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logarithmic ultraviolet divergences of maximal supergravity in various dimensions. This is

illustrated by the explicit moduli-dependence of terms of the form ∂2k R4, with k ≤ 3, in

the effective action. Furthermore, we show that in the supergravity limit the perturbative

contributions are swamped by an accumulation of non-perturbative effects of zero-action

instantons.
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1. Introduction

It is well known that string theory provides an ultraviolet completion of supergravity – there

are no ultraviolet divergences in perturbative string theory. Since perturbative quantum

supergravity arises as the low energy limit of superstring theory it is of interest to see how

the field theory ultraviolet divergences appear in the appropriate limit.

This paper will describe how these field theory divergences are encoded in logarith-

mic terms that arise in coefficients of the low energy expansion of the type II superstring

four-graviton amplitude compactified to D dimensions on a d = (10−D)-torus, T d. These

scattering amplitudes have a dependence on the compactification moduli that is highly con-

strained by dualities [1], which relate their perturbative and non-perturbative properties.

For example, the low energy expansion of the four-graviton amplitude generates terms in

the effective action of the form ∂2k R4 , where R4 is a specific contraction of four curvature

tensors. The coefficients of such terms are functions of the moduli that are invariant under

discrete symmetries associated with the groups Ed+1(d+1)(Z) (which are discrete versions
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of real split forms of the classical Lie groups of rank d + 1)1, and contain the complete

perturbative and non-perturbative information about the amplitude. In contrast to string

theory, classical maximal supergravity is invariant under the continuous version of these

groups, which implies that the Feynman rules are independent of the moduli. As a conse-

quence, perturbative supergravity amplitudes do not depend on the moduli. However, this

ignores the presence of infinite towers of non-perturbative charged BPS black hole states,

which probably invalidates the use of the perturbative approximation, whether or not there

are ultraviolet divergences, as we will argue later.

In a recent paper [2], which will be summarised in section 2, we determined the non-

perturbative expressions for the coefficients of a number of terms in the low energy ex-

pansion of the four-graviton amplitude of maximally supersymmetric string theory com-

pactified from 10 dimensions to D = (10 − d) dimensions on a d-torus. The most detailed

analysis was for the analytic part of the amplitude with d ≤ 3, although certain features

of the nonanalytic terms and the 3 < d ≤ 7 cases were also determined. The simplest in-

teractions considered in some detail in [2] (extending earlier work in [3–15], see also recent

discussions in [16, 17]) were R4 and ∂4 R4, for which the coefficients are special combi-

nations of Eisenstein series of the kind considered in [18]. The coefficient of the ∂6 R4

interaction coefficient is a more general automorphic function [8,9]. A thorough analysis of

these coefficients demonstrated that they reduce to the correct expressions in three different

limits: (i) String perturbation theory; (ii) Decompactification from D to D+1 dimensions

when a radius of T d becomes large; (iii) The semi-classical eleven-dimensional supergravity

limit, in which the M-theory torus, T d+1, becomes large and loop calculations in eleven-

dimensional supergravity are valid. It was also argued that in certain ‘critical’ dimensions,

DL, the leading logarithmic ultra-violet divergences of L-loop maximal supergravity are

reproduced2. As remarked in [2], particular examples of such behaviour arise for the R4

interaction with (D1 = 8, L = 1), the ∂4 R4 interaction with (D2 = 7, L = 2) and the

∂6 R4 interaction with (D3 = 6, L = 3). The structure of the coefficients determined in [2]

will be reviewed in section 2.

In the following section we will present a detailed argument that the logarithmic factors

that arise in the automorphic coefficients of the string theory higher derivative interactions

indeed determine the values of logarithmic ultraviolet divergences in loop amplitudes of

maximal supergravity. To be precise, we will see in section 3 that the logarithmic terms

in the coefficients of ∂2k R4 interactions with k = 0 in D = 8, k = 2 in D = 7, and

k = 3 in D = 6 are equal to the logarithmic terms that arise in maximal supergravity after

subtracting the ultraviolet divergences. The ∂6 R4 coefficient function was not determined

in [2] and so, for completeness, it will be obtained in appendix A.

In addition, there are ‘non-leading’ logarithmic terms that arise in dimensionsD > DL,

which are identified with further logarithmic ultraviolet divergences in maximal supergrav-

1For d ≤ 5 E1(1)(R) = SL(2,R), E2(2)(R) = SL(2,R) × GL(1), E3(3)(R) = SL(3,R) × SL(2,R),

E4(4)(R) = SL(5,R), E5(5)(R) = SO(5, 5,R) and for 5 ≤ d ≤ 7 Ed+1(d+1) is the real split form of the

exceptional Lie group Ed+1.
2The critical dimension at L loops is the lowest (possibly non-integer) dimension in which the theory

has ultraviolet divergences.
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ity. For example, there is a single pole, 1/ǫ, and a double-pole, 1/ǫ2, in dimensionally

regularised two-loop maximal supergravity in D = 8 dimensions that contributes to ∂6R4

(whereas the D3 = 6 single pole contributes to ∂6R4). Another new feature arises in the

field theory since the one-loop R4 divergence requires a counterterm. This contributes to a

one-loop ‘triangle’ diagram in which one vertex is the counterterm, which results in another

1/ǫ2 contribution [6], which we will also evaluate in section 3. The sum of these contribu-

tions gives rise to log and log2 terms that are reproduced by the string theory coefficient

of this interaction. In order to compare the field theory and string theory expressions

it is important to use consistent normalisation conventions, which are briefly outlined in

appendix B.

In section 4 a connection will be made with the issue of whether quantum supergravity

might be a consistent theory that can be obtained as a decoupling limit of closed-string

string theory, much as N = 4 super Yang–Mills in four dimensions can be obtained as a

decoupling limit of open string theory. It was pointed out in [19] that this is probably far

from the case even if the individual terms of the perturbative expansion are finite. The

problem is due to the presence of infinite towers of non-perturbative states, which corre-

spond in toroidally compactified string theory to massive Kaluza–Klein modes, winding

modes, Kaluza–Klein monopoles and wrapped p-branes of various kinds. It was shown

in [19] that the supergravity limit is one in which towers of states becomes massless and

the restriction of the spectrum to the massless perturbative states – the basic assumption

in supergravity – is not a sensible approximation to the theory. In an analogous fashion

the simple examples in this paper involve a condensation of zero-action instantons, as will

be demonstrated in section 4, based on the explicit expressions for the coefficients of the

R4 and ∂4 R4 interactions.

Although the complete structure of the automorphic coefficient functions has not been

determined beyond order ∂6R4, a certain amount is known about higher order terms based

on analysis of one and two loop amplitudes in eleven-dimensional supergravity compactified

to D = 9 nine dimensions on T 2 in [9]. This will be used as the basis of a speculative discus-

sion in section 5 suggesting that the ∂8R4 interaction is not protected by supersymmetry

against perturbative corrections at genus five and higher, which would have significant

implications for the onset of ultraviolet divergences in perturbative maximal supergravity.

The paper will end with a short discussion of these results in section 6.

2. Summary of duality invariant coefficients in the low energy expansion

In [2] we were concerned with properties of the low-momentum expansion of the four-

graviton amplitude. It is useful to separate the D-dimensional amplitude into the sum of

analytic and non-analytic terms,

AD(s, t, u) = Aanalytic
D (s, t, u) +Anonan

D (s, t, u) , (2.1)

where the analytic part has a low energy expansion in powers of the Mandelstam variables
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(s = −(k1 + k2)
2, t = −(k1 + k4)

2, u = −(k1 + k3)
2) of the form

Aanalytic
D =

∞
∑

p=0

∞
∑

q=−1

E(D)
(p,q)(φK\G)σ

p
2 σ

q
3 R4 . (2.2)

This is the general symmetric polynomial in the Mandelstam invariants, which enter in the

dimensionless combinations

σn = (sn + tn + un)
ℓ2nD
4n

, (2.3)

where ℓD is the Planck length in D dimensions. The coefficient functions, E(D)
(p,q)(φK\G),

are functions of the symmetric space moduli, φK\G, which are the scalar fields, of the

coset space K\G appropriate to compactification on a d = (10 − D)-torus (where G is

Ed+1(d+1)(R) and K is its maximal compact subgroup). They are required to be automor-

phic functions that are invariant under the D-dimensional duality group, Ed+1(d+1)(Z),

The expansion is one in which ki ·kj r2 ≪ 1 and ki ·kj ℓ2D ≪ 1, where r is any radius of the

toroidal dimensions, ℓD is the D-dimensional Planck length, and ki and kj are any of the

external momenta. The nonanalytic term, Anonan
D , contains singularities due to thresholds

in which internal lines of the perturbative contributions to the amplitude are on-shell. The

separation of the amplitude into the two pieces in (2.1) is well defined at low orders in the

low-energy expansion, where there are few perturbative contributions to the amplitude.

It is convenient to express the analytic part of the amplitude in terms of a local one-

particle irreducible effective action,

Slocal
D =

∑

p≥0,q≥−1

ℓ8+2k−D
D

∫

dDx
√

−G(D) E(D)
(p,q) ∂

2kR4 (2.4)

where k = 2p + 3q and G(D) is the determinant of the space-time metric in the Einstein

frame.

2.1 Constraints on the coefficients

It is clear that maximal supersymmetry imposes strong constraints on the structure of

the coefficient functions. In particular, it was shown in [7] that type IIB supersymmetry

requires the coefficient of the R4 interaction in ten dimensions to satisfy a Laplace eigen-

value equation (with a particular eigenvalue), for which the unique solution compatible with

string perturbation theory is a nonholomorphic Eisenstein series, E(10)
(0,0)(Ω) = E 3

2
(Ω), where

Ω is the complex modulus of the IIB theory. So far there has been no progress in general-

ising this supersymmetry argument to higher order interactions (see, however, [20, 21]) or

higher-rank groups, but the following indirect arguments (given in [2]) lead to appropriate

generalised Laplace eigenvalue equations satisfied by the coefficient functions in the com-

pactified theory. It was argued in [2] that in the decompactification limit r10−D/ℓD → ∞
the Laplace operator, ∆(D), on K\G becomes

∆(D) → ∆(D+1) +
D − 2

2(D − 1)
(r10−D∂r10−D

)2 +
D2 − 3D − 58

2(D − 1)
r10−D∂r10−D

, (2.5)
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and the eigenvalues λ
(D)
(p,q) of the interactions E(D)

(p,q) satisfy the equation

λ
(D)
(p,q) − λ

(D+1)
(p,q) =

2p + 3(q + 1)

(D − 1)(D − 2)
(D2 − 3D − 52 + 4p+ 6q) . (2.6)

Using the ten dimensional values λ
(10)
(0,0) = 3/4, λ

(10)
(1,0) = 15/4 and λ

(10)
(0,1) = 12 determined

in [3, 6–8, 20], we deduce that the coefficients of the terms discussed in [2] satisfy the

following set of Laplace eigenvalue equations with source terms,
(

∆(D) − 3(11 −D)(D − 8)

D − 2

)

E(D)
(0,0) = 6π δD−8,0 , (2.7)

(

∆(D) − 5(12 −D)(D − 7)

D − 2

)

E(D)
(1,0) = 40ζ(2) δD−7,0 , (2.8)

(

∆(D) − 6(14 −D)(D − 6)

D − 2

)

E(D)
(0,1)

= −
(

E(D)
(0,0)

)2
+ 120ζ(3) δD−6,0 , (2.9)

where the coefficient of the δD−6,0 in equation (2.9), which was not determined in [2], is

derived in appendix A. Although most of the discussion in [2] focused on explicit solutions

of these equations with 7 ≤ D ≤ 10, the iterative argument linking dimensions D and D+1

shows that they hold more generally for all dimensions D ≥ 3.

The structure of equations (2.7) and (2.8) generalizes the Laplace equation satisfied

by the R4 interaction in D = 10 dimensions [3]. A notable feature of these eigenvalue

equations is the presence of the Kronecker delta sources which are non-zero in the dimen-

sions in which the eigenvalues vanish. These are the critical dimensions, DL, which are

the lowest dimensions in which L-loop maximal supergravity has ultraviolet divergences.

Equation (2.9), satisfied by the coefficient of the ∂6 R4 interaction, has a source term that

is quadratic in the coefficient of the R4 interaction, which can also be interpreted to be a

consequence of maximal supersymmetry [8]. In addition the Kronecker delta contributes

in D3 = 6 dimensions, which is again the dimension in which the eigenvalue vanishes and

is also the lowest dimension in which L = 3 supergravity has an ultraviolet divergence.

Interactions of higher order will not be discussed here in any detail. However, some of

their properties in D = 9 dimensions were determined in [9], which indicated that the co-

efficients are sums of automorphic functions that satisfy equations that are generalisations

of (2.9).

1 3

2

4 d + 1. . .

Figure 1: The Dynkin diagrams of the U-duality groups Ed+1(d+1) (0 ≤ d ≤ 7)

The solutions of (2.7)–(2.9) are highly constrained by imposing boundary conditions

that require them to reproduce known features of string/M theory in various limits. These

limits are:
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(i) The limit in which one radius, rd, of the string theory torus, T d, becomes large, rd ≫
ℓD+1 so that the amplitude effectively decompactifies from D = 10 − d to D + 1

dimensions.3 Since the external momenta, ki (i = 1, 2, 3, 4), are fixed, this is a

limit in which ki · kj r2d ≫ 1, which lies outside the range of validity of the original

expansion. In order for the low energy expansion to be valid in D+1 dimensions it is

necessary that ki · kj ℓ2D+1 ≪ 1. Although this interchange of limits might generally

be expected to pose problems, it does not at low orders in the derivative expansion

that are considered here because only a finite number of powers of rd occur. To be

precise, the R4 coefficient, E(D)
(0,0) has two distinct powers of rd in its expansion, so

(ignoring coefficients) the expansion has the form

rd
ℓD+1

E(D+1)
(0,0) +

(

rd
ℓD+1

)8−D

. (2.10)

The term that grows linearly with rd gives the finite contribution to theR4 interaction

in the large rd/ℓD+1 limit. The second term is the n = 1 term of an infinite series

of the schematic form r8−D
d (s r2d)

nR4, which resums in a manner that converts the

first nonanalytic threshold of the D-dimensional amplitude to that of the (D + 1)-

dimensional amplitude. For simplicity, we have suppressed a log rd/ℓD+1 factor that

multiplies the second term when D = 7 and D = 8.

The ∂4 R4 coefficient, E(D)
(1,0), has three power-behaved terms in its expansion,

rd
ℓD+1

E(D+1)
(1,0) +

(

rd
ℓD+1

)12−D

+

(

rd
ℓD+1

)6−D

E(D)
(0,0) . (2.11)

Again the term linear in rd gives the finite contribution to the interaction in the large-

rd limit, while the second term contributes the n = 2 term of the series r8−D
d (s r2d)

n R4

that resums to give the first nonanalytic threshold. The last term contributes the first

term of a second infinite series that resums to give the second (D + 1)-dimensional

nonanalytic threshold. We have suppressed a log(r5/ℓ6) factor multiplying the second

term when D = 5.

The ∂6 R4 coefficient, E(D)
(0,1), has four terms in its expansion

rd
ℓD+1

E(D+1)
(0,1)

+

(

rd
ℓD+1

)14−D

+

(

rd
ℓD+1

)8−D

E(D)
(0,0)

+

(

rd
ℓD+1

)4−D

E(D)
(1,0)

. (2.12)

The term linear in rd again gives the finite contribution to the interaction in the

large-rd limit, the second term contributes the n = 3 term of the series that resums

to give the first nonanalytic threshold and the third term contributes a second term to

the series that sums to the second threshold. The last term contributes the first term

to a new infinite series that resums to give the third (D+1)-dimensional nonanalytic

threshold. Again, we have ignored logarithmic factors that arise for D = 4 and

D = 8.

3This limit is equivalent to rd ≫ ℓs with the D + 1-dimensional string coupling yD+1 held fixed.
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(ii) The limit of string perturbation theory. This is the limit in which the D-dimensional

string coupling becomes small, so that yD = g2s ℓ
d
s/V

(d) ≪ 1, where V (d) = r1r2 . . . rd
is the volume of T d and gs is the string coupling. In this limit each coefficient

possesses a finite set of terms that are power behaved in yD. In string frame a term

of order y−1+h
D corresponds to a term of genus-h in closed string perturbation theory.

In addition there is an infinite set of exponentially suppressed instanton contributions.

A great deal is known about the low-energy expansion of the four-graviton amplitude

directly from string perturbation theory at genus-one and genus-two, and a certain

amount at genus-three.

(iii) The limit in which the M-theory torus becomes large, V(d+1) ≫ ℓd+1
11 . In this limit,

rd ≫ ℓ11, with ki · kjℓ211 ≪ 1 the semi-classical (Feynman diagram) approximation to

eleven-dimensional supergravity is expected to be a good approximation. A variety

of calculations in compactified eleven-dimensional supergravity at one loop and two

loops provide much information about this limit [5, 6, 9, 10,22].

In each of these three cases a specific parameter becomes large and there is a finite

number of terms that are power-behaved in this parameter, together with an infinite series

of exponentially suppressed terms. The sum of power behaved terms contributes the zero

Fourier mode, or ‘constant’ term with respect to the angular parameters that enter in the

off-diagonal entries of the matrix N (the unipotent radical) of the standard Levi decompo-

sition of a maximal parabolic subgroup of G, P = MN , where M is the Levi factor for the

corresponding subgroup of G. Such constant terms are are obtained by deleting specific

nodes of the Ed+1(d+1) groups. Numbering the Ed+1(d+1) nodes as indicated in figure 1, in

limit (i) node d + 1 is deleted, in limit (ii) node 1 is deleted, and in limit (iii) node 2 is

deleted. The exponentially suppressed terms in each case have the interpretation of BPS

instanton contributions due to D-instantons and a variety of wrapped euclidean p-branes.

Although these contributions have not been analysed in detail they should correspond to

1/2-BPS states in the R4 case, 1/4-BPS states in the ∂4R4 case, and 1/8-BPS states in

the ∂6R4 case (see for example [16] for a recent viewpoint of such contributions in the 1/2-

and 1/4-BPS cases). A novel feature appears in the ∂6R4 case, where D-instanton/anti

D-instanton pairs with zero net instanton number arise, giving exponentially suppressed

contributions to the constant terms.

The coefficient functions discussed in [2] are in precise agreement with all the boundary

data in these three limits and also satisfy the Laplace equations in (2.7)–(2.9). In the case

of the R4 and ∂4R4 interactions the solutions are combinations of Eisenstein series for

the rank-(d + 1) duality groups. In the case of the ∂6R4 interaction the solution is a

less familiar automorphic function. Although we have not proved that these solutions are

unique, given the number of conditions that need to be satisfied it seems unlikely that

there are ambiguities (although we cannot rule out the possibility of cusp forms). We will

briefly review the kinds of series that enter into the solutions (more details are given in

appendix B of [2]).
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2.2 Definition and properties of Eisenstein series.

The ‘minimal parabolic’ Eisenstein series for a group G is defined with respect to a complex

vector λ in the weight space of the Lie algebra g as [18]

EG
λ (g) =

∑

γ∈G(Q)\B(Q)

e〈λ+ρ,H(gγ)〉 , (2.13)

where ρ is half the sum of the positive roots, 〈·, ·〉 is the inner product on the root sys-

tem of G, H(g) is a vector in the Cartan subalgebra, and B is a Borel subgroup of G.

These Eisenstein series are eigenfunctions of the invariant differential operators of K\G.

In particular, they are eigenfunctions of the Laplacian,4

∆K\GEG
λ (g) = 〈λ, ρ+ λ〉EG

λ (g) . (2.14)

Whereas the SL(2) Eisenstein series depends on a single complex parameter s, for higher-

rank groups there are r = rank(G) such parameters, sk (k = 1, . . . , r), that are related

to the entries in λ. The minimal parabolic Eisenstein series has a poles for various values

of λ [18], but the special cases of interest to us are ones that are obtained by taking the

multiple residue on the poles at sk = 0 for all k 6= α, so only s ≡ sα is non-zero, where α

is a particular node of the Dynkin diagram of G. In other words we set

λd−α+1 − λd−α − 1 = 2s ,

λd−k+1 − λd−k − 1 = 0 , all 1 ≤ k 6= α ≤ d− 1 . (2.15)

This defines the maximal parabolic Eisenstein series for a particular parabolic subgroup of

G associated with the Dynkin label [0α−1 1 0r−α], which will be denoted by5 E
(G)
[0α−1 1 0r−α];s

.

These Eisenstein series can be expressed as sums over integer lattices. In the simplest

cases these sums can be analysed directly. For example, the SL(n) series E
SL(n)
[0α−1 1 0n−α−1];s

is given by

E
SL(n)
[0α−1 1 0n−α−1];s

=
∑

{mi}∈Zd

′ 1

(d[i1...iα] gi1j1 . . . giαjα d
[j1...jα])s

, (2.16)

where gij (i, j = 1, . . . , n) is the SL(n) metric, d[i1...iα] is the antisymmetrized product of

α integer vectors, d[i1...iα] = m
[i1
1 mi2

2 . . . m
iα]
α and the sum excludes the values at which the

denominator vanishes.

However, for other duality groups these lattice sums are more subtle. This is illustrated

by the case of the SO(d, d) series6 E
SO(d,d)

[1,0d−1];s
, which has the representation (motivated by

the expression for one-loop perturbative amplitude for string theory compactified on T d [2])

E
SO(d,d)

[1 0d−1];s
=

πs

2ζ(2s + 2− d)Γ(s)

∫

FSL(2,Z)

d2τ

τ22
Es+1− d

2
(τ) (Γ(d,d)(τ)− V(d)) , (2.17)

4Invariance under K implies that the eigenvalue of the Laplacian is the same as the value of the second-

order Casimir of G.
5The conventional SL(2) Eisenstein series will be denoted by Es ≡ E

SL(2)
[1];s .

6The d = 5 case is of relevance as the D = 6 U-duality group SO(5, 5), which also arises as the duality

symmetry of perturbative string theory in D = 5 with a different interpretation of the moduli.
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where Γ(d,d)(τ) is the standard lattice factor for compactification of the one-loop string

amplitude on T d, V(d) is the volume of T d and the integral is over the fundamental domain

of SL(2,Z). The corresponding representations of the other SO(d, d) series, as well as the

E6(6), E7(7) and E8(8) series have not been determined (as far as we know). However, it

is possible to analyse all the series from their definition (2.13). This procedure has been

carried out and will be reported in detail elsewhere.

The arguments of [2] (and earlier work reviewed therein) lead to the R4 coefficients

that enter the Einstein-frame action (2.4)7,

D = 10 E(10B)
(0,0) = E 3

2
(Ω) d = 0 ,

D = 9 E(9)
(0,0) = E 3

2
(Ω) ν

− 3
7

1 + 4ζ(2) ν
4
7
1 d = 1 ,

D = 8 E(8)
(0,0) = limǫ→0

(

E
SL(3)

[10]; 3
2
+ǫ

+ 2E1−2ǫ(U)

)

= Ê
SL(3)

[10]; 3
2

+ 2Ê1(U) d = 2 ,

3 ≤ D < 8 E(D)
(0,0) = E

Ed+1(d+1)

[10···0]; 3
2

2 < d ≤ 7 .

(2.18)

Each Eisenstein series in these equations is a function of the moduli that parametrize the

coset space K\G of the U-duality group G = Ed+1(d+1) by its maximal compact subgroup

K. In the following we will omit the arguments of the Eisenstein series unless this is likely

to lead to confusion. The quantity ν1 is defined in terms of the radius of the circular

dimension in the type IIB theory, rB, by ν1 = (rB/ℓ10)
2. The individual series in the third

line have poles at ǫ = 0 but these poles cancel in their sum. The symbol Ê indicates a

series that is regularised by subtracting a pole in ǫ. In [2] it has been explicitly verified

that these coefficients satisfy all the required boundary conditions, as well as the Laplace

eigenvalue equations (2.7) for D ≥ 6 (and is extended to D ≤ 5 in a forthcoming paper in

collaboration with Stephen Miller [23]).

The coefficients of the ∂4R4 interactions in dimensions 7 ≤ D ≤ 10 are given by

D = 10 E(10B)
(1,0) (Ω) = 1

2 E 5
2
(Ω) d = 0

D = 9 E(9)
(1,0) =

1
2 ν

− 5
7

1 E 5
2
(Ω) + 2ζ(2)

15 ν
9
7
1 E 3

2
(Ω) + 4ζ(2)ζ(3)

15 ν
− 12

7
1 d = 1

D = 8 E(8)
(1,0) =

1
2 E

SL(3)

[10]; 5
2

− 4E
SL(3)

[10];− 1
2

E2(U) d = 2

D = 7 E(7)
(1,0) = limǫ→0

(

1
2 E

SL(5)

[1000]; 5
2
+ǫ

+ 3
π3E

SL(5)

[0010]; 5
2
−ǫ

)

= 1
2 Ê

SL(5)

[1000]; 5
2

+ 3
π3 Ê

SL(5)

[0010]; 5
2

d = 3

(2.19)

The poles in the last line again cancel, yielding a finite expression. These expressions

satisfy all the boundary conditions in the three degeneration limits described earlier, as

well as the Laplace eigenvalue equations (2.8). The extension of these expression for D ≤ 6

will be presented in reference [23].

The solutions of the inhomogeneous equations for the coefficients, E(D)
(0,1), of the ∂6R4

interaction are more complicated and given in [2] for D ≥ 7. Some details of the D = 6

case are presented in appendix A since it is of particular interest to this paper.

710B indicates the ten-dimensional type IIB theory.
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3. Logarithmic terms and ultraviolet divergences in supergravity

One of the intriguing features of the expressions for the coefficients in [2] is the manner in

which potential divergences cancel. The Eisenstein series that enter into the coefficients,

E(D)
(0,0), E

(D)
(1,0) and E(D)

(0,1), have singularities at specific values of the parameter s. This reflects

the pole at s = 1 in the Riemann zeta function, ζ(s). However, the precise combinations

of Eisenstein series that enter are ones for which the pole residues cancel. This is a mani-

festation of the consistency of string perturbation theory. Although the poles cancel, there

are residual terms that are logarithms of a modulus, which are important elements in the

structure of the amplitude. We will here focus on logarithms of the coupling constant,

log yD. These enter in cases where the low energy supergravity limit has a logarithmic

ultraviolet divergence, manifested as a pole in dimensional regularisation.

These logarithmic terms are the origin of the Kronecker delta terms on the right-

hand side of (2.7)–(2.9). Roughly speaking this follows from the fact that part of the

Laplace operator acting on E(D)
(p,q) contains y2∂2

y log y = −1. The simplest example of this

phenomenon is seen in the R4 coefficient, E(8)
(0,0) in D = 8 dimensions in (2.18), the next

being in the ∂4R4 coefficient, E(7)
(1,0) in D = 7 dimensions (2.19). The third example is the

∂6 R4 coefficient in D = 6 dimensions, which is presented in appendix A.

3.1 Logarithmic thresholds in the Einstein frame

Closed string perturbation theory is an expansion in the D-dimensional coupling constant,

in which the genus-h term is proportional to yh−1
D when evaluated in the string frame. The

four-graviton amplitude contains terms that are non-analytic in the Mandelstam invariants

due to massless thresholds that are determined by unitarity. Up to the order in the low

energy expansion that we are considering in this paper these are the same thresholds as

those of maximal supergravity where they arise at L loops in dimensions DL = 4+6/L [22].

In the string amplitude these are schematically of the form,

ℓ8−DL
s yL−1

DL
(ℓ2s s)

nL hL(x)R4 log(−ℓ2s s fL(x)) , n1 = 0 , n2 = 2 , n3 = 3 , (3.1)

where fL and hL are complicated functions of the dimensionless variable x = −t/s = 1 +

u/s, the details of which do not concern us (see [22] for a discussion of these contributions).

The power of ℓs in the overall factor is fixed by the power of the Mandelstam invariants and

the dimension DL. Importantly, apart from the explicit power of the string coupling, yDL
,

there is no dependence on the moduli in the overall factor multiplying these nonanalytic

terms, although fL(x) does depend on the moduli. Transforming from the string frame to

the Einstein frame is equivalent to replacing ℓs by ℓD using ℓD−2
D = ℓD−2

s yD. This implies

that the Mandelstam invariants are rescaled so that

ℓ2s s = y
− 2

D−2

D ℓ2D s, or log(−ℓ2s s) = log(−ℓ2D s)− 2

D − 2
log yD . (3.2)

The contribution to the amplitude in (3.1) is therefore equal to the Einstein frame expres-

sion

ℓ8−DL

DL
(ℓ2DL

s)nL hL(x)R4

(

log(−ℓ2DL
sfL(x)) −

2

DL − 2
log yDL

)

(3.3)
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So we see that when the Mandelstam invariants are expressed in Einstein frame units the

non-analytic log s term in the amplitude leads to a term proportional to log yD in the

analytic part. In this discussion there is an ambiguity in the scale of the logarithms, but

this does not affect the overall coefficient and is independent of the moduli, so for our

purposes it can be ignored. In other words, the coefficient of the log yD term in Einstein

frame is −2/(DL − 2) times the coefficient of the log(−ℓ2Ds) term.

On the other hand, in supergravity the factor of log s arises as an infrared threshold

singularity accompanied by a logarithmic ultraviolet divergence. If this is regulated by an

ultraviolet momentum cutoff Λ, it results in a term of the form log(−s/Λ2), where the

log Λ can be subtracted by addition of a local counterterm. In dimensional regularisation

the ultraviolet divergence appears an ǫ pole in the amplitude evaluated in D = DL + 2ǫ

dimensions. The logarithm appears after subtracting the pole and using limǫ→∞((−s/µ)2ǫ−
1)/ǫ ∼ log(−s/µ), where µ is an arbitrary scale, Needless to say, since the coefficient of the

log is determined by unitarity it is not sensitive to the regularisation scheme adopted.

The conclusion is that the logarithmic terms in the automorphic functions, determine

the coefficients of the log s factors in Anonan
D , and hence the logarithmic terms that represent

the ultraviolet divergences in supergravity. The following examples illustrate this feature

of the amplitudes in the three cases, D1 = 8, D2 = 7 and D3 = 6. The conventions used

to compare the amplitudes in string theory and supergravity are exhibited in appendix B.

• The R4 interaction in D = 8 dimensions

It was shown in [2,11] that the coefficient E(8)
(0,0)

in (2.18) has the perturbative expansion

E(8)
(0,0) =

2ζ(3)

y8
+ 2(Ê1(T ) + Ê1(U)) +

2π

3
log y8 +O(e−(y8T2)

−
1
2 , e−( y8/T2)

−
1
2 ) . (3.4)

In this case there is no overall power of ℓ8 in (2.4) so this expression is also the coefficient

in the string frame and the power-behaved terms are identified with tree-level (h = 0) and

genus-one (h = 1) contributions, together with the log y8 term. The latter is a signal of

a genus-one log(−s ℓ2s) term in the string frame, where there can be no log y8, as argued

above.

This expression can be compared with the expression that arises in dimensionally

regularised one-loop maximal supergravity in D = 8 + 2ǫ, where the ǫ pole is associated

with an ultraviolet divergence. The field theory amplitude given in [24] is

Atree
R +A1−loop

R4 ∝ R4

(

64

stu ℓ68
+ Î1(ℓ

2
8ki · kj)

)

, (3.5)

where we have included the tree-level term proportional to R4/stu in order to display the

relative normalisations (we refer to appendix B for details) and

Î1(ℓ
2
8ki · kj) = I1(s, t) + I1(t, s) + I1(s, u) + I1(u, s) + I1(t, u) + I1(u, t) , (3.6)

with

I1(s, t) = lim
ǫ→0

(Iǫ1(s, t) +
π

ǫ
) , (3.7)

– 11 –



and

Iǫ1(s, t) =
2π

3

(

1

2ǫ
+ log

(

−ℓ28t

µ

)) ∫ 1

0
dx

t(1− x)

sx− t(1− x)
+
2π

3

∫ 1

0
dx

t(1− x) log(1− x)

sx− t(1− x)
+O(ǫ)

(3.8)

(µ is an arbitrary constant). It is easy to see that this expression contains a logarithmic

term. Summing over the terms in (3.6) and rescaling the metric to the string frame using

the identity ℓ28 = y
1/3
8 ℓ2s gives

Î1(ℓ
2
ski · kj) = Î1(ℓ

2
8ki · kj) +

2π

3
log y8 . (3.9)

Therefore, the 2
3π log y8 contribution in the coefficient E(8)

(0,0) in (3.4) implies the presence

of the threshold logarithm, which is given in supergravity by the dimensionally regularised

expression Î1(ℓ
2
8ki·kj). So the coefficient of the logarithmic ultraviolet divergence associated

with the field theory pole in (3.8) is precisely the coefficient of the log y8 required by U-

duality.

• The ∂4R4 interaction in D = 7 dimensions

The coefficient of this interaction is ℓ57 E
(7)
(1,0) which is defined by (2.19) and was shown

in [2] to have the small-y7 the expansion

E(7)
(1,0) =

ζ(5)

y27
+

3

π3y7
E

SL(4)

[010]; 5
2

+
2

3
(Ê

SL(4)
[100];2 + Ê

SL(4)
[001];2) +

8π2

15
log y7

+O(e−(y7v3)
−

1
2 , e−(y7ℓs/ri)

−
1
2 ) ,

(3.10)

where v3 = (r1r2r3)/ℓ
3
s. The various powers of y7 in this expression correspond to tree-level

(h = 0), genus-one (h = 1) and genus-two (h = 2) terms. This is seen by transforming

to the string frame where the terms are of order y−1+h
7 using the fact that ℓ57 = ℓ5s y7.

The logarithmic term here implies the existence of a genus-two threshold term of the form

4π2/3 y7 log(−sℓ2s) in string frame using (3.2) again.

We can compare the coefficient of the log y7 term in (3.10) with the ultraviolet diver-

gence of two-loop maximal supergravity in D = 7 dimensions, which was evaluated using

dimensional regularisation in [25] and gave (once again including the tree-level term in

order to compare normalisations),

Atree
R +A2−loop

∂4R4 ∝ R4 y
1
5
7

(

64

stu ℓ67
+ Î2(ℓ

2
7ki · kj)

)

, (3.11)

where Î2(ℓ
2
7 ki · kj) is the two-loop contribution, which is given by a sum of terms

Î2(ℓ
2
s ki · kj) = (ℓ27 s)

2 (IP2 (s, t) + IP2 (s, u) + INP
2 (s, t) + INP

2 (s, u)) + perms(s, t, u) . (3.12)

Here P and NP denote contributions from planar and nonplanar double-box Feynman

integrals, which are defined via dimensional regularisation in D = 7+ 2ǫ dimensions using

equation (4.3) of [25]

I2(s, t) = lim
ǫ→0

(Iǫ2 +
ℓ47
2ǫ

π2

12
(s2 + t2 + u2)) , (3.13)
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where

IX ǫ
2 (s, t) =

1

42
(4π)D−6 Γ(7−D) (−ℓ27s)

D−7

∫ 1

0
d7νδ(1 −

7
∑

i=1

νi)∆
14−3D

2
X + · · · , (3.14)

where X = P or NP and . . . indicates terms that do not contribute to the logarithm and

∆X is given by [25]

∆P = (ν1 + ν2 + ν3)(ν4 + ν5 + ν6) + ν7(1− ν7) ,

∆NP = (ν1 + ν2)(ν3 + ν4) + (ν1 + ν2 + ν3 + ν4)(ν5 + ν6 + ν7) . (3.15)

Expanding (3.14) one gets (see appendix C of [25])

Î2 = ℓ47
π2

12
(s2 log(−ℓ27s

µ
) + t2 log(−ℓ27t

µ
) + u2 log(−ℓ27u

µ
)) + · · · (3.16)

Using the relation ℓ27 = ℓ2s y
2/5
7

Î2(ℓ
2
7ki · kj) = Î2(ℓ

2
ski · kj) +

8π2

15
log y7 σ2 . (3.17)

So we see that the log y7 term in the coefficient E(7)
(1,0) in (3.10) represents a two-loop

threshold term in the Einstein frame which is absent in the string frame provided the

string amplitude possesses a logarithmic threshold with precisely the same coefficient as in

L = 2 supergravity.

In other words, as with the R4 interaction, we can identify the precise coefficient of

the logarithm associated with an ǫ pole in dimensional regularisation of two-loop maximal

supergravity in D = 7+2ǫ dimensions with the coefficient of the logarithm in the duality-

invariant coefficient, E(7)
(1,0).

• The ∂6R4 interaction in D = 6 dimensions

In this case the coefficient, E(6)
(0,1) is an automorphic function for the U-duality group

SO(5, 5) that satisfies the inhomogeneous equation (2.9), which has vanishing eigenvalue

but non-zero Kronecker delta term when D = 6. The solution of this equation is less

straightforward than the earlier cases. Since this case was hardly discussed in [2] (whereas

the ∂6R4 coefficients for D > 6 were obtained in [2, 8, 15]), a discussion is included in the

appendix, from which we see that the coefficient E(6)
(0,1) has the perturbative expansion

E(6)
(0,1) =

2ζ(3)2

3 y36
+

1

y26
(
2ζ(3)

3
E

SO(4,4)
[1000];1 +

8ζ(4)

69π
E

SO(4,4)
[1000];4 ) +

1

y6
F

SO(4,4)
2

+
4ζ(2)

105
(Ê

SO(4,4)
[0001];3 + Ê

SO(4,4)
[0010];3 ) + 15ζ(3) log y6 + n.p. .

(3.18)

where n.p. stands for various non perturbative contributions evaluated in appendix A where

the function F
SO(4,4)
2 is also discussed. In this case the powers of the string coupling, y6,

correspond to tree-level, genus-one, genus-two and genus-three. The three-loop contri-

bution involves the regularized SO(4, 4) series Ê
SO(4,4)
[0001];3 and Ê

SO(4,4)
[0010];3 . In particular, the
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logarithmic term is a sign of a genus-three logarithm associated with a term in the string

frame of the schematic form y26ζ(3) log(−ℓ2ss).

Once again this can be compared with dimensionally regularised supergravity, which

has a three-loop contribution to the ∂6R4 amplitude in D = 6 dimensions of the form

(again adding in the tree-level amplitude to compare normalisations)

Atree
R +A3−loop

∂6R4 ∝ R4 y
1
2
6

(

64

stu ℓ66
+ Î3(ℓ

2
6 ki · kj)

)

. (3.19)

The function Î3 is a sum of many contributions [26,27] that is given by using equation (5.12)

of [26], which gives

Î3 = lim
ǫ→0

(Iǫ3 +
15ζ(3)

ǫ
σ3) . (3.20)

The expression for Î3 can be deduced from equation (5.14) of [27] (using the D = 7 two-loop

result in equation (5.19) to establish normalisations). Transforming from Einstein frame

to the string frame (and using the relation ℓ26 = ℓ2s y
1/2
6 ) gives

Î3(ℓ
2
6 ki · kj) = Î3(ℓ

2
s ki · kj) + 15ζ(3) log y6 σ3 . (3.21)

Therefore, the coefficient of the log y6 term in E(6)
(0,1) in (3.18) determines the coefficient

of the logarithmic terms associated with the ǫ pole.

• The ∂6R4 interaction in D = 8 dimensions

The examples discussed so far are ones in the critical dimensions, DL = 4 + 6/L,

for L = 1, 2, 3. There are, however, other ultraviolet logarithms that arise in dimen-

sions D > DL for any value of L. The simplest of these appears to arise in the one-

loop in ten dimensions, where there is a threshold that is schematically of the form

s ℓ210 log(−s ℓ210)R4 + perm(s, t, u). However, under the rescaling ℓ210 = ℓ2s y
1/4
10 the shift

is (s+ t+ u) log y10 = 0, so the logarithmic term vanishes.

The simplest nontrivial example is the two-loop amplitude in D = 8 dimensions, which

has both log and log2 divergences associated with a singe and double pole multiplying ∂6 R4

in dimensional regularisation in D = 8+2ǫ dimensions. The presence of these supergravity

divergences is again encoded in the duality invariant ∂6 R4 coefficient function, E(8)
(0,1), which

satisfies (2.9) with D = 8. In this case the source term on the right-hand side of (2.9) is

the square of the R4 coefficient, E(8)
(0,0), which itself has a one-loop log y8, as exhibited in

(3.4). The solution of this equation has the perturbative expansion given in equation (5.20)

in [2], which has the logarithmic terms,

E(8)
(0,1) = · · ·+ π

9
(
π

6
+Epert

(0,0)) log y8 −
π2

27
log2 y8

)

+ n.p. , (3.22)

where Epert
(0,0) is the perturbative part of the R4 interaction which has the expansion given

in (3.4). The term in (3.22) involving the tree-level part of Epert
(0,0) is a stringy threshold

effect that was discussed in [28]. It contains the factorisation of the string loop into the
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product of a tree-level R4 factor and a massless pole factor. The one-loop contribution

to Epert
(0,0) gives both log y8 and log2 y8 contributions that add to the explicit log y28 term in

(3.22).

In this case comparison with two-loop field theory in D = 8 dimensions requires us

to take into account the presence of two kinds of diagrams: (i) The two-loop diagrams

evaluated in [25]. (ii) A contribution involving the R4 counterterm that cancels the one-

loop divergence - it is necessary to include the diagram in which this counterterm, is inserted

as a vertex in a one-loop diagram.

In the first of these contributions, (i), the double ǫ pole of the dimensionally regu-

lated two-loop amplitude of maximal supergravity in (3.14) leads to a log2 s term given in

equation (4.4) of [25]

Î
(i)
2 = lim

ǫ→0
(Iǫ2 + ℓ68 (

π2

48ǫ2
+

π2

288ǫ
)(s3 + t3 + u3)

+ ℓ68
π2

24ǫ
(s3 log(−sℓ28

µ
) + t3 log(− tℓ28

µ
) + u3 log(−uℓ28

µ
)) .

(3.23)

The log2 y8 term should correspond to the double-pole in ǫ in the two-loop supergravity

amplitude in D = 8 [25].

However, in eight dimensions the complete amplitude also includes contribution (ii)

due to the one-loop R4 counterterm, which has an ǫ pole, inserted into a one-loop diagram.

This results in a triangle diagram, which makes an additional contribution to I2 that was

not considered in [25], but makes an essential contribution to the complete ∂6R4 ultraviolet

divergence in eight dimensions. Its overall normalisation is difficult to determine, so we will

fix it by unitarity, which, as explained above, guarantees that it matches the string theory

result. Although this is not a completely independent check of the normalisation (unlike

the previous cases), it shows the precise origin of the different structures that contribute

to give the string theory result. With this proviso, the counterterm contribution is

I
(ii) ǫ
2 =

240

(4π)3
π

ǫ
R4 ℓ48 (s

2 Iǫ⊲(s) + t2 Iǫ⊲(t) + u2 Iǫ⊲(u)) , (3.24)

where

Iǫ⊲(s) =

∫

dDℓ

ℓ2(ℓ− k1)2(ℓ− k1 − k2)2
=

25−Dπ
D+3
2

(D − 4)

(−ℓ2Ds)
D/2−3

Γ
(

D−3
2

)

sin(π(3− D
2 ))

(3.25)

in which one vertex is theR4 counterterm and in which the loop integral generates a second

power of 1/ǫ. As a result this contribution has the form

Î
(ii)
2 = lim

ǫ→0

(

I
(ii) ǫ
2 −ℓ68

5π2

32

s3 + t3 + u3

ǫ2
−ℓ68

5π2

32

s3 log(− ℓ28s
µ ) + t3 log(− ℓ28t

µ ) + u3 log(− ℓ28u
µ )

ǫ

)

(3.26)

which gives another contribution to the double pole.
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The total contribution obtained by adding (i) and (ii) is given by

Î
(i)
2 + Î

(ii)
2 = −ℓ68

π2

192
(s3 log2(−sℓ28

µ
) + t3 log2(− tℓ28

µ
) + u3 log2(−uℓ28

µ
))

− ℓ68
π2

72
(s3 log(−sℓ28

µ
) + t3 log(− tℓ28

µ
) + u3 log(−uℓ28

µ
)) .

(3.27)

which transforms as (using ℓ28 = ℓ2s y
1/3
8 )

Î2(ℓ
2
8ki · kj) = Î2(ℓ

2
ski · kj)−

π2

27
log2 y8 σ3 + · · · , (3.28)

where · · · denotes terms with a single power of log y8. So we see that there is agreement

between the coefficient of the log2 y8 term in the automorphic coefficient E(8)
(0,1) and the

supergravity calculation. As is evident from (3.22), the string theory coefficient automat-

ically includes the term with the single logarithm, Epert
(0,0) log y8, which corresponds to the

one-loop that has to be subtracted in the field theory calculation in [25].

4. The supergravity limit and instanton corrections

We turn now to consider the particular low energy limit of string theory that should relate

to perturbative quantum supergravity in D dimensions, which is an expansion in powers of

ki · kj ℓ2D ≪ 1, where the D-dimensional Planck length is fixed while ℓs → 0, so the string

excitation masses become large. Since

ℓD−2
D = yD ℓD−2

s , (4.1)

it follows that the limit of interest is one in which the D-dimensional string coupling

becomes large,

lim
ℓs→0

yD =
g2s ℓ

d
s

r1 · · · rd
→ ∞ . (4.2)

In addition, in order to arrive at the the field theory limit in which there is a single massless

supermultiplet, the masses of all other massive states must become large and decouple.

This requires, in particular, ri → 0 so that non-zero Kaluza–Klein masses are large, and

ℓ2s/ri → 0 for the winding masses to become large.

4.1 The perturbative terms

In the yD → ∞ limit the perturbative term with the highest power of yD dominates the

others. For D > DL = 4+ 6/L this is a positive power of yD so the leading term diverges,

signifying a power-behaved divergence in supergravity. The simplest example of this is in

D = 10 string theory, where the genus-one term corresponds, in this limit, to a term of

the form ℓ−2
s R4 = y

1/4
10 ℓ−2

10 R4. This diverges in the large-y10 limit, signifying the quadratic

divergence of the one-loop term in supergravity.

When D = DL the dominant perturbative term in the yD → ∞ limit is the log yDL

term, which gives the supergravity logarithm for each of the three interactions described

in equations (3.4), (3.10), (3.18).
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For D < DL the perturbative terms vanish in the field theory limit since they involve

inverse powers of yD that arise in the translation from string frame to Einstein frame.

This is clearly seen from the specific examples of the R4 interaction in D = 7 and D = 6

dimensions, as follows.

• The R4 interaction in D = 7 dimensions has perturbative terms that are given by [2],

E(7)
(0,0)

∣

∣

∣

∣

pert

= y
− 1

5
7

(

2ζ(3)

y7
+ 2πE

SO(3,3)

[100]; 1
2

)

, (4.3)

where the factor of y
−1/5
7 comes from the relation ℓ7 = ℓs y

1/5
7 in converting from string

units to Planck units in seven dimensions.

• The R4 interaction in D = 6 dimensions has the perturbative terms [2],

E(6)
(0,0)

∣

∣

∣

∣

pert

= y
− 1

2
6

(

2ζ(3)

y6
+ 2E

SO(4,4)
[1000];1

)

, (4.4)

where the factor y
−1/2
6 again arises from the conversion from string frame to Einstein frame

(using ℓ6 = ℓs y
1/4
6 ).

In both these examples the perturbative terms vanish in the yD → ∞ limit, which is a

statement of the well-known fact that there is no local R4 interaction in supergravity. In

these dimensions the leading contribution beyond the tree-level term is a non-local interac-

tion roughly of the form s
D−8
2 R4 (although its precise details are more complicated [24]). A

similar argument shows that the perturbative parts of the ∂4 R4 coefficients, E(D)
(1,0), vanish

in the yD → ∞ limit for D < 7. The same is true for E(D)
(0,1) whenD < 6. Whether analogous

statements apply to higher orders in the derivative expansion has not been demonstrated.

However, there are important non-perturbative effects in the string amplitude that

swamp the perturbative contribution [19] as will be demonstrated next.

4.2 Supergravity limit including the instanton terms

Nonperturbative effects are, of course, suppressed in string perturbation theory, in which

yD is small and other moduli are fixed. However, the yD → ∞ limit produces an infinite

series of instanton terms with actions that become small in the limit under consideration.

For example, consider the exponential terms in the expansion of E(8)
(0,0)

in (3.4), which

correspond to a series of D-instanton terms (with action (y8 T2)
−1/2) and of wrapped D-

string instanton terms (with action (y8/T2)
−1/2). Although these are both suppressed when

y8 is small, at least one of these series is unsuppressed for large y8. This is an instanton

manifestation of the effect described in [19], where it was shown that in dimensions D > 3

there are necessarily towers of non-perturbative particle states that become massless in the

supergravity limit. This will now be demonstrated in our explicit examples.

• The R4 interaction in D = 8

In this case we will reexamine the exact expression for E(8)
(0,0) = Ê

SL(3)

[10]; 3
2

+ 2Ê
SL(2)
[1];1 (U)

in (2.18) in the limit y8 → ∞. Consider first the expansion of E
SL(3)
[10];s in the limit y8 → ∞,
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which is defined by [2, 11]

E
SL(3)
[10];s =

∑

(m1,m2,m3)6=(0,0,0)

y
s
3
8

(

y8

(

m1 +m2Ω1 +m3(BRR +Ω1T1)
)2

+ |m2+m3T |2
T2

)s . (4.5)

The limit y8 → ∞ can be studied by separating the leading piece, which is the term with

m1 = 0 in (4.5), and then perform Poisson resummations. This expansion is analogous to

the one in (B.52) in [2], but with the substitution (ν2,Ω) → (y8, T ). For s 6= 3/2 this gives

E
SL(3)
[10];s = y

s
3
8 Es(T ) + 2π

Γ(s− 1)

Γ(s)
ζ(2s− 2)y

3−2s
3

8

+
2πs

Γ(s)
y

3−s
6

8 T
1−s
2

2

∑

m1,m2
m3 6=0

∣

∣

∣

∣

m2 −m1T

m3

∣

∣

∣

∣

s−1

(4.6)

× Ks−1



2π|m3|
√

m2
2

T2
+m2

1T2 y
1/2
8



 e2iπm3(m1BRR+m2BNS) .

Regularising the pole at s = 3/2 gives

Ê
SL(3)

[10]; 3
2

= y
1
2
8 E 3

2
(T )− 4π

3
log y8 +O(e−

√
y8T2 , e−

√
y8/T2) . (4.7)

The exponential terms in this expression are suppressed for fixed T2 – the Poisson resum-

mation has resummed the effect of light wrapped branes and non-perturbative objects. The

net result is that the effect of including these non-perturbative effects has swamped the

perturbative term and the leading piece is the term proportional to y
1/2
8 (and the coefficient

of the subleading logarithmic term appears with a different coefficient from the one in the

perturbative expansion discussed earlier).

• The ∂4 R4 interaction in D = 7

The perturbative part of the E(7)
(1,0) given in last line of (2.19) was derived in [2]. We

are now interested in the limit, y7 → ∞. This gives (see (B.78) and (B.93) in [2] with the

replacement r4 = y7)

E
SL(5)
[1000];s = y

s
5
7 E

SL(4)
[100];s +

2π2Γ(s− 2)

Γ(s)
ζ(2s− 4) y

2− 4s
5

7 +O(e−(y7v3)
1
2 , e−(y7ℓs/ri)

1
2 ) ,

E
SL(5)
[0010];s = y

3s
5
7 ζ(2s− 1)E

SL(4)
[001];s +

πΓ(s− 1)

Γ(s)
y
1− 2s

5
7 E

SL(4)

[010];s− 1
2

+O(e−(y7v3)
1
2 , e−(y7ℓs/ri)

1
2 ) .

(4.8)

As before we have resummed all the instanton effects so that the exponential terms in this

expression are suppressed in the large-y7 limit. In particular, the series of relevance to the

∂4 R4 interaction arise in the combination E
SL(5)

[1000]; 5
2
+ǫ

and E
SL(5)

[0010]; 5
2
−ǫ

in the limit ǫ → 0.
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The poles in the individual series cancel and the combination has the expansion,

E(7)
(1,0) =

1

2
Ê

SL(5)

[1000]; 5
2

+
3

π3
Ê

SL(5)

[0010]; 5
2

(4.9)

=
π

30
y

3
2
7 E

SL(4)

[001]; 5
2

+
1

2
y

1
2
7 E

SL(4)

[100]; 5
2

+
2

π2
Ê

SL(4)
[010];2 −

4π2

5
log y7 +O(e−(y7v3)

1
2 , e−(y7ℓs/ri)

1
2 ) .

The leading behaviour is dominated by the term that behaves as y
3/2
7 (and, once more, the

coefficient of the logarithmic term is different from the one in the perturbative expansion).

These expressions illustrate that the perturbative supergravity logarithms are domi-

nated by the “non-perturbative” instanton contributions. Furthermore, the result of sum-

ming these contributions leads to expressions that diverge badly in the yD → ∞ limit.

This is a sign that the low energy expansion in powers of ki · kj ℓ2D is invalid. As pointed

out in [19], string dualities relate this limit to a limit which may be described by trans-

Planckian scattering in a decompactified dual of the original string theory.

5. Comments on higher-order interactions and higher-loop supergravity.

The structure of the terms in the low energy expansion of string theory that we have

discussed is presumably highly constrained by a combination of duality and maximal su-

persymmetry, even though this has not been explicitly used in determining the coefficients.

It would obviously be of interest to discover the detailed structure of such terms and to

what extent they are protected by maximal supersymmetry. Although this has not been

understood in detail, there is some information about higher-order terms (i.e., terms of

order ∂8 R4 and higher) in D = 9 dimensions.

This comes from evaluating the amplitude in the limit of large volume, V(d+1), of

the M-theory torus (limit (iii) described in the section 2) where the Feynman diagram

approximation to eleven-dimensional supergravity compactified on T d+1, should be a valid

approximation. The contributions to the ∂8R4 coefficient, E(9)
(2,0), from one-loop and two-

loop Feynman diagrams compactified on T 2 is given in equation (4.25) of [9]. This is a sum

of automorphic functions satisfying inhomogeneous Laplace equations with source terms

that are quadratic in the lower order coefficients, generalising the equation that determines

the ∂6R4 coefficient (2.9). Although the expression is incomplete since it undoubtedly

gets contributions from higher-loop Feynman diagrams, it is striking that its perturbative

expansion terminates at genus five, rather than genus four.

The occurrence of a five-loop contribution to ∂8R4 is novel since it breaks the pattern

set by ∂2kR4 interactions with k = 2, 3, for which there are no contributions with genus

larger than k for any value of D. Similar statements also apply to the other higher order

terms considered in [9], namely, the ∂10R4 coefficient (equation (4.31) of [9]) which contains

terms up to genus seven, and the ∂12R4 coefficient (equations (4.32) and (4.33) of [9]),

which includes terms up to genus nine. This pattern shows that the claim [29], that

supersymmetry protects ∂2kR4 interactions with 1 < k ≤ 5 from renormalisation inD = 10

dimensions, must be modified in lower dimensions. Furthermore, there are indications

based on technical issues in the pure spinor formalism [30] that even in ten dimensions
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the non-renormalisation property only holds up to k = 3. If that were the case the ∂8R4

interaction would be unprotected and would be expected to have contributions to all orders

in perturbation theory.

Following the earlier considerations of this paper, a genus-five term in the complete

E(D)
(2,0) coefficient would imply a five-loop logarithmic ultraviolet divergence in maximal

supergravity in critical dimension 24/5. This contrasts with the value that follows if the

five-loop amplitude first contributes at order ∂10R4, in which case the critical dimension

would satisfy DL = 4 + 6/L with L = 5, or D5 = 26/5. Furthermore, if ∂8R4 is indeed

not protected by supersymmetry, so its complete coefficient contains terms to all orders in

perturbation theory, the critical dimension at L loops would be DL = 2+14/L. This would

lead to a seven-loop logarithmic ultraviolet divergence in maximal supergravity in D = 4

This is in line with the suggested presence of a seven-loop counterterm [31]. This conflicts

with an earlier argument by the present authors, based on [29], that the first divergence

would not occur until at least nine loops [32].

6. Summary and discussion of higher-order contributions

This paper has demonstrated several main features of the structure of the duality invariant

coefficients, E(D)
(p,q), of terms up to the order ∂6 R4 (or 2p + 3q ≤ 3) in the low-energy

expansion of the four-graviton amplitude in type II string theory compactified toD = 10−d

dimensions on a d-torus, T d. The explicit expressions for these coefficients were derived

and their properties analysed in [2] (where earlier work is reviewed).

• The perturbation expansions of these coefficients in certain critical dimensions –

D1 = 8 for R4, D2 = 7 for ∂4 R4, D3 = 6 for ∂6 R4 – contains logarithms of the string

coupling log yDL
. Their presence is required by the duality invariance of the analytic part of

the amplitude and arises from the presence of poles in Eisenstein series, although the poles

themselves cancel, leaving a finite amplitude. Such non-analytic behaviour in the coupling

constant cannot be present in perturbative string theory so it must disappear when the

amplitude is transformed from the Einstein frame to the string frame using the relation

of the D-dimensional Planck scale to the string scale, ℓD−2
D = ℓD−2

s yD. In order for this

to happen there must be specific terms that are logarithmic in the Mandelstam invariants

∼ log(−s ℓ2s/µ) (where µ is an arbitrary constant), which correspond to threshold terms in

the amplitude. These are precisely the threshold log(−s ℓ2d)’s that arise in supergravity field

theory as ultraviolet divergences, or poles in dimensional regularisation. In other words,

we have obtained the coefficients of the ultraviolet divergences of maximal supergravity at

L = 1 loop in D = 8, L = 2 loops in D = 7 and L = 3 loops in D = 6 as a consequence of

U-duality rather than calculating the supergravity loop diagrams explicitly.

• The coefficient functions also contain more subtle effects associated with logarithmic

divergences in supergravity amplitudes in dimensions D > DL. For example, we saw

that the normalisation of the double-pole, 1/ǫ2, in three-loop supergravity in D = 8 + 2ǫ

dimensions is in correspondence with the coefficient of log2 y8 in the perturbative expansion

of the automorphic coefficient of the ∂6R4 interaction, E(8)
(0,1), which satisfies (2.9) with

D = 8. In this case the source term on the right-hand side of (2.9) is the square of
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the R4 coefficient, E(8)
(0,0), which itself has a one-loop log y8, as exhibited in (3.4). There

are plenty of further examples of logarithmic divergences in field theory in dimensions

D > DL = 4 + 6/L, but they are all associated with interactions ∂2LR4 with L > 3.

• The supergravity limit of string theory, ℓs → 0 with ℓD fixed requires yD → ∞.

In this limit the highest-genus perturbative term (the highest power of yD) dominates the

lower-genus contributions. However, an accumulation of an infinite number of unsuppressed

instanton contributions dominates the amplitude. These are terms that are exponentially

small in the string perturbation theory limit. The precise consequences of summing over

such zero-action instanton contributions were deduced by explicitly expanding the coef-

ficient functions in the yD → ∞ limit. In the cases considered here, where the torus

dimension d ≤ 4, the instantons correspond (in type IIB language) to wrapped (p, q)-string

world-sheets and D-instantons in D = 8, as well as wrapped D3-brane world-sheets in the

D = 6 case. One lesson to draw from this is that, as discussed in [19], supergravity cannot

be decoupled from string theory8.

As was emphasised in section 5, understanding the systematics of higher derivative

terms is intimately related to understanding the order at which ultraviolet divergences of

four-dimensional N = 8 supergravity first arise and the stringy origin of such divergences.

Acknowledgments

We are grateful to Stephen Miller for many insights concerning Eisenstein series and to

Jonas Bjornsson, Nick Dorey, Sergio Ferrara, Francisco Morales and Augusto Sagnotti for

useful comments. PV would like to thank the INFN laboratory at Frascati and the LPTA

of Montpellier for hospitality when this work was being finalized. MBG is grateful for the

support of a European Research Council Advanced Grant No. 247252. J.R. acknowledges

support by MCYT Research Grant No. FPA 2007-66665 and Generalitat de Catalunya

under project 2009SGR502.

A. The ∂6R4 interaction in D = 6 dimensions.

Since the coefficient E(6)
(0,1)

was not discussed in [2] its properties will be discussed in this

appendix. As explained in section 3, this coefficient satisfies the Poisson equation (2.9)

∆(6)E(6)
(0,1) = −

(

E
SO(5,5)

[10000]; 3
2

)2
+ c , (A.1)

where c is a numerical constant to be determined. We have used the fact that the coefficient

of R4 is E(6)
(0,0) = E

SO(5,5)
[10000];3/2, which was discussed in detail in [2].

We begin by discussing the perturbative expansion, which is associated with the

parabolic subgroup Pα1 , with Levi component GL(1)× SO(4, 4). In expanding the source

term in (A.1) in powers of y6 we need the expansion (see (3.54) of [2]),
∫

Pα1

E
SO(5,5)

[10000]; 3
2

= 2ζ(3)y
− 3

2
6 + 2y

− 1
2

6 E
SO(4,4)
[1000];1 , (A.2)

8For alternative ideas on this subject see [33].
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where the notation indicates an integration over the instanton phases associated with the

nilpotent radical, N , associated with the maximal parabolic subgroup Pα1 , as defined

in [2], thereby projecting onto the zero Fourier mode. The solution of (A.1) can be found

in perturbation theory, by expanding the automorphic function E(6)
(0,1) as a power series in

y6,

E(6)
(0,1)

∣

∣

∣

∣

pert.

= y−3
6

2
∑

k=0

yk6F
SO(4,4)
k + F

SO(5,5)
3 , (A.3)

where F
SO(4,4)
k are perturbative genus k = 0, 1, 2 contributions and

∆SO(5,5) F
SO(5,5)
3 = c . (A.4)

We now use the decomposition of the Laplace operator (also discussed in [2]),

∆SO(5,5) → ∆SO(4,4) + 2(y6∂y6)
2 + 8(y6∂y6) . (A.5)

Substituting (A.2), (A.3) and (A.5) into (A.1), we find the following equations

6F
SO(4,4)
0 = 4ζ(3)2 ,

(

∆SO(4,4) − 8)F
SO(4,4)
1 = −8ζ(3)E

SO(4,4)
[1000];1 , (A.6)

(

∆SO(4,4) − 6)F
SO(4,4)
2 = −4(E

SO(4,4)
[1000];1 )

2 .

which determine the coefficients of F
SO(4,4)
k . In particular, it follows immediately that the

tree-level and one-loop coefficients are

F
SO(4,4)
0 =

2ζ(3)2

3
,

F
SO(4,4)
1 =

2ζ(3)

3
E

SO(4,4)
[1000];1 . (A.7)

The genus-two function F
(SO(4,4)
2 , satisfying the last equation in (A.7), is more complicated

but its properties can be analysed following the same procedure as in [8], although we will

not need its properties here.

We now turn to FSO(5,5), which, as we will see later, generates a logarithm that is

related to the 1/ǫ pole in D = 6 three-loop supergravity. The most general solution of

(A.4) is a particular solution plus a solution of the homogeneous equation, where the

homogeneous solution is a linear combination of SO(5, 5) Eisenstein series. These satisfy

Laplace equations with eigenvalues given by (2.14). The two series of relevance are E
SO(5,5)
[00010];s,

E
SO(5,5)
[00001];s, which satisfy

∆SO(5,5)E
SO(5,5)
[00001];s =

5

2
s(s− 4) E

SO(5,5)
[00001];s ,

∆SO(5,5)E
SO(5,5)
[00010];s =

5

2
s(s− 4) E

SO(5,5)
[00010];s . (A.8)

The other possible series, E
SO(5,5)
[00100];s, E

SO(5,5)
[01000];s and E

SO(5,5)
[10000];s, need not be considered because

they do not have perturbative expansions that contain powers of y6 that are consistent
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with string perturbation theory. In order for (A.8) to have zero eigenvalues as required

by (A.4), we set s = 4 (the choice s = 0 gives equivalent solutions). Each series has a

pole in ǫ at s = s+ ǫ, which needs to be subtracted, leaving an automorphic function that

satisfies the Poisson equation with a constant source. The Eisenstein series with the pole

subtracted will be denoted by a hat in the conventional manner. We are thus led to the

ansatz

F
SO(5,5)
3 = a0 lim

ǫ→0

(

E
SO(5,5)
[00001];4+ǫ +E

SO(5,5)
[00010];4−ǫ

)

= a0
(

Ê
SO(5,5)
[00001];4 + Ê

SO(5,5)
[00010];4

)

,
(A.9)

where a0 is a numerical constant discussed below.

We are now interested in the constant term of F̂SO(5,5) on the parabolic subgroup Pα1 ,

corresponding to string perturbation theory. Expanding for small y6 gives an expansion of

the form
∫

Pα1

E
SO(5,5)
[00010];s = π2 ζ(2s− 4)Γ(s − 2)

ζ(2s)Γ(s)
y

1
2
(s−4)

6 E
SO(4,4)
[0010];s−1 + y

− s
2

6 E
SO(4,4)
[0010];s , (A.10)

and the functional relation

E
SO(5,5)
[00010];s = π5 Γ(s− 7

2)Γ(s− 5
2)ζ(2s − 7)ζ(2s − 5)

Γ(s− 1)Γ(s)ζ(2s)ζ(2s − 2)
E

SO(5,5)
[00001];4−s (A.11)

and we are interested in s → 4. The first term is a genus three term which will contribute to

the log y6 piece, whereas the second term is a genus one contribution that will not concern

us in this discussion.

The triality symmetry of SO(4, 4) implies that the series E
SO(4,4)
[1000]s , E

SO(4,4)
[0010]s andE

SO(4,4)
[0001]s

all have eigenvalues equal to 2s(s − 3). Therefore, for s = 3 these Eisenstein series solve

a Laplace equation with zero eigenvalue. In this case, the Eisenstein series have poles, as

can be seen, for example, from the expansion in (C.7) of [2] ,

E
SO(4,4)
[1000];3+ǫ = V

3
2

(4)E
SL(4)
[001];3 +

15

2π2
ζ(3)

(π2

ǫ
+ Ê

SL(4)
[100];2 −

π2

4
log V(4)

)

+O(ǫ) + n.p. (A.12)

where we have also used the ǫ expansion of E
SL(4)
[100];2+ǫ given in equation (B.12) of [2]. The

series E
SO(4,4)
[0010];3+ǫ, E

SO(4,4)
[0001];3+ǫ also have poles at ǫ → 0 with the same residue.

It is now straightforward to obtain the regularised series F̂SO(5,5) = a0(Ê
SO(5,5)
[00001];4 +

Ê
SO(5,5)
[00010];4) from E

SO(5,5)
[00001];4+ǫ +E

SO(5,5)
[00010];4−ǫ, and hence, from FSO(5,5) defined by (A.9). Con-

centrating on the log y6 piece this gives

F
SO(5,5)
3 → 525

2π2
a0 ζ(3) log y6 + · · · (A.13)

Finally, the value of a0 can be determined by the decompactification limit r3 → ∞, where

we must recover the D = 7 genus-three automorphic functions. One must have (see (5.41)

in [2])

F
SO(5,5)
3 → 2r33

(

E
SL(4)
[100];3 +E

SL(4)
[001];3

)

. (A.14)
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In this limit

Ê
SO(4,4)
[0010];3 + Ê

SO(4,4)
[0001];3 → r33

(

E
SL(4)
[100];3 +E

SL(4)
[001];3

)

+ · · · (A.15)

which requires a0 = 6π2/35. Thus

F
SO(5,5)
3 → 15ζ(3) log y6 + · · · (A.16)

This means, in particular, that

c = 8× 15ζ(3) (A.17)

B. Normalisations

This appendix gives a brief definition of the conventions used for the normalisations of the

amplitudes.

The normalisations of the supergravity field theory amplitude calculations at from tree

level to three loops are given by [25–27]

Asugra
D = R4

(κ(D)

2

)2
(

64

stu ℓ6D
+

(κ(D)

2

)2
I1 +

(κ(D)

2

)4
I2 +

(κ(D)

2

)6
I3 + · · ·

)

. (B.1)

By convention, the Newton constant in dimension D ≤ 10, , κD, is related to the Planck

length, ℓD, by 2κ2(D) = (2π)D−3 ℓD−2
D .

For the purpose of comparing the field theory and string theory normalisations it is

useful to recall the expansion of the tree-level amplitude string in ten dimensions,

Astring
tree = − 1

y210
R4 Γ(− ℓ2ss

4 )Γ(− ℓ2st
4 )Γ(− ℓ2su

4 )

Γ(1 + ℓ2ss
4 )Γ(1 + ℓ2st

4 )Γ(1 + ℓ2su
4 )

= − 1

y210
R4

(

64

stu ℓ6s
+ 2ζ(3) + ζ(5) σ̂2 +

2ζ(3)2

3
σ̂3 + · · ·

)

. (B.2)

where σ̂n = (sn + tn + un) ℓ2ns /4n.
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