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A superglass is a phase of matter which is characterized at the same time by superfluidity and a
frozen amorphous structure. We introduce a model of interacting bosons in three dimensions that
displays this phase unambiguously and that can be analyzed exactly or using controlled approxima-
tions. Employing a mapping between quantum Hamiltonians and classical Fokker-Planck operators,
we show that the ground state wavefunction of the quantum model is proportional to the Boltzmann
measure of classical hard spheres. This connection allows us to obtain quantitative results on static
and dynamic quantum correlation functions. In particular, by translating known results on the
glassy dynamics of Brownian hard spheres we work out the properties of the superglass phase and
of the quantum phase transition between the superfluid and the superglass phase.

I. INTRODUCTION

Solids do not flow. This apparently tautological statement can be wrong in two ways. First, solidity is in general a
timescale-dependent phenomenon. Crystal or glasses, well known solids on most experimentally relevant timescales,
do flow if one waits long enough (see Ref. 1 for example). Second, at very small temperatures, quantum solids may
become superfluids as suggested theoretically in the early seventies2–4. A striking property of this phase of matter is
the non-classical rotational inertia: a supersolid placed at thermal equilibrium in a rotating container does not rotate,
at least not completely, for small angular velocity ω. In particular, its angular momentum is reduced from its classical
value Icl ω by a fraction fs which is called superfluid fraction.

The first promising experimental evidence of supersolidity was found only four years ago by Kim and Chan5,6

through measurements of a non-classical rotational momentum of inertia (NCRI) in solid He4 at low temperature.
Unfortunately, the physical mechanism underlying the observed effect is still unclear. In particular, despite intense
experimental activity, it has not been established that the observed NCRI in solid He4 is accompanied by superflow
(see, however, the very recent work reported in Ref. 7).

Nonetheless, some agreement has been reached by now on few basic facts8: theoretical works have revealed that
equilibrium He4 crystals at zero temperature are commensurate and not supersolids9–11, or at least have an extremely
small superfluid fraction, much too small to account for experimental findings (see also Ref. 12). Experiments
have shown that the supersolid critical temperature and the superfluid density depend sensitively on the detailed
preparation history of the solid samples13 and on the presence of minute fractions of He3 impurities5,6. The more
disordered are the He4 solids the larger is the supersolid signal. It can reach surprisingly large values when the solid
is formed by a rapid freezing from the normal phase. It can be reduced to an unobservable level by annealing14. It
is by now very plausible that rapid freezing produces highly disordered samples and that disorder is at the origin
of the experimental findings and of “supersolid” signals. Different origins have been highlighted. A recent work
in Ref. 15 suggested that the core of dislocations could be superfluid. A phenomenological theory of the role of
dislocations can be found in Ref. 16. Following up Ref. 17 a scenario to explain the experimental findings in terms of
dislocation induced superfluidity has been put forward in Ref. 18. From the experimental point of view, the role of
grain boundaries has been analyzed in Ref. 19. Another idea introduced in Refs. 20,21 is that rapid freezing produces
amorphous glassy solids that become supersolid at low temperature. This “superglass” phase has been detected in
Path-Integral Monte-Carlo (PIMC) numerical simulations20. These results are encouraging but addressing real-time
dynamics issues such as the stability and the dynamics of this phase is out of reach of PIMC. Therefore, it is desirable
to have a complementary analytical approach that can give direct insight into these problems: this is precisely the
purpose of this work.

Our strategy will be to focus on a model that displays a superglass phase and that can be concretely analyzed in some
instances exactly and in others using accurate and controlled approximations at zero temperature. The model consists
of bosonic particles interacting via a short-range potential in three dimensions. Our approach is based on a mapping
between quantum Hamiltonians and (classical) Fokker-Planck operators which allows us to obtain results on ground
state properties and time dependent correlation functions from the analysis of the stochastic dynamics of a classical
equilibrium system. This connection, already well-known for a few decades22,23, has been quite used and further
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studied in the context of the so called Rokshar-Kivelson points24–26. We will mainly focus on systems of interacting
bosons whose classical counterpart (via the above mapping) is a system of hard spheres. These are known to undergo
a crystal27 or a glass29–36 transition at high density. The glass transition takes place when crystallization is avoided
(either by fast compression or using different types of particles). The usefulness of the classical-quantum mapping is
that it allows us to obtain highly non-trivial, very accurate or, at instances, exact results on the original quantum
many-body problem by translating all the knowledge on the Brownian dynamics of hard spheres. In particular we
will be able to work out in detail the properties of the superglass, supercrystal and superfluid phases. The drawback
of this mapping is that the resulting quantum solids are quite different from real He4 crystals, mainly because of the
much smaller zero-point motion and of some peculiar properties of the excitation spectrum to be discussed below.

The results of our work go beyond the physics of solid He4 because the superglass phase can emerge also in other
physical contexts, in particular strongly interacting bosonic mixtures of cold atoms. Furthermore, another motivation
for our study is to analyze a quantum glassy phase not induced by quenched disorder. There are in fact very few
examples37–41 of that, especially not relying on mean-field or large-N approximations.

II. SUMMARY OF THE MAIN RESULTS

In the following section the mapping between classical Fokker-Planck operators and quantum Hamiltonians is
presented. In particular we will obtain the relation between the classical potential and its quantum counterpart. We
will work it out for identical bosons as well as for mixtures of bosons (mixtures may be relevant for cold atomic
systems). Furthermore, we shall introduce the model that we will focus on in this paper, which is the quantum
counterpart of classical Brownian hard spheres. The quantum potential is still a hard sphere one but it has in
addition a sticky part at contact (and also a 3-body interaction at contact).

In section IV we shall work out the zero temperature phase diagram of the quantum model as a function of the
density ρ. Actually we will use instead of the density the packing fraction φ = πρσ3/6 (where σ is the sphere
diameter) which is a more natural variable for hard spheres. We find three possible phases: superfluid, supercrystal
and superglass. At low packing fraction the system is superfluid but at φ ≃ 0.49 it has a first order transition toward
a supercrystal phase. The transition toward the superglass phase takes place at higher packing fractions, φ ≃ 0.62.
It can be achieved only if the transition toward the crystal is avoided either by considering mixtures or compressing
fast the liquid phase. We will obtain quantitative results for the condensate fraction. In particular for the superglass
phase we will introduce and compute an observable, akin to the Edwards-Anderson parameter for spin glasses, that
quantifies the inhomogeneity of the condensate wavefunction in space. The values of the condensate fraction turn out
to be very small. This is likely due to the particular model we have chosen which admits as ground state wavefunction
the Gibbs measure of hard spheres. However, exact results guarantee that, although small, the condensate fraction is
non-zero, i.e. it is not an artifact. In Section V we focus on the real time quantum dynamics close to the transition
from the superfluid to the superglass. In particular we obtain the behavior of the density correlations as a function
of time as well as the time dependent condensate fluctuations. Both correlation functions show a similar behavior.
Approaching the superglass from the superfluid, one finds that after a rapid oscillating decay, there is a plateau
indicating frozen amorphous density and condensate fluctuations. On much larger timescales these frozen fluctuations
relax. The transition to the superglass phase takes place when the timescale for this second relaxation goes to infinity
(or, practically, becomes larger than any relevant experimental timescale.). This behavior is actually very reminiscent
of the one of classical supercooled liquids approaching their structural glass transition. In Section VI we will generalize
our model in order to make it more realistic. In fact, within the classical-quantum mapping approach, the energy of
the ground state is always zero. In order to discuss the behavior of the pressure, the order of the transitions and the
superfluid properties we shall add a small perturbation to the quantum potential originally introduced in Section III.
This will allow us to show that the transition from the superfluid to the superglass is unusual to the extent that it
is thermodynamically first order but has also some characteristics of second order transitions. Finally, conclusions,
perspectives and relations to experiments and numerical simulations will be presented in Section VII.

III. FROM CLASSICAL LANGEVIN PARTICLES TO ZERO TEMPERATURE INTERACTING

BOSONS

The superglass is an amorphous quantum many-body state of interacting bosons. To find such a state starting from
a generic quantum Hamiltonian of interacting particles is a daunting task. In this paper, we take an approach that
allows us to argue for such a phase in a well controlled way, by constructing a local quantum many-body Hamiltonian
whose ground state is known exactly and can be argued to be a glassy state at large enough densities. This formulation
is motivated by a generic result stating that for systems without a sign problem there is a simple connection between
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quantum Hamiltonians and the stochastic dynamics of a classical system. This can be used to construct interesting
Hamiltonians with real and non-negative ground state wavefunctions related to classical equilibrium Boltzmann-Gibbs
measures. The connection is far-reaching since it allows one to obtain controlled and highly non-trivial results on
the phase diagram and dynamical properties of a quantum many body problem26. Moreover, it has been used to
construct an efficient algorithm for Quantum Monte Carlo at zero temperature42.

Here we shall explore this classical-quantum connection for the particular case of bosonic point particles, following
the standard route for mapping classical Langevin dynamics for a many-particle system and its associated Fokker-
Planck operator to a Schrödinger operator22,23.

A. Langevin dynamics: the Fokker-Planck and Schrödinger operators

Consider N particles whose evolution is determined by the following Langevin equations:

γi
dxi
dt

= − ∂

∂xi
UN (x1, . . . ,xN ) + ηi(t) , i = 1, ..., N , (1)

where γi are friction coefficients, ηαi (t) is a Gaussian white thermal noise with variance 〈ηαi (t)ηβj (t′)〉 =

2T γi δij δαβ δ(t − t′). Furthermore, T is the temperature (with kB = 1) and α and β run from 1 to the spatial
dimension d (henceforth the boldface notation indicates vectors). The potential will eventually be assumed to be the
sum of (symmetric) pair potentials,

UN({x}) ≡ UN (x1, . . . ,xN ) =
1

2

∑

i6=j
Vij(xi − xj) , (2)

with Vij = Vji, and ∂
∂xi

UN ≡ ∇iUN =
∑

j( 6=i) ∇Vij(xi − xj).

It is well known22,23 that the evolution equation for the probability distribution P ({x}) can be written as a
Schrödinger equation in imaginary time:

∂tP = −HFPP (3)

where the Fokker-Planck operator reads:

HFP = −
∑

i

1

γi

∂

∂xi

[
∇iUN + T

∂

∂xi

]
(4)

The Fokker-Planck operator is non-Hermitian and can be proven to have all eigenvalues larger than or equal to
zero22,23. The zero eigenvalue corresponds –as it can be readily checked– to the stationary distribution which is the
equilibrium Gibbs probability measure:

PG({x}) =
1

ZN
e−

1

T UN ({x}) =
1

ZN
e−

1

2T

P

i6=j Vij(xi−xj) . (5)

Setting for simplicity ~ = 1, the Fokker-Planck operator can be mapped into a Hermitian quantum Hamiltonian by
a similarity transformation

H = e
1

2T UN HFP e
− 1

2T UN , (6)

that leads to

H =
∑

i

1

γi

[
−T ∂2

∂x2
i

− 1

2
∇2
iUN +

1

4T
(∇iUN )2

]
=

∑

i

p2
i

2mi
+ VN ({x}) (7)

This expression corresponds to a Hamiltonian for particles with mass mi = γi/(2T ) and an effective potential which
is the sum of a two body and three-body interaction:

VN ({x}) =
∑

i

1

γi

[
−1

2
∇2
iUN +

1

4T
(∇iUN )2

]

= −1

2

∑

j 6=i

1

γi
∇2Vij(xi − xj) +

1

4T

∑

i;j( 6=i);j′( 6=i)

1

γi
∇Vij(xi − xj) · ∇Vij′ (xi − xj′ ) .

(8)
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The eigenfunctions of the quantum Hamiltonian and of the Fokker Planck operator are in a one to one correspondence.
Indeed, by applying the similarity transformation introduced above one finds:

ΨE({x}) ∝ e
UN
2T PE({x}) (9)

where PE indicates the right eigenfunction of the Fokker-Planck operator with eigenvalue E, and ΨE its counterpart
associated to the quantum Hamiltonian. This also implies that all the eigenvalues E corresponding to the Fokker-
Planck operator are identical to the ones of the quantum Hamiltonian.

In particular, this relation, together with Eq. (5), allows one to obtain straightforwardly the ground state wave-
function of the quantum problem, which is of the Jastrow form43–45:

ΨG({x}) =
√
PG({x}) =

1√
ZN

exp



− 1

4T

∑

i6=j
Vij(xi − xj)



 . (10)

The logic of the approach we pursue hereafter is the following: we take as starting point Hamiltonians with many-
body potentials of the form Eq. (8), for which the Jastrow form Eq. (10) is exact. In general, wavefunctions of this
form lead to more than two-body interactions VN ({x}) (note that also He4 has weak higher order interactions). The
important point is that if the two-body potentials Vij(xi − xj) are short-ranged (i.e. local) potentials, then VN ({x})
is also local, and thus the many-body Hamiltonians on which we focus are local (non-local Hamiltonian may lead to
pathological behaviors).

Because we know exactly the ground state wavefunction, and it is related to a Boltzmann-Gibbs measure for
a classical system, quantum static correlation functions can be computed in terms of classical static correlation
functions45. Furthermore, as we shall show and noticed by Henley25, the mapping generalizes also to dynamical
correlation functions. Hence, we will obtain quantum dynamical correlation functions at zero temperature by analytic
continuation of classical (stochastic) dynamical correlation functions.

To simplify the notations, in the following we will fix T = 1 and 〈γ〉 = N−1
∑

i γi = 1. Together with ~ = 1, this
fixes the units in both classical and quantum problems. As a consequence the masses in the quantum problem read
mi = 1

2
γi

〈γ〉 .

B. Identical bosons

Let us first consider the simplest case of N identical bosons characterized by the Hamiltonian H in Eq. (7) with
γi ≡ γ = 1 and Vij ≡ V . It is important to remark that since the particles are bosons one has to consider only
many-body states that are completely symmetric under permutation of particles, and study only observables that are
invariant under permutation of particles (e.g. the density-density correlator). This is clearly not a difficult constraint
to handle since the Jastrow form (10) with Vij = V is completely symmetric. Furthermore, even in the study of
dynamical correlations (section V) this will not be a problem because if one starts from a probability law completely
symmetric under permutation of particles, the symmetrization carries over to all later times. This follows trivially
from the Fokker-Planck evolution Eq. (3), since if the state P and the operator HFP are both symmetric under
exchange of particles, so is the time derivative ∂tP and thus the many-body state thereafter.

For a given classical isotropic 2-body potential V (x) = V (|x|), the resulting quantum potential energy will have
2-body and 3-body interactions:

VN ({x}) =
∑

i>j

vpair(xi − xj) +
∑

i6=j 6=j′ 6=i
v3−body(xi − xj ,xi − xj′ )

vpair(x) = −∇2V (x) +
1

2
[∇V (x)]2 = −d− 1

r
V ′(r) − V ′′(r) +

1

2
[V ′(r)]2 (11)

v3−body(x,x′) =
1

4
∇V (x) · ∇V (x′) =

1

4

x

r
· x′

r′
V ′(r)V ′(r′) ,

where d is the spatial dimension and r ≡ |x|.

C. Binary mixtures of bosons

It is also worthwhile considering binary mixture of bosons. In fact the superglass phase we shall discuss in the
following will emerge only when crystallization is avoided. We expect, as it is the case for classical systems, that
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this can be obtained either by fast compression of the liquid state or by considering mixtures of bosons. Mixtures
typically induce a frustration effect on the crystalline phase whose energy, as a consequence, increases. Instead the
glass phase, thanks to its disordered structure, is less affected and, hence, starts to compete in terms of energy (or
dynamical basin of attraction) with the crystalline phase. This conclusion, which we expect to be correct on physical
grounds, is also suggested by approaches based on variational wavefunctions of the Jastrow form Eq. (10). These
types of wavefunctions map the quantum problem into a classical one and are very effective in describing a number
of the observed phenomena in the quantum Bose fluid. Lennard-Jones type potentials (as classical potentials in the
exponent of the Jastrow wavefunction) have been considered by McMillan44, Francis, Chester and Reatto45 in the
study of He4 superfluids. For a single species of particles, such interaction potentials lead to classical liquid states
and, at very high densities, might lead to a crystalline state46. Within Jastrow-like approaches, thanks to this analogy
with classical systems, we expect the physical effect induced by mixtures to be similar to what happens in classical
liquids.

As a consequence, we conjecture that for a binary mixture, a quantum glassy state may emerge at high enough
densities. Experimentally, the binary mixture can be obtained using two species of bosonic atoms, A and B. It may
be the case that we do not need to develop a condensate fraction for both species A and B; it would suffice to have a
superglass of, say, species A, while species B always remains normal, with its role solely that of enabling the formation
of the glassy state. These type of binary mixture can be obtained in cold atom experiments.

The generalization of the results of the previous section to a binary mixture is presented in Appendix A. In the
following we will focus on the identical boson system but one must keep in mind that to stabilize the glassy phase one
may have to consider mixtures or fast compression of the liquid state. Thus, our strategy will be to study directly
the glass phase of identical particles and translate the results to the mixture case where this phase actually exists.

D. Quantum model with hard sphere wavefunction

Let us investigate what quantum bosonic system in particular corresponds to a classical hard sphere problem upon
the mapping above. The motivation for this study is that the classical hard sphere packing is a well studied problem in
the context of glasses for large enough packing fractions29–36, and we will be able to use these results for substantiating
the notion of the superglass state. We shall focus on a classical potential V (r) = V0 exp(−λ[(r/σ)2−1]), where σ is the
characteristic sphere size, perform the mapping and take the λ → ∞ limit that enforces the hard sphere constraint.
Note that although in principle the form of the potential is not very important as long as it is infinite for r < σ and
zero for r > σ (in the λ→ ∞ limit), the previous form makes the following discussion particularly easy. We also set
V0 = 1 and σ = 1 for simplicity: indeed, even if the units have already been fixed, V0 is irrelevant in the λ→ ∞ limit,
while a change in σ is equivalent to a change in the density.

Let us first discuss the pair term, which depends only on the interparticle distance r:

vpair(r) = [2λd− 4λ2r2] V (r) + 2λ2r2 [V (r)]2 , (12)

where we have used explicitly the (convenient) exponential form of the potential. In Fig. 1 we show the form of this
two-body potential.

The form of the pair potential in the large λ limit is simple:

• For r > 1, the pair potential is zero because the exponential terms go very fast to zero.

• For r < 1, the pair potential goes to infinity. Although the second term is negative, the third one is much larger
than the first two and dominates.

• Very close to r = 1, within a window that shrinks to zero in the large λ limit, the potential becomes negative
and goes to minus infinity. Indeed, for r = 1, its value is 2dλ− 2λ2. The potential remains attractive (negative)
on an interval of size 1/λ. This attractive part of the potential is responsible for the fact that ground state
wavefunction does not vanish (or is discontinuous) at the contact between hard spheres. Particles can stay
close to contact paying a lot of kinetic energy, O(λ2), and gaining a lot of potential energy, also O(λ2).

Let us now consider the 3-body term. It can be written as:

v3−body(x,x′) = λ2 x · x′ V (r)V (r′) , (13)

where for a given triplet of particles i, j, j′ one has x = xi−xj and x′ = xi−xj′ , see Eq. (11). The form of the 3-body
potential in the large λ limit is simple: it is non-zero only if both particles j and j′ have a non-zero overlap with
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FIG. 1: Form of the pair potential vpair(r) in the mapped quantum problem that derives from the classical potential V (r) =
V0 exp(−λ[(r/σ)2 − 1]). (Notice that we have set V0 = 1 and σ = 1 in the text.)

particle i. When there is a finite overlap (in the large λ limit) the contribution coming from the 3-body term, which
can be actually positive or negative, is always smaller than the one coming from the sum of the pair contributions ij
and ij′. Thus, it can be neglected. The outcome coming from the pair interactions is that all particle configurations
with finite particle overlaps are simply excluded by the Hilbert space. When both r and r′ are very close to 1, of
the order 1/λ, the 3-body term will give rise to a non-negligible contribution similar to the one studied for the pair
contribution. The main difference is that it can be attractive or repulsive depending on the relative orientation of x

and x′. As a conclusion the interaction between particles is the hard sphere one plus a contact term that is sticky for
the pair contribution and that can be repulsive or attractive for the triplet term depending on the geometry of the
triplet.

IV. SUPERFLUID, SUPERCRYSTAL AND SUPERGLASS PHASES

Here we make use of the relationship between the classical and quantum models, and study the zero temperature
phases of the quantum system introduced in the previous section III.D. We will work out the properties of the quantum
phases by using the classical Gibbs measure defined by the square of the Jastrow wavefunction26,44–46.

We shall focus on a system of N identical bosons with the particular interaction, discussed in the previous section,
that corresponds to a Jastrow state with an hard sphere potential. Having fixed σ = 1, the control parameter in
this case is the particle density ρ = N/V of the particles, or the packing fraction φ = πρ/6. Let us recall first the
phase diagram of classical hard spheres27,34,47 (see top of Fig. 2). At low density, the system is liquid, and upon
increasing the density it undergoes a first order phase transition to a crystalline state, that is arranged in a face
centered cubic (FCC) lattice. Moreover, a metastable glassy phase can be obtained in the classical problem if the
density is increased fast enough or in presence of small bi-dispersity (binary mixtures). This glass phase can be
compressed until the random close packing packing (RCP) fraction φ ∼ 0.64. These three classical phases have their
corresponding counterparts in the mapped quantum system. As we shall show, these are superfluid, supercrystal and
superglass phases. The classical phase diagram and its quantum counterpart are shown in Fig. 2.

Below we discuss the property of these three quantum phases in some detail with particular emphasis on their
one-particle density matrix and Bose condensate fraction. We will treat the glass phase as a true equilibrium phase
because, as we have already discussed, it will emerge when crystallization is avoided either by fast compression of the
liquid state or considering suitable binary mixtures.

A. Off-diagonal long range order and classical correlation functions

Let us first recall general results on off-diagonal long range order (ODLRO)48,49. In particular, we shall show that
for Jastrow-type wavefunctions there is a simple relation44,45,48 between the structure factor of a classical system
and the one particle density matrix. This relation has a particularly simple form in the case of hard spheres. The
condensate fraction is related to the amount of off-diagonal long range order in the quantum problem and can be
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FIG. 2: Classical phase diagram for hard sphere systems (top) and its quantum counterpart (bottom).

therefore related to an observable for the classical corresponding liquid. In appendix A 2 we generalize the following
discussion of ODLRO to the case of binary mixtures.

The one particle off-diagonal density matrix reads in term of the ground state wavefunction ΨG (V is the volume):

R(x,x′) = V

∫
dx2...dxN ΨG(x,x2, ...,xN ) ΨG(x′,x2, ...,xN ) = V

∑

i

ni ψi(x)ψ∗
i (x

′) (14)

where the ni and ψi(x) are, respectively, eigenvalues and (orthonormal) eigenvectors of the one particle density matrix
R(x,x′),

∫
dx′ R(x,x′)ψi(x′) = ni ψi(x), see e.g. Ref 49. One can interpret ni as the fraction of particles in state i,

and
∑

i ni = 1. The largest eigenvalue n0 gives directly the condensate fraction.
If ΨG is given by a Jastrow wavefunction with a hard sphere potential, this expression is particularly simple in

terms of a classical equilibrium correlation functions:

R(x,x′) =
V

N(N + 1)

ZN+1

ZN
eV (x−x′)/T

∑

i6=j
〈δ(x − xi) δ(x

′ − xj)〉 =
ZN+1

ZN(N + 1)
ρ−1 ρ(x) ρ(x′) y(x,x′) , (15)

where ρ(x) = 〈∑i δ(x − xi)〉 and y(x,x′) = eV (x−x′)/T g(x,x′), and g(x,x′) is the usual pair correlation function50.
Notice that this expression follows by considering a system of N +1 particles, with two of them fixed at x and x′, and
that the difference between y(x,x′) and g(x,x′) arises because R(x,x′) does not vanish when x and x′ are less than
a particle diameter away. For hard spheres, there is a simplification and g(x,x′) = y(x,x′) for |x − x′| > 1; however,
for |x − x′| < 1 the pair correlation function vanishes while y(x,x′) is finite50.

The prefactor in Eq. (15) is related to the fugacity of the system and it is easily evaluated in the large N limit:

ZN ∼ N ! eNS(N/V ) ⇒ ZN+1

ZN(N + 1)
= e

d
dρ [ρS(ρ)] = ρ−1e

d
dρ [ρSex(ρ)] ≡ ρ−1f(ρ) =

1

z(ρ)
(16)

where S(ρ) = 1− log ρ+Sex(ρ) is the entropy of classical hard spheres as a function of the average density ρ = N/V ,
Sex(ρ) is the excess entropy with respect to the ideal gas, and z(ρ) is the fugacity. Using this relation we find the
final, quite simple, expression:

R(x,x′) = f(ρ)
ρ(x) ρ(x′)

ρ2
y(x,x′) . (17)

For a homogeneous phase, ρ(x) = ρ and R(x,x′) becomes a function of |x − x′| only,

R(|x − x′|) = f(ρ) y(|x − x′|) (18)
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FIG. 3: Condensate fraction as a function of the packing fraction for the hard sphere Jastrow wavefunction. Full (black) curve:
superfluid phase, Eq. (20). Dot-dashed (blue) curve: supercrystal phase, Eq. (24). Dashed (red) curve: superglass phase,
Eq. (39); note that the theory slightly overestimates the random close packing density with respect to the commonly accepted
value of φ = 0.64. The blue dot marks the location of the melting transition, where liquid-crystal phase coexistence begins,
while the red dot marks the glass transition density. Inset: the enhancement factor n0/f(ρ) due to the spatial inhomogeneity
of the crystal and glass phases. Note that this factor is quite large, of the order of 102 − 103 at the melting and glass transition
densities. Still, the condensate fractions we find are extremely small, probably due to the classical-like nature of solids with
the Jastrow hard sphere wavefunction.

and the condensate fraction is just lim|x−x′|→∞ R(|x − x′|) = f(ρ), since y(x,x′) → 1 (like the pair correlation
function) as |x − x′| → ∞. This expression shows that as long as the fugacity is finite, i.e. the pressure is finite, we
shall find a non-zero condensate fraction48. As a consequence, we expect a superfluid phase at low densities, then a
first order transition into a supersolid crystalline phase as the density is increased. In the case of non-identical hard
spheres, e.g. bi-disperse, or for extremely rapid quenches, the system should end up in a superglass phase at high
density, and the condensate fraction will vanish only at close packing. In the following, we will apply the results above
and study in detail the superfluid, supercrystal and superglass phase.

B. Superfluid phase

At low packing fraction the classical system is in the liquid phase. Analogously, the quantum system is in a quantum
liquid phase. As discussed above, we expect it to be superfluid. In the following we shall compute its corresponding
condensate fraction. In order to obtain a heuristic semi-quantitative expression for the condensate fraction, we used
the Carnahan-Starling approximation50 for the classical hard sphere system. This is a kind of virial resummation
known to work very well for describing the properties of the hard sphere system in the whole fluid range. Within this
approximation one finds50

ρ Sex(ρ) =
1

V
log

(
ZN/V

N
)

= −6φ

π

φ(4 − 3φ)

(1 − φ)2
. (19)

Then Eq. (16) leads to the following expression for the condensate fraction n0:

n0 = f(ρ) = exp

[
φ(−8 + 9φ− 3φ2)

(1 − φ)3

]
. (20)

This is plotted in Fig. 3. Note that the freezing crystallization transition takes place at a packing fraction φ ≃ 0.494
for hard spheres, see Fig. 2.

C. Crystal phase

For φ > 0.545, the classical hard sphere system is in the crystal phase (for 0.494 < φ < 0.545 there is phase
coexistence between the liquid and the crystal). Correspondingly, the quantum system displays a quantum crystal
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phase. In the following we shall compute its condensate fraction. The crystal phase is inhomogeneous but still
y(x,x′) → 1 at large |x − x′|; therefore we have48

lim
|x−x′|→∞

R(x,x′) = f(ρ)
ρ(x) ρ(x′)

ρ2
= n0 V ψ0(x)ψ∗

0(x′) , (21)

and from this factorization one obtains that
√
n0 V ψ0(x) =

√
f(ρ) ρ(x)/ρ (notice that the eigenvector ψ0(x) is real

valued, as R(x,x′) is real and symmetric). It thus follows from the normalization of ψ0(x) that

n0 = f(ρ)
1

ρ2

1

V

∫
dx ρ(x)

2
. (22)

A rough estimate of n0 is given by f(ρ) since f(ρ) ≤ n0 ≤
(
maxV

ρ(x)
ρ

)2

f(ρ). The first inequality follows from

ρ2 =
[

1
V

∫
dx ρ(x)

]2 ≤ 1
V

∫
dx ρ(x)2. However, because of the inhomogeneity of the density profile, the contribution

to n0 coming from the integral of the density squared may be quite large. In order to estimate it we assume that

ρ(x) =
∑

i

e−
|x−Ri|

2

2A

(2πA)3/2
(23)

where Ri are the FCC lattice sites and the Gaussians are roughly non-overlapping. It has been shown by numerical
simulations that this approximation is rather good51 and values of A have been computed by density functional
theory52. Using these results one finds

n0 = f(ρ)
1

ρ2

1

V

∫
dx ρ(x)

2
=
f(ρ)

ρ

1

(4πA)3/2
. (24)

with f(ρ) given in (16).
To compute f(ρ) we used the phenomenological equation of state for the FCC crystal phase of classical hard spheres

proposed by Speedy53:

P

ρ
=

3

1 − z
− a

z − b

z − c
, z = φ/φFCC , (25)

where φFCC = π/(3
√

2) = 0.74 . . ., a = 0.5921, b = 0.7072, c = 0.601. The entropy can be obtained by integrating
this relation with respect to density as detailed in Ref. 53 where the integration constant is also reported. Values of
A have been taken from table I of Ref. 52. They have been fitted to a polynomial to get

√
A = a1 (φFCC − φ) + a2 (φFCC − φ)2 + a3 (φFCC − φ)3 , (26)

with a1 = 0.35, a2 = −0.866 and a3 = 3.58. The final result for n0 is reported in Fig. 3.
It is worth to note that the crystal phase is not commensurate, except at close packing. Therefore our results are

consistent with the general statement by Prokofev and Svistunov, that commensurate crystals are not supersolids28.

D. Glass phase

In order to understand the superglass phase, one must first translate the results of the classical hard sphere problem
into the quantum one. Thus, let us start by discussing the classical results.

It is well known that the classical hard sphere problem may undergo a glass transition at a packing fraction φK ∼ 0.6
if compressed sufficiently fast29,32–34,47 or in case of mixture of different particles35,36. This has been found analytically
under some approximations29,30,32–34, in simulations35,54 and in experiments on colloidal systems55,56. The classical
phase diagram is reported in Fig. 2.

The physical mechanism behind this transition in finite dimension is still unclear. However, approximated theories
able to provide good quantitative predictions have been developed. The most successful is the so-called Mode-
Coupling Theory (MCT)30,47,57 that correctly describes the dynamics of the Langevin system Eq. (1) for densities
slightly smaller than the glass transition density. A complementary approach is based on the replica method32–34,58

and gives predictions on static observables at and above the glass transition density. We will discuss in the following
what predictions can be derived from these theories for the quantum problem.



10

Our strategy will consist in deriving results for the quantum glassy phase starting from the known results for the
classical glassy phase. We will also provide quantitative results using the replica approach which has been shown to
give a reasonable description of numerical simulation results33,34. Our working hypothesis is that an ideal classical
glass transition indeed takes place: at low density (or packing fraction) the system is in the liquid phase and above a
critical density (assuming that crystallization is avoided) there is a thermodynamic transition toward an amorphous
state of matter which is the glass state. In the glassy state the system can be frozen in many different amorphous
configuration or states. Note that assuming that the classical glass transition is a real thermodynamic phase transition
just simplifies the presentation. In fact, even if this is not the case in reality, one can translate and generalize all the
following discussion: amorphous thermodynamic states will then become just metastable amorphous configurations
in which the system is trapped on the relevant experimental timescales.

1. The decomposition of the Gibbs measure in pure states

Following the strategy outlined above, we will therefore assume that at the (classical) glass transition, the Gibbs
measure PG({x}) = |ΨG({x})|2 splits into a very large number of thermodynamic states Pα({x}):

|ΨG({x})|2 =
∑

α

wα Pα({x}) . (27)

An operative description of Pα({x}) is the Boltzmann measure obtained by coupling the system to an infinitesimal
non-homogeneous external potential, Vα, that forces the system into the state α:

Pα({x}) = lim
ǫ→0

e−UN/T−ǫVα/T

Zα
, Zα = lim

ǫ→0

∫
d{x}e−UN/T−ǫVα/T . (28)

Note that clearly the potential Vα must be chosen symmetric under particle exchanges. From the above definition it
follows that the states Pα are also completely Bose symmetric like the full Boltzmann measure PG.

The tricky aspect of glassy systems is that this external potential (or field) is not known a priori as it is for, say, the
ferromagnetic case. The reason is that it is random as the state it pins. wα is the thermodynamic weight of the state
α. It equals Zα/ZN , where Zα is the partition function in the presence of an infinitesimal pinning field forcing the
system into the state α. ZN is instead, as before, the partition function in the absence of any pinning field. Hence,
it contains the contribution of all different states: ZN =

∑
α Zα and then

∑
αwα = 1.

Since the Pα({x})s are equilibrium steady state distributions one can obtain an eigenfunction with minimum (zero)
energy using the similarity transformation introduced in Eq. (9):

Ψα({x}) = Nα

√
ZN eUN/2T Pα({x}) = Nα Pα({x})/ΨG({x}) . (29)

Nα is a normalization constant that has to be fixed by imposing that Ψα({x}) is normalized:

1 = N 2
α lim
ǫ→0

∫
d{x} ZN eUN/T

e−2UN/T−2ǫVα/T

Z2
α

= N 2
α lim
ǫ→0

ZN
Z2
α

∫
d{x} e−UN/T−2ǫVα/T = N 2

α

ZN
Zα

Note that we have used explicitly that one always recovers Zα whether one uses ǫ or 2ǫ. The outcome is that
Nα =

√
Zα/ZN =

√
wα. Using this result and plugging the expression (29) into (27) one finds:

ΨG({x})2 = ΨG({x})
∑

α

√
wα Ψα({x}) .

By factoring out ΨG({x}) one finally finds73:

ΨG({x}) =
∑

α

√
wα Ψα({x}) . (30)

The ground state wavefunction is therefore the coherent sum of the wavefunctions corresponding to states α.
However, no interference is present in the thermodynamic limit and all cross-terms in the square of the wavefunction

can be dropped. This can be shown as follows: first, by plugging the expression of Nα into Eq. (29) one finds that

Ψα({x}) =
√
Pα({x}). Using this result and noticing that the square of the previous equation (30) has to give back

Eq. (27) we find that the interference (cross-products) terms have to be zero. This result can be understood in a
simple heuristic way: configurations on which the wavefunction Ψα is concentrated have extremely small weight in
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any other Ψβ. Any given interference term α, β is expected to give a contribution decreasing exponentially fast in

N . Since the number of states, hence the number of couples α, β, increases at most exponentially in N (d−1)/d (see
Ref. 59) one finds that the interference terms can be neglected in the thermodynamic limit.

Thus, the probability of finding the quantum system in a state α is not different from that of the classical problem:
both are given by wα in absence of a pinning external potential. The pinning potential Vα introduced in Eq. (28)
induces a corresponding pinning potential Vα via the mapping introduced in Eq. (8). The effect of the pinning
potential is to concentrate the Jastrow wavefunction on state α; equivalently, in the quantum problem, the pinning
potential Vα lifts the degeneracy between quantum ground states and selects Ψα as the unique ground state of the
system. As a consequence each one of the Ψαs has to be interpreted as a possible state of the system (a more direct
dynamical interpretation that shows that the system does not escape by tunnelling once it is in a state α is presented
in Sec. V) . The glass phase in the quantum system is thus a random solid in the same sense as its classical counterpart.
However, much as in the case of the supercrystal, ODLRO can still develop, leading to a non-vanishing condensate
fraction, which we study below.

Translating the classical results for hard spheres33 in the quantum case we thus find that the quantum ground
state is unique for φ < φK and is degenerate for φ > φK but the logarithm of the number of ground states is
subextensive and therefore the entropy remains zero above φK . It follows that the phase transition is not manifested
by a non-analyticity in the free energy of the system. However, suitable correlation functions (such as the “point to
set” or “dynamical” correlation functions60,61) should display a growing correlation length at the transition. Also
the structure function g(r) shows a (weak) discontinuity at φK , but it does not display any long-range order. In the
following we will study the properties of this glassy quantum state, in particular the ones related to ODLRO.

2. Condensate fraction and corresponding Edwards-Anderson parameter

Using the results above on the ground-state wavefunction one can readily obtain the one particle off-diagonal density
matrix. As interference terms can be neglected, it reads:

R(x,x′) =
∑

α

wα Rα(x,x′) = V
∑

α

wα
∑

i

ni,α ψi,α(x)ψ∗
i,α(x′) , (31)

where the ni,α and the ψi,α(x) are, respectively, eigenvalues and eigenvectors of the one particle density matrix
Rα(x,x′). (Because the wavefunctions Ψα are real, the Rα(x,x′) are real and symmetric, and the eigenvalues and
eigenvectors are real.) The ni,α have a physical interpretation: they are the fraction of particles in the quantum state
i within the thermodynamic state α, and

∑
α,i wα ni,α = 1 accounts for all the particles in all possible states α with

probabilities wα.
For large separations |x − x′| → ∞, one has for each Rα

lim
|x−x′|→∞

Rα(x,x′) = fα(ρ)
ρα(x) ρα(x′)

ρ2
= n0,α V ψ0,α(x)ψ∗

0,α(x′) . (32)

Proceeding similarly to the case of the crystal, we obtain ψ0,α(x) =
√

fα(ρ)
n0,αV

ρα(x)/ρ. We use the normalization of

the eigenvector ψ0,α to write

n0,α = fα(ρ)
1

ρ2

1

V

∫
dx ρα(x)2 , (33)

and for the total condensate fraction we get

n0 =
1

ρ2

∑

α

wα fα(ρ)
1

V

∫
dx ρα(x)

2
. (34)

We expect that the fα(ρ)s are independent of the state α, since they are thermodynamic quantities related to the
addition of one single particle to the system [Recall Eq. (16)]. In order to quantify the inhomogeneity of the glass
state one can introduce the correlation function of the density and condensate wavefunction fluctuations that read
respectively:

g̃(x,x′) ≡ ρ−2
∑

α

wαρα(x)ρα(x′) , Gψ(x,x′) ≡
∑

α

wαψ0,α(x)ψ0,α(x′). (35)



12

0 2 4 6 8
r

0.1

1

10

100

g(r)

ϕ=0.63
ϕ=0.6635
ϕ=0.6905

0 2 4 6 8
r

1

10

100

1000

g(r)
~

ϕ=0.63
ϕ=0.6635
ϕ=0.6905

FIG. 4: Correlation function of the density (left) and of the condensate wavefunction (right) for the quantum system corre-
sponding to classical hard spheres at different densities in the glass phase. Details of the computations are in Ref. 33. Note
that these quantities can be measured in Quantum Monte Carlo numerical simulations, see e.g. Ref. 20.

Actually, using eq. (32) we find that they are related one to the other by a simple proportionality relation:

g̃(x,x′) =
n0V

f(ρ)

∑

α

wαψ0,α(x)ψ0,α(x′) ≡ n0V

f(ρ)
Gψ(x,x′) . (36)

Substituting these definitions in Eq. (34) we get

n0 = f(ρ)
1

V

∫
dx

1

ρ2

∑

α

wα ρα(x)2 = f(ρ)
1

V

∫
dx g̃(x,x) = f(ρ)g̃(0) , (37)

where we used that g̃(x,x′) = g̃(|x−x′|) = g̃(r), as translational invariance is restored after averaging over all possible
states. Note that g̃(x,x′) plays the role of an Edwards-Anderson order parameter for the glass state. For instance
one can define

qEA =
∑

α

wα
1

V

∫
dx

(
ρα(x)

ρ
− 1

)2

= g̃(0) − 1 . (38)

Since the density and condensate wavefunction fluctuations are proportional g̃(x,x′) also represents (up to a propor-
tionality constant) the inhomogeneity of the condensate wavefunction. It is a quantitative measure of how much the
condensate is amorphous. It can be computed in numerical simulation. Look for example to Fig. 3 of Ref. 20 which
provides a visual representation of the inhomogeneity captured by g̃(x,x′).

In order to obtain quantitative results on the condensate fraction we have to compute g̃(0) and f(ρ). The replica
method32, in particular the small cage expansion58, has been successfully applied to describe the glassy phase of hard
spheres33,34. These two quantities can be indeed obtained using the procedure detailed in Refs. 33,34. Since this is
well documented74 we do not reproduce the computation and just quote the final result which is very similar to the
one for the crystal:

n0 =
f(ρ)

ρ

1

(4πA)3/2
, (39)

where A is the so called cage radius and is a measure of particle vibrations. Hence, by using the equation of state for
the glass and the values of A reported in Ref. 33,34 we finally obtain a quantitative result for the glass condensate
fraction which is reported in Fig. 3. Note that the results of Ref. 33,34 depend slightly on the approximation that is
used to describe the liquid; for consistency, we used the results obtained using the Carnahan-Starling approximation
as we did for the liquid.

The replica method allows to compute both g(r) and g̃(r) in the glass phase, but within a different approximation
scheme known as HyperNetted Chain (HNC) approximation50. The results, taken from Refs.32,33, are reproduced in
Fig. 4.
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V. QUANTUM SLOW DYNAMICS AND THE APPROACH TO THE QUANTUM GLASS

TRANSITION

In the following we shall focus on the real time dynamics of the superfluid phase when the transition to the superglass
is approached. Also in this case, the knowledge of dynamical correlation functions for Brownian hard spheres will
allow us to obtain results on dynamical correlation functions of the corresponding quantum problem. In the next
section we will explain how the mapping works for dynamic observables.

A. Mapping from Brownian dynamics of hard spheres to real time dynamics of the quantum model

In order to show how one can obtain information about the real-time quantum dynamics from the Langevin dynamics
(1) it is useful to introduce a bracket notation for the Fokker-Planck problem; we define P ({x}, t) = 〈{x}|P (t)〉, and
we denote by |G〉 the Gibbs distribution (5), PG({x}, t) = 〈{x}|G〉 = exp[−UN ({x})/T ]/ZN , such that HFP |G〉 = 0.
We also denote by 〈+| the constant state, 〈+|{x}〉 = 1. Note that

H†
FP = eUN/T HFP e−UN/T , (40)

which is consistent with Eq. (6) and the fact that H is Hermitian. Then

HFP |G〉 = 0 ⇒ 0 = 〈G|H†
FP = 〈G| eUN/T HFP e

−UN/T = Z−1
N 〈+|HFP e

−UN/T ⇒ 0 = 〈+|HFP (41)

i.e. 〈+| is a left eigenvector of HFP with zero eigenvalue.
One observable that is particularly interesting to characterize the quantum dynamics is the dynamical structure

factor, FQ(q, t) which is the time dependent correlation function of a Fourier component of the density operator,
ρq({x}) =

∑
l e
iq·xl. We shall show that the dynamical structure factor for the quantum problem is related to the

imaginary time analytic continuation of the dynamical structure factor, Fcl(q, t), for Brownian hard spheres.
Observing that 〈{x}|e−tHF P |{y}〉 is the probability of going from {y} to {x} in time t, we can write the Brownian

correlation function as follows:

Fcl(q, t) = 〈ρq(t) ρ−q(0)〉 ≡
∫
d{x} d{y} ρq({x}) 〈{x}|e−tHF P |{y}〉 ρ−q({y})

e−βUN ({y})

ZN

= 〈+| ρq e−tHF P ρ−q|G〉 = 〈+|etHF P ρq e
−tHF P ρ−q|G〉 = 〈+|e−UN/(2T ) etH ρq e

−tH eUN/(2T ) ρ−q|G〉

= 〈0|etH ρq e
−tH ρ−q|0〉 =

∑

n

|〈0|ρq|n〉|2 e−t(En−E0) =

∫ ∞

0

dω

2π
ρq(ω) e−ωt ,

(42)

where |0〉 ≡ √
ZN eUN/(2T )|G〉 is the quantum ground state (10), |n〉 are the excited states, and

ρq(ω) ≡ 2π
∑

n

|〈0|ρq|n〉|2 δ(En − E0 − ω) (43)

is the distribution of classical (inverse) relaxation times for the density fluctuations.
We are interested in the quantum correlations; the quantum response function is given by62

RQ(q, t) = iθ(t) 〈0|
[
eitH ρq e

−itH , ρ−q
]
|0〉 = iθ(t)

∑

n

|〈0|ρq|n〉|2
[
e−it(En−E0) − eit(En−E0)

]

= −2θ(t)

∫ ∞

0

dω

2π
ρq(ω) sin(ωt) .

(44)

It follows that the imaginary part of its Fourier transform reads:

R′′
Q(q, ω) =

1

2
sgn(ω) ρq(|ω|) , (45)

and, using the quantum (bosonic) fluctuation-dissipation theorem at zero temperature, we get the quantum correlation
function:

SQ(q, ω) =
1

2
sgn(ω)R′′

Q(q, ω) =
1

2
ρq(|ω|) ⇒ FQ(q, t) =

∫ ∞

−∞

dω

2π
SQ(q, ω) e−iωt =

∫ ∞

0

dω

2π
ρq(ω) cos(ωt) (46)

This final simple expression allows us to obtain results on the dynamical structure factor starting from the distri-
bution of (inverse) relaxation times.
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FIG. 5: (Left) Long-time shape of the correlation function Eq. (49) Fcl(q, t) ∼ exp(−
p

t/τα) and FQ(q, t) ∼

exp(−
p

t/2τα) cos(
p

t/2τα) as a function of t/τα in a linear-log scale. (Right) Imaginary part of the response function of
the quantum problem, Eqs. (48) and (49), as a function of frequency for different values of τα (in arbitrary units).

B. Results for the time dependent density-density correlator

Assume that the density correlator has been normalized in such a way that F (q, t = 0) = 1; then
∫ ∞
0

dω
2π ρq(ω) = 1.

In the glass transition literature, different phenomenological expressions have been used in order to describe the
slowing down of the relaxation of F (q, t) on approaching the glass transition.

In dielectric spectroscopy one often writes

Fcl(q, t) =

∫ ∞

−∞
d ln τ Gq(ln τ) e

−t/τ , Gq(ln τ) =
ρq(1/τ)

2πτ
, (47)

and to describe the slow relaxation (low-frequency) part it is assumed that Gq(ln τ) contains a single time scale τα(q),
Gq(ln τ) = (τ/τα(q)) g (τ/τα(q)). The scaling function g(x) might depend weakly on q. Then

Fcl(q, t) =

∫ ∞

0

dx g(x) e−t/(xτα(q)) = fcl(t/τα(q)) ,

FQ(q, t) =

∫ ∞

−∞
d ln τ Gq(ln τ) cos(t/τ) =

∫ ∞

0

dx g(x) cos

(
t

xτα(q)

)
= fQ(t/τα(q)) ,

R′′
Q(q, ω) =

π

ω

1

ωτα(q)
g

(
1

ωτα(q)

)
.

(48)

Several forms have been used successfully in the literature, see Ref. 63 for a review:

1. Stretched exponential β = 1/2 - The simplest non-trivial case is fcl(y) = e−
√
y; in this case

g(x) =
e−x/4√

4πx
⇒ fQ(y) = e−

√
y/2 cos

[√
y/2

]
. (49)

2. Stretched exponential - For fcl(y) = e−y
β

and generic β we have

g(x) =
1

πx

∫ ∞

0

ds e−s−(xs)β cos(πβ) sin[(xs)β sin(πβ)] , (50)

and in this case fQ(y) must be computed numerically.

3. Cole-Davidson - Another common expression, corresponding to

g(x) =
sin(πγ)

π

(
x

1 − x

)γ
0 ≤ x ≤ 1 . (51)

In this case fQ(y) can be computed in terms of Hypergeometric functions.
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Here we limit ourselves to illustrate the qualitative behavior of FQ(q, t) on approaching the glass transition. For
this, we consider solely the first case. (We checked numerically that the other forms give qualitatively similar results
– oscillations in FQ are much more pronounced if one uses the Cole-Davidson form due to the frequency cutoff.) Some
examples constructed using Eq. (49) are reported in figure 5. The classical correlation function decays from 1 to 0
over the time scale τα; the corresponding (real-time) quantum correlation function, directly accessible in numerical
simulations, displays the same slow decay modulated by oscillations according to (49). The imaginary part of the
response function, directly accessible in experiments, shows a peak at ω ∼ 1/τα, whose amplitude increases ∝ τα upon
increasing τα. Note that usually in classical glassy systems these low-frequency features are accompanied by faster
relaxations, related to “intra-cage” motion and/or fast molecular relaxations. These have been neglected here and
in figure 5 but we expect them to be present in the quantum case as well. They would appear as secondary peaks
at higher frequency, and typically their density dependence is weak. The complete time-dependence of the density
density correlation function would therefore be a first rapid relaxation to a plateau value and then a second one which
is the one studied in detail in this section. At the glass transition this second relaxation does not take place anymore
since the relaxation time diverges (or it is larger than any experimental timescale). As a consequence part of the
density fluctuations becomes frozen. The plateau value in the correlation function measure precisely that. Actually,
the plateau value for a wave-vector q will coincide with the Fourier transform of the function g̃(x − x′) defined in
Eq. (35).

C. Condensate Fluctuations

To conclude this section we will focus on the dynamical fluctuations of the condensate wavefunction. As we already
discussed, in the glass phase the system can be in many different states, each one characterized by a different density
profile and by a condensate wavefunction, ψ0,α(x), that in our model is simply proportional to the classical density
profile of the corresponding state. In Eq. (36) we defined the correlation function of the fluctuations of the condensate
wavefunction when the system is frozen in a given amorphous state. This has the form reported in figure 4 and can
be accessed by a direct computation of the condensate wavefunction as done in Ref. 20. It is important to notice that
it can also be obtained from purely dynamical measurements as we will now show.

Consider the time-dependent one particle density matrix; in second quantization it is defined as RQ(t;x,x′) ≡
〈ψ̂†(x, t) ψ̂(x′, 0)〉, where ψ̂(x, t) is the standard bosonic annihilation operator. Within first quantization, it can be
written as follows:

RQ(t;x,x′) = V

∫
dx2 · · · dxN dx′

2 · · · dx′
N ΨG(x,x2, · · · ,xN ) 〈x2, · · · ,xN |e−itH |x′

2, · · · ,x′
N 〉ΨG(x′,x′

2, · · · ,x′
N ) .

(52)
Clearly for t = 0 Eq. (52) gives back Eq. (14). In order to understand the time dependent behavior it is useful to
consider the evolution in imaginary time and use again the mapping on the Langevin dynamics. From (6) we have

〈x2, · · · ,xN | e−tH |x′
2, · · · ,x′

N 〉 = [ΨG(x2, · · · ,xN )]−1〈x2, · · · ,xN | e−tHF P |x′
2, · · · ,x′

N 〉 ΨG(x′
2, · · · ,x′

N ) , (53)

where ΨG(x2, · · · ,xN ) is the Jastrow state (10) for N − 1 particles. Plugging (53) in (52) and using the explicit form
(10), we finally obtain

R(t;x,x′) = V

∫
dx2 · · · dxN dx′

2 · · · dx′
N e−

1

2

PN
i=2

V (x−xi) 〈x2, · · · ,xN |e−tHF P |x′
2, · · · ,x′

N 〉

× e−
1

2

PN
i=2

V (x′−x′
i)

e−UN−1(x
′
2
,··· ,x′

N )

ZN
,

(54)

where UN−1 is the interaction potential of the N − 1 particles and we have used the notation R for the imaginary
time continuation of RQ.

In the special case of a Jastrow hard sphere wavefunction, the factors of 1
2 are irrelevant. Then Eq. (54) becomes

R(t;x,x′) = V

∫
dx2 · · · dxN dx′

2 · · · dx′
N e−

PN
i=2

V (x−xi) 〈x2, · · · ,xN |e−tHF P |x′
2, · · · ,x′

N 〉 e
−UN (x′,x′

2
,··· ,x′

N )

ZN
, (55)

and has a straightforward interpretation in terms of Brownian dynamics of hard spheres: one should pick up a
configuration {x′} from the equilibrium distribution, such that particle 1 is in x′

1 = x′. Then particle 1 must be
removed, and particles 2, · · · , N evolved according to the Langevin dynamics in absence of particle 1. Finally, one
should attempt to reintroduce particle 1 at position x1 = x. The function R(t;x,x′) is the probability that the
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attempt is successful, or in other words that there is a void at time t around x large enough to allow the reinsertion
of particle 1.

Close to the glass transition, as we already discussed, there is a huge separation of time scales in the classical
dynamics between a “fast” intra-state relaxation and a “slow” relaxation corresponding to hopping between different
states and characterized by a growing time scale τα. If we remove particle 1 at t = 0, the perturbation of the density
field will not relax inside the initial state until t ∼ τα, where the state will change. This implies that R(t;x,x′) will
have a plateau at times τfast ≪ t . τα corresponding to the stationary probability inside the initial state at t = 0.
This is given by

R(τfast ≪ t . τα;x,x′) ∝
∑

α

wα ψ0,α(x) ψ0,α(x′) ∝ g̃(x − x′) , (56)

where one has to average over all possible initial states. As obtained in the previous section for the density-density
correlation function, we expect that in presence of a huge separation of timescales, as it is the case close to the
glass transition (or in the glass state where the second relaxation does not take place anymore), one finds that
R(τfast ≪ t . τα;x,x′) ∼ RQ(τfast ≪ t . τα;x,x′). One way to understand this result consists in expressing R(t) in

terms of the Fourier transform of RQ: R(t) =
∫
dω
2π RQ(ω) exp(−ωt). If R displays a very long plateau this means

that RQ(ω) contains two distinct contributions corresponding to ω ∝ 1/τfast and ω ∝ 1/τα. As a consequence, RQ on
times intermediate between fast and slow timescales will coincide with R since the contribution from large frequencies
(of the order or 1/τfast) will have died out and the contribution from the very long frequencies (of the order of 1/τα)
will be the same since exp(−iωt) ≃ exp(−ωt) ≃ 1. As a conclusion, RQ will display a plateau whose extension will
become infinite beyond the glass transition. The value of RQ on the plateau corresponds to the fraction of frozen
condensate wavefunction fluctuations and equals Gψ (and hence is proportional to g̃). Therefore this quantity can
also be computed in a dynamic framework without introducing replicas.

VI. SUPERFLUID PROPERTIES AND PHASE DIAGRAM OF REALISTIC SUPERGLASS PHASES

The conclusion from the previous sections is that the ground state of the model can be a liquid, a crystal or a
glass and all these phases are characterized by a finite condensate fraction n0. However, the study of the superfluid
properties requires also the knowledge of excited states, or at least of the excitation spectrum. The latter is related
to superfluid properties by the celebrated Landau argument64 that predicts for the critical velocity

vc ≤ min
k

[ǫ(k)/k] . (57)

In the zero-temperature liquid He4 phase, the excitation spectrum is linear at small k and has a minimum at larger
k, therefore vc is finite and the system is superfluid.

Unfortunately, for the Jastrow wavefunction discussed above, Eq.(10), one can show that the excitation spectrum
is quadratic at small k, at least if the potential V (x) has finite integral. Therefore Eq.(57) implies that vc = 0 and
the system is not superfluid, much as it happens for an ideal Bose gas despite a condensate fraction equal to 1 at zero
temperature.

The quadratic spectrum of Jastrow wavefunctions can be related to the following properties of the Hamiltonian (7):

1. The ground state energy per particle e(ρ) of the Jastrow ground state is always zero, therefore the pressure
P = ρ2 de

dρ = 0 and the compressibility is infinite, χ−1
T = ρdPdρ = 0.

2. Consequently the sound velocity c = 1/
√
ρχT = 0, i.e. there are no phonons and the linear part of the spectrum

at small k is absent; this is because no restoring force for density fluctuations is present if e(ρ) is independent
of ρ.

3. The static structure factor of the Jastrow wavefunction has the property limk→0 S(k) 6= 0; therefore, the
Feynman relation68 ǫ(k) = k2/(2mS(k)) gives ǫ(k) ∝ k2, consistent with c = 0.

4. Finally, it is possible to identify a hidden symmetry in the problem, related to the special form of the potential
in (7), that is responsible for non-trivial cancellations in the Bogoliubov low-density perturbation theory for (7)
around the ideal gas limit. Again these cancellations are responsible for the absence of the linear part of the
spectrum.

When using Jastrow wavefunctions as variational functions for liquid Helium, a classical strategy45 to reintroduce
phonons is to add a non-integrable part to the Jastrow potential, such that V (x) ∼ |x|−2 at large |x|. In this way
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FIG. 6: Schematic behavior of e(ρ), P (µ), µ(ρ) and P (ρ) across the glass transition. Note that there are values of P and µ
that correspond to the same density ρK .

S(k) ∼ k at small k and the excitation spectrum is linear. This is also quite natural since long range correlations
are expected in the ground state of generic quantum systems even if the original interaction is short ranged. The
inclusion of these terms in our formalism is possible and their presence does not influence much the results for the
properties of the glass, e.g. for g(r) and g̃(r) discussed in section IVD, except at large r/small k.

However, the classical-quantum mapping will give in this case a quantum Hamiltonian (7) with very long ranged
interaction, while we would like to keep the original local nature of the quantum Hamiltonian. Therefore we consider
an alternative way to solve the problem: we propose to introduce a perturbation of the quantum Hamiltonian (7) by
adding a small potential term ∆VN ({x}) =

∑
i<j δu(xi − xj) and treat it in perturbation theory.

The situation here is quite similar to Bogoliubov low-density perturbation theory65: indeed, the ideal Bose gas has
a finite condensate fraction (actually equal to 1) but is not superfluid because its excitation spectrum is quadratic.
Once an infinitesimal interaction is added (or in the very dilute regime), the spectrum immediately becomes linear
and the system becomes superfluid65. Hence by analogy we argue that perturbation theory can be applied in our case.
As a check of this argument we verified that in the low-density limit, as discussed above, the Bogoliubov theory of the
unperturbed model leads to a quadratic spectrum due to a hidden symmetry. On the contrary, the perturbation ∆VN
breaks the hidden symmetry, and in its presence the usual Bogoliubov theory applies and leads to a linear spectrum.

Using perturbation theory at first order, it is straightforward to show that

e(ρ) =
ρ

2

∫
dr g(r) δu(r) , (58)

g(r) is the correlation function of the hard sphere liquid at density ρ. One can show by explicit computation for a
suitable specific form of δu(r) that, at the glass transition density ρK , the ground state energy is continuous but its
first derivative has a jump.

The pressure P (µ) (as a function of the chemical potential µ) is the Legendre transform of e(ρ):

P (µ) = max
ρ

[ρµ− ρe(ρ)] , (59)

therefore

µ(ρ) =
d

dρ
[ρe(ρ)] ,

P (ρ) = ρ2 d

dρ
e(ρ) .

(60)

From the above expressions one can see that P (µ) is continuous and convex as e(ρ), while µ(ρ) and P (ρ) have a jump
in ρK , see Fig. 6. Therefore the glass transition, that is a second order transition in the classical case, looks like a first
order transition in the zero-temperature quantum problem. This is similar to previous results on quantum mean field
glass models with quenched disorder, see Refs. 66,67. On the other hand the properties of the first order transition
are quite different. In the case of mean field quantum glass models the glass and liquid are really different phases and
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the glass phase does not appear (via density fluctuations that are frozen on timescales diverging at the transition) in
a continuous way from the liquid, contrary to what happens for the superglass.

The sound velocity is now determined by

c2 =
1

ρχT
=
dP

dρ
=

d

dρ

[
ρ2 de

dρ

]
6= 0 . (61)

General arguments68 show that if c 6= 0, then S(k) ≤ k/(2mc); assuming equality the Feynman formula gives ǫ(k) = ck,
consistently with the existence of sound waves.

Therefore the system in this case has a finite critical velocity and is superfluid. Note that in the glass the first peak
of the structure factor, that determines mink[ǫ(k)/k], is close to the one of the liquid, suggesting that the critical
velocity should stay close to the one of the liquid. Still it is known (e.g. in Helium) that the precise determination
of the critical velocity is complicated and depends on the geometry, therefore estimating precisely its value in the
superglass phase is beyond the scope of this paper.

VII. CONCLUSION

In this paper we presented and analyzed a concrete model of interacting bosons that displays unambiguously, in
addition to superfluid and supercrystal phases, metastable superfluid and superglass phases. This shows concretely
that a system can be at the same time glassy, i.e. displaying very slow dynamics for the structural degrees of freedom,
and supersolid, i.e. showing a superfluid component. Note that there is no paradox, exactly as there is none for the
supercrystal. Indeed, Leggett in his original paper3 “Can a solid be superfluid?” explicitly mentioned the possibility
of super-amorphous solids.

The exact ground state of the model we considered is known by construction: it is a Jastrow wavefunction with
a hard sphere potential form. We constructed the quantum Hamiltonian for which this wavefunction is exact via a
mapping to Brownian motion of classical hard spheres, following the connection between the Fokker-Planck operator
for the classical stochastic dynamics and the Schrödinger operator describing the associated quantum system. This
mapping allows us to understand the physics of the superglass phase by using results from the well-studied problem
of densely-packed hard spheres.

Our findings, which were summarized in Sec. II, are most simply conveyed through Fig. 2. By changing the density
of particles, one goes from a superfluid phase to a supercrystal via a first order phase transition. If the density is
increased fast or in case of (binary) mixtures, one reaches a metastable superfluid state, and if the density is further
increased, one reaches the superglass phase.

The analysis we carried out for the hard sphere Jastrow wavefunction can be extended for other systems for which
the Jastrow wavefunction corresponds to a classical potential leading to glassy dynamics. Classically, mixtures may
become glasses at certain compositions, for example 80%/20% mixtures of two species of particles interacting via
Lennard-Jones potentials70. The problem of binary mixtures is interesting in that one could potentially realize the
system in cold atomic gases, where the relative fractions of two species could be controlled. We have worked out the
correspondence between the classical and quantum problems for binary mixtures in Appendix A. Following the same
reasoning as in our work on the hard sphere wavefunctions, the binary mixtures can display superglass behavior as
long as the mapped classical problem does so.

The usefulness of the classical to quantum mapping is that it allows us to make precise and concrete statements
about the nature of the ground state of the devised Hamiltonian. By construction, the ground state energy is exactly
zero, and thus one must add a small perturbation so as to obtain a non-zero speed of sound, as we have done
in Sec. VI. We have added a 2-body potential as perturbation, because we could make use of the knowledge of
the density-density correlation g(r) in obtaining the effect of the additional interaction on the ground state energy,
pressure, compressibility, and sound velocity of the system. It is an interesting possibility that if, as opposed to
the 2-body perturbation, one adds a 3-body potential, one could compensate the 3-body term that arises from the
classical to quantum mapping. In other words, we speculate that by removing (or reducing) the 3-body term by a
compensating perturbation, one could achieve a quantum Hamiltonian with a glassy ground state, only 2-body terms,
and a finite sound velocity. This could perhaps be tested numerically, by considering the system with the potential
in Eq. (12) alone. Moreover, if the short-ranged “sticky” part of the Eq. (12) potential is removed, this may not
substantially change the results. At least, we expect the system to be glassy as the original one (the question of
superfluidity is instead a more tricky one and needs further investigations). The intuitive reason is as follows: for
dense packings and a hard sphere potential, if one turns down the kinetic energy (say by “increasing” the mass of the
particles), thus making the system more classical, one should recover the physics of the classical hard sphere system.
Because the packings are dense, turning up the kinetic energy (say by “decreasing” the mass of the particles), should
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not favor very much transitions between a glassy state α to another β. Because of the hard sphere potential (basically
infinite on the scales of the kinetic energy), we do not expect, at a dense packing, that quantum fluctuations will
reduce considerably (at least for not too small m) the timescales to escape from classical glassy configurations.

Concerning the superglass transition, we found it to be first order but quite unusual. It is different from the quantum
first order transitions found for mean field glassy models in Refs. 66,67. It would be interesting to develop and study
mean field models (or mean field approximations) able to reproduce our results and the superglass phase transitions.
One of the main motivations is that they could allow one to analyze the finite temperature regime which is clearly
out of reach of the approach developed in this work. In particular, it would be very interesting to apply Quantum
Mode Coupling Theory71 (QMCT) to the model we focus on. It would be very interesting to know whether QMCT
predicts quantum correlation functions that are connected to the one predicted by classical MCT via the classical
quantum-mapping we employed. If yes, this would mean that QMCT is able to capture this unusual first order phase
transition toward the superglass phase and it would allow one to study its finite temperature extension.

Finally, let us discuss preliminary results for He4 which is one of the original motivations of our work. Jastrow
wavefunctions have been used extensively to describe the ground state of He4 in both fluid44,45 and solid46 phases.
Therefore it is tempting to try to study the superglass phase of He4 by using the Jastrow wavefunction as a variational
wavefunction. For He4 it was found that the liquid phase is well described by a potential V (r) ∼ r−5. We then
computed the glass transition density for this potential following Ref. 69. We found that the superglass transition

takes place at a density ρK ∼ 0.45A
◦−3

and a very small jump in the first derivative of e(ρ) at ρK , the relative variation
of e′(ρ) being of the order of 10−3. Unfortunately, the value of ρK is 10 times higher than the density at which the
superglass has been observed in Ref. 20. However, it is well known that the Jastrow wavefunction overestimates
the liquid-crystal transition for He4 and, more generally, provides a poor description of the solid phases. A more
refined investigation should involve Shadow-like wavefunctions72, and we plan to report on such a study in a future
publication where more details on the Jastrow wavefunction will also be given.
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APPENDIX A: QUANTUM-CLASSICAL MAPPING FOR A BINARY MIXTURE OF BOSONS

Here we work out the details of the connection between the quantum and classical fluids for a mixture of two types
of particles, A and B. We start again with the Jastrow type wavefunction written in terms of the interaction among
N = NA +NB particles, through a potential

U({x}; {X}) ≡ U(x1, . . . ,xNA ;X1, . . . ,XNB ) =
∑

i>j

VAA(|xi−xj |)+
∑

I>J

VBB(|XI−XJ |)+
∑

i,I

VAB(|xi−XJ |) , (A1)

where i, j = 1, . . . , NA and I, J = 1, . . . , NB. The dynamics of a classical mixture of particles interacting through
this potential is clearly a particular case of the general Langevin equation specified by Eqs. (1) and (2), where we set
γi = γA and γI = γB, and the form of the Fokker-Planck operator follows straightforwardly from Eq. (4).

The quantum Hamiltonian is, from (7),

H =
∑

i

p2
i

2mA
+

∑

I

P 2
I

2mB
+ V({x}; {X}) , (A2)

where mA,B = ~
2γA,B/(2T ) and, setting T = 1 and ~ = 1,

V({x}; {X}) ≡ V(x1, . . . ,xNA ;X1, . . . ,XNB ) =
1

4mA

∑

i

{
1

2
(∇iU)

2 −∇2
iU

}
+

1

4mB

∑

I

{
1

2
(∇IU)

2 −∇2
IU

}
.

(A3)
The ground state state of this Hamiltonian is

ΨG({x}; {X}) =
1√

ZNA,NB

exp

[
−1

4
U({x}; {X})

]
. (A4)
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FIG. 7: Form of the pair potential vpair(r) in the mapped quantum problem that derives from the classical α = 6 and β = 12
Lennard-Jones potential. (ε = 1 is set for simplicity.) The potential is repulsive at large and small distances, but to see the
repulsion for large r one needs to zoom closer, as shown in the inset.

The quantum potential V({x}; {X}) will again have contributions in the form of 2-body and 3-body terms:

V =
∑

i>j

vAA pair
ij +

∑

I>J

vBB pair
IJ +

∑

i,I

vAB pair
iI + 3-body terms . (A5)

The pair potential is a simple generalization of Eq. (11):

vAA pair
ij =

1

2mA

{
−d− 1

rij
V ′
AA(rij) − V ′′

AA(rij) +
1

2
[V ′
AA(rij)]

2

}
(A6a)

vBB pair
IJ =

1

2mB

{
−d− 1

rIJ
V ′
BB(rIJ ) − V ′′

BB(rIJ ) +
1

2
[V ′
BB(rIJ )]2

}
(A6b)

vAB pair
iI =

mA +mB

4mAmB

{
−d− 1

riI
V ′
AB(riI ) − V ′′

AB(riI) +
1

2
[V ′
AB(riI)]

2

}
, (A6c)

and similarly for the 3-body terms.

1. Quantum model associated with Lennard-Jones binary mixtures

Let us construct the quantum model associated to a Lennard-Jones binary mixture, for which the underlying
classical system can be glassy, for instance certain 80%/20% mixtures of A/B particles70. Let us consider classical
potentials of the form VP1P2

(r) = −εP1P2

[
(r/σP1P2

)−α − (r/σP1P2
)−β

]
, where P1, P2 = A or B, with three energy

scales, εAA, εBB and εAB, and three characteristic lengths, σAA, σBB and σAB, in the problem. The exponents
β > α > 0 make the classical potential attractive at long distances and repulsive at short ones. The corresponding
quantum pair potential is

vP1P2 pair(r) =
mP1

+mP2

4mP1
mP2

εP1P2

σ2
P1P2

{
(α(α+ 2 − d) (r/σP1P2

)−(α+2) − (β(β + 2 − d) (r/σP1P2
)−(β+2)

+εP1P2

[
α2

2
(r/σP1P2

)−(2α+2) − αβ (r/σP1P2
)−(α+β+2) +

β2

2
(r/σP1P2

)−(2β+2)

]}
. (A7)

Notice that the pair potential is repulsive for both small and large distances: vP1P2 pair(r) ∼ (r/σP1P2
)−(α+2) for

r/σP1P2
≫ 1 and vP1P2 pair(r) ∼ (r/σP1P2

)−(2β+2) for r/σP1P2
≪ 1. At intermediate distances, r/σP1P2

∼ 1, the
potential can become attractive, as illustrated in Fig. 7 starting from an α = 6 and β = 12 classical Lennard-Jones
potential.
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2. Off-diagonal long range order in binary mixtures

We can extend the Penrose-Onsager definition of off-diagonal long range order48 to a mixture of two distinct types
of bosonic atoms. Let

RA(x − x′) = V

∫ NA∏

i=2

dxi

NB∏

I=1

dXI ΨG(x,x2, . . . ,xNA ;X1, . . . ,XNB )ΨG(x′,x2, . . . ,xNA ;X1, . . . ,XNB ) (A8a)

and

RB(X − X′) = V

∫ NA∏

i=1

dxi

NB∏

I=2

dXI ΨG(x1, . . . ,xNA ;X,X2, . . . ,XNB )ΨG(x1, . . . ,xNA ;X′,X2, . . . ,XNB ) . (A8b)

We can write these expressions in terms of the classical liquid correlations:

RA(x − x′) = V
1

ZNA,NB

∫ NA∏

i=2

dxi

NB∏

I=1

dXI e
−U(x2,...,xNA

;X1,...,XNB
)

×e−
1

2

h

PNA
j=2

VAA(|x−xj|)+
PNB

J=1
VAB(|x−XJ |)

i

e
− 1

2

h

PNA
j=2

VAA(|x′−xj|)+
PNB

J=1
VAB(|x′−XJ |)

i

(A9)

= V
ZNA−1,NB

ZNA,NB

∫ NA∏

i=2

dxi

NB∏

I=1

dXI PG(x2, . . . ,xNA ;X1, . . . ,XNB )

×e−
1

2

h

PNA
j=2

VAA(|x−xj|)+
PNB

J=1
VAB(|x−XJ |)

i

e
− 1

2

h

PNA
j=2

VAA(|x′−xj|)+
PNB

J=1
VAB(|x′−XJ |)

i

(A10)

= V
ZNA−1,NB

ZNA,NB

〈e− 1

2
ΦA(x) e−

1

2
ΦA(x′)〉 (A11)

where we defined the potential caused by the NA − 1 type A particles and the NB type B ones as

ΦA(x) =

∫
dr [VAA(|x − r|) ρA(r) + VAB(|x − r|) ρB(r)] , (A12)

with the densities given by ρA(r) =
∑NA

j=2 δ(r − xj) and ρB(r) =
∑NB

J=1 δ(r − xj).
Similarly, one obtains

RB(X − X′) = V
ZNA,NB−1

ZNA,NB

〈e− 1

2
ΦB(X) e−

1

2
ΦB(X′)〉 (A13)

where the potential caused by the NA type A particles and the NB − 1 type B is given by

ΦB(X) =

∫
dr [VAB(|X − r|) ρA(r) + VBB(|X − r|) ρB(r)] . (A14)

One can define the condensate fraction of type A bosons as nA = RA(∞) ≡ lim|x−x′|→∞ RA(x − x′), and so

nA = V
ZNA−1,NB

ZNA,NB

〈e− 1

2
ΦA(0)〉2 , (A15)

where we assumed that the two-point correlation function factorizes,

〈e− 1

2
ΦA(x) e−

1

2
ΦA(x′)〉 → 〈e− 1

2
ΦA(x)〉 〈e− 1

2
ΦA(x′)〉 = 〈e− 1

2
ΦA(0)〉2 , (A16)

and also that the one-point function is translational invariant. Notice that the factorization assumption should be fine
for short-ranged potentials or potentials that decay sufficiently fast, but there may be certain (possibly pathological)
potentials for which it may fail.

One can check that this definition of the condensate fraction of A bosons is such that nA ≤ 1 as follows. First we
use Hölder’s inequality to obtain

〈e− 1

2
ΦA(x) e−

1

2
ΦA(x′)〉 ≤

√
〈e−ΦA(x)〉〈e−ΦA(x′)〉 = 〈e−ΦA(0)〉 , (A17)

from which we conclude that RA(x − x′) ≤ RA(0) = 1, the last equality following trivially from the normalized
wavefunctions (plus translational invariance). Thus, nA ≤ 1 follows from the definitions above. Similar results apply
to nB.

Notice that RA(0) = 1 is a simple way to obtain 〈e−ΦA(0)〉 = 1
V

ZNA,NB

ZNA−1,NB
; we will use this equality below.
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a. Fixing the chemical potential

If we work at fixed chemical potential, we can relate the condensate fraction of bosons A and B to the fugacities
zA,B and the densities ρA,B as follows. The grand canonical partition function for the binary mixture is given by

Z =
∑

NA,NB

zA
NA

NA!

zB
NB

NB!
ZNA,NB . (A18)

At the saddle point, with particle numbers N∗
A and N∗

B, one has the relations

N∗
A

zA
ZN∗

A−1,N∗
B

= ZN∗
A,N

∗
B

=
N∗
B

zB
ZN∗

A,N
∗
B−1 . (A19)

Substitution of these relations in the equations for nA,B allows us to write

nA =
zA
ρA

〈e− 1

2
ΦA(0)〉2 (A20a)

and

nB =
zB
ρB

〈e− 1

2
ΦB(0)〉2 . (A20b)

Notice that Eq. (A19) also allows us to write

〈e−ΦA(0)〉 =
1

V

ZNA,NB

ZNA−1,NB

=
ρA
zA

and 〈e−ΦB(0)〉 =
1

V

ZNA,NB

ZNA,NB−1
=
ρB
zB

(A21)

at equilibrium.
These relations allows us further to put lower bounds on the condensate fraction. To do so, consider without loss

of generality potentials such that ΦA,B(0) ≥ 0; one can always do so by shifting the energies by a constant value such
that the potentials VAA, VBB and VAB are non-negative (and using that the densities ρA,B ≥ 0). In this case, we can
write

〈e− 1

2
ΦA,B(0)〉 ≥ 〈e−ΦA,B(0)〉 =

ρA,B
zA,B

(A22)

and thus

nA,B ≥ ρA,B
zA,B

. (A23)

For a hard sphere potentials, the equality 〈e− 1

2
Φhard

A,B (0)〉 = 〈e−Φhard

A,B (0)〉 is satisfied. Thus, hard spheres have the
lowest possible condensate fractions respecting the bound Eq. (A23).
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crucial difference is that in Eq. (27) the Pα are normalized to 1 and the weights wα add up to one, while this is not the case
in Eq. (30).

74 There is only one step that is not detailed in Refs. 33,34 so we sketch it here for completeness, and it is the proof that
eg(0) = 1

ρ
1

(4πA)3/2
. In the replica formalism eg(x,x′) = ρ−2

P1,N

ij 〈δ(x − xa
i )δ(x′ − xb

j)〉, where a 6= b are two different

replicas. In the language of Refs. 33,34, replicas are arranged in molecules labeled by the index i = 1, · · · , N . Then if i 6= j
particles in different replicas are constrained to be at distance |x− x′| & σ and do not contribute to eg(x,x). The only term

that contributes is the one for i = j, and from Eq. (4) in Ref. 34 we have eg(x,x′) = ρ−2 PN

i=1〈δ(x − x1
i )δ(x

′ − x2
i )〉 =

ρ−2
R

dx3 · · · dxm ρ(x1, · · · ,xm). Then the result follows from Eqs.(11) and (12) of Ref. 34.


