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In ultrarelativistic heavy-ion collisions, the Fourier decomposition of the relative azimuthal an-
gle, ∆φ, distribution of particle pairs yields a large cos(3∆φ) component, extending out to large
rapidity separations ∆η > 1. This component captures a significant portion of the ridge and shoul-
der structures in the ∆φ distribution, which have been observed after contributions from elliptic
flow are subtracted. An average finite triangularity due to event-by-event fluctuations in the initial
matter distribution, followed by collective flow, naturally produces a cos(3∆φ) correlation. Using
ideal and viscous hydrodynamics, and transport theory, we study the physics of triangular (v3) flow
in comparison to elliptic (v2), quadrangular (v4) and pentagonal (v5) flow. We make quantitative
predictions for v3 at RHIC and LHC as a function of centrality and transverse momentum. Our
results for the centrality dependence of v3 show a quantitative agreement with data extracted from
previous correlation measurements by the STAR collaboration. This study supports previous re-
sults on the importance of triangular flow in the understanding of ridge and shoulder structures.
Triangular flow is found to be a sensitive probe of initial geometry fluctuations and viscosity.

I. INTRODUCTION

Correlations between particles produced in ultrarela-
tivistic heavy-ion collisions have been thoroughly studied
experimentally. Correlation structures previously iden-
tified in proton-proton collisions have been observed to
be modified and patterns which are specific to nucleus-
nucleus collisions have been revealed. The dominant fea-
ture in two-particle correlations is elliptic flow, one of the
early observations at RHIC [1]. Elliptic flow leads to a
cos(2∆φ) term in the distribution of particle pairs with
relative azimuthal angle ∆φ. More recently, additional
structures have been identified in azimuthal correlations
after accounting for contributions from elliptic flow. [2–7].
An excess of correlated particles are observed in a narrow
“ridge” near ∆φ = 0 and the away side peak at ∆φ = π
is wider in comparison to proton-proton collisions. For
central collisions and high transverse momentum triggers,
the away side structure develops a dip at ∆φ = π with
two “shoulders” appearing. These ridge and shoulder
structures persist for large values of the relative rapidity
∆η, which means that they are produced at a very early
times [8].

It has been recently argued [9] that both the ridge and
the shoulder are natural consequences of the triangular
flow (v3) produced by a triangular fluctuation of the ini-
tial distribution. The purpose of this paper is to carry
out a systematic study of v3 using relativistic viscous hy-
drodynamics, which is the standard model for ultrarela-
tivistic heavy-ion collisions [10]. We also perform trans-
port calculations [11], because they allow us to check the
range of validity of viscous hydrodynamics, and also be-
cause they provide further insight into the physics. Along
with v3, we also investigate v4 (quadrangular flow) and v5
(pentagonal flow). In Sec. II, we recall why odd moments
of the azimuthal distributions, such as v3, are relevant.

In Sec. III, we study the general properties of anisotropic
flow induced by a harmonic deformation of the initial
density profile using hydrodynamics and kinetic theory.
In Sec. IV, we present our predictions for v3 and v5 at
RHIC and LHC. The contribution of quadrangular fluc-
tuations to v4 is difficult to evaluate because v4 also has
a large contribution from elliptic flow [12]: this will be
studied in a forthcoming publication [13].

II. CORRELATIONS FROM FLUCTUATIONS

A fluid at freeze-out emits particles whose azimuthal
distribution f(φ) depends on the distribution of the fluid
velocity [12]. f(φ) can generally be written as a Fourier
series

f(φ) =
1

2π

(

1 + 2

+∞
∑

n=1

vn cos(nφ− nψn)

)

(1)

where vn are the coefficients of anisotropic flow [14] which
are real and positive, and ψn is defined modulo 2π/n (for
vn 6= 0). Equivalently, one can write

〈einφ〉 ≡

∫ 2π

0

einφf(φ)dφ = vne
inψn , (2)

where angular brackets denote an average value over out-
going particles.
Generally, vn is measured using the event-plane

method [15]. However, two-particle correlation measure-
ments are also sensitive to anisotropic flow. Consider a
pair of particles with azimuthal angles φ1, φ2 = φ1+∆φ.
Assuming that the only correlation between the particles
is due to the collective expansion, Eq. (2) gives

〈ein∆φ〉 = 〈einφ1e−inφ2〉 = 〈einφ1〉〈e−inφ2〉 = (vn)
2. (3)
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The left-hand side can be measured experimentally, and
vn can thus be extracted from Eq. (3) [16]. Experimen-
tally, one averages over several events. vn fluctuates
from one event to the other, and the observable mea-
sured through Eq. (3) is the average value of (vn)

2. It
can be shown that the event-plane method also measures
the RMS,

√

v2n, unless the “reaction plane resolution” is
extremely good [17, 18].
Most fluid calculations of heavy-ion collisions are done

with smooth initial profiles [19–23]. These profiles are
symmetric with respect to the reaction plane ψR, so that
all ψn in Eq. 1 are equal to ψR (with this convention,
all vn are not necessarily positive). For symmetric colli-
sions at midrapidity, smooth profiles are also symmetric
under φ → φ + π, so that all odd harmonics v1, v3, etc.
are identically zero. However, it has been shown that
fluctuations in the positions of nucleons within the col-
liding nuclei may lead to significant deviations from the
smooth profiles event-by-event [24, 25]. They result in
lumpy initial conditions which have no particular sym-
metry, and this lumpiness should be taken into account
in fluid dynamical calculations [26–28]. More precisely,
one should calculate the azimuthal distribution for each
initial condition, then average over initial conditions.
Initial geometry fluctuations are a priori important for

all vn, as anticipated in Ref. [29]. Their effect on flow
measurements has already been considered for elliptic
flow v2 [30, 31] and quadrangular flow v4 [32]. Event-by-
event elliptic flow fluctuations have been measured and
found to significantly large, consistent with the fluctua-
tions in the nucleon positions [33]. Directed flow, v1, is
constrained by transverse momentum conservation which
implies

∑

ptv1(pt) = 0 and will not be considered here.
In this paper, we study triangular flow v3 [9], and pen-
tagonal flow v5, which arise solely due to initial geometry
fluctuations.

III. FLOW FROM HARMONIC

DEFORMATIONS

ψ3

FIG. 1: (Color online) Contour plots of the energy density
(4) for n = 3 and ε3 = 0.2.

Elliptic flow is the response of the system to an ini-
tial distribution with an elliptic shape in the transverse
plane (x, y) [34]. In this article, we study the response to
higher-order deformations. For sake of simplicity, we as-
sume in this section that the initial energy profile in the

transverse plane (x, y) is a deformed Gaussian at t = t0:

ǫ(x, y) = ǫ0 exp

(

−
r2 (1 + εn cos(n(φ− ψn))

2ρ2

)

, (4)

where we have introduced polar coordinates x = r cosφ,
y = r sinφ. In Eq. (4), n is a positive integer, εn is the
magnitude of the deformation, ψn is a reference angle,
and ρ is the transverse size. Convergence at infinity im-
plies 0 ≤ εn < 1. Fig. 1 displays contour plots of the
energy density for n = 3 and ε3 = 0.2. The sign in front
of εn in Eq. (4) has been chosen such that ψn is the di-
rection of the flat side of the polygon. For n = 2, it is the
minor axis of the ellipse, which is the standard definition
of the participant plane [25]
For t > t0, we assume that the system evolves accord-

ing to the equations of hydrodynamics or to the Boltz-
mann transport equation, until particles are emitted, and
we compute the azimuthal distribution f(φ) of outgoing
particles. The initial profile (4) is symmetric under the
transformation φ→ φ+ 2π

n , therefore f(φ) has the same
symmetry. The only nonvanishing Fourier coefficients are
〈einφ〉, 〈e2inφ〉, 〈e3inφ〉, etc. Symmetry of the initial pro-
file under the transformation (φ− ψn) → −(φ− ψn) im-
plies

〈einφ〉 = vne
inψn , (5)

where vn is real. As we shall see below, vn is usually
positive for εn > 0, which means that anisotropic flow
develops along the flat side of the polygon (see Fig. 1)
We now present quantitative results for vn, as defined

by Eq. (5), using two models. The first model is rela-
tivistic hydrodynamics (see [10] for details). We fix ǫ0, t0
and the freeze-out temperature to the same values as for
a central Au-Au collision at RHIC with Glauber initial
conditions [10], and ρ = 3 fm, corresponding roughly to
the rms values of x and y. Unless otherwise stated, re-
sults are shown for pions at freeze-out. Corrections due
to resonance decays [35] are not included in this section.
They are included only in our final predictions in Sec. IV.
The second model is a relativistic Boltzmann equation for
massless particles in 2+1 dimensions (see [11] for details).
The only parameter in this calculation is the Knudsen
number K = λ/R, where the mean free path λ and the
transverse size R are defined as in [11]. The relation be-

tween R and ρ in Eq. (4) is R =
√
3
2
ρ 1. Boltzmann

transport theory is less realistic than hydrodynamics for
several reasons:

• the equation of state is that of an ideal gas, while
the equation of state used in hydrodynamics is

1 R is defined by R−2 = σ−2
x + σ−2

y , where σx and σy are the
rms widths of the particle density profile. The particle density
n is related to the energy density through n ∝ ǫ2/3 for a two-
dimensional ideal gas of massless particles.
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taken from lattice QCD: it is much softer around
the transition to the quark-gluon plasma. Al-
though transport is equivalent to ideal hydrody-
namics when the mean free path goes to zero, our
results from transport and ideal hydrodynamics dif-
fer in this limit, because of the different equation
of state.

• there is no longitudinal expansion.

• particles are massless.

The main advantage of transport theory is that it can
be used for arbitrary values of the mean free path, while
hydrodynamics can only be used if the mean free path is
small. Furthermore, the time evolution of the system can
be studied and no modeling is required for the freeze-out
process using transport approach, since one follows all
elastic collisions until the very last one.

A. vn versus εn
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FIG. 2: (Color online) vn versus εn in transport theory and
ideal hydrodynamics. The Knudsen number in the transport
calculation is K = 0.025, close to the ideal hydrodynamics
limit K = 0.

Fig. 2 displays vn versus εn for n = 2, 3, 4 in transport
theory and ideal hydrodynamics (zero viscosity). The
values of vn are smaller in hydrodynamics, which is due
to the softer equation of state [36].
As expected from previous studies of v2 [37] and v3 [9],

we observe that vn is linear for small values of εn. Non
linearities are stronger for larger values of n, both in
transport theory and hydrodynamics. A possible inter-
pretation of these strong nonlinearities is that the the
contour plot of the initial density is no longer convex if
εn > 2/(n2 − 2). The threshold values for n = 3, 4 are
ε3 = 2

7
and ε4 = 1

7
. If the contour plot is not convex, the

streamlines (which are orthogonal to equal density con-
tours) are no longer divergent: shock waves may appear,
which hinder the development of anisotropies.

The results presented in the remainder of this section
are obtained in the linear regime where vn ∝ εn. In this
regime, we find v2/ε2 ≃ 0.21, in agreement with other
calculations [38]. Note that in our hydrodynamic calcula-
tion, chemical equilibrium is maintained until freeze-out.
When chemical freeze-out is implemented earlier than ki-
netic freeze-out, v2/ε2 is slightly larger [19]. Fig. 2 shows
that v3/ε3 has a magnitude comparable to v2/ε2, while
v4/ε4 is significantly smaller. Our results for v5/ε5 (not
shown) are even smaller.

B. Time dependence
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FIG. 3: (Color online) vn/εn versus time in transport theory.
Each curve is the result of a single Monte-Carlo simulation
with K = 0.025 and εn = 0.1. The number of particles in the
simulation is N = 4 × 106, and the corresponding statistical
error on vn/εn is 3.5× 10−3.

In the transport approach, one follows all the trajec-
tories of the particles, so that vn is well defined at all
times, which is not the case in hydrodynamics before
freeze-out. Fig. 3 displays the results for vn versus t/ρ,
where ρ is the width of the initial distribution, Eq. (4).
As expected for dimensional reasons [36], anisotropic flow
appears for t ∼ ρ. However, vn appears slightly later for
larger n. This can be traced to the behavior of vn at
early times. The transport results presented in Fig. 3 are
obtained with a very small value of the Knudsen num-
ber, K = 0.025, close to the ideal hydrodynamics limit.
In ideal fluid dynamics, the fluid transverse velocity in-
creases linearly with t, and vn involves a nth power of
the fluid velocity, so that vn scales like tn. In transport
theory, the number of collisions increases like t at early
times, which gives an extra power of t, and vn increases
like tn+1 [11]. In both cases, the behavior of vn at small
t is flatter for larger values of n, which is clearly seen in
Fig. 3.
While elliptic flow keeps increasing with time (it

slightly decreases at later times, not shown in the fig-
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ure), vn with n ≥ 3 reaches a maximum and then de-
creases. The decrease is more pronounced for larger n:
The mechanism producing vn is self quenching.

C. Differential flow
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FIG. 4: (Color online) vn/εn versus pt in ideal hydrodynam-
ics, with εn = 0.1.

Fig. 4 displays the differential anisotropic flow vn(pt)
versus the transverse momentum pt for pions in ideal
hydrodynamics, scaled by the initial eccentricity εn. At
low pt, one generally expects vn to scale like (pt)

n for
massive particles [39]2. One clearly sees that vn is much
flatter at low pt for larger values of n. For larger values
of pt, vn(pt) is linear in pt. The arguments that explain
this linear dependence for v2 [12] can be generalized to
arbitrary n [40]. The linear behavior at larger pt is also
clearly seen in Fig. 4. It has already been noted for v3 [9].
The value of v3 increases with pt, which explains why

the ridge and shoulder are more pronounced with a
high pt trigger (“hard” ridge) [41]. Though the relative
strength of v3, is smaller at low pt, it is still comparable
to v2, leading to the smaller“soft” ridge [42]. Predictions
for v3(pt) in viscous hydrodynamics for identified parti-
cles are presented in Sec. IV.

D. Viscous damping of vn

We study the effect of viscosity first in the transport
approach, then in viscous hydrodynamics. In trans-
port, the degree of thermalization is characterized by
the Knudsen number K. Experimentally, 1/K scales like

2 There is no such constraint for massless particles where the
pt → 0 limit is singular. Our transport calculations for mass-
less partons give vn(pt) ∝ pt at low pt for all n.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  0.5  1  1.5  2

v n
/ε

n

1/(n2 K)

v2/ε2
v3/ε3
v4/ε4
v5/ε5

FIG. 5: (Color online) vn/εn versus 1/(n2K) in transport
theory. Values of εn are ε2 = 5

13
, ε3 = ε4 = 0.3 and ε5 = 0.1.

Arrows indicate our extrapolation to K = 0 (ideal hydrody-
namics limit) using Eq. (6).

(1/S)(dN/dy), where dN/dy is the multiplicity per unit
rapidity, and S is the overlap area between the colliding
nuclei [43]. The dependence of vn on K can be studied
by varying the collision system and the centrality of the
collision [44]
Transport is equivalent to ideal hydrodynamics in the

limit K → 0. For small K, observables (such as vn, or
particle spectra) deviate from the K = 0 limit by correc-
tions which are linear in K. These are the viscous correc-
tions: both K and the shear viscosity η are proportional
to the particle mean free path λ. Viscous damping is ex-
pected to scale with the wave number k like k2. Here, the
wavelength of the deformation is 2πR/n, hence k ∼ n/R.
Therefore viscous corrections should scale with K and n
approximately like n2K [45]. The limit K → ∞ (free
streaming) is also interesting, since vn vanishes in this
limit. For large K, one therefore expects vn to scale like
1/K, which is essentially the number of collisions per
particle [11]. For intermediate values of K (K ∼ 1), no
universal behavior is expected, and observables depend
on the scattering cross section used in the transport cal-
culation (dependence on energy and scattering angle).
Fig. 5 displays the variation of vn/εn versus the scaling

variable 1/(n2K) in the transport calculation. Our nu-
merical results can be fitted by smooth rational functions
(Padé approximants) [46] for all K:

vn(K) = vihn
1 +BnK +DnK

2

1 + (An +Bn)K + CnK2 + EnK3
, (6)

where vihn , An, Bn, Cn, Dn and En are fit parameters.
This formula has the expected behavior in both K → 0
and K → ∞ limits. For n = 2, the lowest-order formula,
with B2 = C2 = D2 = E2 = 0, gives a good fit [11]. For
n = 3, we obtain a good fit with using the next-to-leading
order approximant, with D3 = E3 = 0 but free B3, C3.
For n = 4 or 5, we need all 6 parameters to achieve a
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good fit. Fits are represented as solid lines in Fig. 5,
and extrapolations to K = 0 are indicated by arrows.
As already noted above, the hydrodynamics limits vih3 /ε3
and vih2 /ε2 are comparable, while vih4 /ε4 is smaller by
roughly a factor of 2. vih5 /ε5 is found to be further smaller
by about a factor 5, with a large theoretical uncertainty.

For smallK, vn(K) ≃ vihn (1−AnK): the parameterAn
measures the magnitude of the viscous correction. Our fit
gives A2 = 1.4±0.1 [11], A3 = 4.2±0.3, A4 = 11.0±0.9.
The error bar on A5 is too large to extract a meaningful
value. For n = 2, 3, 4, we observeAn ∝ nα with α = 2.8±
0.2, closer to n3 than to the expected n2. The fact that
viscous corrections are larger for larger n also implies that
the range of validity of viscous hydrodynamics is smaller
for vn with n ≥ 3 than for v2. Even after rescaling K
by n2, corrections are linear in K only for very small K,
which is why higher-order Padé approximants are needed.
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FIG. 6: (Color online) vn/εn versus η/s in hydrodynamics.
The initial and freeze-out temperature are Ti = 340 MeV and
Tf = 140 MeV, respectively.

The magnitude of viscous effects can be seen more
directly by varying the shear viscosity η in viscous hy-
drodynamics. For each value of n, we have performed
three calculations with η ≃ 0 (ideal hydrodynamics),
η/s = 0.08 ≃ 1/4π [47], and η/s = 0.16, where s is
the entropy density. The result is presented in Fig. 6.
The variation of vn with η is found to be linear for all
n, which is a hint that viscous hydrodynamics (which
addresses first-order deviations to local equilibrium) is a
reasonable description for this range of viscosities. Inter-
estingly, the lines are almost parallel, which means that
the absolute viscous correction to vn/εn depends little
on n. However, since vn/εn is smaller for larger n, the
relative viscous correction is larger for larger n. From the
transport calculation, we expect that the relative viscous
correction is 3 times larger for v3 than for v2, and 8 times
larger for v4 than for v2. The increase in Fig 6 is more
modest. Note that we keep the freeze-out temperature
constant for all values of η/s. Strictly speaking, this is
inconsistent. Freeze-out is defined as the point where

viscous corrections become so large that hydrodynam-
ics breaks down: when the viscosity goes to zero, so does
the freeze-out temperature [12]. By varying only η/s and
keeping Tf constant, we only capture part of the viscous
correction 3. Since triangular flow, like elliptic flow, de-
velops at early times, v3 is sensitive to the value of η/s
at the high-density phase of the collision.

IV. PREDICTIONS FOR v3 AT RHIC AND LHC

A. Triangularity fluctuations

We now give realistic predictions for v3 at RHIC and
LHC. The transport calculations in Ref. [9] show that
even with lumpy initial conditions, v3 in a given event
scales like the triangularity ε3. We define εn as in [9]:

εne
inψn ≡

∫

ǫ(x, y)r2einφdxdy
∫

ǫ(x, y)r2dxdy
, (7)

where ǫ(x, y) is the initial energy density and (r, φ) are
the usual polar coordinates, x = r cosφ, y = r sinφ.
Following the discussion in Sec. II, experiments mea-

sure the average value of (vn)
2, so that

vexpn =
√

〈(vn)2〉. (8)

Assuming vn = κεn in each event, the measured vn scales
like the root mean square εn defined by

εrms
n ≡

√

〈(εn)2〉 (9)

We compute εrms
n using two different models. The first

model is the PHOBOS Monte-Carlo Glauber model [48],
where it is assumed that the initial energy is distributed
in the transverse plane in the same way as nucleons
within colliding nuclei. We modify the initial model
slightly [32] by giving each nucleon a weight w = 1 −
x+ xNcoll, where Ncoll is the number of binary collisions
of the nucleon. We take x = 0.145 at RHIC and x = 0.18
at LHC [49]. The second model is the Monte-Carlo KLN
model of Drescher and Nara [50], which is the only model
incorporating both saturation physics and fluctuations.
Both of these models yield event-by-event eccentricity
fluctuations, which are consistent with measured elliptic
flow fluctuations [33]. We loosely refer to the two models
as Glauber and Color Glass Condensate (CGC).
Fig. 7 displays εrms

n as a function of the number of
participants. εrms

2 is larger than εrms
3,4,5 for non-central

collisions, which is due to the almond shape of the over-
lap area. The eccentricity is somewhat larger with CGC
than Glauber [51]. εrms

3 is very close to εrms
5 . Both vary

3 We have checked that v3/ε3 is larger with a lower freeze-out tem-
perature Tf = 100 MeV. In particular, we find v3/ε3 > v2/ε2,
in agreement with the transport calculation.
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FIG. 7: (Color online) Root mean square eccentricities εrms

n

for n = 2, 3, 4, 5 for Au-Au collisions at 200 GeV per nucleon,
versus the number of participant nucleons NPart. NPart is
used as a measure of the centrality in nucleus-nucleus colli-
sions: it is largest for central collisions, with zero impact pa-
rameter [52]. Thick lines: Monte-Carlo Glauber model [48];
Thin lines: Monte-Carlo KLN model [50].

with NPart essentially like (NPart)
−1/2, as generally ex-

pected for statistical fluctuations [53]. Unlike εrms
2 , they

are slightly smaller for CGC than for Glauber. Since
the only source of fluctuations that is considered in both
models is the position of the nucleons in the colliding
nuclei, this difference may be due to the technical im-
plementation of the Monte-Carlo KLN model. Finally,
εrms
4 is slightly larger than odd harmonics for peripheral
collisions because the almond shape induces a nonzero ε4
as a second order effect. Fig. 7 only displays results for
Au-Au collisions at RHIC. Results for Pb-Pb collisions at
the LHC are similar, except for a different range in Npart,
and a somewhat larger difference between Glauber and
CGC for ε3.

B. Method for obtaining v3 in hydrodynamics

In order to make predictions for v3, we start from a
smooth initial energy profile ǫ(r, φ), possessing the usual
symmetries φ → −φ and φ → φ + π. We then put by
hand a cos 3φ deformation through the transformation

ǫ(r, φ) → ǫ

(

r
√

1 + ε′3 cos(3(φ− ψ′
3)), φ

)

, (10)

where ε′3 is the magnitude of the deformation, and ψ′
3

the flat axis of the triangle. We choose ε′3 = εrms
3 . The

choice of ψ′
3 is arbitrary. The initial profile has a nonzero

eccentricity for noncentral collisions, due to the almond
shape of the overlap area. Through Eq. (10), we add a
triangular deformation to an ellipse. Since the original
profile has φ → φ + π symmetry, ψ′

3 is equivalent to
ψ′
3 + π

3
. Furthermore, ψ′

3 is equivalent to −ψ′
3 due to

φ → −φ symmetry. Therefore, one need only vary ψ′
3

between 0 and π
6
. We choose the values 0, π

12
and π

6
.

We then compute ε3 and ψ3 defined by Eq. (7). With
the gaussian profile (4), the input and output values are
identical: ε′3 = ε3, ψ

′
3 = ψ3. Our predictions use two

sets of profiles which both describe RHIC data well [10]:
optical Glauber and (fKLN) CGC. With both profiles, ε′3
differs from ε3 by a few percent. ψ3 is essentially identi-
cal to ψ′

3, which means that the elliptic deformation does
not interfere with the triangular deformation. According
to the previous discussion, we should tune ε′3 in such a
way that ε3 = εrms

3 in order to make predictions for v3.
It is however easier to use the proportionality between
v3 and ε3: one can then do the calculation for an arbi-
trary ε′3, and rescale the final results by εrms

3 /ε3. We use
εrms
3 from the Monte-Carlo Glauber model with Glauber
initial conditions, and from the Monte-Carlo KLN model
with CGC initial conditions.
Finally, we compute v3 in viscous hydrodynamics. It

has been shown that RHIC data are fit equally well with
Glauber initial conditions and η/s = 0.08 or with CGC
initial conditions and η/s = 0.16 [10]. The larger eccen-
tricity of CGC (which should produce more elliptic flow)
is compensated by the larger viscosity (larger damping
and less flow), so that the final values of v2 are very simi-
lar. For LHC energies, details are as in Ref. [54] (with v3
calculated from a Cooper-Frye freeze-out prescription).
In all cases, v3 is found to be independent of the orien-
tation of the triangle ψ′

3. In the case of Glauber initial
conditions, we perform calculations of v3 with and with-
out resonance decays at freeze out [35]. Resonance decays
roughly amount to multiplying v3 by 0.75 at RHIC, and
by 0.83 at LHC. Our CGC results are computed without
resonance decays, and multiplied by the same factor at
the end of the calculation.

C. Results and comparison with data

Results are displayed in Fig. 8 for both sets of initial
conditions. CGC initial conditions have both a smaller
triangularity, and a larger viscosity, so that they pre-
dict a much smaller v3. The change in viscosity explains
roughly 70% of the difference between CGC and Glauber
at RHIC, and about half at LHC. The centrality depen-
dence is much flatter in Fig. 8 than in Fig. 7. The de-
crease of εrms

3 with increasing NPart is compensated by
the increase of the system size and lifetime, which leads
to a smaller effective Knudsen numberK or, equivalently,
a smaller viscous correction. We predict values of v3 sig-
nificantly larger at LHC than at RHIC. This is because
viscous damping is less important due to the larger life-
time of the fluid at LHC [54].
Although experimental data for triangular flow are not

yet available, both v2 and v3 can be extracted from
the measured two-particle azimuthal correlation using
Eq. (3) [9]. Figs. 9 and 10 display a comparison between
experimental data from STAR [4] and our hydrodynamic
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FIG. 8: (Color online) Average v3 of pions as a function of the
number of participants for Au-Au collisions at 200 GeV per
nucleon (RHIC) and Pb-Pb collisions at 5.5 TeV per nucleon
(LHC). Hydrodynamic predictions are for Glauber initial con-
ditions with η/s = 0.08, and CGC initial conditions with η/s
= 0.16, which best fit v2 data at RHIC [10].

calculations. The STAR data is obtained from correla-
tions between particles at midrapidity (η < 1.5) and in-
termediate transverse momentum (0.8 < pt < 4.0 GeV).
The correlation results have been projected at 1.2 <
∆η < 1.9 to reduce sensitivity to nonflow effects.

 0

 0.05

 0.1

 0.15

 0.2

 0  100  200  300  400

v 2

NPart

Glauber
CGC

STAR

FIG. 9: (Color online) v2 for charged particles with 0.8 <
pt < 4 GeV/c extracted from STAR charge-independent cor-
relation data [4], and predictions from viscous hydrodynam-
ics [10] with Glauber initial conditions and η/s = 0.08, or
CGC initial conditions with η/s = 0.16. Theoretical calcula-
tions are for pions with the same pt cut as data, and scaled
by the rms eccentricity from the corresponding Monte-Carlo
model. See text for details.

We first discuss our results for v2. As explained above,
our hydrodynamic model has smooth initial conditions,
and does not include the effect of eccentricity fluctuations
for v2. Since v2 ∝ ε2 to a good approximation, we have
rescaled our result for v2 by the rms ε2 from Fig. 7 (again

using the Monte-Carlo Glauber for the Glauber initial
conditions and the Monte-Carlo KLN for CGC). This
rescaling significantly improves the agreement with data,
compared to [10], for the most central bin. As shown
in Fig. 9, the agreement between theory and data is ex-
cellent with both sets of initial conditions. The smaller
viscosity associated with Glauber initial conditions re-
sults in a somewhat steeper centrality dependence than
for CGC initial conditions.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  100  200  300  400

v 3

NPart

η/s=0.08
η/s=0.16

STAR

FIG. 10: (Color online) Same as Fig. 9 for v3.

Results for v3 are shown in Fig. 10. The larger magni-
tude, compared to Fig. 8, is due to the low pt cutoff. The
cutoff also enhances the effect of viscosity, resulting in a
larger difference between Glauber and CGC. With a low
pt cutoff, the viscous correction is mostly due to the dis-
tortion of the momentum distribution at freeze-out [55].
The momentum dependence of this distortion is strongly
model-dependent [56]. The present calculation uses the
standard quadratic ansatz, which may overestimate the
viscous correction at large pt [57]. The magnitude and
the centrality dependence of v3 observed by STAR are
rather well reproduced by our calculation with Glauber
initial conditions, except for peripheral collisions where
hydrodynamics is not expected to be valid.
Fig. 11 displays our predictions for v3(pt) of identified

particles at RHIC. As anticipated in Ref. [40], the well-
known mass ordering of elliptic flow [58] is also expected
for v3. At high pt, a strong viscous suppression is ob-
served. As explained above, the pt dependence of the
viscous correction is model dependent, and it is likely
that the quadratic ansatz used here overestimates the
viscous corrections at large pt [57]. Note that effects of
resonance decays are not included in Fig. 11. Resonance
decays only change the results slightly in the low-pt re-
gion.
Finally, we have also computed v5 along the same lines

as v3. The driving force for v5 is the rms ε5, which is
very close to ε3 (see Fig. 7). However, the hydrodynamic
response is much smaller, and viscous damping is also
much larger as discussed in Sec. III. We find that the
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FIG. 11: (Color online) Differential triangular flow for iden-
tified particles in central (0− 5%) Au-Au collisions at RHIC.

average v5 is smaller than the average v3 by at least a
factor of 10. Quantitative results are not presented since
the small magnitude of v5 is comparable to our numerical
errors.

V. CONCLUSIONS

We have presented a systematic study of triangular
flow in ideal and viscous hydrodynamics, and transport
theory. Triangular flow is driven by the average event-
by-event triangularity in the transverse distribution of
nucleons, in the same way as elliptic flow is driven by the
initial eccentricity of this distribution. The physics of v3
is in many respects similar to the physics of v2. In ideal
hydrodynamics, the response to the initial deformation is
almost identical in both harmonics: v3/ε3 ≃ v2/ε2 ≃ 0.2.
For quadrangular flow, v4/ε4 is smaller, typically by a
factor 2. For pentagonal flow, v5/ε5 is so small that v5
is unlikely to be measurable, even though ε3 and ε5 are
almost equal. v3 develops slightly more slowly than v2,
though over comparable time scales. The dependence on
transverse momentum pt is similar for v3 and v2, but
v3/v2 increases with pt. Hydrodynamics predicts a simi-
lar mass ordering for v3(pt) and v2(pt): v3 at fixed pt is
smaller for more massive particles. These results can be
checked experimentally by a differential measurement of
triangular flow.
We have also made predictions for triangular flow, v3,

at RHIC and LHC, using viscous hydrodynamics. Using
as input the triangularity from a standard Monte-Carlo
Glauber model, and a viscosity η/s = 0.08, we repro-
duce both the magnitude (within 20%) and the central-
ity dependence of v3 extracted from STAR correlation
measurements, without any adjustable parameter. Our
results support the hypothesis made in Ref. [9] that trian-

gular flow explains most of the ridge and shoulder struc-
tures observed in the two-particle azimuthal correlation.
Triangular flow is a sensitive probe of viscosity. Vis-

cous effects drive the energy and centrality dependence of
v3. More central collisions have less fluctuations, hence
smaller triangularity. This decrease is to a large extent
compensated by the increase in the system size and life-
time, resulting in a very slow decrease of v3 with cen-
trality (except for peripheral collisions where viscous hy-
drodynamics is unlikely to be valid). Comparison with
existing data favors a low value of η/s. At LHC, smaller
viscous corrections are expected due to the increased life-
time of the fluid: we predict that v3 should be larger than
at RHIC, typically by a factor 4

3
.

The absolute value of v3 scales linearly with the aver-
age initial initial triangularity. We have used two models
of initial geometry which incorporate fluctuations, the
Monte-Carlo Glauber model and the Monte-Carlo KLN
model. The underlying source of fluctuations is the same
in both of these models. More work is needed to constrain
initial fluctuations on the theoretical side. More work is
also needed to incorporate these fluctuations more read-
ily into hydrodynamic calculations. Although triangular
flow is expected to be created by lumpy initial conditions,
our predictions are based on smooth initial conditions,
in the same spirit as the study of transverse momentum
fluctuations of Ref. [22]. The underlying assumption is
that v3/ε3 is the same for lumpy initial conditions and for
smooth initial conditions. The validity of this assump-
tion should eventually be checked.

Triangular flow is a new observable which should be
used to constrain models of heavy-ion collisions, along
with elliptic flow. Elliptic flow depends on initial ec-
centricity, fluctuations, and viscosity, which are poorly
constrained theoretically. Triangular flow solely depends
on fluctuations and viscosity, with a stronger sensitivity
to viscosity than v2. Two different sets of initial condi-
tions, which fit v2 data equally well, give very different
results for v3. Experiments could measure v3 as a func-
tion of transverse momentum, system size and centrality.
As shown in this paper, theoretical predictions for the de-
pendence of v3 on these parameters are very specific. If
experiments confirm our predictions, simultaneous anal-
yses of v2 and v3 can be used to improve our understand-
ing of the initial geometry of heavy-ion collisions, and pin
down the viscosity of hot QCD.

Acknowledgments

This work is funded by “Agence Nationale de la
Recherche” under grant ANR-08-BLAN-0093-01 and by
U.S. DOE grant DE-FG02-94ER40818. We thank S.
Gavin, T. Hirano, P. Huovinen and A. Poskanzer for
stimulating discussions.



9

[1] K. H. Ackermann et al. [STAR Collaboration], Phys.
Rev. Lett. 86, 402 (2001) [arXiv:nucl-ex/0009011].

[2] A. Adare et al. [PHENIX Collaboration], Phys. Rev. C
78, 014901 (2008) [arXiv:0801.4545 [nucl-ex]].

[3] B. I. Abelev et al. [STAR Collaboration], Phys. Rev. Lett.
102, 052302 (2009) [arXiv:0805.0622 [nucl-ex]].

[4] B. I. Abelev et al. [STAR Collaboration],
arXiv:0806.0513 [nucl-ex].

[5] B. Alver et al. [PHOBOS Collaboration], Phys. Rev. C
81, 024904 (2010) [arXiv:0812.1172 [nucl-ex]].

[6] B. Alver et al. [PHOBOS Collaboration], Phys. Rev.
Lett. 104, 062301 (2010) [arXiv:0903.2811 [nucl-ex]].

[7] B. I. Abelev et al. [STAR Collaboration], Phys. Rev. C
80, 064912 (2009) [arXiv:0909.0191 [nucl-ex]].

[8] A. Dumitru, F. Gelis, L. McLerran and R. Venugopalan,
Nucl. Phys. A 810, 91 (2008) [arXiv:0804.3858 [hep-ph]].

[9] B. Alver and G. Roland, arXiv:1003.0194.
[10] M. Luzum and P. Romatschke, Phys. Rev. C 78,

034915 (2008) [Erratum-ibid. C 79, 039903 (2009)]
[arXiv:0804.4015 [nucl-th]].

[11] C. Gombeaud and J. Y. Ollitrault, Phys. Rev. C 77,
054904 (2008) [arXiv:nucl-th/0702075].

[12] N. Borghini and J. Y. Ollitrault, Phys. Lett. B 642, 227
(2006) [arXiv:nucl-th/0506045].

[13] M. Luzum, C. Gombeaud and J.-Y. Ollitrault, in prepa-
ration.

[14] S. Voloshin and Y. Zhang, Z. Phys. C 70, 665 (1996)
[arXiv:hep-ph/9407282].

[15] A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58,
1671 (1998) [arXiv:nucl-ex/9805001].

[16] S. Wang et al., Phys. Rev. C 44, 1091 (1991).
[17] J. Y. Ollitrault, A. M. Poskanzer and S. A. Voloshin,

Phys. Rev. C 80, 014904 (2009) [arXiv:0904.2315 [nucl-
ex]].

[18] B. Alver et al., Phys. Rev. C 77, 014906 (2008)
[arXiv:0711.3724 [nucl-ex]].

[19] P. Huovinen, Eur. Phys. J. A 37, 121 (2008)
[arXiv:0710.4379 [nucl-th]].

[20] T. Hirano and Y. Nara, Phys. Rev. C 79, 064904 (2009)
[arXiv:0904.4080 [nucl-th]].

[21] H. Song and U. W. Heinz, Phys. Rev. C 81, 024905
(2010) [arXiv:0909.1549 [nucl-th]].

[22] W. Broniowski, M. Chojnacki and L. Obara, Phys. Rev.
C 80, 051902 (2009) [arXiv:0907.3216 [nucl-th]].

[23] P. Bozek, Phys. Rev. C 81, 034909 (2010)
[arXiv:0911.2397].

[24] M. Miller and R. Snellings, arXiv:nucl-ex/0312008.
[25] S. Manly et al. [PHOBOS Collaboration], Nucl. Phys. A

774, 523 (2006) [arXiv:nucl-ex/0510031].
[26] O. J. Socolowski, F. Grassi, Y. Hama and

T. Kodama, Phys. Rev. Lett. 93, 182301 (2004)
[arXiv:hep-ph/0405181].

[27] H. Holopainen, H. Niemi and K. J. Eskola,
arXiv:1007.0368.

[28] K. Werner, I. Karpenko, T. Pierog, M. Bleicher and
K. Mikhailov, arXiv:1004.0805.

[29] A. P. Mishra, R. K. Mohapatra, P. S. Saumia and
A. M. Srivastava, Phys. Rev. C 77, 064902 (2008)
[arXiv:0711.1323 [hep-ph]].

[30] R. Andrade, F. Grassi, Y. Hama, T. Kodama and

O. J. Socolowski, Phys. Rev. Lett. 97, 202302 (2006)
[arXiv:nucl-th/0608067].

[31] B. Alver et al. [PHOBOS Collaboration], Phys. Rev.
Lett. 98, 242302 (2007) [arXiv:nucl-ex/0610037].

[32] C. Gombeaud and J. Y. Ollitrault, Phys. Rev. C 81,
014901 (2010) [arXiv:0907.4664 [nucl-th]].

[33] B. Alver et al. [PHOBOS Collaboration], Phys. Rev. C
81, 034915 (2010) [arXiv:1002.0534 [nucl-ex]].

[34] J. Y. Ollitrault, Phys. Rev. D 46, 229 (1992).
[35] J. Sollfrank, P. Koch and U. W. Heinz, Z. Phys. C 52,

593 (1991).
[36] R. S. Bhalerao, J. P. Blaizot, N. Borghini and

J. Y. Ollitrault, Phys. Lett. B 627, 49 (2005)
[arXiv:nucl-th/0508009].

[37] H. Sorge, Phys. Rev. Lett. 82, 2048 (1999)
[arXiv:nucl-th/9812057].

[38] P. Huovinen, T. Hirano, private communications.
[39] P. M. Dinh, N. Borghini and J. Y. Ollitrault, Phys. Lett.

B 477, 51 (2000) [arXiv:nucl-th/9912013].
[40] A. P. Mishra, R. K. Mohapatra, P. S. Saumia and

A. M. Srivastava, arXiv:0811.0292 [hep-ph].
[41] J. Putschke, J. Phys. G 34, S679 (2007)

[arXiv:nucl-ex/0701074].
[42] M. Daugherity [STAR Collaboration], J. Phys. G 35,

104090 (2008) [arXiv:0806.2121 [nucl-ex]].
[43] H. J. Drescher, A. Dumitru, C. Gombeaud and J. Y. Olli-

trault, Phys. Rev. C 76, 024905 (2007) [arXiv:0704.3553
[nucl-th]].

[44] S. A. Voloshin and A. M. Poskanzer, Phys. Lett. B 474,
27 (2000) [arXiv:nucl-th/9906075].

[45] Sean Gavin, private communication.
[46] J. L. Nagle, P. Steinberg and W. A. Zajc, Phys. Rev. C

81, 024901 (2010) [arXiv:0908.3684 [nucl-th]].
[47] P. Kovtun, D. T. Son and A. O. Starinets, Phys. Rev.

Lett. 94, 111601 (2005) [arXiv:hep-th/0405231].
[48] B. Alver, M. Baker, C. Loizides and P. Steinberg,

arXiv:0805.4411 [nucl-ex].
[49] P. Bozek, M. Chojnacki, W. Florkowski and B. Tomasik,

arXiv:1007.2294 [Unknown].
[50] H. J. Drescher and Y. Nara, Phys. Rev. C 76, 041903

(2007) [arXiv:0707.0249 [nucl-th]].
[51] T. Lappi and R. Venugopalan, Phys. Rev. C 74, 054905

(2006) [arXiv:nucl-th/0609021].
[52] M. L. Miller, K. Reygers, S. J. Sanders and P. Stein-

berg, Ann. Rev. Nucl. Part. Sci. 57, 205 (2007)
[arXiv:nucl-ex/0701025].

[53] R. S. Bhalerao and J. Y. Ollitrault, Phys. Lett. B 641,
260 (2006) [arXiv:nucl-th/0607009].

[54] M. Luzum and P. Romatschke, Phys. Rev. Lett. 103,
262302 (2009) [arXiv:0901.4588 [nucl-th]].

[55] D. Teaney, Phys. Rev. C 68, 034913 (2003)
[arXiv:nucl-th/0301099].

[56] K. Dusling, G. D. Moore and D. Teaney, arXiv:0909.0754
[nucl-th].

[57] M. Luzum and J. Y. Ollitrault, arXiv:1004.2023 [nucl-th].
[58] P. Huovinen, P. F. Kolb, U. W. Heinz, P. V. Ruuska-

nen and S. A. Voloshin, Phys. Lett. B 503, 58 (2001)
[arXiv:hep-ph/0101136].

http://arxiv.org/abs/nucl-ex/0009011
http://arxiv.org/abs/0801.4545
http://arxiv.org/abs/0805.0622
http://arxiv.org/abs/0806.0513
http://arxiv.org/abs/0812.1172
http://arxiv.org/abs/0903.2811
http://arxiv.org/abs/0909.0191
http://arxiv.org/abs/0804.3858
http://arxiv.org/abs/1003.0194
http://arxiv.org/abs/0804.4015
http://arxiv.org/abs/nucl-th/0702075
http://arxiv.org/abs/nucl-th/0506045
http://arxiv.org/abs/hep-ph/9407282
http://arxiv.org/abs/nucl-ex/9805001
http://arxiv.org/abs/0904.2315
http://arxiv.org/abs/0711.3724
http://arxiv.org/abs/0710.4379
http://arxiv.org/abs/0904.4080
http://arxiv.org/abs/0909.1549
http://arxiv.org/abs/0907.3216
http://arxiv.org/abs/0911.2397
http://arxiv.org/abs/nucl-ex/0312008
http://arxiv.org/abs/nucl-ex/0510031
http://arxiv.org/abs/hep-ph/0405181
http://arxiv.org/abs/1007.0368
http://arxiv.org/abs/1004.0805
http://arxiv.org/abs/0711.1323
http://arxiv.org/abs/nucl-th/0608067
http://arxiv.org/abs/nucl-ex/0610037
http://arxiv.org/abs/0907.4664
http://arxiv.org/abs/1002.0534
http://arxiv.org/abs/nucl-th/0508009
http://arxiv.org/abs/nucl-th/9812057
http://arxiv.org/abs/nucl-th/9912013
http://arxiv.org/abs/0811.0292
http://arxiv.org/abs/nucl-ex/0701074
http://arxiv.org/abs/0806.2121
http://arxiv.org/abs/0704.3553
http://arxiv.org/abs/nucl-th/9906075
http://arxiv.org/abs/0908.3684
http://arxiv.org/abs/hep-th/0405231
http://arxiv.org/abs/0805.4411
http://arxiv.org/abs/1007.2294
http://arxiv.org/abs/0707.0249
http://arxiv.org/abs/nucl-th/0609021
http://arxiv.org/abs/nucl-ex/0701025
http://arxiv.org/abs/nucl-th/0607009
http://arxiv.org/abs/0901.4588
http://arxiv.org/abs/nucl-th/0301099
http://arxiv.org/abs/0909.0754
http://arxiv.org/abs/1004.2023
http://arxiv.org/abs/hep-ph/0101136

