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Renormalization group analysis of the random first order transition
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(Dated: July 16, 2010)

We consider the approach describing glass formation in liquids as a progressive trapping in an
exponentially large number of metastable states. To go beyond the mean-field setting, we provide
a real-space renormalization group (RG) analysis of the associated replica free-energy functional.
The present approximation yields in finite dimensions an ideal glass transition similar to that found
in mean field. However, we find that along the RG flow the properties associated with metastable
glassy states, such as the configurational entropy, are only defined up to a characteristic length scale
that diverges as one approaches the ideal glass transition. The critical exponents characterizing the
vicinity of the transition are the usual ones associated with a first-order discontinuity fixed point.

PACS numbers: 11.10.Hi, 75.40.Cx

In the ongoing search for a general theory of glass for-
mation, the random first-order transition (RFOT) ap-
proach has proven to be a strong candidate, establish-
ing what appears to be an intricate mean-field (MF) de-
scription of supercooled liquids and glasses.[1–3] This MF
treatment predicts a scenario with two critical temper-
atures Td and TK , the upper one Td being a dynami-
cal singularity akin to the mode-coupling transition and
the lower one TK a thermodynamic ideal glass transi-
tion characterized by a vanishing of the configurational
entropy associated with the logarithm of the number
of metastable states. This scenario has received sup-
port from MF-like calculations on glassforming liquid
models.[4–8] The RFOT theory assumes that this MF
picture retains some validity in finite-dimensional sys-
tems and proceeds by accounting for ergodicity restoring
and disappearance of metastability in supercooled liq-
uids between Td and TK through an entropy-driven nu-
cleation process coupled with a mosaic view of the liquid
configurations.[1–3, 9] Testing the validity of this appeal-
ing but still fragile scenario is of major interest. In addi-
tion to computer simulations of model liquids,[10, 11] an-
alytical work has so far been done in two directions, tak-
ing the MF result as a starting point: instanton calcula-
tions for the escape from glassy metastable states[12, 13]
and studies of disordered models with long-range inter-
actions in the Kac limit.[12, 14] The latter in particu-
lar have shown that both static and dynamic correlation
lengths can be computed and that the MF infinite-range
limit is not singular. Going beyond these approaches
however requires a renormalization group (RG) treat-
ment.
We provide in this letter the first steps towards an RG
treatment of glass formation beyond the RFOT MF the-
ory. To this end, we consider the Migdal-Kadanoff (MK)
real-space RG of a Ginzburg-Landau model which is com-

monly taken to be in the “universality class” of struc-
tural glass-formers as it generically displays the two-
temperature scenario at the MF level. We use the replica
formalism and, for convenience, we use hierarchical lat-
tices, on which the MKRG is known to be exact.[15]
Our starting point is the replica MF theory of structural
glasses, in which one studies the distribution of putative
metastable glassy states by introducing m− 1 copies (or
replicas) of the same liquid system coupled with a small
attractive interaction whose amplitude is set to zero af-
ter taking the thermodynamic limit.[6, 16] By keeping
the leading terms in the local order parameter, which is
the similarity or “overlap” between different states, one
obtains the following Ginzburg-Landau functional[13]

S [q] =

∫
ddx

{
1

2

m∑

a,b=1

(∂qab(x))
2 + V (q(x))

}
(1)

with

V =

m∑

a,b=1

(
t

2
q2ab −

u+ w

3
q3ab +

y

4
q4ab)−

u

3

m∑

a,b,c=1

qabqbcqca

(2)

where q denotes the set of elements {qab} (by con-
struction, qaa = 0) and the overlap qab(x) is physically
associated with a local Debye-Waller factor character-
izing molecular motion in the glass-forming liquid[13];
for simplicity, the only temperature dependence is
taken in t = T−T0

T0

, with T0 setting the temperature
scale, while u,w, y > 0 are considered as indepen-
dent of temperature. This “real replica” method al-
lows one to obtain the properties of the metastable
states from the knowledge of the replica partition func-
tion, Z(m) =

∫ ∏
ab Dqab(x) exp(−S[q]). The mean

free energy of a typical equilibrium state and the corre-
sponding configurational entropy read respectively βF =

http://arxiv.org/abs/1007.2509v1


2

−∂ logZ(m)/∂m and Sc = −m2∂(logZ(m)/m)/∂m.
The number m of replicas should be analytically con-
tinued to 1 in the equilibrium liquid phase and to a value
less than one in the ideal glass phase, if present.[6] At the
MF level, i.e. by looking for the uniform saddle-points
of Eq. (1), one finds that the order parameter qab is zero

above a temperature Td, such that td = w2

4y , and that be-
low Td appears another uniform solution with a replica
symmetric (RS) structure qab = q > 0 for a 6= b. This
solution, when plugged into the expression for F and Sc,
yields the properties of the metastable glassy states. Fi-

nally, at a temperature TK such that tK = 2w2

9y , there is
a RFOT with a coexistence between a zero-overlap phase
and a high-overlap one, transition with zero latent heat
and vanishing configurational entropy density. Below TK ,
the system is in an ideal glass phase characterized by a
nonzero overlap matrix and a value of m less than 1.
To go beyond MF, we consider a real-space MKRG ap-
proach, which becomes exact on hierarchical diamond-
like lattices, and apply it to a lattice version of the ef-
fective Hamiltonian in Eq. (1). Such lattices are built
iteratively by replacing each bond between sites by a
fixed number of new bonds which, to mimic Euclidean
d-dimensional lattices, is taken equal to 2d. After n iter-
ations, the volume of the system, which is equal to the
total number of original bonds, is equal to 2nd whereas
the “distance” between the boundary sites is equal to 2n

bonds: this naturally fixes the length scale after n iter-
ations as ℓn = 2n. The procedure is illustrated in the
inset of Fig. 1. The main advantage of this RG proce-
dure is that the renormalized effective pair interaction
between two sites at the n−th step of renormalization,
Wn(q

1,q2), satisfies a closed equation written in terms
of the pair interaction Wn−1(q

1,q2):

2−(d−1)Wn(q
1,q2) =

log

∫ ∏

a,b

dqab exp

{
Wn−1(q

1,q) + V (q) +Wn−1(q,q
2)

}

(3)

where the labels 1 and 2 denote the value of two renor-
malized sites from which emanate 2n(d−1) original bonds.
At the nth iteration, the original lattice is replaced by a
renormalized one where the unit length is ℓn and the pair
interaction between sites is Wn(q

1,q2). A remaining ob-
stacle is that even if the integration in Eq. (3) is purely lo-
cal, it involves the components of a general m×m replica
matrix with m continued to real values, and there is no
general solution to this problem. However, the physics
we aim at describing is related to that of first-order-like
transitions; as a result, Wn for generic q

1 and q
2 is ex-

pected to grow rapidly with the number of iterations, as
2nd or 2n(d−1), so that when d ≥ 2 the term in the expo-
nential of the left-hand side of Eq. (3) becomes very large
after a few iterations only. In consequence, we approxi-
mate the full integral by a steepest-descent calculation.
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FIG. 1: RG flow on the hierarchical lattice with d =
3 for several initial conditions parametrized by T (=
1.01, 1.003, 1.001, 1.0001 from top to bottom): parametric

plot of W̃n(q
∗, q∗)/(2W̃n(q

∗, 0)) versus 1/W̃n(q
∗, 0). The two

fixed points on the y-axis correspond to the RFOT (y = 0)
and to the “normal” liquid (y = 1). Inset: Elementary step
illustrating the RG on a hierachical lattice corresponding to
d = 3.

In addition, guided by the MF solution, we looked for
p-step RSB saddle-points. Since we found that they all
reduce to the RS saddle point, in the following we shall
only focus on the latter. All these restrictions and limi-
tations will be further discussed below.
In the RS case, any matrix q is characterized by a
single parameter q and, after introducing W̃n(q1, q2) =
Wn(q1,q2)

m−1 and Ṽ (q) = V (q)
m−1 , the iteration equation sim-

plifies to

W̃n(q1, q2) =

2d−1min
q

{
W̃n−1(q1, q) + W̃n−1(q, q2) + Ṽ (q)|m=1

} (4)

where Ṽ (q) = t
2q

2− w
3 q

3−(m−1)u3 q
3+ y

4 q
4 has a unique

minimum at q = 0 above Td and an additional metastable
minimum at q = q∗(T ) = 1

2y (w+
√

w2 − 4yt) between Td

and TK , minimum which becomes the deepest one below
TK(the bare parameters are arbitrarily chosen such that
tK = q(tK) = 1). At the start of the RG flow, the “bare

interaction” is taken equal to W̃0(q1, q2) = (q1 − q2)
2/2.

It is easily derived from Eq. (4) that W̃n(0, 0) does not
flow and remains equal to zero (and so does the free en-
ergy Fn(0, 0)).
We first consider the liquid between Td and TK . Asymp-
totically, i.e. for large n, the system flows to a trivial
disordered fixed point corresponding to a “normal” liq-
uid and uncoupled replica. In this case, at each RG
step, the minimum in Eq. (4) is in q = 0, which leads for

large enough n to W̃n(q1, q2) ≃ W̃n(q1, 0)+ W̃n(q2, 0) for
q1, q2 6= 0: boundary conditions then have no influence
on the bulk. This behavior takes place along the RG
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FIG. 2: Temperature dependence of the point-to-set correla-
tion length ℓPS and of the penetration length ℓb in the liquid
phase above TK for a hierarchical lattice with d = 3.

flow beyond a length scale ℓPS which depends on the ini-
tial condition, here parametrized by T . More precisely,
we define ℓPS = 2nPS from the number nPS of itera-
tions needed to make the value of q corresponding to
the minimum in Eq. (4) for both boundaries fixed in the
metastable state q∗ drop below the value q∗/2 (beyond
this scale, the minimum is found in q = 0 for all bound-
ary conditions). From its definition, ℓPS corresponds to
a “point-to-set” correlation length:[9, 17] above ℓPS , the
boundary conditions in the metastable glassy state do
not affect the deep interior of the liquid whereas below
ℓPS , they determine the state of the liquid. Exactly at
TK , one finds that the minimum sticks at q∗ when the
boundary conditions are fixed at q∗: then, W̃n(q

∗, q∗)

stays equal to zero, just as W̃n(0, 0). This corresponds
to a first-order transition (a RFOT) with a coexistence
between a liquid phase with q = 0 and an ideal glass
phase with q = q∗(TK). The fact that the value of TK is
itself not renormalized is a consequence of the minimiza-
tion procedure (see also below).
In Fig. 1, we illustrate the RG flow for several initial
conditions in the case of a hierarchical lattice mimick-
ing a 3-dimensional system (shown in Fig. 1). The be-
havior is strongly reminiscent of that observed in a con-
ventional first-order transition,[18] with the point-to-set
length playing the role of the scale above which the low-
T metastable phase disappears. We plot in Fig. 2 the
T -dependence of ℓPS . It follows a power law, ℓPS(T ) ∼
(T − TK)−1. Interestingly, there appears to be another
characteristic length scale ℓb, which we call the “pene-
tration length” as it describes how far the “amorphous
order” fixed by the metastable boundary condition pene-
trates in the liquid; as such, ℓb seems to be related to the
pattern repetition length introduced in [19]. Specifically,
we compute it from the number of iterations nb required
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FIG. 3: Renormalized configurational entropy density sc and
surface tension υ for a hierarchical lattice with d = 3. Main
plot: Evolution with the RG scale ℓn for T = TK + 0.512.
Inset: T -dependence of the values of sc and υ just before the
point-to-set scale.

to make the value of q corresponding to the minimum in
the RG equation for W̃n(q

∗, 0) drop below q∗/4. Above
this length, the minimum is found at q = 0. The depen-
dence of ℓb on initial conditions is shown in Fig. 2: it goes
as (T −TK)−

1

d . While this dependence might be specific
to the structure of the hierarchical lattice, it is notewor-
thy that the exponent 1/d is the same one obtained in
[19] for the pattern repetition length and also coincides
with the standard exponent for the “persistence length”
near a first-order discontinuity fixed point.[20] Note that
the asymptotic behavior of ℓPS and ℓb close to TK can be
also derived analytically (details will be presented else-
where).
In order to obtain a description of the renormalized liq-
uid on the scale ℓn, it is useful to define and compute
at the nth RG iteration both the configurational en-
tropy, Sc(ℓn, T ) = β[Fn(q

∗, q∗)− Fn(0, 0)], and the in-
terface free-energy Υ(ℓn, T ) = Fn(q

∗, 0) − [Fn(q
∗, q∗) −

Fn(0, 0)]/2 between the liquid phase with q = 0 and the
glass phase with q = q∗. Even though close to TK Sc

is very small on microscopic scales, it increases by RG
transformations as ℓdn whereas Υ grows as ℓd−1

n only. In
consequence, Sc and Υ eventually become of the same
order. This happens on a scale of order ℓPS . At this
point, the free-energy gain of having q = 0 onsite becomes
overwhelming compared to the free-energy cost due to a
mismatch between the overlap values; ; the renormal-
ized value of Upsilon then drops to zero, see Fig. 3, and
the MF quantity Sc is no longer well-defined. [9] Note
that on the lengthscale just below ℓPS the configurational
entropy density sc = Sc/ℓ

d
n linearly approaches zero as

T −TK , whereas the surface tension υ = Υ/ℓd−1
n remains

nonzero at the transition, see Fig. 3.[25] The picture we
obtain is that after nPS RG iterations, the renormalized
system is like a liquid at its “onset temperature” where
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the (renormalized) PS length is equal to one. The dif-
ference with a normal liquid are the values of Υ and Sc,
which are very large compared to T , i.e. the liquid is
at very low T compared to the typical scale of the inter-
action. This–naively–suggests that the relaxation time
could be obtained by assuming an Arrhenius law at the
scale ℓPS : log τ ∝ Υ/T ∝ 1/(T − TK)d−1.
We now briefly discuss the situation below TK . The cal-
culation is similar to that performed above TK except
that when describing the equilibrium ideal glass phase
with q = q∗(T ), the replica parameter m should also be
optimized, which leads to meq(T ) < 1,[6] and that at
the MF level, it is the liquid phase with q = 0 which is
metastable. We again find that the p-step RSB saddle-
points reduce to the RS one (since m < 1, the extrem-
ization on q now becomes a maximization[6]). We define
a point-to-set correlation length by studying when the
minimum involved in the iteration equation for W̃n(0, 0)
increases above q∗/2. We find that the equilibrium point-
to-set correlation length defined for m = meq(T ) diverges
as one approaches TK from below with the same expo-
nent as from above, i.e. as (TK − T )−1.
From the above results, it appears that the physics in the
vicinity of a RFOT to an ideal glass is controlled by a
first-order discontinuity fixed point with standard expo-
nents. Although the resulting physical picture is similar
to the phenomenological one put forward in [1, 9], the val-
ues of the exponents differs from [1]. Recent computer
simulations of an atomic glass-forming liquid model,[11]
find that some exponents are indeed standard, but others
are not. It is therefore worth discussing the limitations of
the present RG analysis. The starting replica Ginzburg-
Landau model and the choice of hierachical lattices could
of course be criticized, but the main potential shortcom-
ing of the present study is the steepest-descent approxi-
mation. We have argued that the latter is justified after a
few iteration steps because the factor in the Boltzmann
weight grows rapidly. In particular, if one starts with
an arbitrarily strong random first-order transition at the
MF level (this may not correspond to any actual glass-
forming liquid but could nonetheless provide an interest-
ing limiting case) and consider an initial condition deep
in the glass phase, it is unlikely that the latter and the as-
sociated random first-order transition would be destroyed
by the few first iterations before minimization becomes
justified. However, the parameters of the theory, such as
the value of TK , would clearly be renormalized by these
first steps, so that minimization would start with effec-
tive parameters in place of the bare ones.[26] Further-
more, fluctuations may actually play an important role
in determining the exponents of ℓb and consequently ℓPS

since these involve the flow of Sc that grows as (T−TK)ℓdn
and remains small until the scale ℓb. Another question-
able aspect of our minimization scheme is the choice of
saddle-points among RS and p-step RSB solutions only.
Could we be missing relevant minima ? A way to get

around the above problems would be to somewhat invert
the replica treatment and infer from a replicated free-
energy functional with a strong RFOT at the MF level
an effective model with quenched disorder that could be
directly studied by the MKRG on hierarchical lattices.
This is a promising but arduous route, as there are at
present no known disordered models displaying remains
of the two-temperature scenario in finite dimensions.[22]
(See however the recent proposal of a hierarchical ran-
dom energy model in [23] and numerical simulations on
a Kac version of the random orthogonal model [24].) This
nonetheless appears as the only means to check if, in a
full-blown RG analysis, the trivial RFOT discontinuity
fixed point found here is confirmed, replaced by a non-
trivial one, or else if the RFOT itself is completely sup-
pressed.
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