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Abstract

In a previous paper, we presented a matrix model reproducing the topological
string partition function on an arbitrary given toric Calabi-Yau manifold. Here, we
study the spectral curve of our matrix model and thus derive, upon imposing certain
minimality assumptions on the spectral curve, the large volume limit of the BKMP
“remodeling the B-model” conjecture, the claim that Gromov-Witten invariants of
any toric Calabi-Yau 3-fold coincide with the spectral invariants of its mirror curve.
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1 Introduction

In a previous paper [1], we presented a matrix model that computes the topological string
partition function at large radius on an arbitrary toric Calabi-Yau manifold X. The goal
of this paper is to determine the corresponding spectral curve S.

That the partition function of a matrix model can be recovered to all genus from its
spectral curve was first demonstrated in [2]. [3] pushed this formalism further, showing
that symplectic invariants Fg(S) can be defined for any analytic affine curve S, with no
reference to an underlying matrix model. These invariants coincide with the partition
function of a matrix model when S is chosen as the associated spectral curve. The sym-
plectic invariants Fg satisfy many properties reminiscent of the topological string partition
function [4, 5, 6, 7], motivating Bouchard, Klemm, Mariño, and Pasquetti (BKMP) [8],
building on work of Mariño [9], to conjecture that Fg(S) in fact coincides with the topo-
logical string partition function on the toric Calabi-Yau manifold with mirror curve S.
BKMP successfully checked their claim for various examples, at least to low genus. The
conjecture was subsequently proved in numerous special cases [10, 11, 12, 13, 14, 15].

Bouchard and Mariño [16] noticed that an infinite framing limit of the BKMP conjecture
for the framed vertex, X = C3, implies a conjecture for the computation of Hurwitz
numbers, namely that the Hurwitz numbers of genus g are the symplectic invariants of
genus g for the Lambert spectral curve ex = y e−y. This conjecture was proved recently by
a generalization of [10] using a matrix model for summing over partitions [17], and also by
a direct combinatorial method [18]. Matrix models and the BKMP conjecture related to
toric Calabi-Yau geometries arising from the triangulation of a strip were recently studied
in [19].

In this paper, we derive the large radius limit of the BKMP conjecture for arbitrary toric
Calabi-Yau manifolds, but with one caveat: to determine the spectral curve of our matrix
model, we must make several minimality assumptions along the way. To elevate our
results to a rigorous proof of the BKMP conjecture, one needs to establish a uniqueness
result underlying our prescription for finding the spectral curve to justify these minimal
choices. Such a uniqueness result does not exist to date.

Recall that in [1], we first compute the topological string partition function on a toric
Calabi-Yau geometry X0 which we refer to as fiducial. We then present a matrix model
which reproduces this partition function. Flops and limits in the Kähler cone relate X0

to an arbitrary toric Calabi-Yau 3-fold. As we can follow the action of these operations
on the partition function, we thus arrive at a matrix model for the topological string on
any toric Calabi-Yau 3-folds. Here, we follow the analogous strategy, by first computing
the spectral curve of the matrix model associated to X0, and then studying the action of
flops and limits on this curve.

The plan of the paper is as follows. In section 2, we introduce the fiducial geometry X0

and its mirror. The matrix model reproducing the partition function on X0, as derived
in [1], is a chain of matrices matrix model. It is summarized in section 3 and appendix
A. We review general aspects of this class of matrix models and their solutions in section
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4. In section 5, we determine a spectral curve which satisfies all specifications outlined in
section 4, and demonstrate that it coincides, up to symplectic transformations, with the
B-model mirror of the fiducial geometry. While in our experience with simpler models,
the conditions of section 4 on the spectral curve specify it uniquely, we lack a proof of this
uniqueness property. We thus provide additional consistency arguments for our proposal
for the spectral curve in section 5.5. Flops and limits in the Kähler cone relate the fiducial
to an arbitrary toric Calabi-Yau manifold. Following the action of these operations on
both sides of the conjecture in section 6 completes the argument yielding the BKMP
conjecture for arbitrary toric Calabi-Yau manifolds in the large radius limit. We conclude
by discussing possible avenues along this work can be extended.

2 The fiducial geometry and its mirror

2.1 The fiducial geometry

In [1], we derived a matrix model reproducing the topological string partition function
on the toric Calabi-Yau geometry X0 whose toric fan is depicted in figure 1. We refer to
X0 as our fiducial geometry; we will obtain the partition function on an arbitrary toric
Calabi-Yau manifolds by considering flops and limits of X0.

Figure 1: Fiducial geometry X0 with boxes numbered and choice of basis of H2(X0,Z).

We have indicated a basis of H2(X0,Z) in figure 1. Applying the labeling scheme in-
troduced in figure 2, the curve classes of our geometry are expressed in this basis as
follows,

ri,j = ri +

j∑
k=1

(ti+1,k−1 − ti,k)

si,j = sj +
i∑

k=1

(tk−1,j+1 − tk,j) .

It proves convenient to express these classes as differences of what we will refer to as
a-parameters [1], defined via

ti,j = ai,j − ai,j+1 , ri,j = ai,j+1 − ai+1,j .
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Figure 2: Labeling curve classes, and introducing a-parameters.

2.2 The mirror of the fiducial geometry

The Hori-Vafa prescription [20] allows us to assign a mirror curve to a toric Calabi-Yau
manifold. Each torically invariant divisor, corresponding to a 1-cone ρ ∈ Σ(1), is mapped
to a C∗ variable e−Yρ . These are constrained by the equation∑

ρ∈Σ(1)

e−Yρ = 0 .

Relations between the 1-cones, as captured by the lattice Λh introduced in section (2.1)
of [1], map to relations between these variables: for σ ∈ Σ(2),∑

ρ∈Σ(1)

λρ(σ)Yρ = Wσ . (2.1)

The Wσ are complex structure parameters of the mirror geometry, related to the Kähler
parameters wσ = ri,j, si,j, . . . introduced in the previous subsection via the mirror map,
as we will explain in the next subsection.

The Hori-Vafa prescription gives rise to the following mirror curve CX0 of our fiducial
geometry X0,

n+1∑
i=0

m+1∑
j=0

xi,j = 0 . (2.2)

We have here labeled the 1-cones by coordinates (i, j), beginning with (0, 0) for the cone
(0, 0, 1) in the bottom left corner of box (0, 0) as labeled in figure 1, and introduced the
notation

xi,j = e−Yi,j .

Eliminating dependent variables by invoking (2.1) yields an equation of the form

n+1∑
i=0

m+1∑
j=0

ci,jzi,j = 0 . (2.3)

Here,
zi,j = x1−i−j

0 xi1x
j
2 ,
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where we have defined
x0 = x0,0 , x1 = x1,0 , x2 = x0,1 .

(x0 : x1 : x2) define homogeneous coordinates on CP2. The form of the equation is
independent of the choice of triangulation of the toric diagram. What does depend on
this choice are the coefficients ci,j. It is not hard to write these down for the fiducial
geometry X0 with the choice of basis for H2(X0,Z) indicated in figure 1. Explicitly, the
relations between the coordinates of the mirror curve (2.2) are

xi,0 =
xi−1,0xi−1,1

xi−2,1

eRi−2 , x0,j =
x0,j−1x1,j−1

x1,j−2

eSj−2 , xi,j =
xi−1,jxi,j−1

xi−1,j−1

eTi−1,j−1 . (2.4)

Solving in terms of x0, x1, x2 yields the coefficients c0,0 = c0,1 = c1,0 = 1,

ci,0 = exp

[
i−1∑
k=1

(i− k)(Rk−1 + Tk−1,0)

]
,

c0,j = exp

[
j−1∑
l=1

(j − l)(Sl−1 + T0,l−1)

]
,

and for i, j > 0

ci,j = exp

[
(i+ j − 1)T0,0 +

i−1∑
k=1

(i− k)(Rk−1 + Tk,0) +

j−1∑
l=1

(j − l)(Sl−1 + T0,l) +
i−1∑
k=1

j−1∑
l=1

Tk,l

]
.

Note that the number of coefficients ci,j, up to an overall rescaling, is equal to the number
of independent curve classes ri, sj, ti,j.

In [21], the thickening prescription was put forth for determining the genus and number of
punctures of the mirror curve: one is to thicken the web diagram of the original geometry
to obtain the Riemann surface of the mirror geometry. The procedure is illustrated in
figure 3. We will now verify this procedure by studying the curve (2.3) explicitly.

Let’s consider the curve (2.3) for a single strip (i.e. n = 0) of length m+ 1,

xm+2
0 + xm+1

0 x1 + xm+1
0 x2 + c1,1 x

m
0 x1x2 + c2,0 x

m
0 x

2
1 + c2,1 x

m−1
0 x2

1x2 + c3,0 x
m−1
0 x3

1 + . . .

+ cm+1,0 x0x
m+1
1 + cm+1,1 x

m+1
1 x2 = 0 . (2.5)

Note that the equation is of degree m + 2, but the point (0 : 0 : 1) is an m + 1-tuple
point. By choosing the coefficients to be generic, we can arrange for this singular point
to be ordinary. The genus formula then yields

g =
(d− 1)(d− 2)

2
− m(m+ 1)

2
= 0 .
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Figure 3: Example of the thickening prescription: depicted are the fan for O(−3) → P2, the corre-
sponding web diagram, and the mirror curve obtained via the thickening prescription.

In terms of the physical variables Yi, any point on the curve with a vanishing homogeneous
coordinate corresponds to a puncture. The punctures on the curve (2.5) thus lie at

(0 : 0 : 1) : m+ 1

(0 : 1 : 0) : 1

(1 : xi1 : 0) : m+ 1

(1 : 0 : −1) : 1 ,

where xi1, i = 1, . . . ,m+ 1, are the solutions of the equation

1 + x1 +
m∑
j=1

dix
i+1
1 = 0 .

Note that we reproduce the 2m+ 4 punctures expected from the thickening prescription
of the toric diagram.

For the general case parametrized by (m,n), the degree of the curve is d = m+n+2, and
we have an ordinary m+ 1-tuple point at (0 : 0 : 1) and an ordinary n+ 1-tuple point at
(0 : 1 : 0). The genus formula now yields

g =
(m+ n)(m+ n+ 1)

2
− m(m+ 1)

2
− n(n+ 1)

2
= mn .

The punctures lie at

(0 : 0 : 1) : m+ 1

(0 : 1 : 0) : n+ 1

(1 : xi1 : 0) : m+ 1

(1 : 0 : xj2) : n+ 1 ,

with xi1 the roots of
∑m+1

i=0 ci,0x
i
1 = 0 and xj2 the roots of

∑n+1
j=0 c0,jx

j
2 = 0. Again, we see

that we reproduce the thickening prescription.
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2.3 The mirror map

Above, we have distinguished between Kähler (A-model) parameters wσ and complex
structure (B-model) parameters Wσ. At large radius/complex structure, these are identi-
fied between mirror pairs, but this identification is corrected by the so-called mirror map,1

Wσ = wσ +O(e−wσ) . (2.6)

The exponentials of the parameters Wσ appear as coefficients in the equation defining the
mirror curve. They are global coordinates on the complex structure moduli space of the
mirror curve. To compare expressions obtained in the A-model to those obtained in the
B-model, all expressions are conventionally expressed in terms of flat coordinates wσ. On
the A-model side, these coordinates enter (in exponentiated form denoted generically as
Qα,β below) in the definition of the topological vertex. On the B-model side, they arise
as the appropriate periods of a meromorphic one-form λ, defined in terms of the affine
variables x = x1

x0
, y = x2

x0
in the patch x0 6= 0 of the curve (2.3) as

λ = log y
dx

x
.

By calculating these periods as a function of the coefficients defining the mirror curve, we
obtain the mirror map (2.6).

The coordinates wσ are not globally defined functions on the complex structure moduli
space. In the slightly clearer compact setting, this is due to the fact that the symplectic
basis {αA, βA} of H3(X,Z) in which we expand Ω (the compact analogue of the mero-
morphic 1-form λ introduced above) such that the coefficients of αA furnish our (local)
coordinate system of the complex structure moduli space, undergo monodromy when
transported around a singularity in moduli space.2 A good choice of coordinates in the
vicinity of a singular divisor D hence involves a choice of basis forms that are invariant
under monodromy around that divisor.

1One could take exception to this nomenclature, arguing that the parameters Wσ are the geometric
parameters on both sides of the mirror, and refer to the wσ as the instanton or quantum corrected
parameters. In such conventions, the curve classes in the various toric diagrams should be labeled by
upper case letters.

2Note that the symplectic basis makes no reference to complex structure, one might hence be led to
believe that a global choice (i.e. one valid for any choice of complex structure) should be possible. This
is not so. We consider the family π : X → S, with S the complex structure moduli space. The fiber
over each point w ∈ S, π−1w = Xw, is the Calabi-Yau manifold with the respective complex structure.
Hn(Xw,C) fit together to form a vector bundle F0 over S, with a canonical flat connection, the Gauss-
Manin connection. Using this connection, we can parallel transport a symplectic basis of H3(Xw,C)
along a curve in S. As S is not generically simply connected (due to the existence of degeneration points
of the geometry), this transport may exhibit monodromy. Note that Ω can be defined as the section of
a sheaf in the Hodge filtration of H3 which extends to the singular divisor, hence is single valued. The
monodromy in our choice of flat coordinates is therefore entirely due to the choice of symplectic basis.
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3 Our matrix model

We derived a chain of matrices matrix model that reproduces the topological string par-
tition function on X0 in [1]. For X0 of size (n+ 1)× (m+ 1), as depicted in figure 1, it is
given by

ZMM( ~Q, gs, ~αm+1, ~α
T
0 ) = ∆(X(~αm+1)) ∆(X(~α0))

m+1∏
i=0

∫
HN (Γi)

dMi

m+1∏
i=1

∫
HN (R+)

dRi

m∏
i=1

e
−1
gs

tr [V~ai (Mi)−V~ai−1
(Mi)]

m∏
i=1

e
−1
gs

tr [V~ai−1
(Mi−1)−V~ai (Mi−1)]

m+1∏
i=1

e
1
gs

tr (Mi−Mi−1)Ri

m∏
i=1

e(Si+
iπ
gs

) tr lnMi

etr ln f0(M0) etr ln fm+1(Mm+1)

m∏
i=1

etr ln fi(Mi) . (3.1)

We give the explicit expressions for the various functions entering in this definition in
appendix A. Here, we briefly explain some of its general features.

The matrix model (3.1) is designed to reproduce the topological string partition function
on the toric Calabi-Yau manifold X0 as computed using the topological vertex [22]. Recall
that in this formalism, the dual web diagram to the toric diagram underlying the geometry
is decomposed into trivalent vertices. Each such vertex contributes a factor C(αi, αj, αk)
[22], where αi denote Young tableaux (partitions) of arbitrary size, one associated to each
leg of the vertex. Legs of different vertices are glued by matching these Young tableaux
and summing over them with appropriate weight.

Aside from the coupling constant gs and Kähler parameters of the geometry, denoted
collectively as ~Q, the matrix model (3.1) depends on partitions ~α0, ~αm+1 associated to
the outer legs of the web diagram, which we choose to be trivial in this paper. The two
classes of integrals dRi and dMi correspond to the two steps in which the topological string
partition function on the fiducial geometry X0 can be evaluated: First, the geometry can
be decomposed into m + 1 horizontal strips, with partitions αj,i+1 and αj,i associated
to the upper and lower outer legs of the associated strip web diagram. j = 0, . . . , n
counts the boxes in figure 1 in the horizontal direction, i = 0, . . . ,m + 1 is essentially
the strip index. Each such strip has a dRi integration associated to it. The partition
function on such strips was calculated in [23]. Following [12], we introduce two matrices
Mi, Mi+1 per strip. Their eigenvalues encode the partitions αj,i and αj,i+1 for all j. To
work with finite size matrices, we introduce a cut-off d on the number of rows of the
Young tableaux we sum over. As we argue in section 5.2.1, our matrix model depends on
d only non-perturbatively. The strip partition function is essentially given by the Cauchy
determinant of the two matrices Mi, Mi+1 [1], and the dRi integrals are the associated
Laplace transforms. Gluing the strips together involves summing over the partitions αj,i.
This step is implemented by the dMi integrations. To obtain a discrete sum over partitions
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from integration, we introduce functions fi(Mi) with integrally spaced poles. Integrating
Mi along appropriate contours then yields the sum over partitions as a sum over residues,
the potentials V~ai chosen to provide the proper weight per partition.

4 Generalities on solving matrix models

4.1 Introduction to the topological expansion of chain of matri-
ces

Chain of matrices matrix models have been extensively studied (see Mehta’s book [24] and
the review article [25]), and the computation of their topological expansion was performed
recently in [26, 27].

The solution provided in [27] is based on the computation of the spectral curve SMM of
the matrix model. In [27, 26], only the case of potentials whose derivatives are rational
functions is considered, and similarly to the one matrix model, the planar3 expectation
value of the resolvent of the first matrix of the chain is shown to satisfy an algebraic
equation. The spectral curve is defined to be the solution locus of this equation. A general
recipe is provided in [26, 27] to obtain the spectral curve from algebraic equations and
analyticity properties related to rational potentials and integration contours. Here, our
potentials contain logs of g-functions. As they are not rational, we will have to present
a slight extension of the recipe of [27] in section 4.2.2. This extension from rational
potentials to analytical potentials, although not published, is straightforward, and the
derivation of these results will appear in [28]. In some sense, the derivative of ln g(x)
can be viewed as a rational function with an infinite number of simple poles, i.e. as a
limit of a rational function. More precisely, as an expansion in powers of q, to each order,
it is a rational function. Since the spectral curve can be described by local properties,
independent of the number of poles, one can take the limit of the recipe of [26, 27]. This
is what we shall do in section 4.2.2 below.

Having found the spectral curve SMM of the matrix model, we will compute its symplectic
invariants

Fg(SMM) , g = 0, 1, 2, 3, . . .

Symplectic invariants Fg(S) can be computed for any analytical plane curve S, and thus
in particular for S = SMM. For a general S they were first introduced in [3], as a
generalization of the solution of matrix models loop equations of [2]. Their definition

3For matrix models with N -independent polynomial potentials whose gs dependence is given by an
overall prefactor, the planar limit coincides with the large N limit, but this correspondence can fail if the
potential or the integration contours have a non-trivial N or gs dependence. The planar limit is defined
by keeping only planar graphs in the Feynman graph perturbative expansion around an extremum of the
potential. However, it is helpful to have in mind the intuitive picture that the planar limit is similar to
a large N limit.
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is algebraic and involves computation of residues at branch points of S. We recall the
definition below in section 4.3.

4.2 Definition of the general chain of matrices

We consider chain of matrices matrix models of the form

Z =

∫
E
dM1 . . . dML e

− 1
gs

Tr
∑L
i=1 Vi(Mi) e

1
gs

Tr
∑L−1
i=1 ciMiMi+1 . (4.1)

Note that aside from the potentials Vi(Mi), the only interactions are between nearest
neighbors, whence the name “chain of matrices.” Chain of matrices matrix models can be
solved when the interaction terms between different matrices are of the form TrMiMi+1,
as is the case here.

E can be any ensemble of L normal matrices of size N × N , i.e. a submanifold of CLN2

of real dimension LN2, such that the integral is convergent. E can be many things; for a
chain of matrices model, it is characterized by the contours on which eigenvalues of the
various normal matrices are integrated (see [29] for the 2-matrix model case). For (4.1) to
have a topological expansion, E must be a so-called steepest descent ensemble (see [30],
section 5.5). For a generic ensemble E which would not be steepest descent, lnZ would
be an oscillating function of 1/gs, and no small gs expansion would exist, see [31].

The matrix model introduced in [1] and reproduced in section 3 was defined to reproduce
the topological string partition function, which is defined as a formal series in gs, and
therefore has a topological expansion by construction.

An ensemble E is characterized by filling fractions nj,i,

E =
L∏
i=1

Ei , Ei = HN(γ
n1,i

1,i × γ
n2,i

2,i × · · · × γ
nki,i
ki,i

) , (4.2)

where HN(γn1
1 × · · · × γ

nk
k ) is the set of normal matrices with n1 eigenvalues on path γ1,

n2 eigenvalues on path γ2, . . . , nk eigenvalues on path γk.

As the filling fractions nj,i must satisfy the relation

ki∑
j=1

nj,i = N

for all i, only
∑

i(ki − 1) of them are independent.

We also allow some paths γj,i to have endpoints where e−Tr
∑L
i=1(Vi(Mi)−MiMi+1) 6= 0 –

indeed, in our matrix model, the matrices Ri are integrated on H(RN
+ ).
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4.2.1 The resolvent

The spectral curve encodes all Wi(x), the planar limits (see footnote 3) of the resolvents
of the matrices Mi,

Wi(x) = gs

〈
tr

1

x−Mi

〉
planar

,

see equation (4.5) below. The respective Wi can be expressed as the Stieljes trans-
form

Wi(x) =

∫
ρi(x

′)dx′

x− x′

of the planar expectation value of the eigenvalue density ρi(x) of the matrix Mi,

ρi(x) = gs 〈tr δ(x−Mi)〉planar .

By general properties of Stieljes transforms, singularities of Wi(x) coincide with the sup-
port of the distribution ρi(x)dx:

• Simple poles of Wi(x) correspond to delta distributions i.e. isolated eigenvalues.

• Multiple poles correspond to higher derivatives of delta distributions.

• Cuts correspond to finite densities, the density being the discontinuity of Wi(x)
along the cut,

ρi(x) =
1

2iπ
(Wi(x− i0)−Wi(x+ i0)) . (4.3)

In particular, cuts emerging from algebraic singularities (generically square root singular-
ities) correspond to densities vanishing algebraically (generically as square roots) at the
endpoints of the cut. Cuts emerging from logarithmic singularities correspond to constant
densities.

4.2.2 The spectral curve of the general chain of matrices

When all V ′i are rational, the spectral curve was found in [26, 27], and it is algebraic. We
present here a generalization of this result to more general potentials. The derivations of
these results will appear in [28].

The spectral curve can be obtained by the following procedure:

1. Consider a compact Riemann surface C of genus

g =
L∑
i=1

(ki − 1) ,

where ki denotes the number of cuts of the i-th matrix, as implicitly defined in (4.2).

2. Look for L+ 2 functions on C,

x0(z), x1(z), x2(z), . . . , xL(z), xL+1(z) : C → CP1 .
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The xi are to be holomorphic away from points z ∈ C at which V ′i−1(xi−1) or
V ′i+1(xi+1) become singular, and satisfy the functional relations

ci−1xi−1(z) + cixi+1(z) = V ′i (xi(z)) . (4.4)

Recall that the ci are the coefficients of the interaction potentials in (4.1). We have
set c0 = cL = 1.

For each i = 1, . . . , L, the Riemann surface C can be realized as a branched covering
of CP1 by the projection xi : C → CP1. A choice of branched covering is not unique:
the choice consists in the set of cuts connecting branch points (recall that these are
points at which dxi(z) = 0). We will determine an appropriate covering below in
step 4.

3. If some path γj,i has an endpoint a (called “hard edge” in the matrix model litera-
ture, see [32]), then choose a pre-image ai ∈ x−1

i (a) and require

dxi(ai) = 0 and xi−1(z) has a simple pole at z = ai.

The topological recursion is proved in [27] without hard edges, but it is not difficult
to see, by mixing the results of [32], [33] and [27], that the topological recursion con-
tinues to hold in the presence of hard edges. The proof will appear in a forthcoming
publication [28]. Here, we shall assume that it holds.

4. Choose some contours Âj,i, j = 1, . . . , ki in CP1, such that each Âj,i surrounds all
points of the contour γj,i (related to the matrix ensemble Ei defined in (4.2)) in the
clockwise direction and no other contour γj′,i. For x ∈ CP1 not enclosed in the

contours Âj,i, j = 1, . . . , ki, and given a connected component Aj,i of the pre-image

of the contour Âj,i under xi,

Aj,i ⊂ x−1
i (Âj,i) ,

define the function

Wi(x) =
ci−1

2iπ

ki∑
j=1

∮
Aj,i

xi−1(z) dxi(z)

x− xi(z)
. (4.5)

Generalizing [26] to non-polynomial potentials, we claim that a choice of Aj,i exists
such thatWi(x) is the planar limit of the resolvent of the matrixMi. In the following,
it is this choice that will be referred to as Aj,i.
Notice that not all Aj,i will be homologically independent on C. We require that

we have g =
∑L

i=1(ki − 1) homologically independent Aj,i’s, which coincides with
the genus of C. As a condition on the choice of branched covering, we impose that
Aj,i and ai lie on the same sheet of xi. This condition, in our experience, uniquely
fixes this choice. We will assume that this is the case. We refer to the sheet of xi
containing Aj,i and ai as the physical sheet for xi.
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5. In accord with (4.3), we consider the discontinuity of Wi(x) along the j-th cut. It
is given by

Disc
j

Wi(x) =
1

2πi
(Wi(x+)−Wi(x−))

=
1

2πi
ci−1 Disc

j
xi−1 , (4.6)

as we explain in figure 5.

Figure 4: The integration contour Âj,i on the x-plane, and its image Aj,i on C.

Figure 5: The preimage of the points x+ and x− of (4.6) are depicted as dots in the above diagram, Âj,i
is given by the blue contour, and the preimage of the cut is drawn in red. To take the limit x+ → x−,
one must first shift the contours. The second and fourth term on the RHS of the above diagrammatic
equation then cancel, yielding the RHS of (4.6).

The definition (4.2) of the matrix ensemble Ei is the condition that there are nj,i
eigenvalues of Mi on the contour γj,i, hence corresponds to imposing the filling
fraction conditions

1

2πi

∮
Aj,i

ci−1xi−1dxi = gs nj,i

for i = 1, . . . , L, j = 1, . . . , ki.

In our experience, the conditions enumerated above have a unique solution and define a
unique spectral curve. As emphasized in the introduction, a formal uniqueness proof is
however still lacking.

The spectral curve is defined as the data of the Riemann surface C, and the two functions
x1(z) and x2(z),

SMM = (C, x1, x2).
(4.7)
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4.3 Symplectic invariants of a spectral curve

Once we have found the spectral curve SMM of our matrix model, we can compute the
coefficients Fg in the topological expansion of its partition function,

lnZ =
∞∑
g=0

g2g−2
s Fg ,

by computing the symplectic invariants of this curve,

Fg = Fg(SMM) ,

following [27].

Let us recall the definition of these invariants for an arbitrary spectral curve S.

Let S = (C, x, y) be a spectral curve, comprised of the data of a Riemann surface C and
two functions x(z), y(z) : C → C, meromorphic on C away from a finite set of points
(we wish to allow logarithms).4 We will assume that dx is a meromorphic form on all of
C.

4.3.1 Branchpoints

Let ai be the branch points of the function x,

dx(ai) = 0.

We assume that all branch points are simple, i.e. that dx has a simple zero at ai. This
implies that in the vicinity of ai, the map x is 2 : 1. We introduce the notation z̄ 6= z
such that

x(z̄) = x(z).

z̄ is called the conjugate point to z, and it is defined only in the vicinity of branch points,
as depicted in figure 6.

We also require that the branch points of x and y do not coincide, such that dy(ai) 6= 0
and y(z) therefore has a square-root branchcut as a function of x at x(ai). If y is finite
at ai, its local behavior is hence given by

y(z) ∼ y(ai) + Ci
√
x(z)− x(ai) .

If ai corresponds to a hard edge, we require y to have a pole here. Its local behavior is
hence given by

y(z) ∼ Ci√
x(z)− x(ai)

.

4In fact, the most general setting in which this formalism is valid has not yet been established. We
will state it within the generality we need here i.e. we assume that dx is meromorphic forms on C (this
allows x and y to have logarithms).
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x

y

z

z

x(z)

a2a 1

Figure 6: At a regular branch point a ∈ C of x, y as a function of x has a branchcut y ∼ y(a) +
C
√
x− x(a). If z is a point on one branch near a, we call z̄ the conjugate point on the other branch; it

has the same x projection, x(z̄) = x(z). Notice that z̄ is defined only locally near branch points. If we
follow z from a1 to a2, z̄ may have to jump from one branch to another.

4.3.2 Bergman kernel

On a curve C, there exists a unique symmetric 2-form B(z1, z2) with a double pole on the
diagonal z1 = z2 and no other poles, with the following normalization on A-cycles,∮

z2∈Aj,i
B(z1, z2) = 0.

In any local coordinate near z1 = z2, one has

B(z1, z2) ∼ dz1 dz2

(z1 − z2)2
+ regular .

B is called the Bergman kernel of C, or the fundamental 2-form of the second kind
[34].

4.3.3 Recursion kernel

We now define the recursion kernel K as

K(z0, z) =

∫ z
z̄
B(z0, z

′)

2(y(z̄)− y(z)) dx(z)
.

This kernel is a globally defined 1-form in the variable z0 ∈ C. In the variable z, it is the
inverse of a 1-form (that means we have to multiply it with a quadratic differential before
computing any integral with it); it is defined only locally near branch points of x, such
that K(z0, z̄) = K(z0, z). At the branch points, it has simple poles,

K(z0, z) ∼ −
B(z0, z)

2 dx(z) dy(z)
+ regular.
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4.3.4 Topological recursion

Correlation forms W
(g)
n (z1, . . . , zn) (not to be confused with the resolvents Wi(z) intro-

duced above) are symmetric n-forms defined by

W
(0)
1 (z) = −y(z)dx(z) ,

W
(0)
2 (z1, z2) = B(z1, z2) ,

and then by recursion (we write collectively J = {z1, . . . , zn}),

W
(g)
n+1(z0, J) =

∑
i

Res
z→ai

K(z0, z)
[
W

(g−1)
n+2 (z, z̄, J)

+

g∑
h=0

′∑
I⊂J

W
(h)
1+|I|(z, I)W

(g−h)
1+n−|I|(z̄, J \ I)

]
where

∑′
I is the sum over all subsets of J , restricted to (h, I) 6= (0, ∅) and (h, I) 6=

(g, J).

Although it is not obvious from the definition, the forms W
(g)
n are symmetric. For 2 −

2g− n < 0, they are meromorphic n-forms with poles only at branch points. These poles
are of degree at most 6g − 4 + 2n, and have vanishing residues.

For the one matrix model, the W
(g)
n coincide with the n-point function of the trace of the

resolvent at order g in the topological expansion.

4.3.5 Symplectic invariants

Finally, for g ≥ 2, we define the symplectic invariants Fg (also denoted W0(g) in [3])
by

Fg(S) =
1

2− 2g

∑
i

Res
z→ai

Φ(z)W
(g)
1 (z) ,

where Φ is any function defined locally near branch points of x such that dΦ = ydx.

The definitions of F1 and F0 are more involved and we refer the reader to [3]. F0 is called
the prepotential, and F1 is closely related to the determinant of the Laplacian on C with
metrics |ydx|2, see [35, 36].

The Fg(S)’s depend only on the orbit of S under the group of transformations generated
by

R : S 7→ S̃ = (C, x, y +R(x)) where R(x) is any rational function of x,

F : S 7→ S̃ = (C, f(x), y/f ′(x)) where f(x) is an analytical function of x, with f ′

rational, such that df = f ′dx has the same number of zeroes as dx,

S : S 7→ S̃ = (C, y,−x).
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These transformations are symplectic, i.e. they leave dx ∧ dy invariant.

The symplectic invariants are homogeneous of degree 2− 2g,

Fg(C, x, λy) = λ2−2g Fg(C, x, y). (4.8)

In particular, they are invariant under the parity transformation Fg(C, x,−y) = Fg(C, x, y).

5 The spectral curve for the topological string’s ma-

trix model

Applying the procedure outlined in section 4.2.2 to our matrix model, we will determine
a spectral curve SMM(X0) in this section. [27] demonstrated that for a chain of matrices,
we have

lnZ =
∑
g

g2g−2
s Fg(SMM) ,

with Fg the symplectic invariants of [3]. In our case, since we have engineered our matrix
model to yield5 GWg(X0) as its partition function, re-computing the partition function
via the methods of [27] will yield

GWg(X0) = Fg(SMM) .

This relation is already quite interesting, as it allows for explicit computation of the
Gromov-Witten invariants. Our goal however will be to go further. We will argue that
SMM is symplectically equivalent to the mirror spectral curve SX̂0

of section 2.2,

SMM ∼ SX0 .

Since the Fg’s are symplectic invariants, this will imply the BKMP conjecture for X0,
i.e.

GWg(X0) = Fg(SX0).

5.1 Applying the chain of matrices rules

We now apply the rules of section 4.2.2 to the chain of matrices model introduced in
section 3.

• Recall that the integration ensembles for the matrices M0 and Mm+1 are such that
for each matrix, all eigenvalues are integrated on the same contour (A.7). Hence,
k0 = km+1 = 1, and the corresponding filling fractions are equal to N . For i =
1, . . . ,m, the matrix Mi is integrated on H(γd0,i × γd2,i × · · · × γdn,i), where γj,i is a

5As we have here reserved the notation Fg for the symplectic invariants of our matrix model, we refer
to the topological string free energies as GWg.
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contour which surrounds all points of the form qaj,i+N. There are thus ki = n + 1
filling fractions, each equal to d. The matrices Ri are integrated on H(RN

+ ). We

denote the number of their cuts by k̃i. Hence, k̃i = 1, with the respective filling
fraction equal to N .

According to condition 1 of section 4.2.2, the genus of the spectral curve C is thus
given by

g =
m+1∑
i=0

(ki − 1) +
m+1∑
i=1

(k̃i − 1) = nm .

• Following condition 2 of section 4.2.2, we introduce functions xi(z), i = 0, . . . ,m+1,
associated to the matrices Mi, and functions yi(z), i = 1, . . . ,m + 1, associated to
the matrices Ri, as well as two additional functions y0(z) and ym+2(z) at the ends
of the chain.

They must satisfy the following requirements:

– Since there is no potential for the matrices Ri, equation (4.4) implies that we
have, for i = 1, . . . ,m+ 1,

xi(z)− xi−1(z) = 0 .

We can hence suppress the index i on these functions, x(z) = xi(z).

– For i = 1, . . . ,m, equation (4.4) gives

yi(z)−yi+1(z) = 2V ′~ai(x(z))−V ′~ai+1
(x(z))−V ′~ai−1

(x(z))−gs
f ′i(x(z))

fi(x(z))
− gs Si + iπ

x(z)

and

y0(z)− y1(z) = V ′~a0(x(z))− V ′~a1(x(z))− gs
f ′0(x(z))

f0(x(z))
,

ym+1(z)− ym+2(z) = V ′~am+1
(x(z))− V ′~am(x(z))− gs

f ′m+1(x(z))

fm+1(x(z))
.

More explicitly, in terms of the function

ψq(x) = xg′(x)/g(x) ,

whose small gs expansion

ψq(x) = − 1

ln q

∞∑
n=0

(−1)nBn

n!
(ln q)n Li1−n(1/x)

=
1

ln q

[
ln (1− 1

x
)− ln q

2(x− 1)
−
∞∑
n=1

B2n

(2n)!
(ln q)2n Li1−2n(x)

]
.
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we worked out in appendix A of [1], we obtain

x(z)(yi+1(z)− yi(z))

= iπ + gsSi − gs
∑
j

(2ψq(q
aj,i/x(z))− ψq(qaj,i+1/x(z))− ψq(qaj,i−1/x(z)))

+gs
x(z)f ′i(x(z))

fi(x(z))
, (5.1)

as well as

x(z)(y1(z)− y0(z)) = −gs
∑
j

ψq(q
aj,0/x(z)) + gs

∑
j

ψq(q
aj,1/x(z))

−gs
∑
j

d−1∑
k=0

x(z)

x(z)− qaj,0+k
,

x(z)(ym+2(z)− ym+1(z)) = −gs
∑
j

ψq(q
aj,m+1/x(z)) + gs

∑
j

ψq(q
aj,m/x(z))

−gs
∑
j

d−1∑
k=0

x(z)

x(z)− qaj,m+1+k

Note that we have explicitly used the fact that the partitions αj,m+1 and αj,0
are chosen to be trivial.

– Since the integral over Ri is over HN(R+), i.e. its eigenvalues are integrated on
R+, the integration contour has an endpoint (hard edge) at yi = 0. Condition
3 hence requires that at a pre-image y−1

i (0), which we will refer to as ∞i, the
following holds

yi(∞i) = 0 , dyi(∞i) = 0 , x(z) has a simple pole at z =∞i .

Furthermore, introducing a local parameter z in the neighborhood of ∞i, the
above translates into

yi(z) ∼ z2 , x(z) ∼ 1/z .

Hence, ∀ i = 1, . . . ,m+ 1,
yi ∼ O(1/x2) .

• The relations (5.1) imply that near ∞i, we have

x(yj+1 − yj) ∼
z→∞i

iπ + gsSj + gs

n∑
l=0

(2al,j − al,j+1 − al,j−1) +O(1/x) .

In particular, it follows that∞j 6=∞i. Thus, all points {∞1, . . . ,∞m+1} ⊂ x−1(∞)
are distinct , i.e. condition 3 requires that x−1(∞) have at least m+ 1 points.
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m+1
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A0,m+1

A0,1

A0,m

Figure 7: The spectral curve of our matrix model can be represented as follows. The cover of CP1

provided by x has m + 1 sheets. Instead of the projective plane of x, we represent the sheets of lnx,
which are cylinders. Cycles Aj,i appear in sheets i− 1 and i. They enclose singularities of the resolvent
Wi. Algebraic cuts are represented as vertical cylinders, and poles and log singularities are represented
as grey strips. There is only one cycle Aj,0 (which is in sheet 0) and one Aj,m+1 (in sheet m), and they
enclose only poles or log singularities of y0 resp. ym+1.

We will make the minimal assumption that x−1(∞) has exactly m + 1 elements
that are simple poles of x, and that x has no further singularities, i.e. that x is a
meromorphic function of degree m+ 1 on C.
• By condition 5, since for i = 0, . . . ,m+ 2 there are d eigenvalues of Mi of the form
qaj,i+N surrounded by the path Âj,i , we have the (m + 2) × (n + 1) filling fraction
conditions

1

2iπ

∮
Aj,i

yi dx = d gs for i = 0, . . . ,m+ 1, j = 0, . . . , n .

x hence defines an m + 1 sheeted cover of CP1. Considering the function ln x instead,
with singularities at x = 0 and x = ∞, each sheet of this cover is mapped to a cylinder.
We have depicted this covering in figure 7, and indicated the singularities of yi on each
sheet: algebraic cuts are represented by vertical cylinders, and poles and logarithmic cuts
by grey strips.

In sheet i we have represented some contours Aj,i whose image under the projection
x : C → CP1 surrounds all points of type qaj,i+N.

For i = 1, . . . ,m, the resolvent Wi(x) of the ith matrix Mi is computed as a contour
integral around the sum over j of cycles Aj,i on sheet i,

Wi(x) =
n∑
j=0

1

2iπ

∮
Aj,i

yi(z
′)dx(z′)

x− x(z′)
.
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Also, as argued in [1], the potentials of M0 and Mm+1 are such that in fact the matrices
M0 and Mm+1 are frozen, and thus their resolvents contain only poles. In terms of the
functions y0 and ym+1, we conclude that the singularities of y0 in Aj,0 in sheet 1 and the
singularities of ym+1 in Aj,m+1 in sheet m+ 1 can be only poles, not cuts.

Since condition 1 requires that the genus be g = nm, we see that there can be no other
cuts than the ones already discussed – the genus would be higher, otherwise.

5.2 Symplectic change of functions

The spectral curve of the matrix model is SMM = (C, x, y0), and our goal is to relate it to
the mirror curve described in section 2.2. The mirror curve is described via the algebraic
equation (2.3) in the two functions x1, x2 : Cmirror → CP1 (in the patch x0 = 1). We wish
to obtain a similar algebraic description of C. Due to log singularities in y0, to be traced
to the small gs behavior of ψq(x), an algebraic equation in the variables (x, y0) cannot
exist (recall that x is meromorphic). In this section, we shall, via a series of symplectic
transformations on the yi of the type enumerated in section 4.3.5, arrive at functions Yi
that are meromorphic on C, and hence each present a viable candidate to pair with x to
yield an algebraic equation for C.

Essentially, we wish to introduce the exponentials of yi. While this will eliminate the log
singularities, poles in yi would be elevated to essential singularities. We hence first turn
to the question of eliminating these poles.

5.2.1 The arctic circle property

On the physical sheet, the interpretation of a pole of yi is as an eigenvalue of the matrix Mi

with delta function support. Such a so-called frozen eigenvalue can arise in the following
way:

The sum over all partitions is dominated by partitions close to a typical equilibrium
partition, i.e. a saddle point. The typical partition has a certain typical length referred to
as its equilibrium length n̄. All partitions with a length very different from the equilibrium
length contribute only in an exponentially small way (and thus non-perturbatively) to the
full partition function. Introducing a cutoff on the length of partitions which is larger
than the equilibrium length hence does not change the perturbative part of the partition
function. Now recall that when we defined the hi(γ) of a representation γ in appendix A,
we introduced an arbitrary maximal length d such that l(γ) ≤ d and set

hi(γ) = aγ + d− i+ γi .

Setting γi = 0 for d ≥ i > n̄ yields hi that do not depend on the integration variables,
hence are frozen at fixed values. This behavior is referred to as the arctic circle prop-
erty [37], as all eigenvalues beyond the arctic circle situated at equilibrium length n̄ are
frozen.
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Returning to our matrix model, the eigenvalues of the matrices Mi are given by q(hj,i)l .
For d ≥ l > nj,i, they are frozen, and thus contribute poles to yi by (4.5) (recall that poles
of the resolvent correspond to eigenvalues with delta function support) in the physical
sheet. We will assume that these are the only poles in the physical sheet and we subtract
them to obtain new functions ỹi,

ỹ0(z) = x(z)y0(z)−
∑
j

d−1∑
k=0

gsx(z)

x(z)− qaj,0+k
,

ỹm+2(z) = x(z)ym+2(z) +
∑
j

d−1∑
0

gsx(z)

x(z)− qaj,m+1+k

and for i = 1, . . . ,m+ 1,

ỹi(z) = x(z)yi(z)−
∑
j

d−nj,i−1∑
k=0

gsx(z)

x(z)− qaj,i+k
+
∑
j

d−nj,i−1−1∑
k=0

gsx(z)

x(z)− qaj,i−1+k
.

We have set
nj,0 = 0 , nj,m+1 = 0 .

Notice that at large x(z) in sheet i we have

ỹ0 ∼ O(1/x(z)) , ỹm+2 ∼ O(1/x(z))

and for i = 1, . . . ,m+ 1

ỹi ∼ gs
∑
j

(nj,i − nj,i−1) +O(1/x(z)).

As a general property of ψq, we have for any integer nj,i ≤ d

ψq(q
aj,i/x) = ψq(q

aj,i+d−nj,i/x) +

d−nj,i−1∑
k=0

x

x− qaj,i+k
.

Hence, the loop equations for the new functions ỹi read

ỹi+1(z)− ỹi(z) = iπ + gs Si
+gs

∑
j

(2ψq(q
aj,i+d−nj,i/x(z))− ψq(qaj,i+1+d−nj,i+1/x(z))

−ψq(qaj,i−1+d−nj,i−1/x(z))) + gs
x(z)f ′i(x(z))

fi(x(z))
,

ỹ1(z)− ỹ0(z) = gs
∑
j

ψq(q
aj,0+d/x(z))− gs

∑
j

ψq(q
aj,1+d−nj,1/x(z)) ,
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a+d−n a+d−naa hi hi i

ρ

Figure 8: We shift the cut-off d on the representation lengths, d → nj,i, with nj,i chosen such that
frozen eigenvalues in the expected distribution of the hi are suppressed. In the limit of vanishing spacing
(gs → 0), the equidistant frozen eigenvalues give rise to a constant eigenvalue density region.

ỹm+2(z)− ỹm+1(z) = gs
∑
j

ψq(q
aj,m+1+d/x(z))− gs

∑
j

ψq(q
aj,m+d−nj,m/x(z)) .

The nj,i in the above definitions are defined as the equilibrium lengths, i.e. by the property
that the functions ỹi have no poles on their physical sheet. That such a choice of nj,i exists
is suggested by the arctic circle property.

Note that the nj,i can also be specified by the fact that qaj,i+d−nj,i be the beginning of the
cut encircled by γj,i. As we have identified the discontinuities of yi to lie across branchcuts
of x, this implies that x has ramification points at the element of x−1(qaj,i+d−nj,i) lying on
the physical sheets of yi.

Note that the arctic circle property also implies the perturbative independence of our
expressions from the arbitrary cut-off d. Changing d to d + d′ merely introduces d′ new
frozen eigenvalues hi. This independence from d is important in establishing the equality
between the topological string partition function and our matrix integral (3.1), as the
topological vertex formulae in fact are formulated in the limit d→∞.

5.2.2 Obtaining globally meromorphic functions

We have arrived at functions ỹi that have no poles on their physical sheet, and are thus
safely exponentiated there. We wish now to use the loop equations to obtain functions
which are globally well-behaved.

To this end, we note that since the Gromov-Witten invariants are defined as a formal
power series in gs, we can compute the spectral curve order by order in gs, invoking the
following small ln q expansion [1]:

ψq(q
aj,i+d−nj,i/x) ∼ − 1

gs
ln(1− x

qaj,i+d−nj,i
) +

x

2(x− qaj,i+d−nj,i)

+
1

gs

∞∑
n=1

B2n g
2n
s

(2n)!
Li1−2n(qd−nj,i+aj,i/x) .
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The functions f ′i/fi are completely non-perturbative; one can easily check with the above
expansion that they can be replaced by 0 to every order in gs.

Introducing new functions X(z) and Yi by the formulae

x(z) = qdX(z) ,

ỹ0(z) = lnY0(z) ,

ỹm+2(z) = lnYm+2(z) ,

and for i = 1, . . . ,m+ 1

ỹi(z) = lnYi(z) +
∑
j

X(z)gs
2(X(z)− qaj,i−nj,i)

+
1

gs

∑
j

∞∑
n=1

B2n g
2n
s

(2n)!
Li1−2n(qaj,i−nj,i/X(z))

−
∑
j

X(z)gs
2(X(z)− qaj,i−1−nj,i−1)

− 1

gs

∑
j

∞∑
n=1

B2n g
2n
s

(2n)!
Li1−2n(qaj,i−1−nj,i−1/X(z))

yields loop equations that are algebraic on their right hand side,

Yi
Yi+1

= − e−gs Si
∏
j

(X − qaj,i+1−nj,i+1)(X − qaj,i−1−nj,i−1)

(X − qaj,i−nj,i)2∏
j

q2(aj,i−nj,i)−(aj,i+1−nj,i+1)−(aj,i−1−nj,i−1) ,

Y0

Y1

=
∏
j

(X − qaj,1−nj,1)
(X − qaj,0)

∏
j

qaj,0−(aj,1−nj,1) ,

Ym+1

Ym+2

=
∏
j

(X − qaj,m−nj,m)

(X − qaj,m+1)

∏
j

qaj,m+1−(aj,m−nj,m) , (5.2)

i.e.

Yi
Y0

= egs(S1+···+Si−1)
∏
j

q(aj,i−nj,i)−(aj,i−1−nj,i−1)
∏
j

X − qaj,i−1−nj,i−1

X − qaj,i−nj,i
.

Since we have argued that the Yi are holomorphic on their physical sheet, and the ratio
Yi/Yi+1 is purely algebraic, we conclude that the Yi are meromorphic functions on all of
C. This was the goal we had set out to achieve.

Note that the above changes of variables have modified the asymptotics at infinity and
the integrals over the A-cycles. More precisely, we have

∀i ∈ [1,m+ 1] : lnYi ∼∞i

ỹi ∼∞i

gs
∑
j

(nj,i − nj,i−1) +O(
1

x
) , (5.3)

lnY0 = ỹ0∼∞O(
1

x
) ,
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lnYm+2 = ỹm+2∼∞O(
1

x
) .

The filling fraction equation reads

1

2iπ

∫
Aj,i

ỹi(z)

x(z)
dx(z) = gs(d− (d− nj,i)) = gs nj,i . (5.4)

In terms of Y0, these conditions can be rewritten as

lnY0 ∼∞i

−gs(S1 + · · ·+ Si−1) + gs

n∑
j=0

(aj,i − aj,i−1) +O(
1

x
)

and

1

2iπ

∫
Aj,i

lnY0
dX

X
=

1

2iπ

∫
Aj,i

lnYi
dX

X
+

1

2iπ

∫
Aj,i

lnX d ln

(
Yi
Y0

)
=

1

2iπ

∫
Aj,i

lnYi
dX

X
+

1

2iπ

∫
Aj,i

lnX d

(
i∑

k=1

ln
Yk
Yk−1

)

=
1

2iπ

∫
Aj,i

lnYi
dX

X
− 1

2iπ

∫
Aj,i

lnX

(∑
l

dX

X − qal,i−nl,i
− dX

X − qal,i−1−nl,i−1

)
=

1

2iπ

∫
Aj,i

lnYi
dX

X
+ gs(aj,i − nj,i)

= gsnj,i + gs (aj,i − nj,i)
= gsaj,i .

5.3 Recovering the mirror curve

We have argued above that X and Yi, and hence in particular Y0, are meromorphic
functions on C. There must hence exist a polynomial H(X, Y ) such that (see e.g. Theorem
5.8.1 in [38])

H(X, Y0) = 0 .

The facts that X provides an m+1 sheeted cover of CP1 and that Y0 may have n+1 poles
in its physical sheet imply that the polynomial H has degrees at least (n+ 1,m+ 1). As
above, we shall choose the minimal hypothesis that it has exactly these degrees. Thus,

H(X, Y ) =
m+1∑
i=0

n+1∑
j=0

Hi,jX
j Y i. (5.5)

As we saw in section 2.2, projectivizing a generic polynomial of these degrees (yielding
a homogeneous polynomial of degree m + n + 2) indeed gives rise to a curve of genus
g = nm.

We now need to determine the (n+ 2)(m+ 2)−1 unknown coefficients of H (H is defined
up to a global multiplicative constant).
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The cycle integrals ∮
Aj,i

lnY0
dX

X
= 2iπgs aj,i

provide (n+ 1)m constraints on the coefficients of H. We also have m+ 1 constraints for
the behavior at ∞i, i = 1, . . . ,m+ 1,

Res
∞i

lnY0
dX

X
= gs(S1 + · · ·+ Si−1)− gs

n∑
j=0

(aj,i − aj,i−1) .

Finally, requiring that Y0 has poles at qaj,0 and Ym+2 has zeroes at qaj,m+1 gives another
2(n+ 1) constraints, which we may write as

Res
qaj,0

lnX
dY0

Y0

= gsaj,0 ,

Res
qaj,m+1

lnX
dYm+2

Ym+2

= gsaj,m+1 .

This gives enough equations to completely determine H. Knowing H, we know the
location of branch points as functions of aj,i’s and Si’s, and can hence determine the nj,i
by requiring that qaj,i−nj,i be a branch point.

Notice that we can choose to express the period integrals in any linear combination of
A-cycles. In particular,∮

Aj,i+1−Aj,i
lnY0

dX

X
= 2iπgs (aj,i+1 − aj,i) = 2iπ gs tj,i ,∮

Aj,i+1−Aj+1,i

lnY0
dX

X
= 2iπgs (aj,i+1 − aj+1,i) = 2iπ gs rj,i .

Similarly, we may also take linear combinations of A-cycles together with circles sur-
rounding the poles or zeroes of x in order to get the sj,i classes. We hence conclude that
the periods of the curve H(X, Y0) = 0 yield the quantum corrected Kähler parameters of
the fiducial toric geometry X0, allowing us to identify it with the corresponding mirror
curve.

5.4 Topological expansion and symplectic invariants

Following [27], we obtained
SMM = (C, x, y0)

as the spectral curve of our matrix model at the end of section 5.1.

As reviewed in section 4.3, we can compute the corresponding symplectic invariants
Fg(ŠMM), which assemble to yield the matrix model partition function [27],

lnZ =
∑
g

g2g−2
s Fg(SMM) .
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Figure 9: The spectral curve (X, 1
X ln (Y0)) has the following structure: X(z) is a meromorphic function

of degree m+ 1 on a curve of genus g = nm. Therefore it has m+ 1 poles and m+ 1 zeroes. It provides
a branched covering of CP1. We prefer to represent lnX instead of X, and thus we have m + 1 copies
of the lnX-cylinder. In each sheet there is one zero and one pole of X. Y0 is a meromorphic function of
degree n + 1, so that it has n + 1 zeroes in sheet 0, and n + 1 poles in sheet m + 1. We recognize the
mirror curve SX̂0

, which is a thickening of the toric web diagram.

The symplectic transformation R of section 4.3.5 maps (C, x, y0) to (C, x, 1
x

lnY0) order
by order in gs. F maps this to (C, X, 1

X
lnY0), and a second application of F yields

ŜMM = (C, lnX, lnY0) .

By the symplectic invariance of the Fg, we therefore have, order by order in powers of
gs,

Fg(SMM) = Fg(ŜMM) .

Since our matrix model was engineered to reproduce the Gromov-Witten invariants of X0,
we have arrived at

GWg(X0) = Fg(C, lnX, lnY0) ,

with X and Y0 obeying the algebraic equation

H0(X, Y0) = 0

which coincides with the equation (2.3) describing the mirror curve of X0.

Given our minimality assumptions on the spectral curve, we have thus derived the BKMP
conjecture for the fiducial geometry X0.

5.5 The small q limit and the thickening prescription

The above derivation of the spectral curve for the matrix model is not fully rigorous, as
we have relied on making minimal assumptions along the way. Although the spectral
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curve we have found here satisfies all the constraints of section 4.2.2, to prove that it is
the spectral curve of our matrix model requires a uniqueness result which we currently
do not have.

In this section, we provide a heuristic argument that the qualitative behavior of the
spectral curve and the mirror curve coincide at small q.

At small q, only very small partitions contribute to the matrix integral. Almost all
eigenvalues of Mi are frozen to the values qaj,i+d−l. By the arguments in section 5.2.1, the
resolvent Wi(x) hence behaves at small q as

Wi(x) ∼
n∑
j=0

d∑
l=1

1

x− qaj,i−l+d
+ small cut near qaj,i+d .

Pictorially, the size of the cuts is shrinking in this limit, replacing the spectral curve by
its skeleton, see figure 10.

On the other hand, the mirror curve is a priori a tree level quantity, hence does not depend
on q = e−gs . However, recall that we have defined the Kähler parameters Q associated to
a curve C as

Q = q
∫
C J .

The large q limit hence corresponds to the large curve class limit, i.e. the distance between
the vertices of the pairs of pants out of which the mirror curve is constructed is taken to
infinity. Just as the spectral curve, the mirror curve thus collapses to its skeleton in the
q → 0 limit.

6 The general BKMP conjecture

So far, we have obtained the BKMP conjecture only for the fiducial geometry X0. Studying
the behavior of the partition function under flop transitions will allow us to extend our
argument to arbitrary toric geometries.

6.1 Flop invariance of toric Gromov-Witten invariants

Under the proper identification of curve classes, Gromov-Witten invariants (at least on
toric manifolds) are invariant under flops. Assume the toric Calabi-Yau manifolds X and
X+ are related via a flop transition, φ : X → X+. In a neighborhood of the flopped
(−1,−1) curve, the respective toric diagrams are depicted in figure 11.

The 1-cones of ΣX, corresponding to the toric invariant divisors of X, are not affected by
the flop, hence can be canonically identified with those of X+. The 2-cones τi in these
diagrams correspond to toric invariant 2-cycles Ci, C

+
i in the geometry. The curve classes

of X push forward to classes in X+ via

φ∗([C0]) = −[C+
0 ] , φ∗([Ci]) = [C+

i ] + [C+
0 ] . (6.1)
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Spectral
curve

density of
eigenvalues

a a j+1,ij,i

!
!

j,i
j+1,i

Figure 10: In the small q limit, only very small partitions contribute to the matrix integral, therefore
the density of eigenvalues of Mi tends to the flat density (a Dirac comb of equidistant delta functions),
the non-flat part, which reflects the cuts of the spectral cut, shrinks to zero.

τ0 τ+
0τ1

τ2

τ3

τ4

τ1

τ4

τ3

τ2

Figure 11: X and X+ in the vicinity of the (-1,-1) curve.

All other curve classes ~C of X are mapped to their canonical counterparts in X+. Under
appropriate analytic continuation and up to a phase factor (hence the ∝ in the following
formula), the following identity then holds [39, 23, 40],

ZGW (X, Q0, Q1, . . . , Q4, ~Q) ∝ ZGW (X+, 1/Q0, Q0Q1, . . . , Q0Q4, ~Q) ,

i.e.

GWg(X, Q0, Q1, . . . , Q4, ~Q) = GWg(X
+, 1/Q0, Q0Q1, . . . , Q0Q4, ~Q) .

6.2 Proof of flop invariance via mirror symmetry

Flop invariance of Gromov-Witten invariants upon the identification (6.1) is immediate
upon invoking mirror symmetry, as (6.1) maps the mirror curve of X to that of X+. The
proof is a simple computation.
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τ0 τ+
0τ1 τ1

x0 x0x1 x1

x2 x2x3 x3

x4 x4

Figure 12: X and X+ in the vicinity of the (-1,-1) curve.

Let us introduce the notation t0, t1, t
+
0 , t

+
1 for the Kähler volume of the curve classes Ci, C

+
i

corresponding to the respective 2-cones. In terms of these, we obtain for the mirror curve
of X

x0 + x1 + x2 +
x1x2

x0

eT0 +
x2

1

x0

e−T1 = 0 ,

while the mirror curve of X+ is given by

x0 + x1 + x2 +
x1x2

x0

e−T
+
0 +

x1x3

x2

e−T
+
1 = 0 .

Upon invoking x3 = x1x2
x0
e−T

+
0 , we easily verify that the identification (6.1) maps these

curves and their associated meromorphic 1-forms λ into each other.

6.3 The BKMP conjecture

Any toric Calabi-Yau manifold X with Kähler moduli ~Q can be obtained from a sufficiently
large fiducial geometry (X0, ~Q0) upon performing a series of flop transitions and taking
unwanted Kähler moduli of X0 to ∞, see figure 13 for an example.

Figure 13: Example: We obtain local P2 from the fiducial geometry with 2 × 2 boxes by performing
five flops and then sending the Kähler parameters of the unwanted edges to ∞.

The Kähler moduli of X are related to those of X0 by some relation ~Q = f( ~Q0). We have
just argued that the mirror curves of X0 and X are equal upon this identification,

SX, ~Q = SX0, ~Q0
,
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as are the respective Gromov-Witten invariants,

GWg(X, ~Q) = GWg(X0, ~Q0) .

Given the BKMP conjecture for the fiducial geometry,

GWg(X0, ~Q0) = Fg(SX0, ~Q0
) ,

its validity thus follows for any toric Calabi-Yau manifold:

GWg(X, ~Q) = Fg(SX, ~Q)

7 Conclusion

Taking our matrix model from [1] as a starting point and imposing certain minimality
conditions on the spectral curve, we have thus derived the BKMP conjecture, for closed
topological strings, for all toric Calabi-Yau manifolds in the large radius limit. As we
have emphasized throughout, elevating our procedure to a formal proof of the conjecture
requires a more rigorous derivation of the spectral curve of our matrix model.

It should also be possible to extend our argument to open Gromov-Witten invariants by
invoking loop operators, which relate closed to open invariants. In [3], such an operator
was defined in the matrix model context. An analogous operator should also exist in the
theory of Gromov-Witten invariants [41]. Establishing the equivalence of these two loop

operators would allow us to conclude that the W
(g)
n ’s of the spectral curve SX are the open

Gromov-Witten invariants of X.

Finally, our treatment of the BKMP conjecture took place at large radius. One should
study the behavior of the matrix model as one moves away from large radius e.g. to
orbifold points, and see whether the phase transitions of the topological string are captured
accurately by the matrix model. Of course, the main tool on the topological string side
employed in this work, the topological vertex, is no longer applicable in these regions of
moduli space.
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A The matrix model

In this appendix, which is mainly a reprint of section 4 of [1], we present the matrix model
which reproduces the topological string partition function on the fiducial geometry X0,
and whose spectral curve we derive in the text.

SConsider the fiducial geometry X0 of size (n + 1) × (m + 1), with Kähler parameters
ti,j = ai,j − ai,j+1, ri,j = ai,j+1 − ai+1,j, and si,j, as depicted in figure 1. We write

~ai = (a0,i, a1,i, . . . , an,i).

Assume that the external representations are fixed to ~αm+1 = (α0,m+1, α1,m+1, . . . , αn,m+1)
on the upper line, and ~α0 = (α0,0, α1,0, . . . , αn,0) on the lower line. For the most part, we
will choose these to be trivial.

We now define the following matrix integral ZMM (MM for Matrix Model),

ZMM(Q, gs, ~αm+1, ~α
T
0 ) = ∆(X(~αm+1)) ∆(X(~α0))

m+1∏
i=0

∫
HN (Γi)

dMi

m+1∏
i=1

∫
HN (R+)

dRi

m∏
i=1

e
−1
gs

tr [V~ai (Mi)−V~ai−1
(Mi)]

m∏
i=1

e
−1
gs

tr [V~ai−1
(Mi−1)−V~ai (Mi−1)]

m+1∏
i=1

e
1
gs

tr (Mi−Mi−1)Ri

m∏
i=1

e(Si+
iπ
gs

) tr lnMi

etr ln f0(M0) etr ln fm+1(Mm+1)

m∏
i=1

etr ln fi(Mi) . (A.1)

All matrices are taken of size
N = (n+ 1) d .

d denotes a cut-off on the size of the matrices, on which, as discussed in section 5.2.1,
the partition function depends only non-perturbatively. We have introduced the nota-
tion

X(~αm+1) = diag(X(~αm+1)i)i=1,...,N , X(~αm+1)jd+k = qhk(αj,m+1),

X(~α0) = diag(X(~α0)i)i=1,...,N , X(~α0)jd+k = qhk(αj,0),

for k = 1, . . . , d, j = 0, . . . , n, where

hi(γ) = γi − i+ d+ a . (A.2)
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∆(X) =
∏

i<j(Xi−Xj) is the Vandermonde determinant. The potentials V~ai(x) are given
by

V~a(X) = −gs
n∑
j=0

ln (g(qaj/X)) (A.3)

in terms of the q-product

g(x) =
∞∏
n=1

(1− 1

x
qn) .

For i = 1, . . . ,m, we have defined

fi(x) =
n∏
j=0

g(1)2 e( 1
2

+ iπ
ln q

) ln (xq1−aj,i ) e
(ln (xq

1−aj,i ))2
2gs

g(x q1−aj,i) g(qaj,i/x)
.

The denominator of these functions induces simple poles at x = qaj,i+l for j = 0, . . . , n and
l ∈ Z. The numerator is chosen such that they satisfy the relation fi(qx) = fi(x). This
enforces a simple l-dependence of the residues taken at x = qaj,i+l, given by a prefactor
ql – a fact which will be important in the following. These residues are in fact given by

Res
qaj,i+l

fi(x) = qaj,i+l f̂j,i = − qaj,i+l
∏
k 6=j

g(1)2 e( 1
2

+ iπ
ln q

) (1+aj,i−ak,i) ln q e
(ln (q

1+aj,i−ak,i ))2
2gs

g(qaj,i−ak,i) (1− qak,i−aj,i)g(qak,i−aj,i)
,

(A.4)
where f̂j,i is independent of the integer l.

The parameters Si are defined by

Si = s0,i−1 + t0,i−1 = sj,i−1 −
∑
k<j

tk,i +
∑
k≤j

tk,i−1 . (A.5)

The final equality holds for arbitrary j [1].

For i = 0 and i = m+ 1, we define

f0(x) =
1∏n

j=0

∏d
i=1(x− qhi(αj,0))

,

fm+1(x) =
1∏n

j=0

∏d
i=1(x− qhi(αj,m+1))

.

Notice that if the representations ~α0 or ~αm+1 are trivial, i.e. hi(αj,0) = d − i + aj,0 or
hi(αj,m+1) = d− i+ aj,m+1, we have

f0(x) =
n∏
j=0

g(x q1−aj,0−d)

xd g(x q1−aj,0)
, fm+1(x) =

n∏
j=0

g(x q1−aj,m+1−d)

xd g(x q1−aj,m+1)
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respectively. The functions f0 and fm+1 have simple poles at x = qhl(αj,0) (resp. x =
qhl(αj,m+1)) for l = 1, . . . , d, with residue

f̂j,0;l = Res
qhl(αj,0)

f0(x) =
1∏

j′ 6=j
∏d

i=1(qhl(αj,0) − qhi(αj′,0))

1∏
i 6=l(q

hl(αj,0) − qhi(αj,0))
,

f̂j,m+1;l = Res
qhl(αj,m+1)

fm+1(x) =
1∏

j′ 6=j
∏d

i=1(qhl(αj,m+1) − qhi(αj′,m+1))

1∏
i 6=l(q

hl(αj,m+1) − qhi(αj,m+1))
.

The l dependence here is more intricate than above, but this will not play any role since
the partitions αj,0 and αj,m+1 are kept fixed, and not summed upon.

The integration domains for the matrices Ri are HN(RN
+ ), i.e. the set of hermitian ma-

trices having only positive eigenvalues. For the matrices Mi, i = 1, . . . ,m, the integration
domains are HN(Γi), where

Γi =
n∏
j=0

(γj,i)
d .

γj,i is defined as a contour which encloses all points of the form qaj,i+N, and does not
intersect any contours γk,l, (j, i) 6= (k, l). For this to be possible, we must require that
the differences aj,i−aj′,i′ be non-integer. The normalized logarithms of two such contours
are depicted in figure 14.

0 1 2 3 4

Figure 14: Two contours surrounding points a+ N and b+ N, such that a− b /∈ Z.

We have defined

HN(Γi) = {M = U ΛU † , U ∈ U(N) , Λ = diag(λ1, . . . , λN) ∈ Γi} ,

i.e. HN(Γi) is the set of normal matrices with eigenvalues on Γi. By definition, the
measure on HN(Γi) is (see [24])

dM =
1

N !
∆(Λ)2 dU dΛ , (A.6)

where dU is the Haar measure on U(N), and dΛ is the product of the measures for each
eigenvalue along its integration path.

The integration domains for the matrices M0, Mm+1 are HN(Γ0), HN(Γm+1) respectively,
where

Γ0 = (
n∑
j=0

γj,0)N , Γm+1 = (
n∑
j=0

γj,m+1)N . (A.7)
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