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We revisit the Anderson localization problem on Bethe lattices, putting in contact various
aspects which have been previously only discussed separately. For the case of connectivity
3 we compute by the cavity method the density of states and the evolution of the mobility
edge with disorder. Furthermore, we show that below a certain critical value of the disorder
the smallest eigenvalue remains delocalized and separated by all the others (localized) ones
by a gap. We also study the evolution of the mobility edge at the center of the band with
the connectivity, and discuss the large connectivity limit.

§1. Introduction

The effect of quenched disorder on non-interacting electrons can be dramatic.
The wave-function completely changes form going from an extended plane wave at
zero disorder to a localized wave at large disorder. Actually, even an infinitesimal dis-
order is enough to induce localization of all eigenstates in one and two dimensions.1)

Localized electrons do not lead to electronic transport except if the system is cou-
pled to a thermal bath, as a consequence conduction properties changes completely
in presence of localization.

This phenomenon, called Anderson localization, was discovered in 1958 by P.W.
Anderson.2) Since then a huge amount of work has been devoted to it, see for
instance the brief review ”Fifty years of Anderson Localization”1) and the mono-
graphs.3), 4), 5), 6) Exactly solvable models naturally played an important role in its
understanding. One dimensional systems have been studied thoroughly.4) However,
in these systems all states are localized and hence some aspects of Anderson localiza-
tion, such as the transition between localized and extended states, and the critical
properties at the mobility edge could not be studied. All these properties can instead
be analyzed on Bethe lattices (see the next section for a precise definition), which
therefore provide a very useful benchmark since they are still simple enough to be
studied without making any approximation.

The first analysis of Anderson localization on Bethe lattices was performed by
Abou Chacra, Anderson and Thouless7), 8) and many other studies followed both in
the physics (see for instance the works9), 10), 11), 12) and references therein) and math-
ematics13), 14), 15), 16) communities. Our main goal in this work is to combine various
point of views on the problem, and to underline a particular feature of Bethe lattices.
In fact, besides the properties of the density of states, the evolution of the mobility
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edge with disorder and with the connectivity k + 1, we shall discuss the presence of
isolated eigenvalues. Without disorder, the smallest eigenvalue for the tight-binding
Hamiltonian (or the discrete Laplacian) on a Bethe lattice is isolated from all the
others by a gap.17) This eigenvalue plays a very important role in determining the
physical properties of some statistical mechanics models displaying a condensation
transition at low temperature, such as the spherical model18) or non-interacting
bosons on a Bethe lattice. The evolution of the isolated eigenvalue in presence of
disorder is interesting in particular in connection with studies of disordered bosonic
models since it may lead to somewhat different behaviors than the ones obtained
for finite dimensional systems, where no isolated eigenvalue is found (even though
the relevance of the spectrum of the one-particle kinetic energy is less obvious in the
presence of interactions).

§2. Model and iterative equations

The Anderson model corresponds to the Hamiltonian:

H = −
∑

〈i,j〉
t(c†i cj + c†jci) +

N∑

i=1

ǫic
†
i ci , (2.1)

where the first sum runs over the nearest neighbors couples of the lattice, the sec-
ond sum runs over all N sites and c†i , ci are fermionic creation and annihilation
operators. For simplicity we consider spinless fermions. The on-site energies ǫi are
independent and identically distributed random variables, that we shall take in the
following uniformly distributed in the interval [−W/2,W/2]. As the fermions have
no interactions, the study of this model amounts to determine the spectrum of the
N ×N random matrix Hij such that Hij = −t if i 6= j are neighbors on the lattice,
Hii = ǫi on the diagonal. In the following we will take t = 1, which means that ǫi
are measured in units of t.

As anticipated in the introduction, the lattice we will focus on is a Bethe lattice.
It is possible, and this is the point of view of almost all mathematical works, to
define it as an infinite regular tree, i.e. a graph without loop where every vertex has
the same degree (that we shall denote k+1 in the following). It is however necessary
for the study of thermodynamical properties of statistical mechanics model (e.g.
to define a free-energy) to consider finite-size versions of the model, with a given
number N of vertices, before taking the thermodynamic limit N → ∞. There are
at least two possible ways to define a finite-size Bethe lattice. The first one is to
consider a finite tree of depth n, that is a tree in which the root vertex (at generation
0) has k + 1 offsprings, each of the vertices in the generation from 1 to n − 1 has
k offsprings, and finally the leaves of the n-th generation have no descendent. The
second way is to consider a random k+1-regular graph, i.e. a graph chosen uniformly
at random among all the graphs on N vertices where each of the vertex has degree
k + 1. The properties of such random graphs have been extensively studied (see
ref. 19) for a review). It is known in particular that any finite portion of such
a graph is a tree with a probability going to one as N → ∞. The advantage of
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the second construction is the absence of any boundary effect: all sites, for any
finite N , have k + 1 neighbors, whereas in the trees of the first construction the
sites on the boundary, i.e. on the leaves of the n-th generation, are asymptotically
as numerous as the bulk (volume) sites and have connectivity one, a pathological
situation compared to finite dimensions. Random regular graphs can be thought of
as regular trees wrapped onto themselves. This absence of boundary is particularly
important for frustrated models, as discussed notably in ref. 20).

The spectral properties of H are easily studied in terms of the resolvent matrix,
which is defined as:

Gij(z) =

(
1

H − zI

)

ij

, (2.2)

where I is the identity matrix. For example, the density of eigenvalues λα, ρ(E) =∑
α δ(E − λα)/N , can be obtained as:

ρ(E) = lim
η→0

1

Nπ
ImTrG(E + iη) . (2.3)

Moreover the localization properties of the eigenvectors of H can be deduced from
the behavior of lim

η→0
η|Gii(E + iη)|2 (see for instance refs. 21), 22)).

When the non-zero off-diagonal elements of H have the structure of a finite tree
it is easy to obtain the diagonal elements of the resolvent from

Gii(z) =
1

Hii − z − ∑
j∈∂i

H2
ijGj→i(z)

. (2.4)

Here ∂i denotes the set of neighbors of i and Gj→i(z) is the Gjj(z) resolvent of a
modified matrix in which the edge between i and j has been removed. These new
variables verify the following recursive equations:

Gi→j(z) =
1

Hii − z − ∑
j′∈∂i\j

H2
ij′Gj′→i(z)

. (2.5)

These equations were first obtained in ref. 7) using perturbation theory. Another
simple way to obtain these equations is to consider a Gaussian model with a kernel
H − zI (we shall come back on this in Sec. 5). More formally one can use resolvent
identities to derive them; this last method has the advantage of being also valid
directly on the infinite Bethe lattice, the matrix H being turned in an operator
acting on square-normalizable functions on the sites of the infinite tree. Note that
it has been proven in ref. 23) that the random regular graph case can be studied
using these recursion equations in the thermodynamic limit, thanks to the local
convergence of random regular graphs to trees.

Let us denote, with a slight abuse of notation, G(z) the diagonal element of the
resolvent for an arbitrary site in the Bethe lattice (the infinite tree or the thermody-

namic limit of random regular graphs), and Ĝ(z) the similar quantity in the absence
of one incident edge. These are random variables, because of the randomness in the
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choice of the Hii = ǫi. The above written equations implies that their distribution
follows from

G(z)
d
=

1

ǫ− z −∑k+1
i=1 Ĝi(z)

, Ĝ(z)
d
=

1

ǫ− z −∑k
i=1 Ĝi(z)

, (2.6)

where
d
= denotes the equality in distribution of two random variables. In the r.h.s.

the various Ĝi are i.i.d. copies of Ĝ, and ǫ is independently drawn uniformly on
[−W/2,W/2]. The spectral properties of the model can be obtained from the solution
of these distributional equations, by computing

ρ(E) = lim
η→0

1

π
ImE[G(E + iη)], L(E) = lim

η→0

1

π
ηE[|G(E + iη)|2] , (2.7)

where the expectation E[·] is with respect the distribution of G. The first quantity
gives the density of states of energy E, while the second one corresponds to the
average inverse participation ratio of the eigenstates of energy close to E (for a finite
graph, the inverse participation ratio of the eigenstate α is Lα =

∑
i |ψαi |4, where ψαi

is the component of the normalized α-th eigenvector on site i): it is non-zero only if
E falls in an interval of energy comprising localized states (pure-point spectrum) and
vanishes for extended states (absolutely continuous spectrum). Indeed the density
of states alone is smooth at the mobility edge separating localized and extended
states24) and cannot be used to distinguish the two regimes. An alternative and
numerically more precise method to compute the mobility edge was proposed in
ref. 7) and consists in investigating the stability of a real solution of the equations
(2.6) for real z = E to the insertion of a small imaginary part; this solution is stable
whenever E belongs to the localized regime. Physically, for a finite and large tree,
this amounts to couple boundary sites to a thermal bath and test whether the site
at the center can dissipate energy at very low temperature when the Fermi energy
is close to E. If E belongs to the localized regime, energy is not transported across
the tree and no dissipation is possible far from the boundary, i.e. the imaginary part
of the self energy vanishes for sites very distant from the boundary.

A numerical procedure to solve the distributional equations (2.6) was proposed
in ref. 7), and revivified more recently in the context of finite-connectivity mean-field
disordered systems under the name of population dynamics,20) also called the pool
method.11) The idea is to approximate the distribution of a random variable, say
Ĝ, by the empirical distribution of a sample of a large number N of representants
{Ĝ1, . . . , ĜN }. Starting from an arbitrary initial condition a sequence of samples

is produced. The elements of the new sample Ĝ′
j are generated by, identically and

independently for each j, selecting k elements uniformly at random from the current
sample {Ĝ1, . . . , ĜN }, drawing an energy ǫ uniformly in [−W/2,W/2], and com-

puting the value of Ĝ′
j , according to (2.6). Repeating these steps, one reaches a

sample approximating the fixed point solution of (2.6), and then the observables in
(2.7) can be obtained by computing empirical averages over the representants of the
distribution. The numerical accuracy is controlled by the size N of the samples.
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§3. Phase diagram, density of states and mobility edges

We have numerically solved the equations (2.5) with the method described above
for the connectivity k+1 = 3 and using samples with sizes up toN = 107. The results
are displayed in Fig. 1. The innermost solid line is the mobility edge separating the
regimes of extended and localized states. It crosses the E = 0 axis for a critical
value of the disorder Wc ≈ 17.4, above which no extended states exist. This value
is in agreement with the one found in refs. 7), 8), 11). Moreover for small disorder
the whole interval [−2

√
k, 2

√
k] of the density of states of the pure model (W = 0)

corresponds to extended states, in other words the mobility edge does not enter the
band of the pure model up to a strictly positive value of W . This fact has indeed
been proven rigorously.14), 16) The dashed lines show the numerically determined
edge for the density of states, that is the limit of the interval for which ρ(E) of
Eq. (2.7) is found to be non-vanishing. The edge of the spectrum has been proved
rigorously to be equal to E = ±(2

√
k +W/2) (solid lines in Fig. 1) by ergodicity

arguments.14), 15), 16) The discrepancy between the numerically computed value and
the true one is due to the extreme smallness of the density of states close to the
edge. As we shall discuss in the next section, the decrease of ρ(E) is extremely fast.
Therefore, one would need extremely large sample sizes N in order to reproduce the
density of states close to the edge. We have checked that in agreement with this
interpretation the location of the observed band edge depends on the sample size N
used. The data presented in the figure for the band edge corresponds to N = 2106.

The shape of the density of states and its evolution with the disorder is shown in
Fig. 2, where we plotted ρ(E) for W = 0.3 andW = 12. We also show the density of
states obtained by exact diagonalization for matrices of sizes 8192. The agreement
between the two methods is very good. However, for strong disorder finite size effects
become important close to the edge, as expected from the discussion above. In
Fig. 3 we show the inverse participation ratio Lα obtained by exact diagonalization
(we recall that for a finite system Lα =

∑
i |ψαi |4, where ψαi is the value of the

normalized α-th eigenvector at site i). The evolution of the inverse participation
ratio with the system size points to a mobility edge Ec ≃ 4 for W = 12, which is in
agreement with the prediction of the cavity method, see Fig. 1.

We have also studied the evolution of these results with the connectivity of the
Bethe lattice. The phase diagrams are qualitatively similar. The main issue is the
evolution of the mobility edge with k. In particular we have focused on the critical
value of the disorder, Wc, above which only localized states exist. This is interesting
for several reasons. First, it is relevant for recent works studying the effect of electron-
electron interaction on Anderson localization. In this case one is interested in the
problem of localization in the Fock space, which has been argued to be related to the
localization problem on a Bethe lattice with very large connectivity.25) Second, the
limit of large connectivity might be the only case where a complete analytical solution
is within reach. Abou-Chacra et al.7) developed two different approximation schemes
to obtain the mobility edges analytically. Both methods lead to an asymptotic form
of Wc of the form c k ln k. The constants c are equal to 4 and 2e ≃ 5.43, depending
on the approximation. We have found that the stability analysis used to determine
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Fig. 1. Phase diagram for the Bethe lattice with connectivity k + 1 = 3. The innermost solid

line indicates the mobility edge between extended and localized states, the outermost solid line

being the edge of the density of states E = ±(2
√
k +W/2). The dashed line is the numerically

observed edge, see the text for details.
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W=0.3 W=12

Fig. 2. Density of states, ρ(E), obtained using the cavity method and exact diagonalization of the

connectivity matrix of random regular graphs of 8192 sites for W = 0.3 (left panel) and W = 12

(right panel). The data are averaged over 16 different realizations of the disorder and of the

graph.
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0.1
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4096
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Fig. 3. Inverse participation ratio, L, as a function of the energy obtained via exact diagonalization

for W = 12 and for different sizes of the adjacency matrix (1024, 2048, 4096). In the localized

regime L does not depend on the size of the matrix, whereas the inverse participation ratio of

the extended states decrease as the inverse of the system size. The mobility edge is found in

E ≃ 4, in agreement, within the numerical accuracy, with the numerical prediction of the cavity

method.

the mobility edge can be interpreted, in the large k limit, as an iterative equation
on Levy random variables with tail exponent µ = 1/2. This leads to the result
c = 2

√
2π ≃ 5.01. Whether this is still an approximation or an exact result is

unclear at this stage and will be investigated and detailed elsewhere.26)

Our numerical results for Wc obtained by solving the distributional equation
(2.6) are presented in table I. None of the analytical predictions cited above fit
well the data. Presumably, very strong sub-leading corrections are present, possibly
scaling like k with potentially ln ln corrections. In this situation one would need very
large values of k to find the true asymptotic form. A best fit of our data of the form
Wc = c k ln k+ b k leads to c = 4.7 and b = 5.9. Imposing one of the three values of c
quoted above and adjusting the parameter b leads to fits of comparable quality, these
numerical data are hence insufficient to discriminate between the proposed values of
c.

k + 1 3 4 5 6 7 8 9

Wc 17.4 33.2 50.1 67.7 87.3 105 125.2

Table I. Critical value of the disorder as a function of the connectivity.
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§4. Lifshits tail and the edge of the spectrum.

As discussed in the previous section, it was proved rigorously that the edge of
the density of state is located in E = ±(2

√
k+W/2).14), 15), 16) Numerically we found

that the density of states becomes extremely small close to the edges. In the following
we shall develop simple arguments à la Lifshits that allows one to understand the
result E = ±(2

√
k +W/2) and to obtain the form of ρ(E) close to the edge.

Let us first recall how the Lifshits’ argument27) works on finite dimensional
lattices. Let us focus on the left edge (the argument for the right edge is the same).
The key observation is that there is a finite probability to have all the on-site random
energies inside a sphere of radius R taking values very close to −W/2, say −W/2+ ǫ.
Using that such a sphere, when disconnected from the rest, is characterized by states
with energies arbitrarily close to the exact band edge in absence of disorder shifted
by −W/2 + ǫ, one can construct variational states for the original Hamiltonian that
have the same energies. This allows one to show that the left and right edges in
presence of disorder are just the ones without disorder shifted respectively by −W/2
and W/2, and also to find the decrease of ρ(E) at the edges. Note that all this can
be put on a rigorous ground, as done for instance in ref. 5).

In this section we shall develop similar arguments to study the behaviour of the
tail of the spectrum of the Anderson model on Bethe lattices (a related computation
was presented in ref. 28) for off-diagonal disorder). Following the strategy developed
for finite dimensional systems, the first thing to analyze is the eigenvalue problem
for an infinite tree of connectivity k + 1 without disorder, i.e. where the adjacency
matrix H is equal to −1 if i and j are nearest neighbours and zero otherwise. We
look for eigenvectors of H of energy E, i.e., we want to find states |ψ〉 such that
H|ψ〉 = E|ψ〉. We consider spherically symmetric states for which the components
of |ψ〉 depend only on the distance from the central site of the tree and must satisfy
the following set of equations:

Eψn = −kψn+1 − ψn−1 (4.1)

Eψ0 = −(k + 1)ψ1

where ψn is the component of |ψ〉 on any given site at distance n from the origin.
For energies in the range −2

√
k < E < 2

√
k, the solution of the equations above can

be written in the form:

ψn = k−n/2
(
1− ic

2
einθ +

1 + ic

2
e−inθ

)
, (4.2)

with eiθ = (−E+i
√
4k − E2)/2

√
k. The value of c must be chosen in order to satisfy

the equation for the central site. This yields:

c = − (k − 1)E

(k + 1)
√
4k −E2

. (4.3)

Finally, the component of the eigenvector |ψ〉 at distance n from the origin can be
rewritten as:

ψn =
cos(nθ) + c sin(nθ)

kn/2
. (4.4)
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Thus |ψn|2 decrease with the distance from the central site as k−n, while the number
of sites at distance n from the origin grows as kn. As a consequence, such radial
(quasi-)eigenvectors are not normalizable:

〈ψ|ψ〉 = 1 +
k + 1

k

∑

n≥1

kn|ψn|2 = 1 +
k + 1

k

∑

n≥1

| cos(nθ) + c sin(nθ)|2 , (4.5)

which diverges for an infinite tree.
One can however define a modified variational wave-function that is normalizable

and has variational energy equal to E. The idea is the following: define n⋆(E) as the
smallest integer n such that ψn = 0, and consider the truncated wave-function ψ′

n =
ψn if n ≤ n⋆(E), ψ′

n = 0 for n ≥ n⋆(E). This wave-function is not a solution of the

equations (4.1), yet it is normalizable and verifies 〈ψ′|H|ψ′〉
〈ψ′|ψ′〉 = E. The determination

of the radius n⋆(E) is simplified when E tends to one of the band-edge. Let us focus
on the left band edge (the argument for the right edge is almost identical) and write

E = −2
√
k+ δ. At the lowest order in δ one finds that θ ≃

√
δ√
k
and c ≃ k−1

k+1

√√
k
δ .

Solving the equation ψn⋆ = 0 in this limit one obtains n⋆ ∼ π
√√

k/δ.
Let us now go back to the disordered case, where the on-site energies Hii are in-

dependent and identically distributed random variables in the interval [−W/2,W/2],
and let us use the variational states derived above to determine the position of the
edge of the spectrum in presence of disorder. There is a finite probability that in-
side a spherical region of radius n⋆ all the on-site energies ǫi are arbitrarily close
to −W/2. The variational state constructed above has now a variational energy
arbitrarily close to −2

√
k −W/2. The same argument for the right edge leads to

the 2
√
k +W/2. As a consequence, the edges of the Anderson model on the Bethe

lattice are ±(2
√
k+W/2), in agreement with the rigorous results based on ergodicity

theorem.14), 15)

One can make this argument more quantitative and estimate the behaviour of
the density of states around the left edge of the band, in presence of disorder (again
the argument for the right edge is essentially identical). Indeed, the probability that
all the energies in the ball of radius n⋆ are in the interval [−W/2,−W/2 + δ] scales

as (δ/W )(
k+1
k )kn⋆

, since the number of sites inside the ball is
(
k+1
k

)
kn⋆ . Combining

this relation with the scaling of n⋆ with δ obtained above for the ordered model
yields the following scaling for the density of states

ρ(−2
√
k −W/2 + δ) ≃ exp

[
−
(
k + 1

k

)
kπk

1/4 δ−1/2
log(W/δ)

]
(4.6)

This function vanishes indeed extremely fast with δ, as mentioned previously when
discussing the numerical results of Sec.3. Note that, strictly speaking, this expression
is only a lower bound to the density of states. A form similar to Eq. (4.6) has already
been found for models with off-diagonal disorder on Bethe lattices.28), 29)
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§5. Isolated eigenvalue

The last point we shall address is whether the smallest eigenvalue λ1 is at a finite
distance from the edge of the density of states at the thermodynamic limit. Note that
one needs an extensive number of eigenvalues to obtain a ρ(E) different from zero. A
single eigenvalue gives a contribution to ρ(E) of the order of 1/N , which is negligible
in the thermodynamic limit. As a consequence, it is in principle possible to have
the smallest eigenvalue separated from all the others by a gap and the left edge of
ρ(E) at a finite distance from λ1. Although this might seem counterintuitive at first
sight, at least based on the intuition developed for finite dimensional system, it is
what happens in the case without disorder when H is (minus) the adjacency matrix
of a random regular graph∗). It is easy to check in this case that the constant vector
is an eigenvector of H with eigenvalue −(k + 1). It appears thus a gap between
λ1 = −(k + 1) and the second smallest eigenvalue λ2, which concentrates around
−2

√
k, the left edge of the band of the Bethe lattice model, as proved in ref. 17).
A natural question is therefore what happens to the isolated smallest eigenvalue

when disorder is introduced. It is also interesting to investigate the properties of
the corresponding eigenvector, which it is completely delocalized without disorder.
We shall follow an approach first proposed in ref. 30) for off-diagonal disorder, and
begin by rederiving it with a slightly different presentation, related to the discussion
of ref. 18). Let us consider a Gaussian probability measure on N real variables φi
defined by the averages

〈•〉 = 1

N

∫
dφ1 . . . dφN • exp


−1

2

∑

i,j

φi(Hi,j − Eδi,j)φj


 , (5.1)

where N is a normalizing factor. It is clear that the integral is convergent only if
E < λ1, and that by symmetry 〈φi〉 = 0 for all i. If however the limit E → λ−1 is
taken then an infinitesimal linear term in the action above is enough to produce a
spontaneous magnetization 〈φi〉 6= 0 in the direction of the eigenvector associated
to λ1, i.e. 〈φi〉 is proportional to its i-th component. This corresponds to a con-
densation transition on the first eigenvector. Using the replica symmetric cavity
method20) (which corresponds here to the Gaussian Belief Propagation31)) one finds
that computing the averages with respect to this weight, on a given graph, amounts
to solve the following recursion equations

µi→j(φi) =
1

Ni→j
e−

1
2
(Hii−E)φ2i

∏

j′∈∂i\j

∫
dφj′µj′→i(φj′)e

−Hij′φiφj′ , (5.2)

where Ni→j ensures the normalization and µi→j(φi) is the probability measure for
φi when the link between i and j is removed∗∗). We parametrize this Gaussian

∗) For this phenomenon, there is a difference between an infinite random tree and a very large

random regular graph. Only for the latter the smallest eigenvalue is separated from the others by a

gap.
∗∗) The replica symmetric cavity method consists in assuming that the φj′ are not correlated
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probability as:

µi→j(φi) =
1

N ′
i→j

e
− 1

2
1

Gi→j
φ2i−yi→jφi

. (5.3)

Plugging this expression in (5.2) we find:

Gi→j =
1

Hii − E − ∑
j′∈∂i\j

H2
ij′Gj′→i

, yi→j = −
∑

j′∈∂i\j
Hij′Gj′→iyj′→i , (5.4)

which are indeed the same as derived in ref. 30). The equations linking the ’messages’
G on the various edges of the graph are decoupled from the y’s, and corresponds to
the recursion equations for the resolvents stated in (2.5). The linear term coefficients
y are solutions of a homogeneous set of equations, hence invariant with respect to a
common multiplication. The smallest eigenvalue λ1 can thus be found as the largest
value of E such that the fixed point y = 0 is stable.

To investigate the behaviour of λ1 for large regular graphs one turns these equa-
tions in distributional equations,

(Ĝ, y)
d
=

(
1

ǫ− E −∑k
i=1 Ĝi

,

k∑

i=1

Ĝiyi

)
. (5.5)

As explained in Sec. 2 this kind of distributional equation is easily solved numerically
by representing the distribution of the random variable (Ĝ, y) as a sample of couples

{(Ĝ1, y1), . . . , (ĜN , yN )}. These are updated according to a generalization of the

method explained in Sec. 2, where now the update is made on the couple (Ĝj , yj)

and not on Ĝj alone. The stability of the y = 0 fixed point can then be determined
by monitoring the norm

∑
j y

2
j after each iteration, and one identifies the location

of λ1 as the largest value for which this norm decreases upon iterating Eq. (5.5).
The numerical results of this procedure are presented in Fig. 4 for the connec-

tivity k + 1 = 3. The smallest eigenvalue λ1 sligthly decreases upon increasing the
disorder from the value −3 it has atW = 0. We find that even in presence of disorder
the smallest eigenvalue is separated from the others by a gap. Moreover it remains
delocalized as shown by its participation ratio that can be obtained from the yi→j

when E = λ−1 . There is a critical value of the disorder, W1, where λ1 becomes equal
to the edge of the density of states. For larger values of W the smallest eigenvalue
equals the edge of the density of states∗). In Fig. 4 we show the numerical result
obtained by the cavity method for the isolated eigenvalue in the case k + 1 = 3,
which crosses the left edge of the band for a value of the disorder W1 ≃ 0.36.

except through their coupling to i. This is justified in the present case and directly leads to the

equations (5.2).
∗) For W > W1 our method still finds a value of λ1, which is now larger then the left band edge

and that approaches the mobility edge when increasing the disorder strength. The interpretation

of the replica symmetry cavity method in this regime is unclear. It might be that between the

extensive number of localized states, there is one extended state at least for W not much larger

than W1 and that the replica symmetry cavity method misses all the other localized states because

looking at the stability with respect to yi→j is like studying the stability to a delocalized external

field, which does not couple to localized states. This point certainly deserves further investigation.



12 G. Biroli, G. Semerjian, M. Tarzia

E

W

-2.5-3-3.5-4

6

4

2

0

Fig. 4. Blow-up of the phase diagram of Fig. 1, the supplementary line starting from −3 is the

isolated eigenvalue λ1.

§6. Conclusion

In this work we have revisited the Anderson localization problem on a Bethe
lattice. We have shown detailed results on the density of states and the mobility
edge for connectivity equal to 3. We have also discussed the large connectivity limit,
whose exact solution remains an open question. Finally, we have shown that for
not too large disorder the smallest eigenvalue is extended and has a gap from the
subsequent (localised) eigenvalues. This property may play an important role for the
disordered Bose Hubbard model on Bethe lattice. Indeed, the usual argument used
to claim that a Bose glass phase always intervenes between the superfluid and the
Mott phase may fail. In finite dimensional lattices, when the disorder strength W is
only slightly larger than the gap of the Mott insulator, it was argued32), 33) that it
is favorable to insert particles (or vacancies) but that these are not delocalized and
hence do not lead to superfluidity since the lowest eigenvalue of the corresponding
Anderson problem is localized. In the Bethe lattice case, depending on the effective
Anderson model one finds for these quasi-particles, the smallest eigenvalue may
correspond to a completely delocalized state with a finite gap from the localized
ones. Thus, the possibility of a direct quantum phase transition from the superfluid
to the Mott state is not completely excluded on Bethe lattices.
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