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Abstract. We present a comprehensive study of the symmetries of the generating

functionals of generic Langevin processes with multiplicative colored noise. We treat

both Martin-Siggia-Rose-Janssen-deDominicis and supersymmetric formalisms. We

summarize the relations between observables that they imply including fluctuation re-

lations, fluctuation-dissipation theorems, and Schwinger-Dyson equations. Newtonian

dynamics and their invariances follow in the vanishing friction limit.
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1. Introduction

The stochastic evolution of a classical system coupled to a quite generic environment

can be described with the Langevin formalism [1, 2] and its generating functional, the

Martin-Siggia-Rose-Janssen-deDominicis (MSRJD) path-integral [3, 4, 5]. In many

cases of practical interest the effect of the environment is captured by an additive

white noise and its memory-less friction, Brownian motion being the paradigmatic

example [1]. Nevertheless, there are many other interesting instances in which the

noise is multiplicative and colored, and the friction effect is consistently described

by a memory kernel coupled to a non-linear function of the state variable. Such

Langevin equations appear in many different branches of physics (as well as chemistry

and other sciences). In magnetism, the motion of the classical magnetic moments of

small particles is phenomenologically described by the Landau-Lifshitz-Gilbert equation

in which the fluctuations of the magnetic field are coupled multiplicatively to the

magnetic moment [7]. Many other examples pertain to soft condensed matter; two

of these are confined diffusion, in which the diffusion coefficient of the particle depends

on the position via hydrodynamic interactions [8], and the stochastic partial differential

equation that rules the time-evolution of the density of an ensemble of N Brownian

particles [9]. In a cosmological framework, these equations arise as effective equations

of motion for the out of (although close to) equilibrium evolution of self-interacting

quantum fields in which the short-wave length modes serve as thermal baths for longer

wave-length modes with slower dynamics [10]. Such type of fluctuations may yield a

priori unexpected results such as noise induced phase transitions in systems in which

the associated deterministic potential does not exhibit any symmetry breaking [11].

In order to better understand these processes it is useful to distinguish cases in

which sources of fluctuations and dissipation can be different. On the one hand, the

noise and friction term can have an ‘internal’ origin, such as in diffusion problems. On

the other hand, the stochastic fluctuations can be due to an ‘external’ source [12]. In

the former cases one usually assumes that the variables generating the noise and friction

are in equilibrium and the terms in the Langevin equation associated to them are linked

by a fluctuation-dissipation theorem. In the absence of non-conservative external forces

the Boltzmann measure of the system of interest is a steady state of its dynamics. In

the latter cases noise and dissipation are not forced to satisfy any equilibrium condition

and this translates into the possibility of having any kind of noise and friction terms.

For concreteness we shall focus on the first type of problems and only mention a few

results concerning the latter.

In treatments of the examples mentioned in the first paragraph, the delicate double

limit of vanishing fast variables relaxation time and noise correlation time is often taken.
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These lead to a first order stochastic differential equation with multiplicative white noise.

Its interpretation in the Itô, Stratonovich or other sense requires a very careful analysis

of the order of limits, see e.g. [13] and references therein. In the main part of this paper

we shall keep both time-scales finite and thus avoid the subtleties encountered in the

double vanishing limit.

In this manuscript, we identify a number of symmetries of the MSRJD generating

functional of inertial Langevin processes with multiplicative colored noise. One

symmetry is only valid in equilibrium. The corresponding Ward-Takahashi identities

between the correlation functions of the field theory lead to various equilibrium relations

such as stationarity, fluctuation-dissipation theorems [14, 15] or Onsager relations. Away

from equilibrium, the symmetry is broken giving rise to various out of equilibrium

fluctuation relations [16]-[28]. Another symmetry holds for generic out of equilibrium

set-ups and implies dynamic equations coupling correlations and linear responses. It

allows to express, in particular, the linear response in terms of correlations without

applying a perturbing field [30]-[41].

We are aware of the fact that some of the results in this manuscript – especially,

in the limit of additive noise – were already known and we do our best to attribute

them to the authors of the original papers or review articles. Still, the presentation that

we gradually develop in this article allows one to go beyond the simple cases and treat

the multiplicative non-Markov processes with the same level of difficulty. Moreover, we

discuss in greater detail than previously done the transformation of the measure and

several Jacobians, and the domain of integration of the fields in the path-integral. The

importance of dealing with colored noise, and to treat the transformation of the fields

in the complex plane, is enhanced by our purpose to extend this analysis to quantum

dissipative problems. These results will be presented in a separate publication [42].

The organization of the paper is the following. In Sect. 2 we give a short review

of Langevin equations with additive and multiplicative noise. Section 3 presents the

MSRJD functional representation of Langevin equations. In Sect. 4 we deal with the

equilibrium symmetries while in Sect. 5 we treat the out of equilibrium ones. In both

Sections we discuss supersymmetric formulations. We conclude in Sect. 6.

2. The Langevin equation

We consider a 0-dimensional field ψ (e.g. a particle at position ψ) with mass m driven

by a force F and in contact with a thermal bath in equilibrium at inverse temperature

β. The initial time, t0, is the instant at which the particle is set in contact with the

bath and the stochastic dynamics ‘starts’. We call it t0 = −T and without loss of

generality we work within a symmetric time-interval t ∈ [−T, T ]. The extension to
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higher dimensional cases is straightforward. Our conventions are given in Appendix A.

2.1. Additive noise

The Langevin equation with additive noise is given by

Eq([ψ], t) ≡ mψ̈(t)− F ([ψ], t) +

∫ T

−T

du γ(t, u) ψ̇(u) = ξ(t) , (1)

with ψ̇(t) = dψ(t)/dt and ψ̈(t) = d2ψ(t)/dt2. The force can be decomposed into

conservative and non-conservative parts: F ([ψ], t) = −V ′(ψ(t), λ(t)) + f([ψ], t). V is a

local potential the time-dependence of which is controlled externally through a protocol

λ(t). V ′ denotes the partial derivative of V with respect to ψ. f([ψ], t) collects all the

non-conservative forces that are externally applied. f([ψ], t) is assumed to be causal in

the sense that it does not depend on the future states of the system, ψ(t′) with t′ > t.

Furthermore, we suppose that f([ψ], t) does not involve second – nor higher – order

time-derivatives of the field ψ(t). The last term in the left-hand-side (lhs) and the

right-hand-side (rhs) of the equation model the interaction with the bath. These two

heuristic terms can be derived using a model [43, 44] in which the bath consists in a set

of non-interacting harmonic oscillators of coordinates qi that are bilinearly coupled to

the state variable of the system of interest ψ. The function γ is the retarded friction

[γ(t, t′) = 0 for t′ > t] and the noise ξ is a random force taken to be a Gaussian process.

This assumption is quite reasonable, for instance, for a Brownian particle much bigger

than the surrounding particles of the bath, its motion being the result of a large number

of successive collisions, which is a condition for the central limit theorem to apply. Since

we assume the environment to be in equilibrium, γ(t, t′) is a function of t − t′ and the

bath obeys the fluctuation-dissipation theorem of the ‘second kind’ [45]:

〈ξ(t)〉ξ = 0 , 〈ξ(t)ξ(t′)〉ξ = β−1 Γ(t− t′) , (2)

where 〈 ... 〉ξ denotes the average over the noise history. We introduced the symmetric

kernel Γ(t − t′) ≡ γ(t − t′) + γ(t′ − t) = Γ(t′ − t). The white noise limit, in which the

bath has no memory, is achieved by setting γ(t− t′) = γ0δ(t− t′) with γ0 > 0 the friction

coefficient. The Langevin equation then takes the more familiar form

Eq([ψ], t) ≡ mψ̈(t)− F ([ψ], t) + γ0 ψ̇(t) = ξ(t) . (3)

Newtonian dynamics, for which the system is not in contact with a thermal bath, are

recovered by simply taking γ(t) = Γ(t) = 0 at all t. Out of equilibrium environments

can be taken into account by relaxing the condition between the noise statistics and the

friction kernel Γ(t− t′) = γ(t− t′) + γ(t′ − t).
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2.2. Multiplicative noise

We generalize our discussion to the multiplicative noise case in which the Gaussian noise

ξ is coupled to a state-dependent function M ′(ψ). The Langevin equation reads

Eq([ψ], t) ≡ mψ̈(t)− F ([ψ], t) +M ′(ψ(t))

∫ T

−T

du γ(t− u)M ′(ψ(u))ψ̇(u)

=M ′(ψ(t)) ξ(t) . (4)

This equation can also be shown by using the oscillator model for the bath and a

nonlinear coupling of the form M(ψ)
∑

i ciqi where ci are coefficients that depend on

the details of the coupling and M(ψ) is a smooth function of the state variable with

M(0) = 0. By a suitable renormalization of γ, one can always achieve M ′(0) = 1. For

reasons that will soon become clear, we need to assume that M ′(ψ) 6= 0 ∀ψ. These

assumptions can be realized with functions of the type M(ψ) = ψ + L(ψ) where L is a

smooth and increasing function satisfying L(0) = L′(0) = 0. The complicated structure

of the friction term takes its rationale from the fluctuation-dissipation theorem of the

second kind that expresses the equilibrium condition of the bath. This equation models

situations in which the friction between the system and its bath is state-dependent. ξ

has the same statistics as in the additive case, see eq. (2). The Langevin equation for

the additive noise problem is recovered by taking M(ψ) = ψ.

2.3. Initial conditions

The Langevin equation is a second order differential equation that needs two initial

values, say the field and its derivative at time −T . We shall use initial conditions drawn

from an initial probability distribution Pi

(
ψ(−T ), ψ̇(−T )

)
and average over them. The

initial conditions are not correlated with the thermal noise ξ. In the particular case in

which the system is prepared in an equilibrium state, Pi is given by the Boltzmann

measure.

2.4. Markov limit

Langevin equations are often given in the Markov limit in which they appear to be first

order stochastic differential equations. Second and higher order time-derivatives as well

as non-local terms such as memory kernels are not allowed. In other words, the effect

of inertia is neglected (Smoluchowski limit) and the bath is taken to be white. This

is justified in situations in which the two associated time scales are sufficiently small

compared to all other time scales involved. Concretely, the resulting equation is derived

by using an adiabatic elimination procedure that consists in integrating over the fast
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variables of the system (the velocities) and of the bath. However, this double limiting

procedure requires a careful analysis.

The physics of the resulting equation may depend on how the relaxation time

associated to inertia compares with the correlation time of the noise before sending

the two of them to zero. In cases in which the latter is much larger than the former,

the limiting stochastic equation should be interpreted in the sense of Stratonovich [47].

The rhs of eq. (4) is given a meaning by stating that ψ in M ′(ψ(t)) is evaluated

at half the sum of its values before and after the kick. Conversely, when the inertia

relaxation time is much larger than the noise correlation time, the limiting equation

should be interpreted in the Itô sense [46]. In this scenario, the rule is that M ′(ψ(t))

is evaluated just before the kick ξ(t). When the noise is additive the two conventions

are equivalent (see Appendix B.2) for all practical purposes. However, they are not

for processes with multiplicative noise [12]. For these it is possible to rewrite the Itô

stochastic equation in terms of a Stratonovich stochastic equation by adding an adequate

drift term to the deterministic force – and be allowed to use the rules of conventional

calculus. The Fokker-Planck equation associated to the Markov process does not depend

on the scenario and the Boltzmann distribution is a steady state independently of the

convention used. However, the action of the generating functional acquires extra terms

depending on the discretization prescription [8, 49].

In this article, we decide not to cope with the Markov limit and, unless otherwise

stated, we keep the inertia of the system in our equations (m 6= 0) and we use a colored

noise with a finite relaxation time.

3. The generating functional

The generating functionals associated to the equations of motion (1) and (4) are given

by the Martin-Siggia-Rose-Janssen-deDominicis (MSRJD) path-integral. In this Section

we recall its construction for additive noise [4] and we extend it to multiplicative noise

by using a continuous time formalism. In Appendix B and Appendix C we develop a

careful construction in the discretized formulation.

3.1. Action in the additive noise case

The Langevin equation (1) is a second order differential equation with source ξ. The

knowledge of the history of the field ξ and the initial conditions ψ(−T ) and ψ̇(−T ) is
sufficient to construct ψ(t). Therefore, the probability P [ψ] of a given ψ history between

−T and T is linked to the probability of the noise history Pn[ξ] through

P [ψ]D[ψ] = Pn[ξ] D[ξ] Pi

(
ψ(−T ), ψ̇(−T )

)
dψ(−T ) dψ̇(−T ) (5)
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implying

P [ψ] = Pn[Eq[ψ]] |J [ψ]| Pi

(
ψ(−T ), ψ̇(−T )

)
, (6)

where J [ψ] is the Jacobian which reads, up to some constant factor,

J [ψ] ≡ detuv

[
δξ(u)

δψ(v)

]
= detuv

[
δEq([ψ], u)

δψ(v)

]
≡ J0[ψ] . (7)

det [...] stands for the functional determinant. We introduced the notation J0[ψ] for

future convenience and we shall discuss it in Sect. 3.3. After a Hubbard-Stratonovich

transformation that introduces the auxiliary real field ψ̂, the Gaussian probability for a

given noise history to occur reads

Pn[ξ] = N−1

∫
D[ψ̂] e−

∫
du iψ̂(u)ξ(u)+ 1

2

∫∫
du dv iψ̂(u)β−1Γ(u−v)iψ̂(v) , (8)

with the boundary conditions ψ̂(−T ) = ψ̂(T ) = 0 and where all the integrals over time

run from −T to T . In the following, unless otherwise stated, we shall simply denote

them
∫
. N is a infinite constant prefactor that we absorb in a re-definition of the

measure D[ψ̂]. Back in eq. (6) one has

P [ψ]D[ψ] = D[ψ]

∫
D[ψ̂] eS[ψ,ψ̂] , (9)

with the MSRJD action functional

S[ψ, ψ̂] ≡ lnPi

(
ψ(−T ), ψ̇(−T )

)
−
∫
du iψ̂(u)Eq([ψ], u)

+
1

2

∫ ∫
du dv iψ̂(u) β−1Γ(u− v) iψ̂(v) + ln |J0[ψ]| . (10)

The latter is the sum of a deterministic, a dissipative and a Jacobian term,

S[ψ, ψ̂] ≡ Sdet[ψ, ψ̂] + Sdiss[ψ, ψ̂] + ln |J0[ψ]| ,
with

Sdet[ψ, ψ̂] ≡ lnPi

(
ψ(−T ), ψ̇(−T )

)

−
∫
du iψ̂(u)

[
mψ̈(u)− F ([ψ], u)

]
, (11)

Sdiss[ψ, ψ̂] ≡
∫
du iψ̂(u)

∫
dv γ(u− v)

[
β−1iψ̂(v)− ψ̇(v)

]
. (12)

Sdet takes into account inertia and the forces exerted on the field, as well as the measure

of the initial condition. Sdiss has its origin in the coupling to the dissipative bath. In

the white noise limit, γ(t− t′) = γ0δ(t− t′), the dissipative action naively simplifies to

Sdiss[ψ, ψ̂] = γ0
∫
du iψ̂(u)

[
β−1iψ̂(u)− ψ̇(u)

]
(see Sect. 2.4 for additional details on this

limit).
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Integrating away the auxiliary field ψ̂ yields the Onsager-Machlup action

functional [50]. However, we prefer to work with the action written in terms of ψ

and iψ̂ as this is the form that arises as the classical limit of the Schwinger-Keldysh

action used to treat interacting out of equilibrium quantum systems [44, 51], that we

shall analyze along the same lines in [42].

3.2. Action in the multiplicative noise case

To shorten expressions, we adopt a notation in which the arguments of the fields and

functions appear as subindices, ψu ≡ ψ(u), γu−v ≡ γ(u − v), and so on and so forth,

and the integrals over time expressed as
∫
u
≡
∫ T
−T

du .

In the case of the Langevin equation (4) with multiplicative noise, the relation (6)

is modified and reads

P [ψ] = Pn

[
Eq[ψ]

M ′(ψ)

]
|J [ψ]| Pi(ψ−T , ψ̇−T ) , (13)

with the Jacobian

J [ψ] = detuv

[
δEqu[ψ]/M

′(ψu)

δψv

]
= detuv

[
δu−v

M ′(ψu)

]
J0[ψ] (14)

and the generalization of the definition of J0 in eq. (7) to the multiplicative case:

J0[ψ] ≡ detuv

[
δEqu[ψ]

δψv
− M ′′(ψu)

M ′(ψu)
Equ[ψ] δu−v

]
. (15)

The construction of the MSRJD action follows the same steps as in the additive noise

case, complemented by a further transformation of the field iψ̂ 7→ iψ̂ M ′(ψ), the Jacobian

of which cancels the first determinant factor in the rhs of eq. (14). Therefore, the

MSRJD action reads

S[ψ, ψ̂] ≡ lnPi(ψ−T , ψ̇−T )−
∫

u

iψ̂uEqu[ψ]

+
1

2

∫

u

∫

v

iψ̂uM
′(ψu) β

−1Γu−v M
′(ψv)iψ̂v + ln |J0[ψ]| , (16)

with J0 defined in eq. (15) . The deterministic part of the action is unchanged compared

to the additive noise case and the dissipative part is now

Sdiss[ψ, ψ̂] ≡
∫

u

iψ̂u

∫

v

M ′(ψu) γu−vM
′(ψv)

[
β−1iψ̂v − ψ̇v

]
. (17)

3.3. The Jacobian

In Appendix C we prove that the Jacobian J0 is a field-independent positive constant

for Langevin equations with inertia and multiplicative colored noise. One can therefore



11

safely include the Jacobian contribution in the normalization. However, we decide to

keep track of this term and represent it as a Gaussian integral over Grassmann conjugate

fields c and c∗,

J0[ψ] =

∫
D[c, c∗] eS

J [c,c∗,ψ] , (18)

with

SJ [c, c∗, ψ] ≡
∫

u

∫

v

c∗u
δEqu[ψ]

δψv
cv −

∫

u

c∗u
M ′′(ψu)

M ′(ψu)
Equ[ψ] cu , (19)

and the boundary conditions: c(−T ) = ċ(−T ) = c∗(T ) = ċ∗(T ) = 0. Plugging in the

Langevin equation (4), we arrive at

SJ [c, c∗, ψ] =

∫

u

∫

v

c∗u

[
m∂2uδu−v −

δFu[ψ]

δψv
+M ′(ψu)∂uγu−vM

′(ψv)

]
cv

−
∫

u

c∗u
M ′′(ψu)

M ′(ψu)

[
m∂2uψu − Fu[ψ]

]
cu . (20)

The Grassmann fields c and c∗ that enter the integral representation of the determinant

are known as Faddeev-Popov ghosts and can be interpreted as spinless fermions. The

two-time fermionic Green function defined as

〈c∗t ct′〉SJ ≡
∫

D[c, c∗] c∗t ct′ e
SJ [c,c∗,ψ] , (21)

is related, by use of Wick’s theorem, to the inverse operator of
δEqt′ [ψ]

δψt
− M ′′(ψt)

M ′(ψt)
Eq[ψt]δt−t′ .

〈c∗t ct′〉SJ inherits the causality structure of the latter and it vanishes at equal times as

long as the Markov limit is not taken (i.e. all fermionic tadpole contributions can-

cel): 〈c∗t ct′〉SJ = 0 for t ≥ t′. The last statement can be easily verified by considering

the discretized version of SJ (see Appendix B.3.3 and Appendix C) and by checking

that the diagonal terms of the inverse operator vanish in the continuous limit. SJ

only involves combinations of the form c∗c, i.e. it conserves the fermionic charge and

〈ct〉SJ = 〈c∗t 〉SJ = 0. This implies that SJ [c, c∗, ψ] and more generally the MSRJD

generating functional (at zero sources) are invariant under the following field transfor-

mation

TJ (α) ≡
{

ct 7→ α ct ,

c∗t 7→ α−1 c∗t ,
∀α ∈ C

∗ . (22)

The Jacobian of the transformation is trivially equal to one and the measure D[c, c∗] is

left unchanged. One has TJ (α)TJ (β) = TJ (αβ).

The total MSRJD action given in eq. (16) can be written equivalently as a functional

of ψ, ψ̂, c and c∗ provided that the path-integral measure is extended to the newly

introduced fermionic fields:

S[ψ, ψ̂, c, c∗] ≡ Sdet[ψ, ψ̂] + Sdiss[ψ, ψ̂] + SJ [c, c∗, ψ] . (23)
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3.4. Observables

3.4.1. Measure. We denote 〈 ... 〉 the average over the thermal noise and the initial

conditions. Within the MSRJD formalism, the average is evaluated with respect to the

action functional S[ψ, ψ̂] or S[ψ, ψ̂, c, c∗] and we use the notation 〈 ... 〉S:

〈 ... 〉S ≡
∫

D[ψ, ψ̂] ... eS[ψ,ψ̂] =

∫
D[ψ, ψ̂, c, c∗] ... eS[ψ,ψ̂,c,c

∗] . (24)

3.4.2. Local observable. The value of a generic local observable A at time t is a function

of the field and its time-derivatives evaluated at time t, i.e. a functional of the field ψ

around t, A([ψ], t). Unless otherwise specified we assume it does not depend explicitly

on time and denote it A[ψ(t)]. Its mean value is

〈A[ψ(t)]〉 = 〈A[ψ(t)]〉S . (25)

3.4.3. Time-reversal. Since it will be used in the rest of this work, we introduce the

time-reversed field ψ̄ by ψ̄(t) ≡ ψ(−t) for all t. The time-reversed observable is defined

as

Ar([ψ], t) ≡ A([ψ̄],−t). (26)

It has the effect of changing the sign of all odd time-derivatives in the expression of

local observables, e.g. if A[ψ(t)] = ∂tψ(t) then Ar[ψ(t)] = −∂tψ(t). As an example for

non-local observables, the time-reversed Langevin equation (1) reads

Eqr([ψ], t) = mψ̈(t)− Fr([ψ], t)−
∫ T

−T

du γ(u− t)ψ̇(u) . (27)

Notice the change of sign in front of the friction term that is no longer dissipative in

this new equation.

3.4.4. Two-time correlation. We define the two-time self correlation function as

C(t, t′) ≡ 〈ψ(t)ψ(t′)〉 = 〈ψ(t)ψ(t′)〉S . (28)

Given two local observables A and B, we similarly introduce the two-time generic

correlation as

C{AB}(t, t
′) ≡ 〈A[ψ(t)]B[ψ(t′)]〉S , (29)

The curly brackets are here to stress the symmetry that underlies this definition:

C{AB}(t, t
′) = C{BA}(t

′, t).
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3.4.5. Linear response. If we slightly modify the potential according to V (ψ) 7→
V (ψ)− fψψ, the self linear response at time t to an infinitesimal perturbation linearly

coupled to the field at a previous time t′ is defined as

R(t, t′) ≡ δ〈ψ(t)〉
δfψ(t′)

∣∣∣∣
fψ=0

=
δ〈ψ(t)〉S[fψ]
δfψ(t′)

∣∣∣∣
fψ=0

. (30)

It is clear from causality that if t′ is later than t, 〈ψ(t)〉S[fψ] cannot depend on the

perturbation fψ(t
′) so R(t, t′) = 0 for t′ > t. At equal times, the linear response R(t, t)

also vanishes as long as inertia is not neglected (m 6= 0)‡. More generally, the linear

response of A at time t to an infinitesimal perturbation linearly applied to B at time

t′ < t is

RAB(t, t
′) ≡ δ〈A[ψ(t)]〉

δfB(t′)

∣∣∣∣
fB=0

=
δ〈A[ψ(t)]〉S[fB]

δfB(t′)

∣∣∣∣
fB=0

, (31)

with V (ψ) 7→ V (ψ)− fBB[ψ], where B is local.

3.5. Classical Kubo formula

By computing explicitly the functional derivative δ/δfψ in the path integral generating

functional, we deduce

δ〈 ... 〉S[fψ]
δfψ(t)

∣∣∣∣
fψ=0

= 〈 ... δS[ψ, ψ̂, c, c
∗; fψ]

δfψ(t)

∣∣∣∣∣
fψ=0

〉S

= 〈 ... iψ̂(t)〉S + 〈 ... M
′′(ψ(t))

M ′(ψ(t))
c∗(t)c(t)〉S . (32)

The first term in the rhs comes from the functional derivative of Sdet. The second term

comes from the Jacobian term expressed with the fermionic ghosts, SJ , and vanishes

identically (see the discussion on the equal-time fermionic Green function in Sect. 3.3).

One has

〈iψ̂(t)〉S =
δ〈 1 〉S[fψ]
δfψ(t)

∣∣∣∣
fψ=0

= 0 , (33)

〈iψ̂(t)iψ̂(t′)〉S =
δ2〈 1 〉S[fψ]

δfψ(t) δfψ(t′)

∣∣∣∣
fψ=0

= 0 . (34)

From the definition of the linear response, eq. (30), we deduce the ‘classical Kubo

formula’ [45]

R(t, t′) = 〈ψ(t)iψ̂(t′)〉S . (35)

‡ In the double limit of a white noise and m → 0, the equal-time response can slightly violate the

causality principle depending on the order in which the limits are taken. In the Itô scenario it vanishes

whereas in the Stratonovich one it has a finite value.
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The linear response is here written within the MSRJD formalism as a correlation

computed with an unperturbed action. The causality of the response is not explicit,

nevertheless following the lines in Ref. [8] one can check it is built-in§. Because of this

expression, the auxiliary field ψ̂ is often called the response field. Observe that we have

not specified the nature of the initial probability distribution Pi nor the driving forces;

eq. (35) holds even out of equilibrium.

Similarly, by plugging eq. (25) into eq. (31), we obtain the classical Kubo formula

for generic local observables:

RAB(t, t
′) = 〈A[ψ(t)] δS[ψ, ψ̂, c, c

∗; fB]

δfB(t′)

∣∣∣∣∣
fB=0

〉S

= 〈A[ψ(t)]
∫

du iψ̂(u)
δB[ψ(t′)]

δψ(u)
〉S

= 〈A[ψ(t)]
∞∑

n=0

∂nt′ iψ̂(t
′)
∂B[ψ(t′)]

∂ ∂nt′ψ(t
′)
〉S . (36)

This formula is valid in and out of equilibrium and allows us to write the response

functions associated to generic observables (e.g. functions of the position, velocity,

acceleration, kinetic energy, etc.) as correlators of ψ, ψ̂ and their time derivatives. For

example if B is just a function of the field (and not of its time-derivatives), only the

n = 0-term subsists in the above sum, yielding

RAB(t, t
′) = 〈A[ψ(t)]iψ̂(t′)∂B[ψ(t′)]

∂ψ(t′)
〉S . (37)

As another example, if one is interested in the response of the acceleration A[ψ(t)] =

∂2t ψ(t) to a perturbation of the kinetic energy B[ψ(t)] = 1
2
m(∂tψ(t))

2 one should

compute

RAB(t, t
′) = m〈∂2t ψ(t)∂t′ iψ̂(t′)∂t′ψ(t′)〉S . (38)

Furthermore, it is straightforward to see that within the MSRJD formalism we can

extend all the previous definitions and formulæ to A being a local functional of the

auxiliary field: A[ψ̂(t)]. For example, if A[ψ̂(t)] = iψ̂(t) and B[ψ(t)] = ψ(t), we obtain

the mixed response

Riψ̂ψ(t, t
′) = 〈iψ̂(t)iψ̂(t′)〉S = 0 , (39)

where we used eq. (34).

§ In general, a multi-time correlator involving iψ̂(t1) vanishes if t1 is the largest time involved.
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4. Equilibrium

In this Section we focus on situations in which the system is in equilibrium. We

identify a field transformation that leaves the MSRJD generating functional (evaluated

at zero sources) invariant. The corresponding Ward-Takahashi identities between

the expectation values of different observables imply a number of model independent

equilibrium properties including stationarity, Onsager relations and the fluctuation-

dissipation theorem (FDT). These proofs are straightforward in the generating

functional formalism, demonstrating its advantage with respect to the Fokker-Planck

or master equation ones, when the environment acts multiplicatively and has a non-

vanishing correlation time. We shall report soon [42] on the extension to the quantum

case where the Keldysh action also exhibits a non-trivial symmetry for equilibrium

dynamics. Similarly to the classical case, this symmetry leads to the quantum FDT.

4.1. The action

Equilibrium dynamics are guaranteed provided that, apart from its interactions with

the bath, the system is prepared and subjected to the same time-independent and

conservative forces (F = −V ′). In such situations, the initial state is taken from the

Boltzmann probability distribution

lnPi(ψ−T , ψ̇−T ) = −βH[ψ−T ]− lnZ , (40)

where H[ψt] ≡ 1
2
mψ̇2

t +V (ψt) is the internal energy of the system, and Z is the partition

function. The Langevin evolution of the system in contact with the bath can be put in

the form

−
∫

u

δL[ψu]
δψt

+M ′(ψt)

∫

u

γt−uM
′(ψu)ψ̇u =M ′(ψt)ξt , (41)

with L[ψu] ≡ 1
2
mψ̇2

u − V (ψu) being the Lagrangian of the system. In this equilibrium

set-up, the deterministic part of the MSRJD action functional reads

Sdet[ψ, ψ̂] = −βH[ψ−T ]− lnZ +

∫

u

∫

v

iψ̂u
δL[ψv]
δψu

= −β
(
1

2
mψ̇2

−T + V (ψ−T )

)
− lnZ −

∫

u

iψ̂u

[
mψ̈u + V ′(ψu)

]
. (42)

The dissipative part of the MSRJD action functional remains the same, see eq. (17).

As discussed in Sect. 3.3, the Jacobian J0 enters the action through the constant term

lnJ0 or it can be expressed in terms of a Gaussian integral over the ghosts fields c and

c∗. In this case, its contribution to the action reads

SJ [c, c∗, ψ] =

∫

u

∫

v

c∗u
[
m∂2uδu−v +M ′(ψu)∂uγu−vM

′(ψv)
]
cv
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−
∫

u

c∗u

[
−V ′′(ψu) +

M ′′(ψu)

M ′(ψu)
∂2uψu +

M ′′(ψu)

M ′(ψu)
V ′(ψu)

]
cu . (43)

4.2. Symmetry of the MSRJD generating functional

We shall prove that
∫
D[ψ, ψ̂, c, c∗] eS[ψ,ψ̂,c,c

∗] is invariant under the equilibrium field

transformation:

Teq ≡
{

ψu 7→ ψ−u , cu 7→ c∗−u ,

iψ̂u 7→ iψ̂−u + β∂uψ−u , c∗u 7→ −c−u .
(44)

This transformation is involutary, TeqTeq = 1, when applied to the fields ψ or iψ̂

and the composite field c∗c. It does not involve the kernel γ and includes a time-

reversal. It is interesting to reckon that the invariance is achieved independently by the

deterministic (Sdet), the dissipative (Sdiss) and the Jacobian (SJ ) contributions to the

action. This means that it is still valid in the Newtonian limit (γ = 0). The detailed

proof that we develop here consists of two parts: we first show that the Jacobian of

the transformation is unity, then that the integration domain of the transformed fields

is unchanged. Afterwards we show that the action functional S[ψ, ψ̂, c, c∗] is invariant

under Teq.

4.2.1. Invariance of the measure. The equilibrium transformation Teq acts separately

on the fields ψ and iψ̂ on the one hand, and the fields c and c∗ on the other. The

Jacobian Jeq thus factorizes into a bosonic part and a fermionic part. The bosonic part

is the determinant of a triangular matrix:

J b
eq ≡ det

[
δ(ψ, ψ̂)

δ(Teqψ, Teqψ̂)

]
= det−1

uv

[
δψ−u

ψv
0

δψ̂−u

ψv

δψ̂−u

ψ̂v

]
=
(
det−1

uv [δu+v]
)2

= 1 ,

and it is thus identical to one [53]. It is easy to verify that the fermionic part J f
eq = 1

as well.

4.2.2. Invariance of the integration domain. Before and after the transformation, the

functional integration on the field ψ is performed for values of ψt on the real axis.

However, the new domain of integration for the field ψ̂ is complex. For a given time t,

ψ̂t is now integrated over the complex line with a constant imaginary part −iβ∂tψt. One

can return to an integration over the real axis by closing the contour at both infinities.

Indeed, the integrand, eS , goes to zero sufficiently fast at ψt → ±∞ for neglecting the

vertical ends of the contour thanks to the term β−1γ0(iψ̂t)
2 in the action. Furthermore,

the new field is also integrated with the boundary conditions ψ̂(−T ) = ψ̂(T ) = 0.

The equilibrium transformation leaves the measure D[c, c∗] unchanged together

with the set of boundary conditions c(−T ) = ċ(−T ) = c∗(T ) = ċ∗(T ) = 0.
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4.2.3. Invariance of the action functional.The MSRJD action functional

S[ψ, ψ̂, c, c∗] = Sdet[ψ, ψ̂] + Sdiss[ψ, ψ̂] + SJ (c, c∗, ψ) is invariant term by term. The

deterministic contribution given in eq. (42) satisfies

Sdet[Teqψ, Teqψ̂] = lnPi(ψT , ψ̇T )−
∫

u

[iψ̂−u + β∂uψ−u][m∂
2
uψ−u + V ′(ψ−u)]

= lnPi(ψT , ψ̇T )−
∫

u

iψ̂u[mψ̈u + V ′(ψu)] + β

∫

u

ψ̇u[mψ̈u + V ′(ψu)]

= lnPi(ψT , ψ̇T )−
∫

u

iψ̂u[mψ̈u + V ′(ψu)] + β

∫

u

∂uH[ψu]

= Sdet[ψ, ψ̂] , (45)

where we used the initial equilibrium measure lnPi(ψ, ψ̇) = −βH[ψ]− lnZ. In the first

line we just applied the transformation, in the second line we made the substitution

u 7→ −u, in the third line we wrote the last integrand as a total derivative the integral

of which cancels the first term and creates a new initial measure.

Secondly, we show that the dissipative contribution Sdiss[ψ, ψ̂], defined in eq. (12),

is also invariant under the equilibrium transformation. We have

Sdiss[Teqψ, Teqψ̂] =

∫

u

[iψ̂−u + β∂uψ−u]

∫

v

β−1M ′(ψ−u) γu−vM
′(ψ−v) iψ̂−v

=

∫

u

[iψ̂u − βψ̇u]

∫

v

M ′(ψu) γv−uM
′(ψv)β

−1iψ̂v

= Sdiss[ψ, ψ̂] . (46)

In the first line we just applied the transformation, in the second line we made the

substitution u 7→ −u and in the last step we exchanged u and v.

Finally, we show that the Jacobian term in the action is invariant once it is expressed

in terms of a Gaussian integral over conjugate Grassmann fields (c and c∗). We start

from eq. (43)

SJ [Teqc, Teqc
∗, Teqψ]

= −
∫

u

∫

v

c−u
[
m∂2uδu−v +M ′(ψ−u)∂uγu−vM

′(ψ−v)
]
c∗−v

+

∫

u

c−u

[
−V ′′(ψ−u) +

M ′′(ψ−u)

M ′(ψ−u)
∂2uψ−u +

M ′′(ψ−u)

M ′(ψ−u)
V ′(ψ−u)

]
c∗−u

=

∫

u

∫

v

c∗v
[
m∂2uδv−u −M ′(ψu)∂uγv−uM

′(ψv)
]
cu

−
∫

u

c∗u

[
−V ′′(ψu) +

M ′′(ψu)

M ′(ψu)
∂2uψu +

M ′′(ψu)

M ′(ψu)
V ′(ψu)

]
cu

= SJ [c, c∗, ψ] . (47)

In the first line we just applied the transformation, in the second line we exchanged the
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anti-commuting Grassmann variables and made the substitutions u 7→ −u and v 7→ −v,
in the last step we used ∂vγv−u = −∂vγu−v and exchanged u and v.

4.3. Ward-Takahashi identities

We just proved that equilibrium dynamics manifest themselves as a symmetry of the

MSRJD action and more generally at the level of the generating functional. This

symmetry has direct consequences at the level of correlation functions. If A is a generic

functional of ψ and ψ̂, it implies the following Ward-Takahashi identity

〈A[ψ, ψ̂] ... 〉S = 〈A[Teqψ, Teqψ̂] ... 〉S . (48)

This identity leads to all the possible equilibrium relations between observables as we

shall now describe in the following. These relations can be proven without using the

MSRJD path integral formalism, however our point is to show that the symmetry is

able to generate all the equilibrium relations without using any other ingredient.

4.4. Stationarity

In equilibrium, one expects noise-averaged observables to be independent of the time

t0 at which the system was prepared (in our case t0 = −T ). One-time dependent

noise-averaged observables are expected to be constant, 〈A[ψt]〉 = ct, and two-time

correlations to be time-translational invariant: 〈A[ψt]B[ψt′ ]〉 = ft−t′ . Similarly, one

argues that multi-time correlations can only depend upon all possible independent

time-differences between the times involved. These statements have been proven for

additive white noise processes using the Fokker-Planck [54] formalism. The use of the

transformation Teq allows one to show these properties very easily for generic Langevin

processes.

One-time observables. Taking A = 1 and letting B be a generic local observable,

the equal-time linear response vanishes, RAB(t, t) = 0. Using the classical Kubo

formula (36),

RAB(t, t) = 〈
∞∑

n=0

∂nt iψ̂t
∂B[ψt]

∂ ∂nt ψt
〉S = 0 . (49)

Applying the transformation Teq, we find

RAB(t, t) = 〈
∞∑

n=0

∂nt iψ̂−t
∂Br[ψ−t]

∂ ∂nt ψ−t
〉S + β〈

∞∑

n=0

∂n+1
t ψ−t

∂Br[ψ−t]

∂ ∂nt ψ−t
〉S . (50)

The lhs and the first term in the rhs vanish identically at all times. One is left with

the second term in the rhs that simply reads 〈∂tBr[ψ−t]〉 = ∂t〈Br[ψ−t]〉 = 0, proving

that all one-time local observables are constant in time.
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Two-time observables. Because we just showed that 〈A[ψ(t)]〉 is constant in

equilibrium, the response RAB(t, t
′), see its formal definition in eq. (31), can only be a

function of the time-difference between the observation time and the time at which

the perturbation is applied. Therefore it can be written in the form RAB(t, t
′) =

f(t−t′)θ(t−t′). We shall see in Sect. 4.7 that the fluctuation-dissipation theorem relates,

in equilibrium, the linear response RAB(t, t
′) to the two-time correlation C{AB}(t, t

′)

implying that this last quantity is also time-translational invariant.

Similarly, (n + 1)-time correlators can be proven to be functions of n independent

time-differences because they are related, in equilibrium, to responses of n-time

correlators that are time-translational invariant.

4.5. Equipartition theorem

Let us consider the local observables A[ψ(t)] = ∂tψ(t) and B[ψ(t)] = ψ(t). The linear

response is RAB(t, t
′) = 〈∂tψtiψ̂t′〉S = ∂t〈ψtiψ̂t′〉S and we recognize ∂tR(t, t

′). Using the

field transformation Teq, we find

∂tR(t, t
′) = ∂t〈ψ−tiψ̂−t′〉S + β〈∂tψ−t∂t′ψ−t′〉S
= ∂t〈ψ−tiψ̂−t′〉S + β〈∂tψt∂t′ψt′〉S . (51)

If t > t′, the first term in the rhs vanishes by causality. Considering moreover the

limit t′ → t− the lhs is 1/m as we shall show in Sect. 5.2.3. Finally, we recover the

equipartition theorem for the kinetic energy

βm〈(∂tψt)2〉 = 1 . (52)

4.6. Reciprocity relations

If we use Teq in the expression (29) of generic two-time correlation functions, we have

〈A[ψt]B[ψt′ ]〉S = 〈Ar[ψ−t]Br[ψ−t′ ]〉S , (53)

reading

C{AB}(t, t
′) = C{ArBr}(−t,−t′) . (54)

In cases in which A and B have a definite parity under time-reversal:

C{AB}(τ) = C{AB}(|τ |) if A and B have the same parity,

C{AB}(τ) = − C{AB}(−τ) otherwise.
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4.7. Fluctuation-dissipation theorem (FDT)

4.7.1. Self FDT. Applying the transformation to the expression (35) of the self

response R(t, t′) we find

〈ψtiψ̂t′〉S = 〈TeqψtTeqiψ̂t′〉S = 〈ψ−tiψ̂−t′〉S + β〈ψ−t∂t′ψ−t′〉S , (55)

and we read

R(t, t′) = R(−t,−t′) + β∂t′C(−t,−t′) (56)

that, using the equilibrium time-translational invariance, becomes

R(τ)− R(−τ) = − β∂τC(−τ) , (57)

where we set τ ≡ t− t′. Since C(τ) is symmetric in τ by definition, this expression can

be rewritten, once multiplied by Θ(τ), as

R(τ) = −Θ(τ)β∂τC(τ) . (58)

Equation (58) is the well-known fluctuation-dissipation theorem. It allows one to predict

the slightly out of equilibrium behavior of a system – such as the irreversible dissipation

of energy into heat – from its reversible fluctuations in equilibrium.

4.7.2. Generic two-time FDTs. We generalize the previous FDT relation to the case

of generic local observables A and B. Applying the equilibrium transformation Teq to

expression (36) of the linear response RAB(t, t
′)

〈A[ψt]
∞∑

n=0

∂nt′ iψ̂t′
∂B[ψt′ ]

∂ ∂nt′ψt′
〉S = 〈Ar[ψ−t]

∞∑

n=0

∂nt′ iψ̂−t′
∂Br[ψ−t′ ]

∂ ∂nt′ψt′
〉S

+β 〈Ar[ψ−t]

∞∑

n=0

∂n+1
t′ ψ−t′

∂Br[ψ−t′ ]

∂ ∂nt′ψt′
〉S

= 〈Ar[ψ−t]
∞∑

n=0

∂nt′ iψ̂−t′
∂Br[ψ−t′ ]

∂ ∂nt′ψt′
〉S + β ∂t′〈Ar[ψ−t]Br[ψ−t′ ]〉S .

Applying once again the transformation to the last term in the rhs yields

〈A[ψt]
∞∑

n=0

∂nt′ iψ̂t′
∂B[ψt′ ]

∂ ∂nt′ψt′
〉S = 〈Ar[ψ−t]

∞∑

n=0

∂nt′ iψ̂−t′
∂Br[ψ−t′ ]

∂ ∂nt′ψt′
〉S + β∂t′〈A[ψt]B[ψt′ ]〉S,(59)

which reads

RAB(τ)− RArBr
(−τ) = − β∂τC{AB}(τ) . (60)

By multiplying both sides by Θ(τ) we obtain the FDT for any local A and B

RAB(τ) = −Θ(τ)β∂τC{AB}(τ) . (61)
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4.8. Higher-order FDTs: e.g. 3-time observables

We give a derivation, via the symmetry of the MSRJD formalism, of relations shown

and discussed in, e.g. [54], within the Fokker-Planck formalism for stochastic processes

with white noise.

4.8.1. Response of a two-time correlation. We first look at the response of a two-time

correlator to a linear perturbation applied at time t1

R(t3, t2; t1) ≡
δ〈ψt3ψt2〉
δfψt1

∣∣∣∣
fψ=0

. (62)

In the MSRJD formalism, it can be expressed as the 3-time correlator

R(t3, t2; t1) = 〈ψt3ψt2 iψ̂t1〉S . (63)

Causality ensures that the response vanishes if the perturbation is posterior to the

observation times: R(t3, t2; t1) = 0 if t1 > max(t2, t3). We assume without loss of

generality that t2 < t3. Under equilibrium conditions, the response transforms under

Teq as

R(t3, t2; t1) = 〈ψ−t3ψ−t2 iψ̂−t1〉S + β∂t1〈ψ−t3ψ−t2ψ−t1〉S . (64)

Multiplying both sides by Θ(t3 − t1) and transforming once again the last term in the

rhs, the last equation can be written in the form

R(t3, t2; t1) =





β∂t1〈ψt3ψt2ψt1〉S if t1 < t2 < t3 ,

R(−t3,−t2;−t1) + β∂t1〈ψt3ψt2ψt1〉S if t2 < t1 < t3 ,

0 if t2 < t3 < t1 .

(65)

4.8.2. Second order response. Let us now look at the response to a perturbation at

time t1 of the linear response R(t3, t2):

R(t3; t2, t1) ≡
δ2〈ψt3〉

δfψt1 δfψt2

∣∣∣∣
fψ=0

. (66)

In the MSRJD formalism, it can be expressed as the 3-time correlator

R(t3; t2, t1) = 〈ψt3 iψ̂t2 iψ̂t1〉S . (67)

It is clear from causality that the response vanishes if the observation time is before the

two perturbations: R(t3; t2, t1) = 0 if t3 < min(t1, t2). The response transforms under

Teq as

R(t3; t2, t1) = R(−t3;−t2,−t1) + β∂t1R(−t3,−t1;−t2)
+ β∂t2R(−t3,−t2;−t1) + β2∂t1∂t2〈ψ−t3ψ−t2ψ−t1〉S . (68)
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Let us assume without loss of generality that t1 < t2. Using causality arguments and

applying once more the equilibrium transformation to the remaining terms,

R(t3; t2, t1) =





0 if t3 < t1 < t2 ,

+β∂t1R(t3, t1; t2) if t1 < t3 < t2 ,

β∂t1R(t3, t1; t2) if t1 < t2 < t3 .

(69)

4.9. Onsager reciprocal relations

Rewriting twice eq. (60) as

RAB(τ)− RArBr
(−τ) = − β∂τC{AB}(τ) , (70)

RBA(−τ)−RBrAr
(τ) = β∂τC{BA}(−τ) = β∂τC{AB}(τ) , (71)

and summing up these two equations with τ > 0

RAB(τ) = RBrAr
(τ) . (72)

These equilibrium relations, known as the Onsager reciprocal relations, express the

fact that the linear response of an observable A to a perturbation coupled to another

observable B can be deduced by the response of Br to a perturbation coupled to Ar.

4.10. Supersymmetric formalism

4.10.1. Generating functional. The generating functional of stochastic equations with

conservative forces admits a supersymmetric formulation. This has been derived and

discussed for additive noise in a number of publications [55, 56, 57]. We extend it here

to multiplicative non-Markov Langevin processes (see [58] for a study of the massless

and white noise limits). To this end, let us introduce θ and θ∗, two anticommuting

Grassmann coordinates, and the superfield

Ψ(t, θ, θ∗) ≡ ψ(t) + c∗(t) θ + θ∗ c(t) + θ∗θ

(
iψ̂(t) + c∗(t) c(t)

M ′′(ψ(t))

M ′(ψ(t))

)
.

The MSRJD action S [see eq. (23)] has a compact representation in terms of this

superfield:

S = Sdet
susy + Sdiss

susy , (73)

with

Sdet
susy[Ψ] ≡ −β

∫
dθ dθ∗ θ∗θH[Ψ(−T, θ, θ∗)]− lnZ +

∫
dt dθ dθ∗ L[Ψ] , (74)

Sdiss
susy[Ψ] ≡ 1

2

∫ ∫
dΥ′ dΥM(Ψ(Υ′))D(2)(Υ′,Υ)M(Ψ(Υ)) , (75)
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H[Ψ] ≡ 1
2
mΨ̇2+V (Ψ) and L[Ψ] ≡ 1

2
mΨ̇2−V (Ψ). In the second equation above we used

the notation Υ ≡ (t, θ, θ∗) and dΥ ≡ dt dθ dθ∗. The ‘dissipative’ differential operator is

defined as

D(2)(Υ′,Υ) ≡ γ(t′ − t)δ(θ∗′ − θ∗)δ(θ′ − θ)

(
2β−1 ∂2

∂θ ∂θ∗
+
−→
sigθ

∂

∂t

)
, (76)

where
−→
sigθ is a short notation for 2θ ∂

∂θ
− 1. It is equal to 1 if there is a θ factor in the

right and to -1 otherwise. D(2) can be written as

D(2)(Υ′,Υ) = γ(t′ − t)δ(θ∗′ − θ∗)δ(θ′ − θ)
(
D̄D−DD̄

)
, (77)

with the (covariant‖) derivatives acting on the superspace:

D̄ ≡ ∂

∂θ
, D ≡ β−1 ∂

∂θ∗
− θ

∂

∂t
, (78)

that obey¶ {D̄,D} = − ∂
∂t

and {D,D} = {D̄, D̄} = 0. In the white noise limit the

dissipative part of the action simplifies to

Sdiss
susy[Ψ] =

1

2

∫
dΥM(Ψ(Υ))D(2)(Υ)M(Ψ(Υ)) , (79)

with the ‘dissipative’ differential operator

D(2)(Υ) ≡ γ0

(
2β−1 ∂2

∂θ ∂θ∗
+
−→
sigθ

∂

∂t

)
= γ0

(
D̄D−DD̄

)
. (80)

This formulation is only suitable in situations in which the applied forces are

conservative. The Jacobian term SJ contributes to both the deterministic (Sdet
susy) and

the dissipative part (Sdiss
susy) of the action.

4.10.2. Symmetries. In terms of the superfield, the transformation TJ (α) defined in

eq. (22) acts as

TJ (α) ≡ Ψ(t, θ, θ∗) 7→ Ψ(t, α−1θ, αθ∗) ∀α ∈ C
∗ , (81)

and leaves the action S[Ψ], see eq. (73), invariant. The transformation Teq given in

eq. (44) acts as

Teq ≡ Ψ(t, θ, θ∗) 7→ Ψ(−t− βθ∗θ,−θ∗, θ) , (82)

and leaves the action S[Ψ], see eq. (73), invariant.

The action S[Ψ] given in (73) has an additional supersymmetry generated by

Q ≡ ∂

∂θ∗
, Q̄ ≡ β−1 ∂

∂θ
+ θ∗

∂

∂t
, (83)

‖ Covariant in the sense that the derivative of a supersymmetric expression is still supersymmetric.

¶ Therefore the Ψ̇2 term in L[Ψ] can be written in terms of covariant derivatives as
(
{D̄,D}Ψ

)2
.
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that obey {Q̄,Q} = ∂
∂t

and {Q,Q} = {Q̄, Q̄} = {D,Q} = {D, Q̄} = {D̄,Q} =

{D̄, Q̄} = 0. Both operators Q and Q̄ are thus nilpotent and {Q̄,Q} is the generator

of the Lie sub-group. They act on the superfield as

eǫ
∗QΨ = Ψ+ ǫ∗QΨ , eǫQ̄Ψ = Ψ+ ǫQ̄Ψ , (84)

where ǫ and ǫ∗ are two extra independent+ Grassmann constants and

QΨ = c+ θ

(
iψ̂ + c∗c

M ′′(ψ)

M ′(ψ)

)
, (85)

Q̄Ψ = − β−1c∗ − θ∗
(
β−1iψ̂ − ∂tψ + β−1c∗c

M ′′(ψ)

M ′(ψ)

)
− θ∗θ ∂tc

∗ . (86)

Expressed in terms of superfield transformations, S[Ψ] is invariant under both

Ψ(t, θ, θ∗) 7→ Ψ(t, θ, θ∗ + ǫ∗) (87)

and

Ψ(t, θ, θ∗) 7→ Ψ(t+ ǫθ∗, θ + β−1ǫ, θ∗) . (88)

Here again, the invariance of the action is achieved independently by the

deterministic (Sdet) and the dissipative (Sdiss) contributions. We would like to stress

the fact that the presence of the boundary term accounting for the initial equilibrium

measure of the field ψ as well as the boundary conditions for the fields iψ̂, c and c∗ are

necessary to obtain a full invariance of the action.

4.10.3. BRS symmetry. The symmetry generated by Q is the BRS symmetry that

generically arises when a system has dynamical constraints (here we impose the system

to obey the Langevin equation of motion). Applying the corresponding superfield

transformation in 〈Ψ(t, θ, θ∗)〉S gives

〈Ψ(t, θ, θ∗)〉S = 〈Ψ(t, θ, θ∗) + ǫ∗QΨ(t, θ, θ∗)〉S , (89)

and therefore 〈QΨ(t, θ, θ∗)〉S = 0. This leads to

〈ct〉S = 0 , 〈iψ̂t + c∗t ct
M ′′(ψt)

M ′(ψt)
〉S = 0 . (90)

Applying the transformation inside the two-point correlator 〈Ψ(t, θ, θ∗)Ψ(t′, θ′, θ∗′)〉S,
we find 〈QΨ(t, θ, θ∗) Ψ(t′, θ′, θ∗′)〉S + (t, θ, θ∗) ↔ (t′, θ′, θ∗′) = 0. This leads to identify

the two-time fermionic correlator as being the (bosonic) linear response:

R(t, t′) ≡ 〈ψt
[
iψ̂t′ + c∗t′ct′

M ′(ψt′)

M ′′(ψt′)

]
〉S = 〈c∗t′ct〉S . (91)

Corroborating the discussion in Sect. 3.3, this tells us that 〈c∗t ct′〉S (and more generally

the fermionic Green function 〈c∗t ct′〉SJ ) vanishes for t > t′ and also for t = t′ provided

+ ǫ and ǫ∗ are independent of the coordinates θ and θ∗.



25

that the Markov limit is not taken. Using this result, the second relation in (90) now

yields 〈iψ̂t〉S = 0.

4.10.4. FDT. The use of the symmetry generated by Q̄ on 〈Ψ(t, θ, θ∗)〉S gives,

〈c∗t 〉S = 0 , 〈iψ̂t − β∂tψt〉S = 0 . (92)

By use of 〈iψ̂t〉S = 0 (which was a consequence of the BRS symmetry), the

second relation becomes ∂t〈ψt〉S = 0. This expresses the stationarity and can be

easily generalized to more complicated one-time observables, A(ψ), by use of the

supersymmetry in 〈A(Ψ)〉S.
The use of the symmetry generated by Q̄ on a two-point correlator of the superfield

reads

〈Ψ(t, θ, θ∗)Ψ(t′, θ′, θ∗′)〉S = 〈Ψ(t+ ǫθ∗, θ + βǫ, θ∗)Ψ(t′ + ǫθ∗′, θ′ + βǫ, θ∗′)〉S ,
implying, amongst other relations,

〈ψt
[
iψ̂t′ − β∂t′ψt′ + c∗t ct

M ′′(ψt)

M ′(ψt)

]
− c∗t ct′〉S = 0 . (93)

As discussed in Sect. 4.10.3, 〈c∗t ct′〉SJ vanishes for t ≥ t′. Therefore, the term in c∗t ct
disappears from eq. (93) and the FDT is obtained by multiplying both sides of the

equation by Θ(t− t′)

R(t, t′) = β∂t′C(t, t
′)Θ(t− t′) . (94)

4.11. Link between Teq and the supersymmetries

It is interesting to remark that both supersymmetries (the one generated by Q and the

one generated by Q̄) are needed to derive equilibrium relations such as stationarity

or the FDT. All the Ward-Takahashi identities generated by the combined use of

these supersymmetries can be generated by Teq but the inverse is not true. The

supersymmetries do not yield relations in which a time-reversal appears explicitly such

as the Onsager reciprocal relations.

It is clear from its expression in terms of the superfield, eq. (82), that the

equilibrium transformation Teq cannot be written using the generator of a continuous

supersymmetry. However, the transformation Teq can be formally written in terms of

the supersymmetry generators as

Teq ≡ Ψ 7→ ΠΞ eQ̃ Ψ , (95)

where Π is the time-reversal operator (t 7→ −t), Ξ exchanges the extra Grassmann

coordinates (θ 7→ −θ∗ and θ∗ 7→ θ) and the generator Q̃ is defined in terms of Q and Q̄
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as

Q̃ ≡ −βθ∗θ {Q̄,Q} = −βθ∗θ ∂
∂t

. (96)

5. Out of equilibrium

We now turn to more generic situations in which the system does no longer evolve in

equilibrium. This means that it can now be prepared with an arbitrary distribution and

it can evolve with time-dependent and non-conservative forces f.

We first show that the way in which the symmetry Teq is broken gives a number of

so-called transient∗ fluctuations relations [16]-[28, 29]. Although fluctuation theorems

in cases with additive colored noise were studied in several publications [23]-[26], we are

not aware of similar studies in cases with multiplicative noise.

We then exhibit another symmetry of the MSRJD generating functional, valid

in and out of equilibrium. This new symmetry implies out of equilibrium relations

between correlations and responses and generalizes the formulæ in [30]-[37] obtained for

additive white noise. Finally, we come back to the equilibrium case to combine the two

symmetries and deduce other equilibrium relations.

5.1. Non-equilibrium fluctuation relations

5.1.1. Work fluctuation theorems. Let us assume that the system is initially prepared

in thermal equilibrium with respect to the potential V (ψ, λ−T )♯. The expression for the

deterministic part of the MSRJD action functional [see eq. (11)] is

Sdet[ψ, ψ̂;λ, f] = − βH([ψ−T ], λ−T )− lnZ(λ−T )

−
∫

u

iψ̂u

[
mψ̈u + V ′(ψu, λu)− fu[ψ]

]
, (97)

where H([ψt], λt) ≡ 1
2
mψ̇2

t + V (ψt, λt). The external work done on the system along

a given trajectory between times −T and T is the sum of the work induced by the

non-conservative forces and the one performed through the external protocol λ:

W [ψ;λ, f] ≡
∫

u

ψ̇u fu[ψ] +

∫

u

∂uλu ∂λV (ψu, λu) . (98)

The equilibrium transformation Teq does not leave Sdet invariant but yields

Sdet[ψ, ψ̂;λ, f] 7→ Sdet[ψ, ψ̂; λ̄, fr] + β∆Fr − βW [ψ; λ̄, fr] , (99)

∗ As opposed to steady-state fluctuation relations the validity of which is only asymptotic, in the limit

of long averaging times.

♯ This is in fact a restriction on the initial velocities, ψ̇−T , that are to be taken from the Boltzmann

distribution with temperature β−1, independently of the positions ψ−T . The distribution of the latter

can be tailored at will through the λ dependence of V .
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or equivalently

Sdet[ψ, ψ̂;λ, f] + β∆F − βW [ψ;λ, f] 7→ Sdet[ψ, ψ̂; λ̄, fr] . (100)

Sdet[ψ, ψ̂; λ̄, fr] corresponds to the MSRJD action of the system that is prepared (in

equilibrium) and evolves under the time-reversed protocol λ̄(u) ≡ λ(−u) and external

forces fr([ψ], u) ≡ f([ψ̄],−u). ∆Fr is the change in free energy associated to this time-

reversed protocol: β∆Fr = − lnZ(λ̄(T )) + lnZ(λ̄(−T )) = −β∆F between the initial

and the final ‘virtual’ equilibrium states. The dissipative part of the action, Sdiss,

is still invariant under Teq. This means that, contrary to the external forces F , the

interaction with the bath is time-reversal invariant: the friction is still dissipative after

the transformation. This immediately yields

eβ∆F〈A[ψ, ψ̂]e−βW [ψ;λ,f]〉S[λ,f] = 〈A[Teqψ, Teqψ̂]〉S[λ̄,fr] (101)

for any functional A of ψ and ψ̂. In particular, for a local functional of the field, A[ψ(t)],

it leads to the relation [21]

eβ∆F〈A[ψ(t)]e−βW [ψ;λ,f]〉S[λ,f] = 〈Ar[ψ(−t)]〉S[λ̄,fr] , (102)

or also

eβ∆F〈A[ψ(t)]B[ψ(t′)]e−βW [ψ;λ,f]〉S[λ,f]
= 〈Ar[ψ(−t)]Br[ψ(−t′)]〉S[λ̄,fr]. (103)

Setting A[ψ, ψ̂] = 1, we obtain the Jarzynski equality [18]

eβ∆F〈e−βW [ψ;λ,f]〉S[λ,f] = 1 . (104)

Setting A[ψ, ψ̂] = δ(W −W [ψ;λ, f]) we deduce the Crooks fluctuation theorem [20, 19]

P (W ) = Pr(−W ) eβ(W−∆F) , (105)

where P (W ) is the probability for the external work done between −T and T to be

W given the protocol λ(t) and the non-conservative force f([ψ], t). Pr(W ) is the same

probability, given the time-reversed protocol λ̄ and time-reversed force fr. The previous

Jarzynski equality is the integral version of this theorem.

5.1.2. Fluctuation theorem. Let us now relax the condition that the system is

prepared in thermal equilibrium and allow for any initial distribution Pi. We recall

the corresponding deterministic part of the MSRJD action functional given in Sect. 3,

eq. (11)

Sdet[ψ, ψ̂] ≡ lnPi

(
ψ(−T ), ψ̇(−T )

)

−
∫
du iψ̂(u)

[
mψ̈(u) + V ′(ψ(u), λ(u))− f([ψ], u)

]
. (106)
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The transformation Teq does not leave Sdet invariant but one has

Sdet[ψ, ψ̂;λ, f]− S 7→ Sdet[ψ, ψ̂; λ̄, fr] , (107)

with the stochastic entropy S ≡ −
[
lnPi(ψ(T ),−ψ̇(T ))− lnPi(ψ(−T ), ψ̇(−T ))

]
− βQ.

The first term is the Shannon entropy whereas the second term is the exchange entropy

defined through the heat transfer Q ≡ ∆H − W [ψ;λ, f]. ∆H ≡ H([ψ(T )], λ(T )) −
H([ψ(−T )], λ(−T )) is the change of internal energy. The dissipative part of the action,

Sdiss, is still invariant under Teq. This immediately yields

〈A[ψ, ψ̂]e−S〉S[λ,f] = 〈A[Teqψ, Teqψ̂]〉S[λ̄,fr] (108)

for any functional A of ψ and ψ̂. Setting A[ψ, ψ̂] = 1, we obtain the integral fluctuation

theorem (sometimes referred as the Kawasaki identity)

1 = 〈e−S〉S[ψ,ψ̂;λ,f] , (109)

which using the Jensen inequality gives 〈S〉S[ψ,ψ̂;λ,f] ≥ 0, expressing the second law of

thermodynamics. Setting A[ψ, ψ̂] = δ(ζ −S) we derive the fluctuation theorem [17, 19]

P (ζ) = Pr(−ζ) eζ , (110)

where P (ζ) is the probability for the entropy created between −T and T to be ζ given

the protocol λ(t) and the non-conservative force f([ψ], t). Pr(ζ) is the same probability,

given the time-reversed protocol λ̄ and time-reversed force fr.

Similar results can be obtained for isolated systems by switching off the interaction

with the bath, i.e. by taking γ = 0. It is also straightforward to obtain extended

relations when the bath is taken to be out of equilibrium, for example by using

Γ(t−t′) 6= γ(t−t′)+γ(t′−t), and the contribution of the change in the dissipative action

is taken into account. This kind of fluctuation relation may be specially important in

quantum systems.

5.2. Generic relations between correlations and linear responses

A number of generic relations between linear responses and the averages of other

observables have been derived for different types of stochastic dynamics: Langevin with

additive white noise [30], Ising variables with Glauber updates [31], or the heat-bath

algorithm [32, 33, 34, 35], and even molecular dynamics of hard spheres or Lennard-Jones

particle systems [36]. Especially interesting are those in which the relation is established

with functions of correlations computed with the unperturbed dynamics [30, 33] as

explained in [37]. The main aim of the studies in [31]-[37] was to give the most efficient

computational method to obtain the linear response in the theoretical limit of no applied

field. Another set of recent articles discusses very similar relations with the goal of
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giving a thermodynamic interpretation to the various terms contributing to the linear

response [38]-[40].

In the concrete case of Langevin processes this kind of relations can be very simply

derived by multiplying the equation by the field or the noise and averaging over the noise

in the way done in [30]. We derive here the same relations within the MSRJD formalism,

using a symmetry property that is more likely to admit an extension to systems with

quantum fluctuations.

5.2.1. A symmetry of the MSRJD generating functional valid also out of equilibrium.

We consider the most generic out of equilibrium situation. We allow for any initial

preparation (Pi) and any evolution of the system (F ).
∫
D[ψ, ψ̂] eS[ψ,ψ̂] is invariant

under the involutary field transformation Teom, given by

Teom ≡





ψu 7→ ψu ,

iψ̂u 7→ −iψ̂u +
2β

M ′(ψu)

∫

v

Γ−1
u−v

Eqv[ψ]

M ′(ψv)
,

(111)

The meaning of the subscript referring to ‘equation of motion’ will become clear in the

following. For additive noise [M ′(ψ) = 1] the transformation becomes

iψ̂u 7→ −iψ̂u + 2β

∫

v

Γ−1
u−v

[
mψ̈v − Fv[ψ] +

∫

w

γv−wψ̇w

]
,

and in the white noise limit it simplifies to

iψ̂u 7→ − iψ̂u + βγ−1
0

[
mψ̈u − Fu[ψ] + γ0ψ̇u

]
. (112)

The proof of invariance is similar to the one developed in Sect. 4.2 when dealing with the

equilibrium symmetry. The Jacobian of this transformation is unity since its associated

matrix is block triangular with ones on the diagonal. The integration domain of ψ is

unchanged while the one of ψ̂ can be chosen to be the real axis by a simple complex

analysis argument. In the following lines we show that the action S evaluated in the

transformed fields remains identical to the action evaluated in the original fields. We

give the proof using an additive noise but the generalization to a multiplicative noise is

straightforward. We start from the expression (10) and evaluate

S[Teomψ, Teomψ̂] = lnPi(ψ−T , ψ̇−T ) +

∫

u

[
iψ̂u − 2β

∫

v

Γ−1
u−vEqv[ψ]

]

×
[
Equ[ψ]−

1

2

∫

w

β−1Γu−w

(
−iψ̂w + 2β

∫

z

Γ−1
w−zEqz[ψ]

)]

= lnPi(ψ−T , ψ̇−T ) +

∫

u

[
iψ̂u − 2β

∫

v

Γ−1
u−vEqv[ψ]

] [
1

2

∫

w

β−1Γu−w iψ̂w

]

= S[ψ, ψ̂] . (113)
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Contrary to the equilibrium transformation Teq, it does not include a time-reversal and

is not defined in the Newtonian limit (γ = 0).

5.2.2. Supersymmetric version. In Sect. 4.10, we encoded the fields ψ, iψ̂, c and c∗ in

a unique superfield Ψ. In this fashion, the transformation Teom given in eq. (111) acts

as

Ψ(t, θ, θ∗) 7→ Ψ

(
t+ θ∗θ

2β
∫
u
Γ−1
t−uM

′(Ψ(u, θ, θ∗))Equ[Ψ]

∂tM(Ψ(t, θ, θ∗))
, θ, θ∗

)
, (114)

and leaves the equilibrium action S[Ψ], see eq. (73), invariant.

5.2.3. Out of equilibrium relations. We first derive some relations in the additive case

[M ′(ψ) = 1] and then we generalize the results to the case of multiplicative noise.

Additive noise. Using Teom in the expression (35) of the self response R(t, t′) we find

〈ψtiψ̂t′〉S = 〈Teomψt Teomiψ̂t′〉S = −〈ψtiψ̂t′〉S + 2β

∫

v

Γ−1
t′−v〈ψtEqv[ψ]〉S ,

giving an explicit formula for computing the linear response without perturbing field:

R(t, t′) = β

∫
dv Γ−1(t′ − v)

×
[
m∂2vC(t, v) +

∫
du γ(v − u)∂uC(t, u)− 〈ψ(t)F ([ψ], v)〉

]
. (115)

Once multiplied by Γt′′−t′ and integrated over t′ yields

m∂2t′C(t, t
′) +

∫
du γ(t′ − u)∂uC(t, u)

− 〈ψ(t)F ([ψ], t′)〉 = β−1

∫
du Γ(t′ − u)R(t, u) , (116)

with no assumption on the initial Pi(ψ−T , ψ̇−T ).

Using now Teom in 〈Eqt[ψ]iψ̂t′〉S, we get

〈Eqt[ψ]iψ̂t′〉S = 〈Eqt[Teomψ] Teomiψ̂t′〉S
= − 〈Eqt[ψ]iψ̂t′〉S + 2β

∫

u

Γ−1
t′−u〈Eqt[ψ]Equ[ψ]〉S .

Since 〈Eqt[ψ]Equ[ψ]〉S = β−1Γt−u, this simplifies in

〈Eqt[ψ]iψ̂t′〉S = δt−t′ ,

that yields

m∂2tR(t, t
′) +

∫
dv γ(t− v)∂vR(v, t

′)− 〈iψ̂(t′)F ([ψ], t)〉S = δ(t− t′)(117)
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with no assumption on the initial Pi. One can trade the last term in the lhs for

β
∫
u
Γ−1
t′−u〈ξ(u)Ft[ψ]〉ξ by use of Novikov’s theorem.

Integrating both eqs. (116) and (117) around t = t′ we find the equal-time conditions

m ∂t′C(t, t
′)|t′=t = 0, m ∂tR(t, t

′)|t′→t− = 1, m ∂tR(t, t
′)|t′→t+ = 0 . (118)

The last two relations imply that the first derivative of the response function is

discontinuous at equal times††.
The use of this symmetry is an easy way to get a generalization of eq. (115) for a

generic response RAB. Indeed, applying this transformation to expression (36) of the

linear response we obtain

RAB(t, t
′) = β

∫
du Γ−1(t′ − u)

∞∑

n=0

{
m ∂n+2

u 〈A[ψ(t)]ψ(u)∂B[ψ(t′)]

∂ ∂nt′ψ(t
′)
〉S

− ∂nu 〈A[ψ(t)]F ([ψ], u)
∂B[ψ(t′)]

∂ ∂nt′ψ(t
′)
〉S

+

∫
dv γ(u− v)∂n+1

v 〈A[ψ(t)]ψ(v)∂B[ψ(t′)]

∂ ∂nt′ψ(t
′)
〉S
}
. (119)

This formula gives the linear response as an explicit function of multiple-time correlators

of the field ψ. For example, if B is a function of the field only (and not of its time-

derivatives), just the n = 0-term subsists in the above sum:

RAB(t, t
′) = β

∫
du Γ−1(t′ − u)

{
m ∂2u〈A[ψ(t)]ψ(u)

∂B[ψ(t′)]

∂ ψ(t′)
〉S

− 〈A[ψ(t)]F ([ψ], u)∂B[ψ(t′)]

∂ ψ(t′)
〉S

+

∫
dv γ(u− v)∂v〈A[ψ(t)]ψ(v)

∂B[ψ(t′)]

∂ ψ(t′)
〉S
}
. (120)

As another example if one is interested in the self-response of the velocity, A[ψ(t)] =

B[ψ(t)] = ∂tψ(t), one obtains

RAB(t, t
′) = β

∫
du Γ−1(t′ − u)

{
m ∂t∂

3
uC(t, u)− ∂t∂u〈ψ(t)F ([ψ], u)〉S

+

∫
dv γ(u− v)∂2vC(t, v)

}
. (121)

Multiplicative noise. Similar results can be obtained for multiplicative noise. Applying

the transformation to the correlator
∫
u
Γt′−u〈ψtM ′(ψt′)M

′(ψu)iψ̂u〉S we obtain

〈ψtEqt′ [ψ]〉S = β−1

∫

u

Γt′−u〈ψtM ′(ψt′)M
′(ψu)iψ̂u〉S ,

†† It is clear from the expressions given in (118) that the overdamped m→ 0 limit allows for a sudden

discontinuity of the response function as well as a finite slope of the correlation function at equal times.
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implying

m∂2t′C(t, t
′) +

∫

u

γt′−u〈ψtM ′(ψt′)M
′(ψu)∂uψu〉S

− 〈ψtFt′ [ψ]〉S = β−1

∫

u

Γt′−u〈ψtM ′(ψt′)M
′(ψu)iψ̂u〉S . (122)

Applying now the transformation to the correlator 〈Eqt[ψ]iψ̂t′〉S, one obtains

〈Eqt[ψ]iψ̂t′〉S = δt−t′ + β−1

∫

u

Γt−u〈M ′(ψt)M
′(ψu)iψ̂uiψ̂t′〉S (123)

yielding

m∂2tR(t, t
′) +

∫

u

γt−u〈M ′(ψt′)M
′(ψu)∂uψuiψ̂t′〉S

− 〈Ft[ψ]iψ̂t′〉S = δt−t′β
−1

∫

u

Γt−u〈ψtM ′(ψt′)M
′(ψu)iψ̂u〉S . (124)

One can check from eqs. (122) and (124) that the equal-time conditions given in

eqs. (118) are still valid in the multiplicative case.

5.3. Composition of Teom and Teq

For an equilibrium situation, the MSRJD action functional is fully invariant under the

composition of Teom and Teq,

Teq ◦ Teom =





ψu 7→ ψ−u ,

iψ̂u 7→ −iψ̂−u − β∂uψ−u +
2β

M ′(ψ−u)

∫

v

Γ−1
u−v

Eqv[ψ̄]

M ′(ψ−v)
,

that simply reads in the white noise limit

Teq ◦ Teom =





ψu 7→ ψ−u ,

iψ̂u 7→ −iψ̂−u +
β

γ0M ′(ψ−u)2
[
m∂2uψ−u + V ′(ψ−u)

]
.

For simplicity we only show the implication of this symmetry in this limit and in the

additive noise case:

R(t, t′) = −R(−t,−t′) + β

γ0

[
m∂2t′C(−t,−t′) + 〈ψ(−t)V ′(ψ(−t′))〉S

]
.

Using equilibrium properties, i.e. time-translational invariance of all observables and

time-reversal symmetry of two-time correlation functions of the field ψ (shown in

Sect. 4.2), and causality of the response,

R(τ) = Θ(τ)
β

γ0

[
m∂2τC(τ) + 〈ψ(t)V ′(ψ(t′))〉S

]
, (125)

with τ ≡ t− t′ which is eq. (116) after cancellation of the lhs with the last term in the

rhs when FDT between R and C holds [also eq. (117) after a similar simplification].
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Here again, one can easily obtain a generalization of this last relation for a generic

response RAB by plugging the transformation into the expression (36) of the linear

response.

6. Conclusions

In this paper we recalled the path-integral approach to classical stochastic dynamics

with generic multiplicative colored noise. The action has three terms: a deterministic

(Newtonian dynamics) contribution, a dissipative part and a Jacobian. We identified

a number of symmetries of the generating functional when the sources are set to zero.

The invariance of the action is achieved by the three terms independently.

One of these symmetries applies only when equilibrium dynamics are assumed.

Equilibrium dynamics are ensured whenever the system is prepared with equilibrium

initial conditions at temperature β−1 (a statistical mixture given by the Gibbs-

Boltzmann measure), evolves with the corresponding time-independent conservative

forces, and is in contact with an equilibrium bath at the same temperature β−1. The

invariance also holds in the limit in which the contact with the bath is suppressed, i.e.

under deterministic (Newtonian) dynamics, but the initial condition is still taken from

the Gibbs-Boltzmann measure. This symmetry yields all possible model-independent

fluctuation-dissipation theorems as well as stationarity and Onsager reciprocal relations.

When the field-transformation is applied to driven problems, the symmetry no longer

holds, but it gives rise to different kinds of fluctuation theorems.

We identified another more general symmetry that applies to equilibrium and

out of equilibrium set-ups. It holds for any kind of initial conditions – they can be

any statistical mixture or even deterministic, and the evolution can be dictated by

time-dependent and/or non-conservative forces as long as the system is coupled to an

equilibrium bath. The symmetry implies exact dynamic equations that couple generic

correlations and linear responses. These equations are model-dependent in the sense

that they depend explicitly on the applied forces. They are the starting point to

derive Schwinger-Dyson-type approximations and close them on two-time observables.

Although the symmetry is ill-defined in the Newtonian limit, the dynamic relations it

yields can nevertheless be evaluated in the Newtonian case.

Finally, we gave a supersymmetric expression of the path-integral for problems

with multiplicative colored noise and conservative forces. We expressed all the previous

symmetries in terms of superfield transformations and we discussed the relationship

between supersymmetry and other symmetries.

We intended to present a self-contained presentation of some symmetry properties

of classical deterministic and stochastic dynamics. We focused on the so-called model
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A dynamics (with a non-conserved order parameter) for a 0-dimensional field. The

generalization to a vector field is straightforward. Extensions to this work include the

study of other dynamics such as the so-called model B dynamics (with a conserved

order parameter). Higher dimensional fields would also allow the study of forces that

do not work, such as Larmor precession around a magnetic vector field [6]. This article

should serve as an introduction to and motivation for the study of quantum problems

that we shall develop in [42]. Although some of these results were known, notably

those associated to additive noise processes, they were scattered and somehow hidden

in different publications. The close relation between all these properties was not always

fully appreciated either. The multiplicative noise results are, as far as we know, new.
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Appendix A. Conventions and notations

Θ is the Heaviside step function. When dealing with Markov Langevin equations, the

choice of the value of the Heaviside step function Θ(t) at t = 0 is imposed by the choice

of the Itô [Θ(0) = 0] or the Stratonovich convention [Θ(0) = 1/2]. However, away from

the Markov case, i.e. as long as both inertia and the color of the bath are not neglected

simultaneously, the choice of Θ(0) is unconstrained and the physics should not depend

on it. We recall the identities
∫ ∞

−∞

dx

2π
eixy = δ(y) and

∫ y

−∞

dx δ(x) = Θ(y) , (A.1)

where δ is the Dirac delta function.

Field theory notations. Let ψ be a real field. The integration over this field is denoted∫
D[ψ] . If A is a functional of the field, we denote it A[ψ]. If it also depends on one or

several external parameters, such as the time t and a protocol λ, we denote it A([ψ], λ, t).

Whenever A is a local functional of the field at time t (i.e. a function of ψ(t) and

its first time-derivatives), we use the short-hand notation A[ψ(t)]. The time-reversed

field constructed from ψ is denoted ψ̄: ψ̄(t) ≡ ψ(−t). The time-reversed functional

constructed from A([ψ], λ, t) is called Ar: Ar([ψ], λ, t) ≡ A([ψ̄], λ,−t). Applied on local

observables of ψ, it has the effect of changing the sign of all odd time-derivatives in the

expression of A.
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To shorten expressions, we adopt a notation in which the arguments of the fields

appear as subindices, ψt ≡ ψ(t), γt−t′ ≡ γ(t − t′), and so on and so forth, and the

integrals over time as expressed as
∫
t
≡
∫
dt .

Grassmann numbers. Let θ1 and θ2 be two anticommuting Grassmann numbers and

θ∗1 and θ∗2 their respective Grassmann conjugates. We adopt the following convention

for the complex conjugate of a product of Grassmann numbers: (θ1θ2)
∗ = θ∗2θ

∗
1.

Appendix B. Discrete MSRJD for additive noise

In this Appendix we discuss the MSRJD action for processes with additive colored noise.

Appendix B.1. Discrete Langevin equation

The Langevin equation is a stochastic differential equation and one can give a rigorous

meaning to it by specifying a particular discretization scheme.

Let us divide the time interval [−T, T ] into N + 1 infinitesimal slices of width

ǫ ≡ 2T/(N + 1). The discretized times are tk = −T + kǫ with k = 0, ..., N + 1. The

discretized version of ψ(t) is ψk ≡ ψ(tk). The continuum limit is achieved by sending

N to infinity and keeping (N + 1)ǫ = 2T constant. Given some initial conditions ψi

and ψ̇i, we set ψ1 = ψi and ψ0 = ψi − ǫψ̇i meaning that the first two times (t0 and t1)

are reserved for the integration over the initial conditions whereas the N following ones

correspond to the stochastic dynamics given by the discretized Langevin equation:

Eqk−1 ≡ m
ψk+1 − 2ψk + ψk−1

ǫ2
− Fk(ψk, ψk−1, ...) + ǫ

k∑

l=1

γkl
ψl − ψl−1

ǫ

= ξk , (B.1)

defined for k = 1, ..., N . The force Fk typically depends on the state ψk but can have

a memory kernel (i.e. it can depend on previous states ψk−1, ψk−2, etc.). The notation

γkl stands for γkl ≡ ǫ−1
∫ ǫ
0−
du γ(tk − tl + u). The ξk are independent Gaussian random

variables with variance 〈ξkξl〉 = β−1Γkl where Γkl ≡ γkl + γlk. Inspecting the equation

above, we notice that the value of ψk depends on the realization of the previous noise

realization ξk−1 and there is no need to specify ξ0 and ξN+1.

In the white noise limit, one has γkl = ǫ−1γ0δkl, 〈ξkξl〉 = 2γ0β
−1ǫ−1δkl where δ is

the Kronecker delta, and

Eqk−1 ≡ m
ψk+1 − 2ψk + ψk−1

ǫ2
− Fk(ψk, ψk−1, ...) + γ0

ψk − ψk−1

ǫ
= ξk .
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Appendix B.2. Construction of the MSRJD action

The probability density P for a complete field history (ψ0, ψ1, ..., ψN+1) is set by the

relation

P (ψ0, ψ1, ..., ψN+1)dψ0dψ1...dψN+1

= Pi(ψi, ψ̇i)dψidψ̇i Pn(ξ1, ξ2, ..., ξN)dξ1dξ2...dξN .

Pi is the initial probability distribution of the field. The probability for a given noise

history to occur between times t1 and tN is given by

Pn(ξ1, ..., ξN) = M−1
N e−

1

2

∑N
k,l=1

ξk βΓ
−1

kl
ξl (B.2)

where Γ−1
kl is the inverse matrix of Γkl (and not the discretized version of the inverse

operator of Γ) and the normalization is given byM2
N ≡ (2π)N

detkl(βΓ−1

kl )
where det (...) stands

for the matrix determinant. From eq. (B.2), one derives

P (ψ0, ψ1, ..., ψN+1) = |JN |Pi(ψ1,
ψ1 − ψ0

ǫ
)Pn(Eq0, ...,EqN−1) , (B.3)

with the Jacobian

JN ≡ det

(
∂ (ψi, ψ̇i, ξ1, . . . , ξN)

∂ (ψ0, ψ1, . . . , ψN+1)

)
= det

(
∂ (ψi, ψ̇i,Eq0, . . . ,EqN−1)

∂ (ψ0, ψ1, . . . , ψN+1)

)
,

that will be discussed in Appendix B.3. The expression (B.2) for the noise history

probability reads, after a Hubbard-Stratonovich transformation that introduces the

auxiliary variables ψ̂k (k = 1, ..., N),

NNPn(ξ1, ..., ξN) =

∫
dψ̂1...dψ̂N e−ǫ

∑
k iψ̂kξk+

1

2
β−1ǫ2

∑
kl iψ̂kΓkliψ̂l

=

∫
dψ̂0...dψ̂N+1 δ(ψ̂0)δ(ψ̂N+1) e

−ǫ
∑
k iψ̂kEqk−1+

1

2
β−1ǫ2

∑
kl iψ̂kΓkliψ̂l , (B.4)

with NN ≡ (2π/ǫ)N . In the last step, we replaced ξk by Eqk−1 and we allowed for

summations over k = 0 and k = N + 1 as well as integrations over ψ̂0 and ψ̂N+1 at the

cost of introducing delta functions. The Hubbard-Stratonovich transformation allows

for some freedom in the choice of the sign in front of iψ̂k in the exponent (indeed Pn is

real so Pn = P ∗
n ). Together with eq. (B.3) this gives

NNP (ψ0, ψ1, ..., ψN+1) = |JN |
∫
dψ̂0...dψ̂N+1 δ(ψ̂0)δ(ψ̂N+1)

×e−
∑
k iψ̂kEqk−1+

1

2
β−1

∑
kl iψ̂kΓkliψ̂l+lnPi(ψ1,

ψ1−ψ0
ǫ )

that in the continuum limit becomes

NP [ψ] = |J [ψ]| elnPi

∫
D[ψ̂] e−

∫
du iψ̂(u)Eq([ψ],u)+ 1

2

∫∫
dudv iψ̂(u)β−1Γ(u−v)iψ̂(v) ,
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with the boundary conditions ψ̂(−T ) = ψ̂(T ) = 0 and where all the integrals over time

run from −T to T . In the following, unless otherwise stated, we shall simply denote

them by
∫
. The infinite prefactor N ≡ lim

N→∞
(2π/ǫ)N can be absorbed in the definition

of the measure:

D[ψ, ψ̂] = lim
N→∞

( ǫ

2π

)N N+1∏

k=0

dψk dψ̂k . (B.5)

Markov case. In the Markov limit, the Langevin equation is a first order differential

equation, therefore only the first time t0 should be reserved for integrating over the

initial conditions. Moreover, one has to specify the discretization:

Eqk−1 ≡ γ0
ψk − ψk−1

ǫ
− Fk(ψ̃k) = ξk , (B.6)

where ψ̃k ≡ aψk+(1−a)ψk−1 with a ∈ [0, 1]. a = 0 corresponds to the Itô interpretation

whereas a = 1/2 corresponds to the Stratonovich one (see the discussion in Sect. 2.4).

Following the steps in Appendix B.2, we upgrade eq. (B.6) to the following a-dependent

action†:

SN(a) = ǫ
∑

k

(
β−1γ0(iψ̂k)

2 − iψ̂k

[
γ0
ψk − ψk−1

ǫ
− Fk(ψ̃k)

]
− a

γ0
F ′
k(ψ̃k)

)
. (B.7)

The last term in the rhs comes from the Jacobian:

JN = detkl

(
∂Eqk−1

∂ψl

)
=
∏

k

(γ0
ǫ
− aF ′

k(ψ̃k)
)
=
(γ0
ǫ

)N
e
−ǫ

∑
k
a
γ0
F ′
k(ψ̃k) .

In the Itô discretization scheme (a = 0) this Jacobian term disappears from the action.

Although SN(a) seems to be a-dependent, we now prove that all discretization schemes

yield the same physics by showing that the difference SN(a)− SN(0) is negligible. The

Taylor expansion of Fk(ψ̃k) around ψk−1, Fk(ψk−1)+a (ψk − ψk−1)F
′(ψk−1)+O(ǫ) [since

ψk − ψk−1 = O(
√
ǫ)], yields

SN(a)− SN(0) = aǫ
∑

k

F ′(ψk−1)

[
iψ̂k (ψk − ψk−1)−

1

γ0

]
+O(ǫ2) . (B.8)

Although the first term within the square brackets looks smaller than the second one,

they are actually both O(1) since iψ̂k = O(1/
√
ǫ). Thus, each term in the sum in the

rhs is O(ǫ). We now compute the average of SN(a) − SN(0) with respect to SN(0)

by neglecting in the latter the term ǫiψ̂kFk(ψk−1) which is of order
√
ǫ whereas the

others are of order 1. Since 〈iψ̂k (ψk − ψk−1)〉SN (0) = 1/γ0, it is easy to show that

〈SN(a) − SN(0)〉SN (0) = 0 and therefore all the SN (a) actions are equivalent to the

simpler Itô one.

† We omit the initial measure which is not relevant in this discussion.
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Appendix B.3. Jacobian

Appendix B.3.1. Discrete evaluation of the Jacobian. In this section we take

the continuum limit of the Jacobian defined in eq. (B.4). In the additive noise case, we

start from

JN = det

(
∂ (ψi, ψ̇i,Eq0, . . . ,EqN−1)

∂ (ψ0, ψ1, . . . , ψN+1)

)

= det




0 1 0 . . .

−1/ǫ 1/ǫ 0 . . .
∂Eq0

∂ψ0

∂Eq0

∂ψ1

∂Eq0

∂ψ2
0 . . .

∂Eq1

∂ψ0

∂Eq1

∂ψ1

∂Eq1

∂ψ2

∂Eq1

∂ψ3
0 . . .

. . . 0
∂EqN−1

∂ψ0
. . .

∂EqN−1

∂ψN+1




=
1

ǫ
det




∂Eq0

∂ψ2
0 . . .

∂Eq1

∂ψ2

∂Eq1

∂ψ3
0 . . .

. . . 0
∂EqN−1

∂ψ2
. . .

∂EqN−1

∂ψN+1


 . (B.9)

Causality manifests itself in the lower triangular structure of the last matrix. One can

evaluate the last determinant by plugging eq. (B.1). It yields

JN =
1

ǫ

N∏

k=1

∂Eqk−1

∂ψk+1
=

1

ǫ

(m
ǫ2

)N
.

The Jacobian J ≡ lim
N→∞

JN is therefore a field-independent positive constant that can

be absorbed in a redefinition of the measure:

D[ψ, ψ̂] ≡ lim
N→∞

1

ǫ

( m

2πǫ

)N N+1∏

k=0

dψk dψ̂k . (B.10)

We show that this result also holds for multiplicative noise in Appendix C.

Appendix B.3.2. Continuous evaluation of the Jacobian. One might also wish

to check this result in the continuous notations. A very similar approach can be found

in [26]. In the continuous notations, lim
N→∞

JN reads up to some constant factor

J [ψ] = detuv

[
δEq([ψ], u)

δψ(v)

]
.

where det [...] stands for the functional determinant. Defining F ′
uv as δFu[ψ]/δψv, the

Jacobian reads

J [ψ] = detuv

[
m∂2uδu−v +

∫

w

γu−w ∂wδw−v − F ′
uv[ψ]

]
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= detuv

[
m∂2uδu−v +

∫

w

γu−w ∂wδw−v

]
detuv

[
δu−v −

∫

w

Gu−wF
′
wv[ψ]

]

= detuv

[
m∂2uδu−v +

∫

w

γu−w ∂wδw−v

]
expTruv ln [δu−v −Muv]

= detuv

[
m∂2uδu−v +

∫

w

γu−w ∂wδw−v

]
exp−

∞∑

n=1

1

n

∫

u

{
M◦M◦...◦M︸ ︷︷ ︸

n times

}

uu

(B.11)

where we used the notations Muv ≡ {G ◦ F ′}uv ≡
∫
w
Gu−wF

′
wv[ψ]. G is the retarded

Green function solution to

m∂2uG(u− v) +

∫
dw γ(u− w)∂wG(w − v) = δ(u− v) . (B.12)

Since both Gu−v and F ′
uv are causal, it is easy to see that the n ≥ 2 terms do not

contribute to the sum in eq. (B.11). If the force F ([ψ], t) does not have any local term

(involving the value of ψ or ψ̇ at time t) the n = 1 term is also zero. Otherwise the

n = 1 term can still be proven to be zero provided that G(t = 0) = 0. This will be true,

as we shall show in the next paragraph, unless the white noise limit is taken together

with the Smoluchowski limit (m = 0). Away from this Markov limit we establish

J [ψ] = detuv

[
m∂2uδ(u− v) +

∫

w

γu−w ∂wδw−v

]
,

meaning that the Jacobian is a constant that does not depend on the field ψ.

We now give a proof that G(t = 0) = 0. Taking the Fourier transform of eq. (B.12),

G(t = 0) =

∫ ∞

−∞

dω

2π
G(ω) = −

∫ ∞

−∞

dω

2π

1

mω2 + iωγ(ω)
. (B.13)

G(ω) and γ(ω) are the Fourier transforms of the retarded Green function and friction.

They are both analytic in the upper half plane (uhp) thanks to their causality structure.

The convergence of the integrals around |ω| → ∞ in eq. (B.13) is ensured by either

the presence of inertia or the colored noise. For a white noise [γ(ω) = γ0], it is

clear that the mass term renders the integrals in eq. (B.13) well defined. In the

m = 0 limit the convergence is still guaranteed as long as the white noise limit is

not taken simultaneously. Indeed, because γ(ω) is analytic in the uhp, it is hence either

divergent on the boundaries of the uhp or constant everywhere [γ(ω) = γ0]. In the

first case, which corresponds to a generic colored noise, this renders the integrals in

eq. (B.13) well defined. In the second case, corresponding to a white noise limit, they

are ill-defined and require a more careful treatment†. When the integrals in eq. (B.13)

are well defined on the boundaries, the absence of poles (or branch cuts) in the uhp of

† In the white noise limit, G(t) = γ−1

0

[
1− e−γ0t/m

]
Θ(t) is a continuous function that vanishes at

t = 0. If we take m → 0 in the previous expression, we still have G(0) = 0 and G(t) = Θ(t)/γ0 for

t ≫ m/γ0. By choosing Θ(0) = 0, these two results can be collected in G(t) = Θ(t)/γ0 for all t. The
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G(ω) gives, after a little deformation of the integration contour in eq. (B.13) above the

ω = 0 pole, the result G(t = 0) = 0.

Appendix B.3.3. Representation in terms of a fermionic field integral. The

determinant can be represented as a Gaussian integration over Grassmannian conjugate

fields c and c∗. This formulation is a key ingredient to the supersymmetric representation

of the MSRJD path integral. Let us first recall the discretized expression of the Jacobian

obtained in eq. (B.9):

JN =
1

ǫ
detkl

(
∂Eqk−1

∂ψl+1

)
,

where k and l run from 1 to N . Introducing ghosts, it can be put in the form

JN =
1

ǫ

1

ǫN

∫
dc2dc

∗
0...dcN+1dc

∗
N−1 e

ǫ2
∑N−1

k=0

∑N+1

l=2
c∗k

1

ǫ

∂Eqk
∂ψl

cl

=
1

ǫ

1

ǫN

∫
dc0dc

∗
0...dcN+1dc

∗
N+1 c

∗
N+1c

∗
Nc1c0 e

ǫ2
∑N+1

k=0

∑N+1

l=0
c∗k

1

ǫ

∂Eqk
∂ψl

cl ,

where in the last step, we allowed integration over c0, c1, c
∗
N and c∗N+1 at the cost

of introducing delta functions (remember that for a Grassmann number c, the delta

function is achieved by c itself). In the continuum limit, absorbing the prefactor into a

redefinition of the measure,

D[ψ, ψ̂] = lim
N→∞

1

(2π)N
1

ǫ

N+1∏

k=0

dψk dψ̂k and D[c, c∗] = lim
N→∞

N+1∏

k=0

dck dc
∗
k , (B.14)

this yields

J [ψ] =

∫
D[c, c∗] eS

J [c,c∗,ψ]

with

SJ [c, c∗, ψ] ≡
∫

u

∫

v

c∗u
δEqu[ψ]

δψv
cv ,

and the extra boundary conditions: c(−T ) = ċ(−T ) = c∗(T ) = ċ∗(T ) = 0. Plugging the

Langevin equation (1), we have

δEqu[ψ]

δψv
= m∂2uδu−v −

δFu[ψ]

δψv
+

∫

w

γw−v∂wδw−v .

Jacobian is still a constant. This limiting procedure where inertia has been sent to zero after the white

noise limit was taken, is the so-called Itô convention. However if m is set to 0 from the beginning, in the

so-called Stratonovich convention with Θ(0) = 1/2, then G(t) = Θ(t)/γ0 for all t and G(0) = 1/(2γ0).

This can lead to a so-called Jacobian extra-term in the action. If F ([ψ], t) is a function of ψ(t) only

(ultra-local functional), it reads −1/(2γ0)
∫
u F

′
u(ψu). It is invariant under time-reversal of the field

ψu 7→ ψ−u as long as F ′ is itself time-reversal invariant.



41

The kinetic term in SJ [c, c∗, ψ] can be re-written
∫

u

∫

v

c∗u ∂
2
uδu−v cv =

∫

u

c∗u ∂
2
ucu +Θ0 [ċ

∗c− c∗ċ]T−T +Θ0δ0 [c
∗c]T−T .

The last two terms in the rhs vanish by use of the boundary conditions (c−T = ċ−T =

c∗T = ċ∗T = 0). The retarded friction can be re-written
∫

u

∫

v

c∗u ∂uγu−v cv −Θ0

∫

u

c∗u [γu+T c−T − γu−T cT ] ,

where the second term vanishes identically for two reasons: the boundary condition

(c−T = 0) kills the first part and the causality of the friction kernel (γu = 0 ∀ u < 0)

suppresses the second one. If there is a Dirac contribution to γ centered at u = 0 like in

the white noise case, the other boundary condition (c∗−T = 0) cancels the second part.

Finally, we have

SJ [c, c∗, ψ] =

∫

u

c∗u ∂
2
ucu +

∫

u

∫

v

c∗u

[
∂uγu−v −

δFu[ψ]

δψv

]
cv . (B.15)

Appendix C. Discrete MSRJD for multiplicative noise

The discretized Langevin equation reads:

Eqk−1 ≡ m
ψk+1 − 2ψk + ψk−1

ǫ2
− Fk(ψ̃k, ψ̃k−1, ...)

+M ′(ψ̃k) ǫ
k∑

l=1

γklM
′(ψ̃l)

ψl − ψl−1

ǫ
=M ′(ψ̃k)ξk .

with ψ̃k ≡ aψk + (1 − a)ψk−1 and k = 1, ..., N . In the Markov limit (m = 0 and

γkl = ǫ−1γ0δkl) the results depend on a (see the discussion in Sect. 2.4). In the additive

noise case, the choices a = 0 and a = 1/2 correspond to the Itô and Stratonovich

conventions, respectively. However, we decide to stay out of the Markov limit: the

results are then independent of a and we choose to work with a = 1. The probability

for a field history is

P (ψ0, ψ1, ..., ψN+1) = |JN |Pi(ψ1,
ψ1 − ψ0

ǫ
)Pn(Ẽq0, ..., ẼqN−1) , (C.1)

where we introduced the shorthand notation Ẽqk ≡ Eqk/M
′(ψk+1). The Jacobian is

JN ≡ det

(
∂ (ψi, ψ̇i, ξ1, . . . , ξN)

∂ (ψ0, ψ1, . . . , ψN+1)

)
= det

(
∂ (ψi, ψ̇i, Ẽq0, . . . , ẼqN−1)

∂ (ψ0, ψ1, . . . , ψN+1)

)
. (C.2)

Pn is still given by expression (B.4) and Pn(Ẽq0, ..., ẼqN−1) reads, after the substitution

ψ̂k 7→ ψ̂kM
′(ψk),

N−1
N

∫
dψ̂0...dψ̂N+1 δ(ψ̂0)δ(ψ̂N+1) |ĴN | e−ǫ

∑
k iψ̂kEqk−1+

1

2
β−1ǫ2

∑
kl iψ̂kM

′(ψk)ΓklM
′(ψl)iψ̂l ,
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where ĴN ≡ detkl (δk lM
′(ψk)) is the Jacobian of the previous substitution. The

probability for a given history is therefore

P (ψ0, ψ1, ..., ψN+1) = N−1
N

∫
dψ̂0...dψ̂N+1

∣∣∣JN ĴN
∣∣∣

×e−
∑
k iψ̂kEqk−1+

1

2
β−1

∑
kl iψ̂kM

′(ψk)ΓklM
′(ψl)iψ̂l+lnPi(ψ1,

ψ1−ψ0
ǫ ) .

The Jacobian JN defined in eq. (C.2) reads

JN =
1

ǫ
detkl

(
1

M ′(ψk)

∂Eqk−1

∂ψl+1
− M ′′(ψk)

M ′(ψk)2
Eqk−1 δk l+1

)

=
1

ǫ
Ĵ −1
N detkl

(
∂Eqk−1

∂ψl+1
− M ′′(ψk)

M ′(ψk)
Eqk−1 δk l+1

)
(C.3)

where k and l run from 1 to N . Causality is responsible for the triangular structure of

the matrix involved in the last expression. The second term within the square brackets

yields matrix elements below the main diagonal and these do not contribute to the

Jacobian. Therefore, we find

JN ĴN =
1

ǫ

N∏

k=1

∂Eqk−1

∂ψk+1
=

1

ǫ

(m
ǫ2

)N
.

that is the same field-independent positive constant as in the additive noise case that

can be dropped in the measure, see eq. (B.10).

A fermionic functional representation of the Jacobian can be obtained by

introducing ghosts, expression (C.3) can be put in the form

JN ĴN =
1

ǫ

1

ǫN

∫
dc0dc

∗
0...dcN+1dc

∗
N+1 c

∗
N+1c

∗
Nc1c0 eS

J

N ,

with

SJ
N ≡ ǫ2

N+1∑

k=0

N+1∑

l=0

c∗k
1

ǫ

∂Eqk
∂ψl

cl − ǫ

N+1∑

k=0

c∗k
M ′′(ψk+1)

M ′(ψk+1)
Eqk ck+1 .

In the continuum limit it becomes

SJ ≡ lim
N→∞

SJ
N =

∫

u

∫

v

c∗u
δEqu[ψ]

δψv
cv −

∫

u

c∗u
M ′′(ψu)

M ′(ψu)
Equ[ψ] cu ,

with the boundary conditions c(−T ) = ċ(−T ) = 0 and c∗(T ) = ċ∗(T ) = 0 and the

measure of the corresponding path integral is given in (B.14).



43

[1] P. Langevin, C. R. Acad. Sci. (Paris) 146, 530 (1908), translated in Am. J. Phys. 65, 1079 (1997).

[2] H. Risken, The Fokker-Planck equation, 2nd ed. (Springer Series in Synergetics, Berlin, 1989).

N. G. Van Kampen, Stochastic Processes in Physics and Chemistry, 3rd ed. (North-Holland,

Amsterdam, 2007). C. W. Gardiner, Stochastic Methods: A Handbook for the Natural and Social

Sciences, 3rd ed. (Springer Series in Synergetics, Berlin, 2004).

[3] P. C. Martin, E. Siggia, and H. A. Rose, Phys. Rev. A 8, 423 (1973).

[4] H. K. Janssen, Z. Phys. B 23, 377 (1976). H. Janssen in Dynamical Critical Phenomena and

Related Topics, ed. by C. P. Enz (Springer, Berlin, Heidelberg, 1979). H. K. Janssen in From

Phase Transition to Chaos, ed. by G. Györgyi, I. Kondor, L. Sasvári, T. Tél (World Scientific,
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