS states are parametrized by vi a transforming in the 3 × 2 of
SL(3)×SL(2). The 1

2 -BPS states are given by the condition [19] ǫab vi avj b =

21In addition to the massive black hole states listed there is, in each case, the standard
charge-zero 1

2
-BPS massless supergraviton.
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0 and the 1
4 -BPS states by ǫab vi avj b 6= 0. This determines two BPS orbits

given by [23]

1
2 −BPS : O5 =

SL(3,R) × SL(2,R)

(R+ × SL(2,R)) ⋉R3
, (C.2)

1
4 −BPS : O6 =

SL(3,R)× SL(2,R)

SL(2,R)⋉R2
. (C.3)

C.4. D = 7.
M-theory on a 4-torus T 4 (duality group SL(5,Z)).

• There are 6 BPS states from the M2-brane wrapping 2-cycles, and
4 BPS states from the Kaluza–Klein states associated with 1-cycles,
giving a total of 10 BPS states.

• There are 4 BPS instantons from the M2-brane wrapping 3-cycles
and 6 BPS instantons from the Kaluza–Klein states wrapping 2-
cycles, giving a total of 10 BPS instantons.

The 10 BPS states are parametrized by the rank-2 antisymmetric represen-
tation v[ij] (i, j = 1, . . . , 5) in the 10 of SL(5). The 1

2 -BPS states are given

by the condition [19] ǫijklm vij vkl = 0 and the 1
4 -BPS by ǫijklm vij vkl 6= 0.

This determines two BPS orbits given by [23]

1
2 −BPS : O7 =

SL(5,R)

(SL(3,R)× SL(2,R)) ⋉R6
, (C.4)

1
4 −BPS : O10 =

SL(5,R)

O(2, 3) ⋉R4
. (C.5)

C.5. D = 6.
M-theory on a 5-torus T 5 (duality group SO(5, 5,Z)).

• There are 10 BPS states from the M2-brane wrapping 2-cycles and
5 BPS states from the Kaluza–Klein states associated with 1-cycles.
There is an additional BPS state due to theM5-brane wrapping the
whole of T 5, giving a total of 16 BPS states.

• There are 10 BPS instantons from theM2-brane world-volume wrap-
ping 3-cycles and 10 BPS instantons from euclidean Kaluza–Klein
states wrapping 2-cycles, giving a total of 20 BPS instantons.

The 16 BPS states are in a chiral spinor representation Sα (α = 1, . . . , 16)
of SO(5, 5). Such a spinor satisfies the identity (SΓmS)(SΓmS) = 0, where
Γm (m = 1, . . . , 10) are Dirac matrices with suppressed spinor indices. The
configurations are 1

2 -BPS if S satisfies the pure spinor condition, SΓmS =
0 [19]. A standard way to analyse this condition is to decompose S into
U(5) representations, 16 = 15 ⊕ 5̄−3 ⊕ −101 (where the subscripts denote
the U(1) charges), so it has components

S = (s, va, v
ab), a, b = 1, . . . , 5 . (C.6)
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The pure spinor (12 -BPS) condition, SΓmS = 0 is va = s−1

5! ǫabcde v
bcvde,

which implies that the 5 is not independent of the other U(5) representa-
tions, so the space of such spinors has dimension 11. The 1

4 -BPS solution
is the unconstrained spinor space (excluding SΓmS = 0) and has dimension
16. There are two BPS orbits given by [23]

1
2 −BPS : O11 =

SO(5, 5,R)

SL(5,R)⋉R10
, (C.7)

1
4 −BPS : O16 =

SO(5, 5,R)

O(3, 4) ⋉R8
. (C.8)

C.6. D = 5.
For M-theory on a 6-torus T 6 (duality group E6(Z)):

• There are 15 BPS states from the M2-brane wrapping 2-cycles, 6
BPS Kaluza–Klein states associated with 1-cycles, and 6 BPS states
from the M5-brane wrapping 5-cycles, giving a total of 27 BPS
states.

• There are 20 BPS instantons from the world-volume of theM2-brane
wrapping 3-cycles, 15 BPS instantons from Kaluza–Klein states wrap-
ping 2-cycles, and 1 BPS instanton from the world-volume of the
M5-brane wrapping the whole of T 6, giving a total of 36 BPS in-
stantons.

The 27 BPS states are in the fundamental representation, qi (i = 1, . . . , 27),
of E6 and lead to 1

2 -,
1
4 - or

1
8 -BPS configurations depending on the following

conditions on the E6 cubic invariant I3 =
∑

1≤i,j,k≤27(I3)ijkq
iqjqk [19]

1
8 −BPS : I3 6= 0 , (C.9)

1
4 −BPS : I3 = 0,

∂I3
∂qi

6= 0 , (C.10)

1
2 −BPS : I3 = 0,

∂I3
∂qi

= 0,
∂2I3
∂qi∂qj

6= 0 . (C.11)

Clearly the first of these conditions (the 1
8 -BPS condition) is of dimension

27. The other conditions may be analysed by decomposing the 27 of E6

into SO(5, 5)×U(1) irreducible representations, 27 = 14⊕10−2⊕161. This
means that qi decomposes as

qi = (s, vm, S
α) , (C.12)

where s is a scalar, vm is a SO(5, 5) vector of dimension 10 and Sα is a spinor
of dimension 16 (and the U(1) charges have been suppressed). The cubic
invariant I3 decomposes as [19], I3 = 10−2 ⊗10−2⊗14 ⊕161⊗161⊗10−2,
which implies that

I3 = s v · v + (SΓS) · v , (C.13)

where v · v is the SO(5, 5) (norm)2 of the vector v, and (SΓS) · v is the
SO(5, 5) scalar product between the vector SΓmS and vm.
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The 1
4 -BPS solution reduces to the condition

s v · v + (SΓS) · v = 0 , (C.14)

with non-vanishing derivative with respect to s, vm and Sa. Therefore the
solution is given by the 26 dimensional space

(qi) 1
4
−BPS = (−(v · v)−1 (SΓS) · v, vm, Sα) . (C.15)

The 1
2 -BPS condition implies the following conditions

v · v = 0 , (C.16)

(SΓmS) + s vm = 0 , (C.17)

(SΓm)a v
m = 0 , (C.18)

which are solved by vm = SΓmS (using the relation (SΓmS)(SΓmS) = 0).
The 1

2 -BPS solution is therefore given by the 17-dimensional solution

(qi) 1
2
−BPS = (s, SΓmS, Sa) . (C.19)

To summarise, the BPS orbits in D = 5 are given by [23]

1
2 −BPS : O17 =

E6

SO(5, 5) ⋉R16
, (C.20)

1
4 −BPS : O26 =

E6

O(4, 5) ⋉R16
, (C.21)

1
8 −BPS : O27 = R

∗ × E6

F4(4)
. (C.22)

The charges in the 1
4 -BPS orbit can be generated by applying E6(Z) trans-

formations to a 2-charge state corresponding to a null vector in the 27 dimen-
sional BPS state space. The charges in the 1

8 -BPS orbit can be generated
from a 3-charge state corresponding to space-like or time-like vectors with
I3 6= 0 in the 27 dimensional BPS state space (note that, unlike [20] we
have included the scale factor R

∗ in the definition of the orbit which is of
dimension 27).

C.7. D = 4.
M-theory on a 7-torus T 7 (duality group E7(Z)).

• There are 21 BPS states from the M2-brane wrapping 2-cycles, 7
BPS states from the Kaluza–Klein states wrapping 1-cycles, 7 BPS
states from the KKM ’s wrapping 6-cycles, and 21 BPS states from
theM5-brane wrapping 5-cycles. This gives a total of 56 BPS states

• There are 35 BPS instantons from the M2-brane wrapping 3-cycles,
21 BPS instantons from the Kaluza–Klein states wrapping 2-cycles,
and 7 BPS instantons from the M5-brane wrapping 6-cycles. This
gives a total of 63 BPS instantons.



SMALL REPRESENTATIONS, STRING INSTANTONS, AND FOURIER MODES 75

The 56 BPS states are in the fundamental representation, qi (i = 1, . . . , 56),
of E7. The 1

2 -,
1
4 - and

1
8 -BPS configurations are classified by the following

conditions on the quartic symmetric polynomial invariant I4 [19, 48]

1
8 −BPS : I4 > 0 , (C.23)

1
8 −BPS : I4 = 0,

∂I4
∂qi

6= 0 , (C.24)

1
4 −BPS : I4 = 0,

∂I4
∂qi

= 0,
∂2I4
∂qi∂qj

∣

∣

∣

∣

AdjE7

6= 0 , (C.25)

1
2 −BPS : I4 = 0,

∂2I4
∂qi∂qj

∣

∣

∣

∣

AdjE7

= 0,
∂3I4

∂qi∂qj∂qk
6= 0 . (C.26)

The following is a summary of the BPS orbits [19,20,23]

1
2 −BPS : O28 =

E7

E6 ⋉R27
, (C.27)

1
4 −BPS : O45 =

E7

(O(5, 6) ⋉R32)× R
, (C.28)

1
8 −BPS : O55 =

E7

F4(4) ⋉R26
, (C.29)

1
8 −BPS : O56 = R

∗ × E7

E6(2)
. (C.30)

The 1
2 -BPS orbit can be obtained by acting on a single charge, the 1

4 -BPS

orbit can be obtained by acting on a 2-charge system, the first 1
8 -BPS (with

dimension 55) has zero entropy and can be obtained by acting on a 3-charge
system the last orbit of dimension 56 is the 1

8 -BPS orbit with I4 > 0 that has

entropy S = π
√
I4/GN can be obtained by acting on a 4-charge system in

the 56 representation of E7 as detailed in [23]. We have included the overall
scale factor in the definition of the orbit. Another orbit of dimension 56 is
R
− × E7/E6 that has I4 < 0 and does not correspond to a BPS solution

at all [19, 20]. All these charge orbits can be understood in terms of the
superpositions of branes at angles and constructed from combinations of
(D0,D2,D4,D6) [49].

C.8. D = 3.
M-theory on an 8-torus T 8 (duality group E8(Z)).

• There are 28 BPS states from the M2-brane wrapping 2-cycles, 8
BPS states from the Kaluza–Klein states wrapping 1-cycles, 28 BPS
states from the KKMs wrapping 6-cycles, and 56 BPS states from
the M5-brane wrapping 5-cycles. This gives a total of 120 BPS
states.

• There are 56 BPS instantons from the M2-brane wrapping 3-cycles,
28 BPS instantons from the Kaluza–Klein states wrapping 2-cycles,
8 BPS instantons from the KKM wrapping 7-cycles, and 28 BPS



76 M.B. GREEN, S.D. MILLER, AND P. VANHOVE

instantons from M5-branes wrapping 6-cycles. This gives a total of
120 BPS instantons.22

Appendix D. Euclidean Dp-brane instantons.

We here sketch the background to the analysis of the euclidean Dp-brane
instanton configurations that contribute in the perturbative limit of string
theory discussed in section 3.4, based on an analysis of supersymmetry con-
ditions on the embeddings of world-sheets on the string theory torus Td.
Contributions from wrapped NS5-brane world-sheets also arise for d = 6, 7
and KK monopoles for d = 7.

Wrapping a euclidean Dp-brane world-volume of either ten-dimensional
type II string theory on a (p+1)-cycle leads to an instanton in the transverse
R
1,8−p space-time. This 1

2 -BPS condition preserves a linear combination of
the supersymmetries that act on the left-moving and right-moving modes
of a closed superstring. This leads to the following constraint on the super-
symmetry parameters,

ε̃ =

p+1
∏

i=1

Γiε (D.1)

where ε and ε̃ are chiral sixteen-component SO(1, 9) spinors parameterizing
the left- and right-moving super symmetries and Γi are the usual SO(1, 9)
Gamma matrices that satisfy the Clifford algebra {Γi,Γj} = −2ηij , where
η is the Minkowski metric with signature (−+ · · ·+).

When compactifying on a d-torus space-time becomes R1,9−d ×Td and a
SO(1, 9) spinor decomposes into a sum of bispinors, ε = ε̂⊗ η, where ε̂ is a
SO(1, 9 − d) spinor and η is a SO(d) spinor. The condition (D.1) becomes
a condition relating η and η̃. T-duality transforms the Γ matrices in (D.1)
by the action of the spin group SO(d, d), R−1

∏

i Γ
iR. This, in general,

transforms a wrapped Dp-brane into a Dq-brane so that the supersymmetry
conditions

η̃ =

q+1
∏

i=1

Γiη =

p+1
∏

i=1

Γiη , (D.2)

are satisfied. As remarked in [50], this this means the two spinors
∏q+1

i=1 Γ
iε

and
∏p+1

i=1 Γiε must be in the same SO(d, d) orbit.
A euclidean Dp-brane can be wrapped over cycles of a d-torus of dimen-

sion 0 ≤ p + 1 ≤ d with p = 0 mod 2 for type IIA superstring theory
and p = −1 mod 2 for type IIB. These instanton configurations fill out a
chiral spinor representation, SA, of dimension

∑

p≡s (mod 2)

( d
p+1

)

= 2d−1

with s = 0 or 1 of the T-duality group SO(d, d). The BPS condition on
Dp-branes wrapping a torus in (D.2) can be interpreted as a condition on

22One of the KKM instantons wraps the euclidean time dimension and gives a van-
ishing contribution upon decompactification to D = 4 dimensions, as discussed following
(3.2).
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the spinor SA. The various brane configurations are then classified by or-
bits of SA under the action of the T-duality group SO(d, d) (actually the
Spin group). In this manner the spinor parametrizes the commuting set of
instanton charges in the perturbative regime.

For d = 6 or d = 7 there are also contributions from NS5-branes wrapping
six-cycles. Such NS5-brane configurations give contributions to the instan-
ton charges that do not commute with those of the wrapped Dp-branes. In
other words, the Dp-brane charges in the spinor representation parametrize
the u−1 component part of the unipotent radical U (the abelian part) for the
standard parabolic subgroup Pα1 of Ed+1 and the NS5-brane charge are in
the derived subgroup [U,U ] component part of the unipotent radical for the
standard parabolic subgroup Pα1 of Ed+1 in table 3 on page 20. For d = 6
this provides one extra charge configuration since there is a unique six-cycle.
For d = 7 there are 7 distinct six-cycles so there are 7 NS5-brane charges.
In addition there are 7 stringy KKM instantons. Recall that these arise
from Kaluza–Klein monopoles in ten-dimensional string theory in which the
fibre direction x# is identified with a circle in T7 (whereas the D6-brane is
seen in M-theory as a KKM formed by identifying x# with the M-theory
circle).

Although it is very complicated to describe how all possible compactifi-
cations of euclidean Dp-branes fit into different spinor orbits, the following
discussion will indicate the procedure. For this purpose it is convenient
to start in ten dimensions by defining chiral spinors of the complexified
group, SO(10;C) (complexification does not affect the BPS classification),
by means of the raising and lowering operators,

bk+1 =
1

2
(Γ2k+1−iΓ2k) , b†k+1 = −1

2
(Γ2k+1+iΓ2k) , 0 ≤ k ≤ 4 , (D.3)

so that bk = (b†k) and {bk, bl} = δlk , and {bk, bl} = {bk, bl} = 0. A ground
state | − − − −−〉 is defined so that bk| − − − −−〉 = 0, for 1 ≤ k ≤ 5.
Acting with b1 gives the state b1| −−−−−〉 = |+−−−−〉, with analogous
states created by any linear combination of the br’s, giving a total of 25

states with + or − labelling each of the 5 positions. These states are graded
according to whether there an even or odd number of + signs. There are
therefore two chiral spinor representations of SO(10;C) of dimension 16.
Upon compactification on Td the spinor η in (D.2) is represented as a state
of the Fock space built by acting with bi on the ground state |−5〉. It is

convenient to introduce the notation ei1···ir := bi1 · · · bir |−d/2〉 and e∗i1···ir :=

bi1 · · · bir |+d/2〉, which was used in section 3.4.1..
Spinors that are related by an SO(d, d) transformation exp(

∑

i,j xijγ
ij)

are associated with D-brane configurations that are equivalent under T-
duality. Each orbit listed in section 3.4.1, is characterized by a representative
S0. Therefore a SO(d, d) pure spinor is equivalent to the ground state of the
Fock space that we can denote by 1, corresponding to a pure spinor defining
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a D-brane wrapping a supersymmetric cycle. The notation ei1···ir and corre-
sponds to aD-brane configuration wrapping the directions {i1, · · · , ir} in Td

and e∗i1···ir a D-brane configuration wrapping the complementary directions

to {i1, · · · , ir} in Td.
Upon compactifying on a torus of dimension d ≤ 3, all possible brane

world-volumes are parallel, up to identification under SO(d, d;Z), and the
condition (D.1) ensures in this case that all instanton configurations are 1

2 -
BPS. These are p = 0 and p = 2 wrappings in type IIA, and p = −1 and
p = 1 in type IIB.

The theory compactified on a 4-torus T4 in type IIA (for instance), in-
cludes instantons due to wrapping D0-brane world-lines on any of the four
1-cycles andD2-brane world-volumes on any of the four 3-cycles. These con-
figurations in general fill out an eight-dimension chiral spinor representation
of SO(4, 4), SA =

∑4
i=a vab

a +
∑4

a,b,c=1 vabcb
abc/3!. This parametrization

makes explicit the action of SL(4) on va or ua = ǫabcdvabc (or SU(4) in the
complexified case).

With a singleD0-brane or a single D2-brane world-volume wrapped on T4

the condition (D.1) is always satisfied, and the configuration is 1
2 -BPS. How-

ever, wrapping both a D0-brane world-line and a D2-brane world-volume
results in further breaking of supersymmetry unless va and ua satisfy condi-
tion (D.2). It is easily seen that this condition is satisfied for all η = | ± ±〉
if v · u = 0. But if u · v 6= 0 only η = | + ±〉 satisfy the solution which is
1
4 -BPS. These two conditions are invariant under the action of the T-duality

group SO(4, 4) acting on a spinor SA. The
1
2 -BPS condition corresponds to

imposing the pure spinor constraint S · S = 0 while the 1
4 -BPS corresponds

to the complementary condition, S · S 6= 0, which defines the configuration
with the D0-brane world-line orthogonal to the D2-brane world-volume.

Extensions of these arguments lead to a classification of all BPS configu-
rations of euclidean Dp-brane world-volumes that are completely wrapped
on a torus. The orbits of such configurations are obtained by imposing
generalisations of the pure spinor constraint on the SO(d, d) spinor that
parametrizes the orbits. Orbits which preserve a smaller fractions of su-
persymmetry are larger and are associated with spinors satisfying weaker
constraints. The resulting orbits are described in section 3.4.1.

Appendix E. Details of modes in rank 3 and rank 4 cases

This appendix presents details of the modes of Eisenstein series that enter

in the expressions for the coefficients, E(D)
(0,0) and E(D)

(1,0) in dimensions D = 8

and 7, with symmetry groups SL(3) × SL(2) and SL(5), that are used in
sections 4.4 and 4.5 in the text. This summarises and extends the string
theory results in [2] (see [40,41,51–53] for related investigations). The D = 6
case, with symmetry group SO(5, 5), is discussed in section 4.6.
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E.1. E(8)
(0,0) and E(8)

(1,0): SL(3,Z) × SL(2,Z).

The coefficients are functions of the SL(2)/SO(2) symmetric space which
depends on U = U1 + iU2, the complex structure of the 2-torus, T2, while
the SL(3)/SO(3) space depends on 5 parameters. We will parametrise the
SL(2)/SO(2) coset by (4.12) (with Ω replaced by U) while the SL(3)/SO(3)
coset will be parameterised by the string fluxes as

e3 =





1 BNS C(2) +Ω1BNS

0 1 Ω1

0 0 1















ν
− 1

3
2 0 0

0 ν
1
6
2

√
Ω2 0

0 0
ν
1
6
2√
Ω2











, (E.1)

where ν
− 1

2
2 = r1r2/ℓ

2
10 =

√
Ω2T2 is the volume of the 2-torus in 10 dimen-

sional Planck units and T2 = r1r2/ℓ
2
s is the volume in string units. The five

parameters of the coset are packaged into (Ω, T, C(2)), where Ω = Ω1 + iΩ2

and T = T1 + iT2 (where T1 = BNS). We shall also make use of the combi-
nation y−1

8 = Ω2
2T2 , which is the square of the inverse string coupling. The

complex parameters T is interpreted as the Kähler structure of T2.

The coefficient functions E(8)
(0,0) and E(8)

(1,0) are solutions of (2.6) and (2.7)

with D = 8 [2,36],

∆(8) E(8)
(0,0) = 6π (E.2)

(∆(8) − 10

3
) E(8)

(1,0) = 0 , (E.3)

where the SL(3)×SL(2) Laplace operator is defined in terms of the param-
eters introduced above by

∆(8) := ∆SL(3) + 2∆
SL(2)
U , (E.4)

with

∆SL(3) = ∆Ω +
|∂BNS

− Ω∂C(2) |2
ν2Ω2

+ 3∂ν2(ν
2
2∂ν2) (E.5)

∆
SL(2)
U = U2

2 (∂
2
U1

+ ∂2U2
) . (E.6)

The fact that the eigenvalue in (E.2) vanishes, together with the presence of
the 6π on the right-hand side is related to the presence of a 1-loop ultraviolet
divergence in eight-dimensional maximally supersymmetric supergravity [4].

The solutions to these equations are given in terms of SL(2) and SL(3)
Eisenstein series. The SL(2) series is given by (4.13) while the SL(3) Eisen-
stein (Epstein) series is given by

2ζ(2s)ESL(3)
α1;s (g3) =

∑

M3∈Z3\{0}
(m2

SL(3))
−s , (E.7)
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where, setting M3 = (m1m2m3) ∈ Z
3, the mass squared is given by

m2
SL(3) := M3 · g3 ·MT

3 (E.8)

=
ν

1
3
2

Ω2

(

|m1 +m2Ω+ Bm3|2 + (m3Ω2T2)
2
)

with

g3 := e3 · eT3 = ν
1
3
2

(

ν−1
2 + (g2)abB

aBb (g2)abB
b

(g2)abB
a (g2)ab

)

, (E.9)

where

g2 :=
1

Ω2

(

|Ω|2 Ω1

Ω1 1

)

; B :=

(

BNS

C(2)

)

, B := C(2) +ΩBNS . (E.10)

The Eisenstein series E
SL(3)
α1;s is related to E

SL(3)
α2;s by the following functional

relation,

ξ(2s) ESL(3)
α1;s (g3) = ξ(3− 2s)E

SL(3)

α2;
3
2
−s

(g−1
3 ) . (E.11)

The solutions of (E.2) and (E.3) with appropriate boundary conditions
are combinations of these Eisenstein series, [2, 35–37]

E(8)
(0,0) = lim

ǫ→0

(

2ζ(3)E
SL(3)

α1;
3
2
+ǫ

+ 4ζ(2− 2ǫ)E
SL(2)
1−ǫ (U)

)

(E.12)

E(8)
(1,0)

= ζ(5)E
SL(3)

α1;
5
2

+
2π4

135
E

SL(3)

α1;− 1
2

E
SL(2)
2 (U) . (E.13)

The expression for E(8)
(0,0) is the sum of two series that each have poles in the

ǫ→ 0 limit. However, these poles cancel between the two terms [2], leaving
the hatted series that are defined by subtracting the pole terms, using

2ζ(2 + 2ǫ)E
SL(2)
1+ǫ (U) = π

ǫ
+ Ê

SL(2)
1 (U) + 2π(γE − log(2)) +O(ǫ) , (E.14)

and

2ζ(3 + 2ǫ)E
SL(3)

α1;
3
2
+ǫ

=
2π

ǫ
+ 4π(γE − 1) + Ê

SL(3)

α1;
3
2

+O(ǫ) . (E.15)

The Fourier modes of the coefficient functions can now be considered in each
of the three parabolic subgroups of interest, after putting the SL(3,Z) part
together with the SL(2,Z) part. The unipotent radicals in these three cases
are given by:

i) The unipotent radical Uα3 in the maximal parabolic Pα3 = GL(1) ×
SL(2)×R

+×Uα3 associated with the decompactification limit is parametrized

by (C(2), BNS) and takes the block diagonal form,

Uα3 =

















1 BNS C(2)

0 1 0
0 0 1



 0

0

(

1 U1

0 1

)













. (E.16)
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In this maximal parabolic subgroup the Fourier coefficients of the SL(3)
Eisenstein series in (E.7) are defined by 23

FSL(3)α2
α1;s (kp1, kp2) :=

∫

[0,1]2
dBNSdC

(2) e−2iπk(p1C(2)+p2BNS)ESL(3)
α1;s , (E.17)

with gcd(p1, p2) = 1. Extending the constant term computation in [2] the
non vanishing Fourier coefficients are

FSL(3)α2
α1;s (kp1, kp2) =

1

ξ(2s)
Ω
1− 2s

3
2 T

1− s
3

2

σ2s−2(k)

|k|s−1

Ks−1(2π|k| |p2 + p1Ω|T2)
|p2 + p1Ω|1−s

.

(E.18)
The Fourier modes of the SL(2) series are defined as

FSL(2)
s (k′) :=

∫

[0,1]
dU1 e

−2iπk′U1 ESL(2)
s (U) , (E.19)

with gcd(p1, p2) = 1. The non vanishing Fourier coefficients are

FSL(2)
s (k′) =

2
√U2

ξ(2s)

σ2s−1(|k′|)
|k′|s− 1

2

Ks− 1
2
(2π|k′|U2) . (E.20)

Finally, the Fourier modes of the product of the SL(3) and the SL(2)
series is given by

F
SL(3)SL(2)α3

α1;s,s′
(kp1, kp2, k

′) :=

∫

[0,1]2
dBNSdC

(2) e−2iπk(p1C(2)+p2BNS)ESL(3)
α1;s

×
∫

[0,1]
dU1 e

−2iπk′U1 E
SL(2)
s′ (U) , (E.21)

with gcd(p1, p2) = 1. The non vanishing Fourier coefficients are

F
SL(3)SL(2)α3

α1;s,s′
(kp1, kp2, k

′) = FSL(3)α2
α1;s (kp1, kp2)FSL(2)α3

s′ (k′) . (E.22)

ii) The unipotent radical Uα1 in the maximal parabolic Pα1 = GL(1) ×
SO(2, 2)×Uα1 associated with the string perturbation regime is parametrized

by (Ω1, C
(2)) and takes the form,

Uα1 =

















1 0 C(2)

0 1 Ω1

0 0 1



 0

0

(

1 0
0 1

)













. (E.23)

In this maximal parabolic only the SL(3) series have non-vanishing Fourier
coefficients, which are defined by

FSL(3)α1
α1;s (kp1, kp2) :=

∫

[0,1]2
dΩ1dC

(2) e−2iπk(p1C(2)+p2Ω1)ESL(3)
α1;s (E.24)

23The labelling of the simple roots α1 and α2 on these Fourier coefficients uses the
conventional labelling of the SL(3) Dynkin diagram.
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with gcd(p1, p2) = 1. Extending the constant term calculation in [2] leads
to

FSL(3)α1
α1;s (kp1, kp2) =

1

ξ(2s)
T

2s
3

2 Ω
1
2
+ s

3
2

σ2s−1(k)

|k|s− 1
2

Ks− 1
2
(2π|k| |p1T + p2|Ω2)

|p1T + p2|s−
1
2

.

(E.25)
iii) The unipotent radical Uα2 in parabolic Pα2 = GL(1) × SL(3) × Uα2

associated with the semi-classical M-theory limit is parametrized by U1 and
takes the form

Uα2 =

















1 0 0
0 1 0
0 0 1



 0

0

(

1 U1

0 1

)













, (E.26)

In this maximal parabolic subgroup only the SL(2) series has non-vanishing
Fourier coefficients defined as

FSL(2)
s (k′) :=

∫

[0,1]
dU1 e

−2iπk′U1 ESL(2)
s (U) , (E.27)

which equals

FSL(2)
s (k′) =

2
√
U2

ξ(2s)

σ2s−1(|k′|)
|k′|s− 1

2

Ks− 1
2
(2π|k′|Ω2) . (E.28)

The evaluation of the non-zero Fourier coefficients of E(8)
(0,0)

and E(8)
(1,0)

is

straightforwardly obtained by using the above expressions and is discussed
in section 4.4.

E.2. E(7)
(0,0) and E(7)

(1,0): SL(5,Z).

In D = 7 dimensions the coefficient functions are automorphic under the
action of the duality group SL(5,Z) and are functions on the 14-dimensional
coset space SL(5)/SO(5), which is parametrized, using the notation that
arises from string theory, by

e5 =













B1
NS C(2) 1 +Ω1B

1
NS

N3 B2
NS C(2) 2 +Ω1B

2
NS

B3
NS C(2) 3 +Ω1B

3
NS

0 1 Ω1

0 0 1



































0 0

Ω
1
3
2

ν
1
5
3

D3 0 0

0 0

0 0 0 ν
1
5
3

√
Ω2 0

0 0 0 0
ν
1
5
3√
Ω2























,

(E.29)
where Ω2 is the inverse string coupling constant, Ω1 is the type IIB RR
pseudoscalar, and Bi

NS and C(2) i (i = 1, . . . , 3) the NS and RR charges.
The quantity N3 is a rank 3 upper triangular matrix and D3 a rank 3



SMALL REPRESENTATIONS, STRING INSTANTONS, AND FOURIER MODES 83

diagonal matrix. These are defined so that ẽ3 = N3D3 parametrizes the
coset SL(3)/SO(3). We will make use of the following combinations,

ν−1
3 =

(

r1r2r3
ℓ310

)2

= Ω
3
2
2

(

r1r2r3
ℓ3s

)2

, y−1
7 = Ω2

2

r1r2r3
ℓ3s

, (E.30)

where r1, r2 and r3 are the radii of T3 and y7 is the 7-dimensional string
coupling. Note that ν3 is invariant under the action of SL(2)× SL(3).

The coset space SL(5)/SO(5) is parametrized by the metric g5 = e5 · eT5

g5 = ν
2
5
3

(

ν
− 2

3
3 (g3)ij + (g2)abB

a
i B

b
j (g2)abB

b
j

(g2)abB
a
j (g2)ab

)

. (E.31)

This parametrisation is adapted to the maximal parabolic subgroup Pα4 ,
which has Levi subgroup Lα4 = GL(1)×SL(3)×SL(2) where g3 parametrizes
the SL(3)/SO(3) coset and g2 the SL(2)/SO(2) coset

g2 =
1

Ω2

(

|Ω|2 Ω1

Ω1 1

)

; B =

(

B1
NS B2

NS B3
NS

C(2) 1 C(2) 2 C(2) 3

)

. (E.32)

The SL(5) mass squared is given by the quadratic form

m2
SL(5) := M5 · g5 ·MT

5 (E.33)

= ν
2
5
3

|m1 +m2Ω+ nT · (C(2) +ΩBNS)|2
Ω2

+
nT · g3 · n

ν
4
15
3

,

where M5 = (n1, n2, n3,m2,m1) ∈ Z
5\{0} and we have set n := (n1, n2, n3)

and defined BNS and C(2) as the first and second rows of the matrix B. This
expression will later be useful for describing the SL(5) Eisenstein series.

The 1
2 -BPS and 1

4 -BPS coefficients, E(7)
(0,0) and E(7)

(1,0), that solve (2.6) and

(2.7) together with the appropriate boundary conditions are given24 in [2]

by linear combinations of the E
SL(5)
α1;s and E

SL(5)
α4;s Eisenstein series

E(7)
(0,0) = 2ζ(3)E

SL(5)

α1;
3
2

, (E.34)

E(7)
(1,0) =lim

ǫ→0

(

ζ(5 + 2ǫ)E
SL(5)

α1;
5
2
+ǫ

+
24ζ(4− 2ǫ)ζ(5− 2ǫ)

π2
E

SL(5)

α4;
5
2
−ǫ

)

.(E.35)

The definition and Fourier expansions of the Eisenstein series in this expres-
sion will now be reviewed.
• Fourier modes for the series E

SL(5)
α1;s

The E
SL(5)
α1;s series may be written using (E.33) in the form

2ζ(2s)ESL(5)
α1;s =

∑

M5∈Z5\{0}
(M5 · g5 ·M5)

−s . (E.36)

24In [2] these series were defined as E
SL(5)
[1000];s = 2ζ(2s)E

SL(5)
α1;s and E

SL(5)
[0010];s =

4ζ(2s)ζ(2s− 1)E
SL(5)
α4;s
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The constant terms with respect to the (2,3) parabolic subgroup Pα4 , the
(4,1) parabolic subgroup Pα1 , and the (1, 4) parabolic subgroup Pα2 , were
evaluated in [2].

(i) The parabolic Pα4 = GL(1) × SL(2)× SL(3)× Uα4.

The unipotent radical for this parabolic subgroup is abelian and is given
by

Uα4 =

(

I2 Q4

0 I3

)

, Q4 =

(

g13 B1
NS C(2) 1 +Ω1B

1
NS

g23 B2
NS C(2) 2 +Ω1B

2
NS

)

. (E.37)

Poisson resummation on two integers, keeping the off-diagonal terms in the
parametrisation of [2, section B.5.2] results in the following Fourier expan-

sion of E
SL(5)
α1;s with respect to Pα4 to get

FSL(5)α4
α1;s (N4) :=

∫

[0,1]6
d6Q4 e

−2iπ tr(NT
4 ·Q4)ESL(5)

α1;s , (E.38)

where N4 ∈M(2, 3;Z).
For all values of s the Fourier modes are only non-zero when N4 has rank

1 and is given by given by N4 = k Ñ4 with gcd(Ñ4) = 1

Ñ4 = mTn =





m1n1 m2n1
m1n2 m2n2
m1n3 m2n3



 , n = (ni) ∈ Z
3,m = (ma) ∈ Z

2 , (E.39)

and takes the form

FSL(5)α4
α1;s (k, Ñ4) =

2πs

Γ(s)
r3−

2s
5
σ2s−3(|k|)
|k|s− 3

2

(‖Ñ4‖
‖m‖ )

s− 3
2 Ks− 3

2

(

2π|k| r2 ‖Ñ4‖
)

,

(E.40)
where we have defined

‖Ñ4‖2 := tr(g−1
3 Ñ4 g2 Ñ

T
4 ); ‖m‖2 := mT · g2 ·m. (E.41)

The matrix Ñ4 is transformed by the action of SL(3,Z) on the left by
the action of SL(2,Z) on the right. This matrix has rank 1 and therefore
satisfies the 1

2 -BPS conditions ǫab(N4)i
a(N4)j

b = 0 of section C.3.

In other words, for any value of s, the Fourier modes fill out 1
2 -BPS orbits

– one for each value of k.
(ii) The parabolic Pα1 = GL(1) × SO(3, 3) × Uα1.

The unipotent radical for this parabolic is abelian and is given, in our
parameterisation by

Uα1 =

(

I4 Q1

0 1

)

, Q1 =









C(2) 1 +Ω1B
1
NS

C(2) 2 +Ω1B
2
NS

C(2) 3 +Ω1B
3
NS

Ω1









, (E.42)

where I4 is the 4 × 4 unit matrix and Q1 is a SO(3, 3) spinor (a vector of
SL(4)).
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The Fourier modes are defined by

FSL(5)α1
α1;s (k,N1) :=

∫

[0,1]4
d4Q1 e

−2iπ kNT
1 ·Q1 ESL(5)

α1;s , (E.43)

where N1 ∈ Z
4 is such that gcd(N1) = 1. These Fourier modes are evaluated

by a straightforward extension of the expansion given in [2, section B.5.1],
which kept only the constant terms (for which it is sufficient to set Q1 =0)
and used the fact that SO(3, 3) ∼= SL(4). The result is

FSL(5)α1
α1;s (k,N1) =

2πs

Γ(s)
r

5+6s
5

σ2s−1(|k|)
|k|s− 1

2

Ks− 1
2

(

2π|k| r2 ‖N1‖
)

‖N1‖s−
1
2

, (E.44)

where ‖N1‖2 := NT
1 · g4 ·N1 and gcd(N1) = 1.

(iii) The parabolic Pα2 = GL(1) × SL(4)× Uα2

The unipotent radical is abelian and given by

Uα2 =

(

1 Q2

0 I4

)

, Q2 =
(

C123 C124 C234 C134

)

, (E.45)

where Q2 is again a SL(4) (row) vector. The notation indicates that it is
parametrized by the 3-form flux of the M2-brane world-volume wrapped
on the M-theory 4-torus, T 4. This translates into the NS components of

flux, BNS12, BNS 23, BNS 13, and the RR D2-brane flux, C
(3)
123. In type IIB

language these components become the NS flux BNS12, the RR D-string

flux C
(2)
12 and the Kaluza–Klein momenta from the components of the metric

gi 3 with i = 1, 2.
The Fourier coefficients in this parabolic are defined by for k ∈ Z and

N4 ∈ Z
4 with gcd(N4) = 1

FSL(5)α2
α1;s (k,N4) :=

∫

[0,1]4
d4Q2 e

−2iπ k NT
4 ·Q2 ESL(5)

α1;s . (E.46)

These coefficient can again be evaluated by an extension of the computation
of [2, section B.5.1] keeping the off-diagonal terms, which gives

FSL(5)α2
α1;s (k,N4) =

2πs

Γ(s)
r4−

2s
5
σ2s−4(|k|)
|k|s−2

‖N4‖s−2Ks−2

(

2π|k| r2 ‖N4‖
)

,

(E.47)
where ‖N4‖2 := NT

4 · g4 ·N4 with gcd(N4) = 1.

• Fourier modes for the series E
SL(5)
α4;s

The expression for E(7)
(1,0) involves the Eisenstein series E

SL(5)
α4;s in (E.35),

which is not related to the series E
SL(5)
α1;s by the functional equations. The

Fourier modes will be evaluated using the Mellin transform representation
given in (4.56) from the proposition 4.1.
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(i) The parabolic Pα4 = GL(1)× SL(2)× SL(3)× Uα4

It is convenient to start from the expression for Γ(5,5) after Poisson re-
summation on two of the ten integers in (4.75),

Γ(5,5) =

r
24
5

V 3

∑

(mi,ni)∈Z6\{0}
(pa,qb)∈Z4\{0}

e
−π r

8
5

(m+nτ)·g−1
3 ·(m+nτ̄)

V τ2
−π V r

12
5

(p+qτ)·g2·(p+qτ̄)
τ2

−2iπ tr(NT
4 ·Q4) ,

(E.48)

where the SL(2) metric g2 is an element of the coset SL(2)/SO(2) and the
SL(3) metric, g3, is an element of the coset SL(3)/SO(3). The integer-
valued matrix N4 ∈M(3, 2;Z) can be written in the form

N4 := M3 · J · P2 , (E.49)

where

J =

(

0 −1
1 0

)

(E.50)

and

M3 :=





m1 n1
m2 n2
m3 n3



 ∈M(3, 2;Z) , P2 :=

(

p1 q1

p2 q2

)

∈M(2, 2;Z) . (E.51)

Since γT · J · γ = J for all γ ∈ SL(2,Z), the matrix N4 is invariant under
the action of since M3 →M3 · γ and P2 → γT · P2.

The integral (4.57) can be analysed by use of the method of orbits in [2,
appendix B.2] applied to the left action on P2. This gives the sum of three
types of contributions arising from the singular orbit with P2 = 0, the
degenerate orbit with detP2 = 0, P2 6= 0, which can be reduced to terms
with q1 = q2 = 0, and the non degenerate orbit with detP2 6= 0, which can
be written as a sum over matrices of the form

P2 =

(

k 0
j p

)

, 0 ≤ j < k, p 6= 0 . (E.52)

The result is
∫

F

d2τ

τ22
Γ(5,5) =

r
24
5

V 3

∫

F

d2τ

τ22
Γ(3,3) (E.53)

+

∫ 1
2

− 1
2

dτ1

∫ ∞

0

dτ2
τ22

∑

p∈Z2\{0}
(m,n)∈Z6

e
−πV r

12
5

p·g2·p
τ2 e

−π r
8
5

(m+nτ)·g−1
3

·(m+nτ̄)

V τ2
+2iπ tr(ÑT

4 Q4)

+ 2

∫ +∞

−∞
dτ1

∫ ∞

0

dτ2
τ22

∑

0≤j<k
p 6=0

∑

(m,n)∈Z6

e
−πV r

12
5

(p+qτ)·g2·(p+qτ̄)

τ2 ×

× e
−π r

8
5

(m+nτ)·g−1
3

·(m+nτ̄)

V τ2
+2iπ tr(NT

4 Q4) ,
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where the matrix Ñ4 = −nT ·p has rank 1 and N4 = mT · q−nT ·p has rank
2.

The Fourier modes of E
SL(5)
α4;s in the Pα4 parabolic are given by

FSL(5)α4
α4;s (N4) :=

∫

[0,1]6
d6Qe−2iπ tr(NT

4 Q4)ESL(5)
α4;s , (E.54)

with N4 ∈ M(3, 2;Z) and Q4 is defined in (E.37). This can be written as
the sum of two types of contributions, one in which N4 is of rank 1 and one
in which N4 is of rank 2

FSL(5)α4
α4;s (N4) = FSL(5)α4

α4;s I
(Ñ4) + FSL(5)α4

α4;s II
(N4) . (E.55)

Substituting (E.53) in the representation in (4.56), the rank 1 contribution
is given by

F
SL(5)α4

α4;s I
(Ñ4) =

r
6s+10

5

4ξ(2s)ζ(2s−1)

∑

m∈Z3\{0}

δ(m · n)
(m2)s−

1
2 (p2)s−1

Ks−1(2πr
2 ‖Ñ4‖)

‖Ñ4‖1−s
,

(E.56)

where Ñ4 = nT · p with n ∈ Z
3 and p ∈ Z

2 with ‖Ñ4‖2 = tr(g−1
3 Ñ4g

−1
2 ÑT

4 ),

and m2 = mT · g−1
3 ·m and p2 = pT · g2 · p.

The contribution when N4 = mT · q − nT · p has rank 2 arises from the
non-degenerate orbit and has the form

F
SL(5)α4

α4;s II
(N4) = 4r

30−4s
5

3

∫ +∞

−∞
dτ1

(n2)
s−1
2 ((m+ nτ1)

2)
s−2
2

((p+ qτ1)2)
s−1
2 (q2)

s−2
2

(E.57)

× Ks−2(2π r
2
√

(m+ nτ1)2 q2)Ks−1(2π r
2
√

(p+ qτ1)2 n2) .

(ii) The parabolic Pα1 = GL(1) × SO(3, 3) × Uα1

The unipotent radical is parametrized by Q1 and after Poisson resumma-
tion the lattice sum becomes

Γ(5,5)|P (1,4) = (V −1r
4
5 )4

∑

(p,q)∈Z×Z

(m,n)∈Z4×Z4

e
−πV r

16
5

|p+qτ |2
τ2

−πr
4
5

(m+nτ)·g−1
4

·(m+nτ̄)

V τ2
−2iπ ÑT

1 ·Q1

(E.58)

where g4 parametrizes the coset SL(4)/SO(4) and Ñ1 is the rank 4 vector
defined by

Ñ1 :=M3 · J · P1 , (E.59)

where J is the matrix defined in (E.50) and

M3 :=









m1 n1
m2 n2
m3 n3
m4 n4









∈M(4, 2;Z) , P1 :=

(

p
q

)

∈M(2, 1;Z) . (E.60)

The vector Ñ1 is invariant under the action of γ ∈ SL(2,Z) on the integers
P → γT · P and M →M · γ because γ · J · γT = J for all γ ∈ SL(2,Z).
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The integral (4.57) can be evaluated when the lattice sum is given by (E.58)
by unfolding from the left SL(2) action on P1 to give

Is(Λ, g5)|P (1,4) = r
8s
5

∫ Λ

0
dV V 2s−1

∫

F

d2τ

τ22
Γ(4,4)(V g4)

+ r
8
5

∫ Λ

0
dV V 2s−5

∫ +∞

0

dτ2
τ22

∫ 1
2

− 1
2

dτ1
∑

m∈Z\{0}
(n,m)∈Z8

e
−π r

16
5 V p2

τ2
−2iπp nT ·Q1

× e
−πr

4
5

(m+nτ)·g−1
4

·(m+nτ̄)

V τ2 . (E.61)

Poisson resumming on m in the last term leads to

Is(Λ, g5)|P (1,4) = r
8s
5 Is(Λ, g4)

+ r
8
5

∫ Λ

0
dV V 2s−3

∫ 1
2

− 1
2

dτ1

∫ +∞

0
dτ2

∑

p∈Z\{0}
(m̂,n)∈Z8

e
−πV p2 r

16
5

τ2
−πr

4
5 τ2

n·g−1
4 ·n
V

× e−πτ2V r−
4
5 m̂·g4·m̂+2iπm̂·n τ1−2iπpn·Q1 . (E.62)

The integral over τ1 projects on the sector m̂ · n = 0, for which the winding
and the Kaluza Klein numbers are orthogonal.

The finite part when Λ → ∞ gives the Fourier coefficients

FSL(5)α1
α4;s (k,N1) :=

∫

[0,1]4
d4Q1e

2iπk NT
1 ·Q1 ESL(5)

α4;s (E.63)

=
r3−

2s
5

ξ(2s)ζ(2s − 1)





∑

m∈Z4\{0}

δ(N1 ·m)

‖m‖2s−1





‖N1‖s−
3
2

|k|s− 3
2

Ks− 3
2
(2πr2 |k|‖N1‖) ,

with N1 ∈ Z
4 with gcd(N1) = 1 and ‖N1‖2 := NT · g−1

4 · N1 and ‖m‖2 :=
mT · g4 ·m.

(iii) The parabolic Pα2 = GL(1) × SL(4)× Uα2

Applying the same techniques for the Pα2 parabolic the Fourier coefficients

FSL(5)α2
α4;s (k,N2) :=

∫

[0,1]4
d4Q2 e

2iπ k NT
2 ·Q2ESL(5)α2

α4;s (E.64)

are given by the rank 1 contribution Ñ2 = pN2 with k ∈ Z and N2 ∈ Z
4

with gcd(N2) = 1

FSL(5),α2
α4;s (k Ñ2) = r2+

2s
5

Γ(2− s)πs−2

4ζ(2s)ζ(2s− 1)Γ(2s − 1)
× (E.65)

×





∑

m∈Z4\{0}

δ(m ·N2)

‖m‖4−2s





|k|s−1

‖N2‖s−1
Ks−1(2πr

2 |k|‖N2‖) ,

and where ‖N2‖2 := NT
2 · g−1

4 ·N2 and ‖m‖2 := mT · g4 ·m.
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