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In this Letter I stress the role of causal reversibility (time symmetry), together with causality and

locality, in the justification of the quantum formalism. First, in the algebraic quantum formalism, I show

that the assumption of reversibility implies that the observables of a quantum theory form an abstract real

C? algebra, and can be represented as an algebra of operators on a real Hilbert space. Second, in the

quantum logic formalism, I emphasize which axioms for the lattice of propositions (the existence of an

orthocomplementation and the covering property) derive from reversibility. A new argument based on

locality and Soler’s theorem is used to derive the representation as projectors on a regular Hilbert space

from the general quantum logic formalism. In both cases it is recalled that the restriction to complex

algebras and Hilbert spaces comes from the constraints of locality and separability.
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The principles of quantum physics date back more than
80 years [1,2], and have proved extraordinarily successful
and robust, leading to the formalism of quantum field
theory. Despite these tremendous successes, discussions
of the foundations and interpretations of the quantum
theory are more lively than ever.

The purpose of this Letter is to show that the (well

known) property of reversibility or time symmetry of the

quantum formalism is in fact a crucial feature (together

with causality and locality) for its construction and its

justification. This will be done for the two main proper

formulations of quantum theory, algebraic quantum theory

and quantum logic. I first present a new way to introduce

the algebraic quantum formalism, and show that causality

and reversibility alone lead to a formulation of quantum

mechanics in terms of real algebras of operators on real

Hilbert spaces (on R), causality being associated with the

associative algebra structure, and reversibility to the trans-

position or involution or * operation. I then recall why it is

locality or separability that enforces the use of complex

Hilbert spaces (on C). Secondly I consider the quantum

logic approach, where causality is the main ingredient. I

show that reversibility enters crucially in the definition of

the negation (or orthocomplement) of quantum proposi-

tions, a fact implicit in the standard presentations of this

formalism, but which does not seem to have been explicitly

stated and fully appreciated before. I also give a new

simple argument for why locality leads to the standard

formulation of quantum mechanics in terms of complex

Hilbert spaces in this approach.
The discussion done here does not lead to any change of

the (already existing) quantum formalism (as usual). But I
think that it sheds new light on it, and will be useful for
discussions of its (still often puzzling) aspects and its
consequences, as well as when discussing alternates theo-
ries and extensions of quantum theory.

Some words on the terminology. First, by causality I
simply mean that in the physical theories considered a
clear distinction between past and future can be made,
allowing to separate (in some way) causes from effects,
but not excluding the possibility of causal independence
(like in special relativity where spacelike vectors separate
the past cone from the future cone). Second, by reversibil-
ity I simply mean that there is a symmetry between past
and future, in the sense that the laws of physics take the
same form irrespective of the choice of a ‘‘time direction’’
(in other word ‘‘there is no microscopic time arrow’’).
In the sense given above, these two properties of causality
and reversibility are satisfied both in classical physics, in
(at least special-)relativistic physics, and (for many
authors) in quantum physics. But at a purely logical level
they do not necessarily need to be. For instance in classical
deterministic dynamics, a dissipative dynamics in causal
but not reversible, while Hamiltonian dynamics is both
causal and reversible. In classical stochastic dynamics, a
general Markov process is causal but not reversible; it
becomes reversible if it fulfills detailed balance. Finally,
about reversibility, when there is a continuous time evolu-
tion one usually speaks of time symmetry, but since in this
Letter I shall not discuss dynamical aspects, and I often do
not even need to assume there is a continuous time, I shall
prefer to use the term ‘‘causal reversibility.’’
A priori the arguments presented here are valid for non

relativistic quantum mechanics and for relativistic quan-
tum (field) theory. I shall not discuss quantum fields in
classical gravitational backgrounds. I do not aim at
mathematical rigor, and I shall keep the empirical and
pragmatic point of view of most physicists, discussing
the consistency of the formalism and its applicability be-
fore the questions of interpretation. Details will be pub-
lished elsewhere [3].
Let me first discuss the algebraic formalism. In

quantum—as well as classical—physics a system is
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characterized by the sets of its (mixed) states and of its
observables. Classically observables are real (smooth)
functions on a phase space �, and statistical states are
probability distributions on�. The observables thus form a
real commutative Poisson algebra A, the states being the
real linear positive and normalized forms on A. In the
algebraic quantum formalism (see, e.g., the authoritative
book [4]) the physical observables are assumed to generate
an associative but noncommutative complex algebra AC

of operators, endowed with a complex C?-algebra struc-
ture. This structure allows us to represent AC as an
algebra of operators on a complex Hilbert space H C.
Quantum mixed states are linear positive forms on AC.

Here I propose to relax to assumption of a complex
structure, and to start from an abstract real associative
unital algebra AR of observables. Formulating quantum
mechanics in terms of real Hilbert spaces is of course not a
new idea (see [5]), but the use of real abstract algebras
seems new. It is natural to start from a real algebra of
observables since generic physical measurements give
real outcomes. This is the simplest generalization of the
commutative real algebra of classical observables (func-
tions) on some classical configuration space X.

The algebraAR is thus first endowed with a real vector
space structure. It means that any linear real combinations
c ¼ �aþ�b of observables is still an observable (a,
b 2 AR, �, � 2 R). This is known to be a non trivial
assumption in the noncommutative case, since it ultimately
leads to the superposition principle.

The algebra structure from the product c ¼ ab is related
to causality. This is known to be the case in the standard
quantum formalism, where the product ab of two local
operators is obtained in the Heisenberg picture as the equal
time limit of time ordered operators limt!0�að0ÞbðtÞ (even-
tually through some OPE), and also per se in the path
integral formalism. Thus I propose to view the product
ab as a very abstract ‘‘causal combination’’ or ‘‘causal
succession’’ of ‘‘a after b’’, compatible with the addition
law. But to make this product compatible with the usual
concept of ‘‘linear’’ causality, it is natural to assume that
causal succession of combinations (abc . . . meaning ‘‘a
after b after c, etc.‘‘) is independent of the details of the
grouping, ðabÞc ¼ aðbcÞ. This is nothing but associativity
for the algebra AR. At that stage a state ’ is just a real
linear form a ! ’ðaÞ onAR, which gives the expectation
value of the operator a in the state ’, with physical con-
straints to be discussed later.

What does the assumption of causal reversibility mean
in this framework? I expect that to the causal description
of a system corresponds an equivalent anticausal one, so
that any observable a corresponds a conjugate ‘‘anticausal
observable’’ a�. One must have ðabÞ� ¼ b�a� (anticausal-
ity works in reverse order than causality) and ða�Þ� ¼ a
(anti-anticausality ¼ causality). Together with the
compatibility assumption ð�aþ�bÞ� ¼ �a� þ�b�

(linearity), this means that the conjugation * is a real in-
volution on AR.
Causal reversibility puts strong constraints on the states,

since it implies that no choice of observable and state
should allow to distinguish the causal description from
the anticausal one. Hence the states must be *-symmetric
real forms, such that ’ða�Þ ¼ ’ðaÞ, 8a. The physical
observables (corresponding to physically measurable
quantities) are the symmetric elements of AR, such that
a ¼ a�, while the antisymmetric (or skew-symmetric) ele-
ments such that a ¼ �a� are not physical (their expecta-
tion value is always zero) but have to be taken into account
in order to have a consistent algebra structure for AR.
Finally, for the states to give expectation values, so that

’ðaÞ has a probabilistic interpretation as in the classical
case, the states ’ must be the normalized positive real
linear forms onAR, such that’ða�aÞ � 0 (positivity), and
’ð1Þ ¼ 1 (normalization). Indeed it turns out that this
standard positivity condition is equivalent (at least in the
finite dimensional case [3]), to the more physical but less
stringent one ’ða2Þ � 0, for all a ¼ a� (measuring a
squared physical observable gives always a positive result).
Once this abstract definition of a real algebra of observ-

ables and of the corresponding states is obtained, I now
show that, similarly to the known case of complex alge-
bras, this algebra is a C? algebra and can be represented as
an algebra of operators on a real Hilbert space. The theory
of complex C? algebra is very well known and the cele-
brated GNS construction can be used in this case to con-
struct the Hilbert space out of pure states (see [4] and
references therein), but there is a theory of real C? algebra,
(see [6] for definitions and basic results) that will be used
here for a similar purpose.
Restricting AR to the bounded nontrival operators

(a such that 8’, ’ða�aÞ<1 and 9’: ’ða�aÞ> 0) and
denoting E the corresponding (convex) set of states (posi-
tive symmetric reals forms) on AR, it is endowed with
the norm

kak ¼ ðsup
’2E

’ða�aÞÞ1=2: (1)

In analogy with the well-known complex case, it is easy
to show that this is indeed a norm and makesAR (or more
exactly its completion �AR) an abstract C? algebra. Using
the positivity of states and the Schwarz inequality one
recovers, by simple arguments (similar to the complex
case), the (in)equalities k�ak ¼ j�jkak, kaþ bk �
kak þ kbk, kabk � kakkbk, that make AR a real
Banach algebra, and the basic identity

ka�ak ¼ kak2 ¼ ka�k2 (2)

(which is sufficient in the complex case to define an
abstract C? algebra). One also has the additional nontrivial
condition

1 þ a�a is invertible 8a 2 AR (3)
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Were (3) false, 9a&b � 0: bþ a�ab ¼ 0, hence b�bþ
ðabÞ�ðabÞ ¼ 0, this contradicts positivity. (2) and (3) make
AR a real C? algebra (see [6]), by ensuring that the
spectrum of the positive elements of AR is � Rþ.

I now use the mathematical results gathered in [6]. If
AR is finite dimensional, purely algebraic methods (using
the Wedderburn-Artin theorem) show that AR is a direct
product of matrix algebrasMnðKÞ overK ¼ R,C orH (the
quaternions). The physical observables a corresponds to
the symmetric matrices A, and the states ’ corresponds to
density matrices �’ (symmetric normalized >0 matrices

such that ’ðaÞ ¼ trð�’AÞ (this is nothing but the Born

rule). The infinite dimensional case is much more difficult
(involving real analysis), but a theorem by Ingelstam [6–8]
states thatAR is indeed isomorphic to a symmetric closed
subalgebra of the algebra BðH RÞ of bounded operators on
some real Hilbert spaceH R. Thus the announced result is
obtained: starting from a real algebra of observables, and
using causality and reversibility, this algebra must be rep-
resented as an algebra of operators on a real Hilbert space.

Let me just recall the reason for using complex algebras
and complex Hilbert spaces in quantum physics (complex
C? algebras are a special case of real algebras, real states
and complex states being in correspondence). Quantum
theories based solely on real Hilbert spaces has been
investigated, notably by Stueckelberg [5], but problems
occur when trying to construct relativistic theories, and
no satisfactory solutions seems to exist. Problems are also
known to occur in quaternionic quantum mechanics [9].
This can be understood by taking into account the physical
requirement of locality and of separability. For instance
(see [10]) consider two causally independent subsystems
S1 and S2, forming a composite system S ¼ S1 [ S2,
with respective operator algebras A1, A2 and A ¼
A1 �A2. In the complex case the physical observables
a for S (the symmetric operators) can always be built as
linear combinations of independent products of physical

observables of the two subsystems a ¼ P
ia

ðiÞ
1 � aðiÞ2 . This

is not the case for real algebras, which leads to a clash with
locality and separability.

I now briefly discuss the role of reversibility in the
quantum logic (or quantum propositional calculus) formal-
ism. This formalism, initiated in [11], pursued in [12–14],
aims at defining the abstract analog of the set of projectors
in a Hilbert space (corresponding to ideal projective
measurements), but without assuming any predefined C?

algebra structure. There are many variants of this approach.
I shall rely on the classical review [15]. Contrary to the first
part of this letter, I shall not present here a new version of
the formalism, but I shall discuss in a seemingly new way
two points where causal reversibility and locality enter in
the existing formalism. A complete discussion is left to [3].

The central concepts are the propositions or tests (the
abstract analog of projectors in the algebraic formalism),
and the states (the different possible knowledge or

expectations one can have on a system). The propositions
are operations on the system S that return the boolean value
TRUE or FALSE (1 or 0). This is in general a nondetermin-
istic process, and depends on the initial state ’ of S. After
the operation, S needs not to be in the initial state ’ (since
we have in general gained some information on S). The
structure of the states and observables for S is constructed
out of five axioms. The first two are related to causality.
(I) Order relation and causality: There is a logical

relation � between propositions, making the set of propo-
sitions L a POSET. Amongst the various way to define
a � b, I choose the causal relation: ‘‘starting from any
initial state ’ and asking a, then b, if a is found true,
then b will be found true.’’ I recall that making � a partial
order relation means that once a has been found to be true,
then applying any b such that a � b does not change the
state (ideal measurements).
(II) AND and OR: The logical cunjunction ^ (the unique

greatest proposition a ^ b such that a ^ b � a and b) and
join _ (the unique smallest proposition a _ b such that a
and b � a _ b) exist, and make L a complete lattice (CL).
See [13,14] for justifications.
(III) NOT and reversibility: It is the third axiom that I

discuss here in a new way. The order relation � is clearly
causal (‘‘if. . .then. . .’’). When discussing what happens if a
proposition a is found false, one has to define its negation
or complement :a. It is at this crucial point that the concept
of reversibility enters in the formalism. Indeed one can
define :a as ‘‘if a is found true, then :a will be found
false’’, or alternatively as ‘‘if :a is found true, then a will
be found false.’’ But with (I) and (II) only these two
definitions are not equivalent. A third axiom is to assume
that they are indeed equivalent, i.e.,

a � b , :b � :a (4)

(as in classical logic). It also means that the a � b relation,
defined in (I) as ‘‘if a is found true, then b will be found
true’’, is equivalently defined by ‘‘if a is found true, then b
was found true.’’ This means that the causal order structure
on propositions is in fact independent of the choice of a
causal arrow. Therefore (4) amounts to the assumption of
causal reversibility. This is our important point which,
albeit simple, does not seem to have been discussed before.
(4) also implies that one should expect a complete sym-
metry between causal prediction and causal retrodiction
(a well-known a posteriori property of the standard quan-
tum formalism [16]).
L is now an orthocomplemented complete lattice

(OCL). Two propositions are said to be orthogonal and
noted a ? b iff a � :b.
I do not discuss the remaining axioms. (IV) Weak mod-

ularity implies that the orthocomplementation is unique,
and is crucial for the formalism to describe consistently the
subsystems and the subsets of states of some larger system.
(V) AC and minimal propositions: Finally one assumes that
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the lattice L is atomic (A), i.e., can be constructed out of
‘‘minimal propositions’’ (atoms) that, when true, specify
completely the state of the system (the analog of projection
on pure states), and satisfy the covering property (C) which
means (crudely) that any test b on a pure state gives a pure
state (this is also related to reversibility). NB: The need of
minimal propositions limits the formalism to quantum
systems described by Type I von Neumann algebras, but
this encompasses some infinite systems like the vacuum
sector of extended quantum systems.

The quantum logic formalism leads to a convincing
derivation of the algebraic formulation of quantum theories.
A set of mathematical theorems (see [15]) states that any
complete (irreducible) orthomodular AC lattice can be
represented (except for the analog of the 2 and 3 states
systems) as the lattice of the closed subspaces of a left-
module V (generalization of vector spaces) on a division
ring K such that (i) K has an involution ?; (ii) V has a
nondegenerate Hermitian form f: V � V ! K; (iii) f de-
fines an orthogonal projection and associates to each linear
subspaceM ofV its orthogonalM?, closed subspaces being
theM such that ðM?Þ? ¼ M; (iv)f is orthomodular, i.e., for
any closed M, M? þM ¼ V. In particular, the structure
(� , ^, :) on the lattice L is isomorphic to the standard
structure ( 	 , \, ? ) in the space LðVÞ of closed linear
subspaces of V. There is some a 2 V with ‘‘norm’’ unity
fða; aÞ ¼ 1. The propositions of L can thus be identified
with the projections on the closed subspaces of V. Locality
and Solèr’s theorem: The restriction to the standard rings
K ¼ R, C or H is mathematically obtained through
Soler’s theorem [17] (and its extensions). It states that for
L ¼ LKðVÞ an irreducible OM AC lattice, as discussed
above, if there is an infinite family of orthonormal
(and in fact orthogonal) vectors in V (i.e., an infinite set of
mutually orthogonal atoms in L) then K can only
be R, C or H.

Combining this theorem with the assumption of locality
seems in fact sufficient. Here is a heuristic but physical
argument, seemingly new. Let me consider the case where
the physical space in which the system is defined to be
infinite (flat) space or some regular lattice, so that it can be
separated into causally independent piecesO� ( labeled by
� 2 � some infinite lattice). It is sufficient to have one
single proposition a� relative to eachO� only (for instance
‘‘there is one particle inO�’’) to build an infinite family of
mutually orthogonal propositions b� ¼ a� ^ ðV���:a�Þ
in L. Out of the b�, thanks to the atomic property (A), we
can extract an infinite family of orthogonal atoms c�, i.e.,
of orthogonal vectors in V. Q.E.D. The quantum informa-
tion inclined reader (not afraid of infinite dimensional
Hilbert spaces) may prefer to apply a similar argument to
the infinite family of causally independent subsystems
. . . ððsystemþ ancillaÞ þ AncillaÞþ . . . . Recovering the
standard representation in terms of complex Hilbert spaces
is done by invoking separability as above, Gleason’s

theorem and reconstruction of general observables out of
the projectors.
To conclude, in this Letter I have separated the respective

role of causality, reversibility and locality in the quantum
formalism, stressing in a new way the importance of causal
reversibility. The discussion ismade for the algebraic formal-
ism, and for a simpleversion of the quantum logic formalism.
I chose a somewhat traditional point of view, and did not
discuss the approaches where the quantum theory is formu-
lated through purely informational principles. It would be
interesting to see if here too a specific role for reversibility
can be singled out (reversibility is discussed in, e.g., [18] and
references therein). Discussing these issues for quantum
gravity is beyond the scope of this Letter. But a fundamental
question raised by this discussion is whether, in any reason-
able prequantum (or postquantum. . .) theory where the ordi-
nary notion of causality is somehow modified, reversibility,
considered as a separate concept, has to be kept as a funda-
mental principle, or is just an ‘‘emergent’’ property of the
quantum world as we experience it.
I thank M.-C. David, M. Bauer, and V. Pasquier for help

and comments.
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