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Kibble-Zurek mechanism and infinitely slow annealing through critical points
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We revisit the Kibble-Zurek mechanism by analyzing the dynamics of phase ordering systems
during an infinitely slow annealing across a second order phase transition. We elucidate the time
and cooling rate dependence of the typical growing length and we use it to predict the number of
topological defects left over in the symmetry broken phase as a function of time, both close and far
from the critical region. Our results extend the Kibble-Zurek mechanism and reveal its limitations.

PACS numbers:

The out of equilibrium dynamics induced by a quench
are the focus of intense research [1, 2]. Interesting re-
alizations are quenches through a second order phase
transition, which take the system from the symmetric
phase into the symmetry broken one. Below the tran-
sition, times scaling with the system size are needed to
reach equilibrium and to realize the spontaneous symme-
try breaking process. Before this–typically unreachable–
asymptotic limit the symmetry is broken only locally: the
system is formed by ordered regions of size growing with
time [3]. Only when this size reaches the order of the vol-
ume of the sample the symmetry is broken globally and
the spatial average of the order parameter deviates from
zero. The majority of theoretical studies focused on the
dynamics after infinitely rapid quenches although experi-
mentally quenches are performed at finite speed. Indeed,
since the typical time-scale on which the system evolves
is its age, i.e. the time elapsed since crossing the critical
point, finite quench time-scales (τQ) eventually become
short compared to the relaxation time. Thus, they al-
ter the out of equilibrium dynamics at short times only.
The opposite limit of an extremely slow annealing, cor-
responding to very long τQ, needs a separate treatment.
Surprisingly, this has not been studied in detail in the sta-
tistical physics literature with, however, some exceptions
for disordered systems [4–6]. It has, instead, attracted a
lot of attention within the cosmology and, more recently,
the condensed matter communities. An explanation of
the slow dynamics induced by this protocol was given by
the so-called Kibble-Zurek (KZ) mechanism [7–10]. This
is an equilibrium scaling argument that yields an estimate
for the density of topological defects left over in the or-
dered phase as a function of the quenching rate close to
the critical point. The argument has been recently gen-
eralized to study very slow ‘quantum annealing’ across a
quantum phase transitions in isolated systems [11–13].

The aim of this work is to obtain a more complete pic-
ture of the slow dynamics induced by an extremely slow
annealing. With numerical and analytical arguments we
unveil the limitations of the KZ approach and we obtain
a full scaling description of the slow dynamics. Our main

result is that the dynamic evolution is characterized by
a first adiabatic regime in agreement with KZ, followed
by critical coarsening and, finally, standard coarsening at
very long times. We find a new universal scaling function
that characterizes the growth of the correlation length
out of equilibrium under slow cooling procedures and we
relate it to the number of topological defects in cases in
which these exist.

We start our discussion by recalling the KZ mecha-
nism [8–10]. We take a system in equilibrium at equi-
librium at a value g0 > gc of the control parameter in
the symmetric phase and subsequently anneal it at finite
rate (in typical situations g corresponds to temperature).
As KZ, we focus on the protocol g(t) = gc(1 − t/τQ)
starting from, say, g0 = g(−τQ) = 2gc. Henceforth we
use the standard notation of dynamical critical phenom-
ena [14] and we set the microsocopic time and length
scales to one. Far from the critical point the equilib-
rium relaxation time, τeq, is barely larger than the mi-
croscopic time. Thus, for very small annealing rate, i.e.
very long τQ, the system evolves adiabatically and re-
mains in equilibrium at the running g(t). However, this
regime must inevitably break down since τeq diverges at
the critical point as |∆g|−νzeq with ∆g ≡ g − gc. KZ
argued that the end of the adiabatic regime occurs when
the remaining time, t̂, needed to reach gc becomes smaller
than τeq. This is certainly a lower bound and yields

t̂ ∝ τeq(ĝ) ∝ τ
νzeq/(1+νzeq)
Q with ĝ = g(−t̂). The dis-

tance from the critical point at −t̂ is ∆ĝ ∝ τ
−1/(1+νzeq)
Q .

KZ assumed that after −t̂ the topological defect con-
figuration remains frozen, in the sense that the order
parameter ceases to evolve. In this so called ‘impulse’
regime the effect of lowering g is to reduce fluctuations,
which are in general of thermal origin since very often
g is related to the temperature. The main prediction
of KZ is the number of topological defects, N , at the
symmetric instant t̂ where the coupling constant equals
gc −∆ĝ. Within their approach N is inherited from the
configuration at −t̂, it is therefore equal to the number
of defects in equilibrium at ĝ, and it is estimated to be
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N(t̂) ≃ [f2ξeq(ĝ)]
−d ≃ f−2d|∆ĝ|dν with f of the order

of one. Knowing the τQ-dependence of ∆ĝ allows one to
derive the τQ-dependence of N :

N(t̂) ∝ τ
−dν/(1+νzeq)
Q at t̂ ∝ τ

νzeq/(1+νzeq)
Q . (1)

We stress that for each τQ this expression should be mea-
sured at the special instant t̂(τQ) after the phase tran-
sition. The system’s behaviour at t > t̂ is not fully ad-
dressed by KZ. In some publications it is assumed that
any further evolution [15, 16] can be neglected, whereas
in others it is reckoned that after t̂ the system resumes
its out of equilibrium evolution with a mechanism that
depends on the problem at hand (domain growth, vortex-
anti-vortex diffusion and annihilation, etc.) [9] and the
density of defects may therefore continue to decrease al-
though no detailed study was performed. Numerous nu-
merical [15–19] and experimental [20–24] papers tested
the quantitative consequences of the Kibble-Zurek mech-
anism with variable results. While the numerical studies
claimed that they successfully verified the predictions,
the conclusions are less clear in the experimental works
that studied vortex formation in superfluid 4He and 3He
with null results in the former [20] and agreement with
the KZ prediction in the latter [21]. See [22–24] for dis-
cussions of some recent experimental results disagreeing
with the KZ prediction.
In the following we revisit the KZ scaling analysis.

We focus on the dynamics of classical systems coupled
to an environment, a setting in which the dynamics are
stochastic and the energy, directly linked to the num-
ber of topological defects, is not conserved. We use the
temperature of the thermal bath as the control parame-
ter driving the second order phase transition and a linear
cooling rate T (t) = Tc(1− t/τQ). These choices are made
to keep the discussion simple; extensions to more compli-
cated protocols are straightforward and will be partially
addressed later. Moreover, we restrict to systems with
a unique equilibrium correlation length and a single dy-
namic counterpart, the typical growing length. We solely
deal with problems with power-law scaling laws, that link
e.g. the correlation length to the distance from criticality,
and length-scales to time-scales [25]. These restrictions
exclude from the analysis complex systems with several
competing lengths and problems with quenched disorder.
Henceforth we focus on the growth law of the size of the
correlated regions, R(t). This will allow us to discuss
systems characterized by topological defects as well as
those that are not from the same point of view. We shall
explain below how the density of topological defects can
be obtained from R(t).
Let us start our analysis with some simple remarks.

First, although the initial adiabatic regime and the de-
parture from it are expected, the existence of the im-
puse regime is questionable. During this regime, which
would take place between −t̂ and t̂, the system is sup-
posed not to evolve [7–10]. However, it is well-known

that after a rapid quench into the critical region any
system undergoes critical coarsening described by the
growth of a typical linear length-scale for correlated re-
gions, R(∆t) ∼ ∆t1/zeq where ∆t is the time spent in
the critical region and zeq is the exponent that links the
equilibrium relaxation time and correlation length close
to criticality [26, 27]. Above criticality, the major differ-
ence between slow and rapid quenches is in the extension
of the adiabatic regime. The slower the quench or the an-
nealing, the closer the system gets to the critical point in
equilibrium. However, also for very slow annealing, the
system eventually departs from the adiabatic evolution
and has to undergo critical coarsening.
Our second remark is that once getting across the crit-

ical point, when the running temperature T (t) is far
enough from Tc, the dynamics crosses over to standard
coarsening. In order to get a better insight into this pro-
cess, let us recall that an infinitely rapid quench to a tem-
perature T < Tc leads to a growth law R ≃ λ(T )∆t1/zd

[1]. Now zd is the dynamic exponent that, quite gener-
ally, is different from zeq and depends on the dynamic
rules. The prefactor vanishes at Tc and is characterized
by a singular power law λ(T ) ≃ |T − Tc|

ν(−1+zeq/zd) =

ξ
1−zeq/zd
eq [28]. If the annealing rate is finite, one natu-
rally expects the growth law at long times and far from
the critical point to be R ≃ λ(T (t))∆t1/zd . The reason
is that the dynamical process renormalizing the value of
λ(T (t)) should be finite and, hence, evolve on a much
faster timescale than the coarsening one which instead is
of the order of the age of the system and diverges with t.

We now endeavor to connect the dots and propose a
general scenario for infinitely slow annealing. Our main
conjecture, that is motivated by the previous discussion
and the fact that the system stays for a very long time
in the vicinity of the critical point, involves the growth
of the length-scale R(t):

R(t) ≃ ξeq(T (t)) f

[

t

τeq(T (t))

]

. (2)

This asymptotic form encompasses equilibrium above the
critical point, x ≡ t/τeq(T (t)) ≪ −1, critical coarsening,
x ∝ O(1), and the cross-over to standard coarsening x ≫
1. The limits of f(x) are obtained by requiring to find
the expected adiabatic behavior and standard coarsening
on the two extremes,

R(t) ≃

{

ξeq(T (t)) t ≪ −τeq(T (t)) ,

[ξeq(T (t))]
1−

zeq

zd t
1

zd t ≫ τeq(T (t)) .
(3)

This imposes that f(x) be a constant for x ≪ −1 and
proportional to x1/zd for x ≫ 1. We expect the scaling
function f(x) to be universal since it describes evolution
on diverging time and length scales close to the critical
point. A sketch of ξeq and R is shown in Fig. 1. Our scal-
ing assumption applies to coarsening with and without
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FIG. 1: (Colour online.) (a) The control parameter, ∆g(t) =
[g(t) − gc]/gc, for different cooling rates. The crossover be-
tween adiabatic and out of equilibrium dynamics are signaled
as −t̂i for τQi < τQi+1

. (b) Sketch of the control parameter
dependence of the equilibrium correlation length (thick red
line) and the dynamic growing length R for four linear cool-
ing rate proceedures with τQi < τQi+1

. Values of the control
parameter at which the dependence changes from adiabatic to
critical are shown as ĝi (for simplicity we plot them as singular
points in the evolution of R. In reality they just correspond
to cross-overs). For comparison the assumption of constancy
during the impulse and subcritical regimes are shown with
thin horizontal lines.

topological defects. In the former case, the decaying typ-

ical number of topological defects, N(t) ≃ R(t)−d, reads
for t & τQ

N(t) ≃ τ
dν
zd

(zeq−zd)

Q t
−

d
zd

[1+ν(zeq−zd)] . (4)

Note that a qualitatively similar dependence on t and τQ
was found numerically in [29] in a system with vortex-
antivortex pairs. Evaluating the above expression at

t = t̂ = τ
νzeq/(1+νzeq)
Q we recover KZ’s result, eq (1).

Ours, however, is more general since it applies to any
time t and it allows one to describe all the slow annealing

evolution. For example, N(t) ∝ τ
−d/zd
Q on times of the

order of the inverse annealing rate, t ≃ τQ, thus show-
ing that a substantial decrease takes place after t̂. In
comparison with the KZ mechanism, our arguments al-
low one to understand why R(t̂) ≃ fR(−t̂) with a factor

f that can be as large as 10 in some cases [15]. This was
somewhat mysterious in the KZ scenario where defects
are frozen out in the impulse regime. We understand
the reduction in the number of topological defects as due
to critical coarsening. Taking this phenomenon into ac-
count is crucial for more general annealing protocols, e.g.

T (t) = θ(−t)Tc(1−t/τ
(1)
Q )+θ(t)Tc(1−t/τ

(2)
Q ). For a large

ratio τ
(2)
Q /τ

(1)
Q the system spends a long time in the criti-

cal region and R(t) evolves during the critical coarsening

from [τ
(1)
Q ]ν/(1+νzeq) to [τ

(2)
Q ]ν/(1+νzeq).

In the following we provide numerical evidence for
the conclusions outlined above by presenting results of
a Monte Carlo simulation (using the heat bath algorithm
with random sequential updates) of the 2d Ising model
(IM) on square and triangular lattices. In particular,
we check eqs. (2)-(4) and the universality of the scaling
function f(x). We equilibrate the system at T0 = 2Tc

and we use a linear cooling rate that takes the temper-
ature of the bath from T0 at t = −τQ to T = 0 at
t = τQ. We find that the system undergoes an adia-
batic evolution until it falls out of equilibrium close to
Tc. The typical correlation length, R(t), is extracted
from the analysis of the space-time correlation C(r, t) ≡
〈s(~x)s(~x + ~r)〉 ≃ g(r/R(t)) with the average taken over
100 initial conditions and noise realizations. We use vari-
ous ways to determine R and verify that they yield equiv-
alent results. Two of them are C(R(t), t) = 1/2 and
R(t) =

∫

d2r rζC(r, t)/
∫

d2r rζ−1C(r, t) with ζ a pa-
rameter that is chosen for convenience, namely to weigth
differently shorter or longer distances. In the top panel
of Fig. 2 we test the scaling hypothesis, eq. (2), and the
limits of the scaling function f(x), eq. (3). For both the
square and triangular lattices we find very good agree-
ment between numerical data and theoretical expecta-
tion. The square root growth at positive times demon-
strates that standard coarsening cannot be ignored. The
scaling collapse improves, as expected, restricting the
range of |x|. A zoom on the small |x| region is shown
in the inset. Moreover, we find that the scaling functions
for square and triangular lattices coincide within numer-
ical accuracy, confirming the universality of f(x). The
bottom panel of Fig 2 displays N(τQ) and confirms the

τ
−d/zd
Q decay - the power is shown as a guide-to-the-eye
next to the data.

A further test is provided by the analytic solution to
the evolution of the O(N) model in the large N limit for a
very slow annealing. This is a λφ4 field theory in which
the order parameter is upgraded to an N -dimensional
vector and the fourth order term in the double-well po-
tential is conveniently normalized to allow for an N → ∞
limit in which the model becomes solvable but still non-
trivial [1]. Note that although there are no topological
defects, since the large N limit is taken at fixed dimen-
sion, N ≫ d, the dynamics are still characterized by a
growing correlation length R(t). The analysis of a finite
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FIG. 2: (Colour online.) Top panel: Test of the dynamic
scaling hypothesis (2) and the limits (3) in the 2dIM on a
triangular and a square lattice, annealed at different cooling

rates given in the key. A zoom on the critical region |x|
<
∼ 1

is shown in the inset. The exponents are ν = 1, zeq = 2.17
and zd = 2. Bottom panel: Number of deffects at t = tQ for
different cooling rates. Points represent the numerical data
while the line corresponds to the prediction N(τQ) = τQ

−d/zd

rate quench is a simple generalization of the treatment
of infinite rate ones (see, e.g. [1]). We find that the scal-
ing (3) holds with ν = 1/2 and zd = zeq = 2 in all d > 2.
Due to the coincidence of the z exponents the prefactor
in the bottom expression of eq. (3) equals one and the
dependence on τQ disappears.

As a summary we analyzed the dynamic evolution in-
duced by annealing with rate 1/τQ (τQ → ∞) in pure
systems characterized by conventional dynamic scaling
and standard low temperature coarsening. We obtained
a complete picture of the dynamics which is character-
ized by three regimes: adiabatic, critical coarsening and
standard coarsening. Using scaling arguments we found
the growth law of the correlation length during the an-
nealing and its τQ scaling dependence. The cross-over
between adiabatic and coarsening regimes is governed by
a universal scaling function. We tested our findings with
numerical simulations of the 2d Ising model and a large
N analysis of the O(N) model in d > 2. Our results gen-

eralize the KZ mechanism and, at the same time, show its
limitation. In particular we find that the defect dynam-
ics are not frozen in the so-called impulse regime, as it
can be found by using more general annealing protocols
than a linear ramp in temperature.

Physical situations in which understanding the evolu-
tion during a slow annealing is important and which we
plan to study in the future are disordered and quantum
systems. Several studies have dealt with the former, see
e.g. [4–6]. The latter have only recently received atten-
tion in connection with quantum quenches and annealing
in cold atoms. In these cases the conditions are differ-
ent from the ones analyzed in this paper since isolated

systems in which a coupling is slowly changed through a
quantum critical point are usually considered. The ab-
sence of the thermal bath may change drastically the
physics. The KZ mechanism has been argued to ap-
ply mutatis mutandis to the isolated quantum case as
well [11, 12]. This has been verified in some integrable
cases [13].

We close with a note on an exact study of the cool-
ing rate effects in the relaxation of the classical Ising
chain with Glauber dynamics by P. Krapivsky that shows
qualitative but not quantitative agreement with the KZ
mechanism [30].
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