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Abstract. Motivated by the role that spectral properties play for the dynamical

evolution of a quantum many-body system, we investigate the level spacing statistics

of the extended Bose-Hubbard model. In particular, we focus on the distribution of

the ratio of adjacent level spacings, useful at large interaction, to distinguish between

chaotic and non-chaotic regimes. After revisiting the bare Bose-Hubbard model, we

study the effect of two different perturbations: next-nearest neighbor hopping and

nearest-neighbor interaction. The system size dependence is investigated together

with the effect of the proximity to integrable points or lines. Lastly, we discuss the

consequences of a cutoff in the number of onsite bosons onto the level statistics.
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1. Introduction

In classical systems, the chaotic nature of a Hamiltonian plays a crucial role in

determining the dynamics. Chaotic systems explore a large area of their phase space,

whereas non chaotic ones can be trapped in certain atypical subspaces [1]. Thus, chaos

plays a considerable role in explaining thermalization and ergodicity. For quantum

systems the situation is less clear. In principle, the quantum dynamics is linear, since

it follows Schrödinger equation, and therefore the notion of chaos is not so well defined.

However, in quantum systems for which a classical counterpart exists, one finds that the

dynamics is very different depending on whether the corresponding classical motion is

chaotic or regular [1]. For generic quantum systems, chaos is also believed to be essential

for thermalization [2, 3] and delocalization in Fock space [4]. The recent realization of

closed quantum systems out of equilibrium by strongly correlated cold atoms clouds

[5] have lead to a renewal of interest in the chaotic properties of many-body quantum

systems and their relation to thermalization [6].

For chaotic quantum systems it has been conjectured that their spectra show

universal features which are related to the theory of random matrices [7, 8, 9, 10].

To quantify the spectral properties of a given Hamiltonian, a natural quantity to look

at is the gap between adjacent many-body levels δn = En+1 − En, where {En} is the

list of eigenvalues in ascending order. The general symmetries of the Hamiltonian, like

time-reversal and half-integer spin rotational invariance, determine the random matrix

ensemble (among orthogonal, unitary and symplectic ensemble) to which it belongs [7].

A spin-less time-reversal invariant Hamiltonian such as the Bose-Hubbard model (for

generic parameters) should have similar universal features as the Gaussian orthogonal

ensemble (GOE). For example the adjacent level-spacing distribution P∆(δ) is predicted

to take the Wigner-Dyson form

P∆(δ) =
π

2

δ

∆
exp

(

−π

4

δ2

∆2

)

, (1)

where ∆ is the mean level spacing. On the contrary for so-called integrable models, in

which the properties of the system are determined by an extensive number of conserved

quantities, the level-spacings should exhibit the following Poissonian distribution

P∆(δ) = exp (−δ/∆) . (2)

The relation between the spectral properties of a quantum system and the random

matrix ensembles has been demonstrated numerically even for strongly correlated many

body systems without classical counterpart. In particular a GOE like behavior was

pointed out for the non-integrable two dimensional t-J model [11]. In one dimensional

models, it was checked that at and close to the integrable points, the statistics was

Poissonian-like [12]. In one dimension, non-diffractive models are integrable on rigorous

grounds and solvable using the Bethe-ansatz which provides all eigenstates [13]. Several

other systems have been discussed since then [14, 10, 15, 1]. Therefore, analyzing the

spectral properties of a system provides a phenomenological approach to investigate the

chaotic nature of the quantum Hamiltonian.
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In this work we consider the properties of the spectrum of the Bose-Hubbard model.

This model is a paradigmatic strongly correlated many-body system where interactions

of amplitude U compete with the kinetic energy favored by the hopping J . It appeared

in several contexts of condensed matter theory and regained a lot of interest since it

has been realized in quantum gases confined to artificial lattice structures [5]. Its out-

of-equilibrium dynamics and in particular the question of thermalization following a

quantum quench have also been studied numerically [16, 17, 18, 19, 20]. As perturbations

to the Bose-Hubbard Hamiltonian are experimentally relevant in different regimes [21],

it is essential to address the sensitivity of the spectral features to extra terms. We

consider the effect of two different perturbations and their consequences on the level

statistics. We focus on the model with a next-nearest-neighbor hopping with amplitude

J2 as well as a nearest-neighbor interaction with amplitude V . The Hamiltonian under

study then reads:

H = − J

L
∑

j=1

(

b†jbj+1 + h.c.
)

− J2

L
∑

j=1

(

b†jbj+2 + h.c.
)

+
U

2

L
∑

j=1

n̂j(n̂j − 1) + V
L
∑

j=1

n̂jn̂j+1 , (3)

where b†j and bj are the bosonic creation and annihilation operators, and n̂j = b†jbj
the number operators on site j and L the number of sites in the chain. Periodic

boundary conditions are used to take advantage of translational invariance. We analyze

the spectrum in the subspace spanned by reflection symmetric states with zero total

momentum using full exact diagonalization. No cutoff in the onsite occupation M is

assumed, i.e. M = N , and unit filling N/L = 1 is taken if not stated otherwise (N

is the total number of bosons). The symmetrized Hilbert space has dimensions up to

56, 822 for N = L = 12. The considered extended Bose-Hubbard model is integrable (in

a broad sense) only in the two limiting cases of U = V = 0 (free bosons) and J = J2 = 0

(atomic limit).

In a first analysis on small lattices, Kolovsky and Buchleitner [22] discussed the

chaotic behavior of the bare Bose-Hubbard model (V = J2 = 0). They investigated the

level statistics and the Shannon entropy of the eigenstates with respect to the basis of

the two integrable limits as a probe of the eigenstates delocalization (another chaotic

feature). A pronounced similarity of the level statistics with GOE and a maximal

Shannon entropy has been found when the hopping amplitude and the interaction

strength are of the same order. Furthermore, it has been noticed that the low and

very high energy parts of the spectrum seem to display features of integrable spectra. A

chaotic trimeric version of the Bose-Hubbard model has also been analyzed [23, 24] and

a comparison to the semi-classical approximation has been carried out when N/L ≫ 1.

Another case that has been studied corresponds to restricting the maximum onsite

number of bosons M to one. In this case, the Bose-Hubbard model boils down to a

hard-core boson model (XXZ) which has the particularity of being integrable provided
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Figure 1. The level spacings distribution for U/J = 2 and U/J = 40 for a system

of length L = 12 are shown (symbols). The dash-dotted, green curve is the Poisson

distribution and the dashed, red curve the Wigner Dyson distribution of a purely GOE

like ensemble. The different symbols correspond to different unfolding procedures. For

the curves labeled by the number of energy bins, the unfolding is performed locally

over energy regions, which divides the total energy range covered by the eigenvalues

into equally spaced energy bins. The smooth part of the level staircase is fitted by

a polynomial. Additionally an unfolding within the energy bands is performed for

U/J = 40 using the function A2 + (A1−A2)/(1 + exp((E −E0)/dE)) where A1, A2,

E0 and dE are fitting parameters.

J2 = 0. The level statistics of this hard-core model, perturbed by a non-integrable

operator, has been studied recently [25]. While the two models are physically equivalent

in the low-energy physics provided that U is large enough, the high-energy spectra are

very different even in the large-U limit.

In this paper, we analyze the level statistics of the extended Bose-Hubbard model

in detail, using system sizes up to L = N = 12 sites. All data are restricted to the zero-

momentum and reflection symmetric sector (the one of the ground-state). In section

2 we study both the level spacings distribution and the distribution of the ratio of

consecutive level spacings. The latter is a very useful observable, in particular close

to the atomic limit. This allows us to address the energy and finite size dependences.

Furthermore, we investigate in section 3 the influence of different perturbations on the

spectrum of the Bose-Hubbard model. We consider a next-nearest neighbor hopping

and a nearest neighbor interaction and focus is put on how the chaotic features evolve

away from integrable points (lines) in the parameter space. Lastly, we discuss the effect

of the onsite occupation cutoff M on the level statistics.

2. Properties of the bare Bose-Hubbard model

We first focus on the bare Bose-Hubbard model (J2 = V = 0) [22]. In Fig. 1, typical level

spacings distributions of the unfolded spectrum are shown for two different interaction

strengths. In order to remove the dependence on the system specific mean level density,

the ’unfolding’ procedure consists in renormalizing the level spacings by using a suitable
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Figure 2. The many-body density of states ρ in the zero-momentum and reflection

symmetric sector and for different interaction strengths. E0 is the ground-state energy.

The evolution from a smooth spectrum at low interaction strength to the appearance of

well separated energy bands at large interaction strength is shown. The smooth curves

are obtained broadening the δ-peaks by Gaussians (ρ̄(E) =
∑

n
g∆(E − En) with g∆

a Gaussian of width ∆). However, note that even for large interaction strengths the

width of the Gaussians is much smaller than the width of the energy bands.

fit for the smooth part (see Ref. [10] for details of the procedure). The left panel of Fig. 1

shows that the distribution for U/J = 2 closely follows the Wigner-Dyson distribution

of the GOE. In particular, the distribution vanishes for small level spacings, a typical

signature of level repulsion associated with avoided level crossings. When approaching

the integrable points the distribution deviates from Wigner-Dyson. This is shown for

strong interaction U/J = 40 in the right panel of Fig. 1, but occurs also when lowering

the interaction. The tail of the distribution is close to the exponential tail of the Poisson

distribution; for small level spacings there is a significant enhancement compared to the

GOE distribution but some level repulsion persists. We observe that increasing the

size of the system (not shown, see also the discussion here after) tends to increase the

similarity to the Wigner-Dyson distribution. In particular, the repulsion at small level

spacings becomes more and more pronounced. However, for currently accessible system

sizes, it is not clear whether the distribution very close to the integrable points will

converge to the Wigner-Dyson one.

The study of systems with large interaction strength is involved due to the

appearance of a band structure in the density of states (see Fig. 2). The spectrum

evolves from a smooth broad spectrum for small interaction strength to a series of

narrow energy bands separated by U for large interaction strength‡. This would make

the unfolding complicated because it is difficult to separate the spectrum into a smooth

and a fluctuating part. To obtain reliable results we performed different unfolding

procedures fitting locally different parts of the spectrum. If the ranges over which the

‡ However, note that the mean level spacing is still much smaller than the width of the energy bands.
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Figure 3. Left panel: semicircular density of state for an GOE ensemble of random

matrices of size 5, 0002 averaged over 10, 000 realizations. In addition, the value of the

ratio of consecutive level spacings, averaged over the different realizations, is given as

a function of energy, showing that it does not depend on the density of states. The

shaded regions are the regions over which the distributions shown in the central and

right panel are taken (they both contain 200 states). Central panel: Distribution of

the ratio of consecutive level spacings taken over a region at the edge, in the bulk and

of the whole spectrum: the distribution does not depend on the variation of the local

density of states. Right panel: Distribution of the level spacing in the same regions

without unfolding the spectrum showing the strong dependence on ρ(E).

fits are performed are chosen in a suitable way, the same general form of the spectra is

recovered, even though small discrepancies can occur. Note that the complicated form

of the density of states also makes a study of longer range correlations of the spectrum

involved.

To avoid this complication, we continue our study using another measure which

has the advantage of not depending on the unfolding procedure: the ratio of

consecutive gaps between adjacent levels [26]. This quantity is defined by rn =

min(δn, δn−1)/max(δn, δn−1). As long as the density of states does not vary on the

scale of the mean level spacing, the trivial dependence on the smooth part drops out

and there is no need for unfolding. This is exemplified in Fig. 3, where we compare

for a GOE random matrix ensemble the distribution of the level spacing and of the

ratio of the consecutive level spacings taken over two different energy ranges without

performing the unfolding procedure. The first energy range lies at the boundary of the

spectrum where the density of states varies considerably. In contrast the second energy

range is situated in the center of the spectrum, where the density of states exhibits

only slow changes. The GOE distribution is computed numerically as in Ref. [26] using

the averaged results of 10, 000 samples of random matrices of size 5, 0002. It is clearly

seen that the ratio of consecutive level spacings does not depend on the region used,

whereas the level spacing statistics is different for the two chosen regions due to its

strong dependence on the smooth part of the spectrum. The local ratio of consecutive

level spacings averaged over the GOE ensemble is also independent of the density of
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Figure 4. Typical distribution of the ratio of adjacent level spacings r. Left panel:

Different interaction strengths for L = 12 are compared with Poisson and GOE

distributions. The proximity to the chaotic regime is seen when U ≃ J . While for

U ≫ J and U ≪ J the curves approach the Poissonian tail. Right panel: system size

dependence for U/J = 40.

states (left panel of Fig. 3). On the basis of these results, which show that r is a useful

random variable to analyze the spectral statistics, we continue our study focusing on

the ratio of consecutive gaps.

We give in the left panel of Fig. 4 typical distributions P (r) obtained for the Bose-

Hubbard model at different interaction strength. As expected, the P (r) distribution

depends on the chaoticity of the Hamiltonian: the distribution for a Poissonian spectrum

reads P (r) = 2/(1+ r)2 while it can been computed numerically for the GOE ensemble

(Fig. 3 and Fig. 4). As for the level spacing distribution, the maximum resemblance

with GOE is observed when U ≃ J . In the proximity of the two integrable limits U = 0

and J = 0 the distributions approach the Poisson prediction, particularly on the tail.

We checked for a wide range of values of U that the distribution of these ratios is in good

agreement with the level spacing distribution using different local unfolding procedures.

In order to have a systematic tool to probe the proximity either to Poisson or

GOE, we use the results on the mean value 〈r〉 which is 〈r〉P = 2 ln 2 − 1 ≈ 0.386 for

Poisson and 〈r〉GOE ≈ 0.53(1) for GOE. We thus expect that this averaged ratio should

display a maximum for an interaction strength around U ≈ J . In Fig. 5 this ratio is

given for different interaction strengths and system lengths. At intermediate interaction

strength (0.3 < U/J < 4) we see that 〈r〉 gets very close to the GOE prediction. Even

though there is a small system size dependence left, the values for the longer system

sizes considered are quite close to the expected value. For small and large values of the

interaction strength we see that the behavior is different. For these regimes the values of

〈r〉 lie in between the ones expected for the GOE and the Poisson ensemble and for most
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Figure 5. Evolution of the average ratio of consecutive level spacings 〈r〉 with

the interaction strength U/J . For the Poisson distribution the average value of

〈r〉P = 0.386 and for the GOE ensemble 〈r〉GOE = 0.53. The average is taken for

the full spectrum, without cutting the low and the high energy part. A clear tendency

of larger system sizes versus the GOE ensemble value is seen.
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Figure 6. Scaling of the ratio of consecutive level spacings 〈r〉 with the inverse system

size for different interaction strength.

of these values a strong system size dependence is still evident. Typically, the trend for

longer system sizes goes towards 〈r〉GOE, as shown in Fig. 6 for some chosen values of the

interaction. This suggests that away from the integrable points some critical length scale

(or particle number) exists above which the system shows a level statistics which is very

close to the one of the GOE ensemble. Our results further suggest that this length scale

possibly grows in the proximity of the integrable points. For instance, when U/J = 40,

the distributions hardly evolve with the system size (see Fig. 4 right panel). We expect

that for large enough sizes the properties of the spectrum might be well described by a

GOE. However, the question whether or not a finite deviation of the parameters from the
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Figure 7. Average ratio of consecutive level spacings taken in different energy

intervals of equal size for different interaction strength U/J = 0.1, 2, 40 and different

system length L = 11, 12. The number of bins taken for the average is 50.

integrable limit is necessary to obtain GOE like characteristics cannot be conclusively

answered§. Still, the obtained results can be compared with other scenarios on the effect

of the interaction in the Bose-Hubbard model. For instance, Cassidy et al suggested [27]

that there could be an interaction threshold in the Bose-Hubbard model for the chaotic

behavior to develop, based on calculations valid in the semi-classical limit N/L ≫ 1

supplemented by a mean-field calculation. Extrapolating their results to the N = L

limit, the threshold would be U/J ≃ 0.5. In contrast, our results demonstrate that for

low filling n = 1 even at U/J ≃ 0.1, the level statistics features have a strong tendency

towards a chaotic behavior and no signature of a threshold is found.

Up to now we have considered the properties of the whole spectrum. However

the question arises how these properties change within different energy ranges of the

spectrum. To illustrate this, we show in Fig. 7 the average ratio taken over different

ranges of the spectrum‖. We must notice that contrary to the GOE benchmark of Fig. 3,

the Hamiltonian is deterministic and no sampling can smoothen the curves: we were

able to get good statistics only by reaching large enough systems sizes. For small values

of the interaction strength (U/J = 0.1 and U/J = 2 in Fig. 7) the average ratio slightly

depends on the energy and one can observe that the bulk of the spectrum displays

the GOE prediction while edges show some deviations with strong fluctuations. These

strong fluctuations may be attributed either to the fact that the small density of states

induces bad statistics or to the fact that the physics at the edges (in particular close

to the ground-state) display different statistics than for the high energy excited states

§ Notice that the scaling analysis of the level statistics have some strong numerical limitations. Indeed,

as the width of the spectrum scales as N2 while the number of states scales exponentially with N , we

may expect the minimal level spacing to reach the numerical accuracy of full diagonalization at some

relatively small system size L. However, these system sizes are longer than the here considered system

sizes.
‖ We checked that the ratio exhibits the same features as the level spacing statistics.



Statistical properties of the spectrum of the extended Bose-Hubbard model 10

Figure 8. The Shannon entropy in the real-space symmetrized basis of exact

diagonalization is shown for different interaction strength. An evolution from a smooth

behavior for small interaction strength towards a very fluctuating behavior for large

interaction strength can be seen.
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Figure 9. The finite system dependence of the average value of the Shannon entropy

is shown. A clear trend towards larger values is found.

in the bulk. A clear maximum exists in the central region. Increasing the system size

for U/J = 0.1 makes the bulk value closer to the GOE prediction. For intermediate

values of the interaction strength U/J = 2 (central panel Fig. 7) the properties of the

spectrum do not change much in different energy regions and are close to GOE. For

large values of the interaction strength (lower panel in Fig. 7) a band structure develops

in the energy spectrum. The ratio shows stronger fluctuations¶ and a slight drop from

a more Wigner-Dyson like value towards a more Poisson like value.

In addition to the distributions discussed above, the Shannon entropy can give

interesting information about the chaoticity of the system [22]. The Shannon entropy

is defined by Sn = (−∑

m |cnm|2 ln |cnm|2)/ ln dimH , where cmn are the coefficients of the

¶ The ratio and its fluctuations also depend more strongly on the energy interval used. However we

checked that the main trend remains for typical energy ranges taken.
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nth eigenstate decomposed onto the mth basis state of a chosen basis. The entropy

measures the delocalization of a wave-vector with respect to a chosen basis: with our

definition, it reaches 1 for a fully delocalized state. Here we measure the entropy with

respect to the symmetrized real-space basis of exact diagonalization. In Fig. 8 the

behavior of the entropy is shown for different interaction strengths. A clear evolution

from a smooth to a sharp distribution around high values at small interaction strength

towards a strongly fluctuating distribution at low values is evident. This shows that

for small interaction strength almost all eigenvectors are delocalized as expected in the

non-interacting regime where the Hamiltonian is diagonal in the momentum space. At

intermediate interaction strength, the edges display less delocalized features than in the

bulk. The most interesting behavior is exhibited at large interaction strength where the

degree of localization fluctuates strongly between different eigenvectors within a Mott

lobe. Let us point out that this finding is similar to the behavior of some observables

and weights calculated in these eigenstates and that was identified to be the reason

of non-thermalization after a quench on such finite size systems [18, 19, 20]. Finally,

let us comment on the evolution of the above results increasing the system size. We

find that even though Fig. 9 displays a trend towards delocalization, the behavior in

the thermodynamic limit is particularly hard to access close to the infinite-U integrable

point.

3. Perturbing the Bose-Hubbard model

We now turn to the effect of the J2 and V perturbations (separately) that are expected

to help breaking integrability at the J = 0 and U = 0 integrable points, respectively. As

there are three parameters ranging from zero to infinity, we will fold the parameter space

using two representations (see Fig. 10 for an example). The first one is to introduce

the function f(x, y) = x/(x + y) and to use the following definition: u = f(U, J) and

j2 = f(J2, J) when J 6= 0; u = f(U, J2) and j2 = f(J2, U) if J = 0, with the additional

point u = j2 = 1 when U = J2. Such a folding is useful to restrict the considered

parameters onto a finite interval, and enables one to easily deduce the parameters for

a given point. One disadvantage of this folding are discontinuities arising from the

infinities on the j2 = 1 and u = 1 lines. A continuous way to draw the data is to use a

ternary plot+. However, it is more difficult to find in such a plot the original parameters.

Therefore, we use both ways to present our results.

Influence of a next-nearest neighbor hopping – If the next-nearest neighbor hopping

J2 is switched on, the behavior of the spectrum changes. A summary of the effect of

J2 for L = 11 is presented in Fig. 10. For small and intermediate interaction strength,

the additional finite value of J2 drives the small systems closer to the Poisson behavior.

+ Formally speaking, a point of the diagram corresponds to percentage of each parameter, i.e. a

triplet (%J,%J2,%U). In cartesian coordinates with the triplet (100,0,0) at the origin, one has

x = (U + J2/2)/N and y =
√
3J2/2N with N = J + J2 + U .
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Figure 10. Density plots of the evolution with the parameters j2 and u (see

text) of the averaged ratio of consecutive level spacings 〈r〉 (L = 11). We plot

(〈r〉−〈r〉P )/(〈r〉P −〈r〉GOE), so that blue (resp. red) corresponds to Poissonian (GOE)

distribution. Right panel: ternary plot of the same data showing the integrable lines

J − J2 and the isolated integrable point (U corner).

For large interaction strength, J2 helps to drive the system away of the integrable point

J = 0, before at very large j2 it again turns Poisson like due to the attraction of the

U = J = 0 integrable point. The values of J2 can thereby be much smaller than

the actual interaction strength and still have a considerable influence. In the ternary

diagram the almost symmetric behavior of the system with respect to the diagonal

J = J2 is nicely visible. This means that the next-nearest neighbor hopping J2 has a

similar effect than the nearest neighbor hopping J . In order to discuss the influence of

longer system sizes, we show in Fig. 11 the dependence of the average ratio 〈r〉 on j2
for different system sizes at chosen values of the interaction strength. If the behavior is

already close to the GOE one, finite size effects are typically very small (Fig. 11 central

panel). In contrast, if the system is not in the GOE regime, the finite size effects become

more pronounced. However, the larger system sizes show a clear tendency towards the

GOE behavior. Lastly, we have checked that the same qualitative features are displayed

in the Shannon entropy when J2 is taken into account. For instance, Fig. 12 shows that

starting from a large U/J and increasing J2 tends to make the wave-functions delocalize

in the symmetrized real-space basis of exact diagonalization. In particular, for the point

with J = J2, the perturbation clearly favors delocalization. When J2/U increases, the

delocalization with respect to the real space basis becomes more and more pronounced

due to the dominating kinetic term. As for the case of the pure Bose-Hubbard model,

a strong dependence on the energy is observed. A maximum in the Shannon entropy

is found for intermediate energies, whereas for low and in particular high energy the

Shannon entropy drops quickly and exhibits typically more fluctuations.



Statistical properties of the spectrum of the extended Bose-Hubbard model 13

0.4

0.5

<
r> u=0.1

0.4

0.5

<
r>

 

 

u=0.5

Poisson GOE L=8 L=9 L=10 L=11

0 0.5 1.0

0.4

0.5

<
r>

j
2

u=0.95

Figure 11. Evolution of the ratio of consecutive level spacings 〈r〉 with nn hopping

j2 for different interaction strengths. For the Poisson distribution the average value of

〈r〉P = 0.386 and for the GOE ensemble 〈r〉GOE = 0.53 are displayed. The average is

taken for the full spectrum, without cutting the low and the high energy part (circles).

Figure 12. Effect of the J2 perturbation on the Shannon entropy in the symmetrized

real-space basis.

Influence of the nearest-neighbor interaction – In the following paragraph we discuss

the influence of nearest-neighbor interactions which is summarized in Fig. 13. The same

representations of the parameters space are taken, replacing J2 with V and j2 with v.

The behavior is qualitatively very different from the J2 perturbation: the integrable

line in the ternary plot is now the U − V line. In both representations, the data are

nearly symmetrical with respect to the diagonal U = V . Thus, the two interacting terms

act in a similar way in terms of level statistics. For small onsite interaction strength

U , a finite nearest neighbor interaction V enhances the trend of the ratio towards its

GOE value. However–surprisingly at first sight–at large onsite interaction strength U ,

a small finite value of V induces a trend towards the GOE like behavior and only if

V is larger than the onsite interaction U the value of the ratio drops drastically to the
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Figure 13. Same as Fig. 10 changing J2 with nearest-neighbor interaction V .

Poisson value. In particular for interactions of the same order of magnitude U ∼ V , J

rapidly drives the system towards GOE. This effect can be made plausible in a simplified

picture considering the eigenstates of the Hamiltonian at J = 0, which are Fock states.

However, their order with respect to the energies is very different for both interactions.

To make this more explicit consider the state with one particle per site |1〉 = |1, 1, . . . , 1〉
and the state with two particles every second site |2〉 = |2, 0, 2, 0, . . . , 2, 0〉. For a strong

onsite interaction the state |1〉 is very low in energy whereas the state |2〉 lies in the

upper part of the spectrum. In contrast, for a strong nn-interaction state |2〉 lies in the

lower part of the spectrum whereas state |1〉 lies in the upper part. If both interactions

are of the same order of magnitude both states lie very close in energy such that the

small hopping has a large effect on the states. These two energy states are examples of

the behavior of many of the energy states which become almost degenerate in the limit

of equal onsite and nn-interaction strength. Therefore, the effect of the hopping as a

perturbation is expected to be more effective when U ∼ V and should help make the

level statistics GOE-like.

In Fig. 14, finite size effects are considered. As for the other discussed cases the

finite size effects are very small if the value of the ratio is already close to GOE. For the

remaining values, we typically see a trend of the ratio for larger system sizes towards

GOE.

Occupation cutoff dependence – In Fig. 15, we show the effect of introducing a cutoff

in the number of bosons M on each site. For large values of the interaction strength the

use of a cutoff M > 4 does not seem to change the spectral properties much, both at

unit and half fillings. A smaller cutoff strongly affects the ratio, pushing it close to the

GOE prediction. This is due to the suppression of the remaining particle fluctuations

mixing the true eigenstates which are no longer represented. For intermediate interaction

where the ratio is close to the GOE value, the effect of the cutoff on the mean ratio is
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Figure 14. Same as Fig. 11 changing J2 with nearest-neighbor interaction V .

relatively small. In contrast for small interaction strength the influence of the cutoff is

very pronounced. Here the introduction of a small cutoff does drive the system away

from integrability. Even for U = 0, using M < N makes the levels statistics close to

GOE. This effect can be understood by recalling the properties of the eigenstates in

the limit of weak interaction. These are the momentum eigenstates which comprise

strong particle fluctuations. If one introduces a cutoff for the number of bosons per

site these states cannot be represented anymore and start to mix. In other words: the

local constraint is equivalent to using a projector on the kinetic part which correlates

the bosons or, equivalently, acts as a complicated effective interaction that turns out

to display a GOE behavior. A qualitatively similar effect is found in the comparison

between the 1D t-J and Hubbard model. The Hubbard model is integrable while the t-J

model which is related to the Hubbard model by Gutzwiller’s projection is generically

not [12].

In addition, we can discuss earlier results in the literature addressing the question

of the integrability of the 1D Bose-Hubbard model and the effect of multi-occupancies.

Seminal studies by Choy and Haldane [28, 29] seemed to argue that Bethe-ansatz

equations yield solutions of Bose-Hubbard-like models but the analysis turned out

to be invalid [30, 31]. The authors emphasized that M > 3 was required to give

rise to non-integrability. Later, Krauth [32] used the Bethe-ansatz wave-function as

a variational approach for the ground state properties. He found that for U/J . 2,

the comparison with unbiased quantum Monte-Carlo results was indeed very good.

This finding supported the fact that the integrable nature of the free bosons gas was

preserved up to interactions close to the transition point to the Mott insulating phase

at least for ground state properties. The results of the present study, in which we

found considering the entire spectrum that the chaotic properties emerge much below

U/J ≃ 2 (u ≃ 0.66), stress the difference between the low-energy part of the spectrum

and high-energy regions: the ground-state and first excitations might have integrable-
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Figure 15. Evolution of (〈r〉 − 〈r〉P )/(〈r〉P − 〈r〉GOE) with the maximum number

of onsite bosons M . The average is taken for the full spectrum, without cutting the

low and the high energy part (circles). Left panel: incommensurate density where

hard-core bosons corresponds to M = 1. Right panel: the same at a commensurate

density N = L.

like behavior (if the density of quasi-particles is small, they may interact less) while one

cannot consider a high energy excitation as simply being made of a superposition of

elementary excitations [11] (a picture which survives high in energy in the Bethe-ansatz

and in free particles systems).

4. Conclusion

To conclude, we presented a study of the characteristic properties of the spectra of the

extended Bose-Hubbard model. In an intermediate regime of the interaction strength the

system is in the GOE regime. In contrast for very weak and strong interaction strength

the analysis suggests an approach toward GOE when increasing system sizes. In most

parameter regimes this trend towards the GOE was most pronounced in the central

region of the spectrum. An additional next-neighbor hopping amplitude J2 changes the

properties of the energy levels in these small systems. It acts similar to the hopping

amplitude J . For weak interaction, J2 drives the system closer to the Poisson like

behavior, whereas for large interaction strength it reinforces the GOE like behavior. An

additional nearest neighbor interaction V has a similar effect on the statistical properties

of the spectrum as the onsite interaction even though the corresponding eigenstates are

very differently distributed in energy. Close to the point where the interaction U and

V become of similar strength even a very small value of J is enough to induce a GOE

like statistics. Finally we discussed the influence of the introduction of a cutoff for the

number of bosons per site usually used to render the system numerically tractable. Here

we see that the cutoff can change the statistics of the spectrum from Poisson like to
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GOE like, in particular at small interaction strength.

We see that for all the different regimes considered the changes with increasing

system size can be divided into two main classes. If the properties of the system are

already GOE like, increasing the system size only induces small changes. In contrast if

the value of ratio of consecutive level spacings lies in between the Poisson and the GOE

value indicating a mixed statistics, finite size effect are considerable. In this regime larger

system sizes typically drive the system towards the GOE value indicating a GOE like

behavior in the thermodynamic limit. However, larger sizes would be needed to obtain

a conclusive result on the question whether there is always a large enough system size to

reach a GOE behavior for all parameters except the ones corresponding to the integrable

points (or lines) or if a threshold for the perturbation from the integrable point exists

to reach it.
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[17] Läuchli A M and Kollath C 2008 J. Stat. Mech. P05018

[18] Roux G 2009 Phys. Rev. A 79 021608

[19] Roux G 2010 Phys. Rev. A 81 053604
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